
Cross Over to
HTML5 Game
Development

Use Your Programming Experience to
Create Mobile Games
—
Zarrar Chishti

www.allitebooks.com

http://www.allitebooks.org

Cross Over to HTML5
Game Development

Use Your Programming
Experience to Create

Mobile Games

Zarrar Chishti

www.allitebooks.com

http://www.allitebooks.org

Cross Over to HTML5 Game Development: Use Your Programming
Experience to Create Mobile Games

ISBN-13 (pbk): 978-1-4842-3290-3 ISBN-13 (electronic): 978-1-4842-3291-0
https://doi.org/10.1007/978-1-4842-3291-0

Library of Congress Control Number: 2017961309

Copyright © 2017 by Zarrar Chishti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images
only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Jessica Vakili
Copy Editor: Kim Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3290-3. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Zarrar Chishti
Glasgow, United Kingdom

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3291-0
http://www.allitebooks.org

iii

About the Author ��vii

About the Technical Reviewer ���ix

Acknowledgments ���xi

Preface ��xiii

Table of Contents

Chapter 1: Introduction���1

Introducing Our Game: Space Zombies ��1

Setting up Your Work Environment ���4

Part 1: Setting up Our Folders ��� 4

Part 2: Setting up Our Files �� 6

Hosting and Media Files ���10

Part 1: Your Computer vs� Hosting Servers ��� 10

Part 2: Download the Media for Your Project ��� 11

Chapter 2: In the Beginning, There Was HTML ������������������������������������15

Hello World ���15

Background Image ���18

Adding the Rest of the Images ���20

Chapter 3: Time to Apply a Little CSS ���23

Start with a Quick Test ���24

Our Background Image���28

Our Other Images ���32

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 4: Apply Intelligence with JavaScript �����������������������������������37

Why Do We Need to Resize? ���37

How Do We Universally Resize? ���38

Let’s Resize Our Images ���46

Chapter 5: Take a Shot: Part 1 ��51

Changing Our Cursor and Registering a Click ��51

Making Our Gun Act More Realistic ��55

Animating the Gun with Sprite Sheets ���60

Part 1 ��� 60

Part 2 ��� 63

Part 3 ��� 64

Part 4 ��� 68

Reloading Our Gun ���71

Firing Our Gun ��78

One Last Thing… ���81

Chapter 6: Where Are the Zombies? ���85

Creating a Zombie: Part 1 ���85

Creating a Zombie: Part 2 ���86

Moving the Zombie Closer ��95

Creating All the Zombies ��99

Generating a Zombie Life Cycle ��102

Chapter 7: Take a Shot: Part 2 ��107

Hitting a Zombie ���107

Making the Hits Count ��113

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Zombie Down! ��119

Part 1: Create Six Bubble Zombie Elements �� 120

Part 2: Activate the Counter Bubble Zombie �� 129

Part 3: Animate the Bubble Zombies ��� 136

Reloading the Gun ��146

Clean up the Depths and Click Zones ���157

Part 1: Ensuring Gun Fire ��� 157

Part 2: Zombie Depth Levels �� 163

Intro Splash and “Game Over” Screens ���171

Part 1: Images Folder��� 171

Part 2: Stopping and Starting �� 172

Chapter 8: Add Some Bling to Our Game ��191

What’s the Score? ��192

Sprinkle of Special Effects ���203

Part 1: Get Started ��� 204

Part 2: Displaying the Effects��� 204

Turn up the Sound Effects ��219

Part 1: Getting Started ��� 220

Part 2: Adding Sound Effects ��� 220

Embedding the Game ���225

Part 1: Getting Started ��� 225

Part 2: Modify the default�html File ��� 226

Game Over� Restart? ���244

 Index ���247

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

About the Author

Zarrar Chishti is a software and games

development consultant with over 500 games

developed for companies around the world. He

is sought after to advise on the development

of viral games for major marketing campaigns.

His consultancy and development firm include

prestigious companies such as Turner Media,

British Airways and Channel 4 among the

many clients that keep coming back when a

new product or service is being launched.

After graduating from Glasgow University

in 1996 with a prestigious joint honors degree in Software Engineering,

Zarrar contracted as a software developer in both London and L.A. for 5

years. In 2001 he opened his own software firm in Glasgow and within 2

years was employing 10 staff. This was to grow to 30 in 2005 when he began

to offer games development to his clients.

One of the most notable game projects Zarrar has produced includes

an interactive comic for the popular Ben 10 TV series. The project was a

notable success that took his firm 10 months to deliver. It was rolled out

in over 25 countries in localized language editions. Other projects include

building a series of games for the ever popular Big Brother TV franchise

and an employee training game for Legal and General.

www.allitebooks.com

http://www.allitebooks.org

ix

About the Technical Reviewer

Massimo Nardone has more than 22 years

of experiences in security, web/mobile

development, and cloud and IT architecture.

His true IT passions are security and Android.

He has programmed and taught how to

program with Android, Perl, PHP, Java, VB,

Python, C/C++ and MySQL for more than 20

years.

He holds a master’s degree in computing

science from the University of Salerno, Italy.

He has worked as a project manager, software engineer, research

engineer, chief security architect, information security manager, PCI/SCADA

auditor and senior lead IT security/cloud/SCADA architect for many years.

His technical skills include security, Android, cloud, Java, MySQL,

Drupal, Cobol, Perl, web and mobile development, MongoDB, D3, Joomla,

Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll,

Scratch, and more.

He currently works as chief information security office (CISO) for

Cargotec Oyj.

He worked as visiting lecturer and supervisor for exercises at the

Networking Laboratory of the Helsinki University of Technology (Aalto

University). He holds four international patents (PKI, SIP, SAML, and Proxy

areas).

Massimo has reviewed more than 40 IT books for various publishing

companies. He is the coauthor of Pro Android Games (Apress, 2015).

www.allitebooks.com

http://www.allitebooks.org

xi

Acknowledgments

To Pops - you were an amazing dad who has left a massive hole in our lives.

To my closest friend, who has been (and continues to be) there for me

at the times when it matters the most: my brother Ibrar. Thank you to my

parents, who gave me the most amazing education and start to life. My one

constant and partner in crime, my wife Sadia. My son, whom I am so proud

of (incidentally, he was my initial editor for the book) and my “janno-jaan”

daughters: Sara, Aisha, and Rushda. I would be in a tremendous amount

of trouble if I did not also acknowledge Bella, our Bengal cat.

I would like to say a heartfelt thank you to my agent, Carole. You agreed

to represent me, despite my thick Scottish accent! Your guidance and

patience at the start will always be remembered and appreciated. Also,

thank you to the awesome and gorgeous team at Apress: Aaron and Jessica.

I had a great time working with you both and you made this “noob” feel

like part of the team.

I want to thank two people who have inspired me to write books. My

Latin teacher Mr. Temperely and my favorite author of all time, David Blixt.

I would also like send my love and appreciation to all my staff, both past

and present: Alasdair, George, Paul (the Great), Les, and Claire. Also, my

thanks to those clients that gave me my initial start despite having little or

no experience.

Finally, I would like to thank the nurses and doctors at Monklands

Haematology department who looked after my wife, Sadia. I will always

remember your commitment, passion, and support that you gave to her.

Thank you for sending her home to us.

www.allitebooks.com

http://www.allitebooks.org

xiii

Preface

Welcome to the wonderful world of HTML5 game development. Are you

looking for a new challenge or looking to expand your current skill set?

Then get ready to start your journey. This book has been written with a

simple goal in mind: to provide the means for anyone to develop their first

HTML5 game.

This is a great time to break into the most lucrative game development

platform in the world. The global demand for the HTML5 game

development platform has expanded so quickly that it is currently crying

out for seasoned developers from more traditional environments to

cross over. Never before has there been such a widely accepted platform

by literally every manufacturer and operating system. This, in turn,

has convinced marketing departments to move away from traditional

platforms, such as dedicated mobile apps, for the more widely accepted

HTML5 format.

In short, there has never been a better time for a seasoned IT

programmer to cross over and capitalize in this lucrative market with their

much sought-after talents and experience.

I have spent the last five years training developers from a wide range

of programming disciplines to cross-train in HTML5 game development.

Whatever your vocation, whether it be an application databases systems

developer or a professional web developer, with this book you will learn to

evolve your current coding skills to enable you to become eligible for the

biggest gaming platform in the world.

From the first chapter, you immediately see encouraging results as

you power through a challenging and fun project that has been uniquely

designed and developed for this book.

www.allitebooks.com

http://www.allitebooks.org

xiv

 Why This Book
This book was written with a simple goal in mind: to help seasoned

programmers from other disciplines to cross over to HTML5 game

development.

No apps need to be purchased. No special hardware or software is

required. As long as you have a simple computer with Internet access, you

can start today.

How quickly you build this game is entirely up to you. For each major

step we come across, you can decide to either study the technical aspects

or skip ahead to the next step. Either way, by the end of this book, you will

have a playable game to show off to friends and family.

This book is perfect for anyone that just wants to roll up their sleeves

and start developing a game for themselves. I believe that by the end of

this book, you will be in a far better position to make a decision on whether

you want to invest your time and money in becoming a qualified games

developer.

 What You Will Need
Any computer will do.

• You do not need a super-fast computer

• You do not need an expensive IDE installed

• You do not need the latest graphics card

You can build this game using the computer/laptop that you already

have—as long as it switches on and you can run the already installed

Notepad program (if you are using Windows) or TextEdit (if you are on an

Apple Mac).

PrefaCePrefaCe

xv

What about your phone or tablet? Technically, it is possible; however, it

is not ideal because the operating environment is not suited to coding (i.e.,

typing). If you do wish to use these devices, then you may wish to invest in

a Bluetooth keyboard and an external memory card.

 How to Use This Book
During this project, I have spent a great deal of my time minimizing the

amount of code that you need to write. However, I had to balance this

with making code that was still readable, which means that in occasional

instances of this book, you will find some lengthy portions of code to write.

I do apologize for this; however, keep in mind that you will be able to reuse

the code in your next project.

The following icons appear in the book.

In this section, you will see the actual code that will need to be written. It is

important to ensure that you copy the code exactly as it is written.

On most occasions, you will only need to write the lines that are

written in bold. Also, the lines of code that existed before but have just

been modified are in red.

PrefaCePrefaCe

xvi

In this section, you will see interesting facts and explanations of the code

that has just been written. If you wish to build on your coding knowledge

as you proceed, then you will find a great source of information here.

However, feel free to ignore this section if you just want to get on with

building your game.

Did something go wrong? Did the code you just wrote not work? Not to

worry. You will find common (and some not so common) mistakes here

with solutions on how to fix them.

PrefaCePrefaCe

1
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_1

CHAPTER 1

Introduction
“If you have a garden and a library,
you have everything you need.”

Marcus Tullius Cicero
(106 BC – 43 BC)

var replaceWord1 = str.replace("garden", "computer");

var replaceWord2 = str.replace("a library", "time");

I have been developing software since 1996 and I have developed games

for small and large companies for over a decade now. Like any form of

development in the real world, you need to know why you are building

the game before you think of coding strategies and build processes. In the

gaming world, this comes in the form of the game’s story. This includes the

background, reasons to play, and the goals of the game.

 Introducing Our Game: Space Zombies
 So here is our story, which we will develop into a game.

Hi. My name is Ace Star. The year is 2107. For the last three

months, I have been stationed as a security guard on the only moon

of planet ZC636, which is in the Andromeda Galaxy. In addition to

me and a group of dignitaries from Earth, there is a group of about

500 top scientists stationed here to work on secret experiments.

2

I need your help.

Last night, there was an explosion in one of the labs. A gas was released

that turned all the scientists in the lab into zombies.

I have positioned myself outside the only doors of the colony’s main

building. The other survivors are safely inside. I am the last line of defense

before help arrives from Earth.

I discovered that our weapons are useless against the zombies. While

running out of the labs, however, I found a new, experimental weapon.

It seems to do the trick.

I can hear them coming. Are you ready?

Let’s have a look at a few of the graphics that we will use for the

development.

This is the background image for our game.

It will fill the screen by stretching out both

horizontally and vertically.

Our zombies will spawn from where the ground

meets the sky. Once spawned, they will come

toward us, growing bigger.

Say hello to Professor Z, our average zombie. In

terms of speed, he is not very fast and he does

not suddenly sprint to the front. He simply heads

toward you at his own leisurely speed! In terms of

our weapon shots, he will not be too hard or too

easy to “neutralize.” It takes two zaps to get him.

Say ciao to Belladonna, our fastest zombie.

Keep an eye on her because she will appear one

minute and then suddenly sprint to the front.

She will not be too hard to neutralize, however.

One zap will get her.

Chapter 1 IntroduCtIon

3

Finally, this is Brad, our heavyweight zombie.

Unfortunately, due to all of those hours lifting

weights, he is slower than the average zombie.

He takes his time to gain speed once he spawns.

He will be harder to neutralize, however. It takes

three zaps to get him.

This is the experimental weapon that our hero

found in one of the labs. When fired, it zaps

out a special liquid, which when successfully

administered, encases the zombie in an air

bubble.

It will need to be reloaded often.

This is our Reload button. From a game-design

point of view, it adds another dimension to the

gameplay.

This is our game’s logo. We will not see it until

the last chapter of the book, when we embed our

game.

This is the box that we will embed into our

game. Initially, you see the game span the

entire screen. Near the end, however, we look at

embedding the code into this box.

This is the background image that we use in the

final chapter. The background is the main image

used when we build a dedicated web page to

embed our game into.

Chapter 1 IntroduCtIon

4

The following is a screenshot of the finished game.

 Setting up Your Work Environment
This section discusses how to set up your work environment.

 Part 1: Setting up Our Folders
You need to create a work folder where all of your work files can be stored.

This makes it easier to distinguish your work files from all the others on

your computer. So first, create a root (or master) folder called My_Work_

Files in the C drive.

Chapter 1 IntroduCtIon

5

Once you have your root folder, the next step is to create the subfolders

that you will need for the game. Create four folders inside My_Work_Files.

Name the folders as follows:

• CSS

• Images

• Raw Images

• js

Your folder should look like the following screenshot.

The CSS folder will hold special code files that help structure the design of

the game. All the files in this folder will end in .css.

The js folder will hold all of our JavaScript files, which will form the

engine for our game. They will contain commands and instructions that will

control what happens in our game. All the files in this folder will end in .js.

Chapter 1 IntroduCtIon

6

The Images folder, as the name suggests, will contain all the image or

media files that we will need for the game.

The Raw Images folder will not technically be used for raw images. In

our case, we will use this folder as special temporary housing for all of our

media. We will move them into the Images folder when we need them.

 Part 2: Setting up Our Files
For the purposes of this book, I will use Notepad (if you are using an Apple

computer, then I would use TextEdit). I find Notepad simpler and easier

to use; however, almost any IDE (Integrated Development Environment)

can be used for this project. So go ahead and use the IDE that you are most

comfortable with.

If you do want to use an IDE, here is a list of a few that are free to use:

• Eclipse. This is an open source editor that is typically

used for C and C++ (as well as other high-level

languages) projects.

• NetBeans. Like Eclipse, this is an open source

editor; however, it comes bundled with a plethora of

development frameworks.

• Aptana. A very popular IDE among web developers, it can

be plugged into Eclipse. Typically used for HTML projects.

• CodeRun. This is a slightly unusual choice in that

it runs on a browser (i.e., it is a web-based IDE).

Personally, I find it excellent for last-minute fixes when

at a remote location.

• Visual Studio Community. This is free for individual

programmers and comes packed with all the amazing

features that you will find in Visual Studio Professional

series.

Chapter 1 IntroduCtIon

7

Although using an IDE has its benefits, I think that it is worth keeping

in mind this excellent quote about using IDEs for multiple languages:

“Although many IDEs can handle more than one language, few do it

well. Plus, it’s likely overkill if you are just getting started.”

Now that the folders are set up, let’s create the files that you will use to

develop the game.

First, you need to create a default.html file. If you are using an IDE,

click File ➤ Create New and select HTML. If you are using Notepad, open a

new file and save it as default.html.

Your folder should now look like this:

Now, we need to create files within some of the folders we created.

Double-click the js folder. Repeat the preceding steps (i.e., create a New

File and then Save As). The following are the file names to enter:

• > SZ_main.js

• > SZ_movement.js

• > SZ_setupContent.js

• > SZ_SS.js

• > SZ_touch.js

• > SZ_zombie_movement.js

Chapter 1 IntroduCtIon

8

Your js folder should now look like this:

Finally, we need to create a file within the CSS folder. Repeat the steps

from earlier (i.e., create a New File and then Save As). The file name to

enter is

> SZ_master.css.

Your CSS folder should now look like this:

Chapter 1 IntroduCtIon

9

We need our files to work across the worldwide network successfully, so we

should try to keep to the standardized naming conventions.

It is best to avoid character spaces in file names. Technically, this is

acceptable in local environments (Apple and Windows OS), however,

character spaces are not recognized by other systems. Ideally, use an

underscore or a hyphen character to separate words within file names.

Do not use any special characters, such as !, ?, %, #, or /. It is best to

limit file names to underscores, numbers, and letters.

For this project, you will notice that I try to consistently start all of my

file names with SZ_. This is because they are the initials for the name of the

game—Space Zombies. It is important to be consistent and descriptive in

naming and organizing files so that it is obvious where to find specific data

and what the files contain.

By naming your files in a meaningful manner, you increase your

chances of finding those files in the future and knowing what information

they contain. When you come to develop new games, you will easily be

able to locate Space Zombie files by searching for all files starting with SZ_.

Finally, it is good practice to keep file names as short as possible. Apart

from adding to the size of the file, it also makes them easier to remember

six months down the line.

Chapter 1 IntroduCtIon

10

 Hosting and Media Files
As long as the files remain on your hard drive (the files and folders created

earlier), you will be able to test the game comfortably on your computer.

This is certainly okay for budding developers starting out.

Nonetheless, at some point when you have developed several games,

you may wish to showcase them for all to see and play.

To do this, you need to upload your files to a server computer. A server

is essentially a computer that is connected to the Internet.

 Part 1: Your Computer vs. Hosting Servers
You need to open an account with a server computer. If you do a Google

search for “server hosting free trial,” you have several options available.

If you are still unsure, please do not hesitate to message me on Twitter

@zarrarchishti.

The following is a short list of available hosting options.

 Dedicated Server

This is the most expensive option. Essentially, you own the computer that

is connected to the Internet. This is only an option if you are either a huge

company or a reseller.

Chapter 1 IntroduCtIon

11

 Shared Server

This is generally the most economical option for hosting. It is very much

for people like you, who are renting a piece of the server. The main

advantage is the ridiculously low cost, of course. However, as your game

development expertise increases, you may find this option to be limiting

and unfit for your specific needs.

 Cloud Hosting

Whereas the prior two options rely on one physical computer, cloud

hosting allows an unlimited number of computers to act as one system.

 Part 2: Download the Media for Your Project
The media files (image and sound files) used in the project are available

for you to download.

Open your Internet browser and go to the following URL:

http://zarrarchishtiauthor.com/downloads/

Click the Download button. This will initiate a download. The browser

will let you know when it has completed. Navigate to your download folder

and locate the downloaded file.

It should be a file called raw_media_1.rar. Now you need to extract the

files from this zipped file in a new folder called Raw Media. Double-click

this folder and you will see the following four folders:

• > Images

• > JS

• > sounds

• > html_web

Chapter 1 IntroduCtIon

12

First, copy all four folders to your Raw Images folder, which is in the

My_Work_Files folder.

At this stage, we are only interested in the files inside the JS folder. As

we progress through the game, we will go back to the other folders and

copy the files as needed. Double-click the JS folder (in the Raw Images

folder). Using the same technique as before to copy files, go ahead and

copy all the files, and then paste them into your own js folder (in the My_

Work_Files folder).

Your js folder (in the My_Work_Files folder) should now look like this:

That’s it for now! We have successfully set up our game development

environment. We are now ready to start coding our game!

Chapter 1 IntroduCtIon

13

The files we copied over from the JS folder are special JavaScript programs

that we can use for our game. Imagine a library of code maintained by

companies like Google that contain functions that make our lives easier.

The files—for instance, jQuery—are fast, small, and feature-rich

JavaScript libraries. Together they make things like HTML document

traversal and manipulation, event handling, animation, and AJAX much

simpler with an easy-to-use API that works across a multitude of browsers.

When using a library such as this, we do not need to ever worry about

how they work. All we need to know is what they do so that we can decide

whether we want to use them in our games.

Another advantage of using libraries such as jQuery is that it runs

exactly the same in all major browsers, including Internet Explorer 6! So no

need to worry about cross-browser issues.

Usually, we link to these files directly from the source servers. The

advantage of doing it this way is that we always get the latest copy of the

code when running our game. However, since we want to be able to play

the game offline, let’s choose to download them into our local folders.

Chapter 1 IntroduCtIon

14

 1) In Windows, did the option to Extract Here

appear? If not, you need to download WinRAR from

the following:

http://www.win-rar.com/download.html

 2) Are you using a laptop? To right-click, you need to

first click and then click the mousepad.

 3) When downloading the media files, did you receive

a message from your browser warning you that

the download is not commonly used and may be

dangerous? If yes, this is because I chose to WINRAR

rather than to WINZIP the file. The files are not

dangerous. You may click Keep; however, feel free to

run a virus check on the folder before opening.

Chapter 1 IntroduCtIon

http://www.win-rar.com/download.html

15
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_2

CHAPTER 2

In the Beginning,
There Was HTML

“Nine people can’t make a baby in a month.”

Fred Brooks

HTML is a mark-up language that is used to develop web sites. So why do

we need this for our game? It is best to imagine HTML as the skeleton or

bone structure of our game.

As a side note, once you have completed this chapter, you will have

not only started your journey into game development, but also web

development!

 Hello World
During my 20 years of programming, I have learned many programming

languages. The first project that I always work on is learning how to output

the words “Hello World.” to the screen. I bet that you follow this tradition

too, so let’s develop a “Hello World” page in HTML.

Open the default.html file in Notepad or TextEdit in the My_Work_Files

folder using the same program or IDE that you used in the “Part 2: Setting up

Our Files” section in Chapter 1.

16

When the file opens, it should be completely blank. Type the following

lines:

<html>

 <head>

 </head>

 <body>

 <div id="SZ_maincontent">

 Hello World.

 </div>

 </body>

</html>

Navigate to the menu, click File and then click on Save. You can now

close this file. Navigate back to the menu, click File, and then click Exit/

Close.

Are you ready to test your very first program?

Go back to the My_Work_Files folder and double-click the default.

html file. This should open in your default Internet browser; for example,

Microsoft Edge, Google Chrome, or Safari.

The page that opens up on the browser should be a completely blank

page with the words “Hello World.” displayed in the top-left corner.

Excellent. Our program works and we have written our first piece of code!

Obviously, this is nowhere near a game yet. All the same, persevere

with the work between now and that point. Rest assured, by the end of

this book, we will have developed the entire game. It will most certainly be

worth it. And you will be learning a lot of different techniques to get you

started on your journey to developing a suite of games!

Chapter 2 In the BegInnIng, there Was htML

17

HTML stands for Hypertext Markup Language. Hypertext is the method by

which you navigate around the Internet. Hyper just means it is not linear,

or you can go to any place on the Web by clicking links. Markup is what

HTML tags do to the text inside them. They mark it as a certain type of text

(bolded text, for example).

Here are the descriptions of each of the tags that you just coded:

• <html> </html> This is required at the start and at the

end of every new web page. Everything inside these two

tags constitutes the contents of your page.

• <head> </head> The contents of the head tag

include the title for the page, scripts, styles, and meta

information.

• <body> </body> All the visual contents of our web

page, such as text, hyperlinks, and images, are

contained within this tag.

• <div> </div> This defines a particular section of our

page. It is best to think of the div tags as containers. It is

not unusual to have div tags within bigger div tags.

You will notice that the closing tags are basically the same as the

opening tags, with a forward slash preceding it; for example, </div>

signals that you are closing that particular tag.

Please remember that every tag must be closed.

Chapter 2 In the BegInnIng, there Was htML

www.allitebooks.com

http://www.allitebooks.org

18

 Background Image
The game’s background image does not change, move, or interact with the

gameplay. It provides a backdrop for all the various elements that will be

controlled by the actual game.

First, go to the images folder in the Raw Images folder of the My_Work_

Files folder. Locate the file called SZ_background_image.jpg. You need

to copy this file over to your Images folder, which should then look like this:

Let’s reopen the default.html file. Remove the “Hello World” line by

selecting the line and clicking Delete/Backspace. Now type the following

new line (all the new text is in bold):

<html>

 <head>

 </head>

 <body>

 <div id="SZ_maincontent">

 </div>

 </body>

</html>

Chapter 2 In the BegInnIng, there Was htML

19

Save the file and then close it. Go back to the My_Work_Files folder and

double-click the default.html file.

By using the tag, we have defined a background image for our

page. It is important to note that the image is not technically inserted into

our HTML page; rather, the background image has been linked to our

HTML page. The tag has created a holding space for the background

image.

The “Hello World” text should have disappeared, and the background

image is now in its place. It does not look like it’s covering the screen.

Do not worry about that. We will align and resize our images in the next

chapter.

In this section, you came across the tag, which is used when you

want to place an image in your web page.

Inside the tag, you will notice

id="SZ0_0"

As it suggests, this is the ID for the image tag. This ID is used when we

start coding in JavaScript in Chapter 4.

Also, you will have noticed the src tag:

src="images/SZ_background_image.jpg"

src, which stands for “source,” allows you to specify the location of the

image. Earlier in this section, we placed SZ_background_image.jpg in the

images folder. So as you can see, the src is the exact location and the name

of the image file.

Chapter 2 In the BegInnIng, there Was htML

20

Now, let’s think back to the previous section, when I said that you

always need to include closing tags. I ended the section by stating that all

tags must be closed. However, the code that we just wrote did not include

. So, did I forget?

What I did there was close our tag within the opening tag. Note that at

the end of our img tag, there is a forward slash before the >. This is another

way to close tags if you do not need add elements outwith what is written

in the opening tag itself.

Let’s analyze our line of code:

We have managed to put all the information concerning our image

inside the opening tag. There was no additional information required;

therefore, we can close our tag by writing />.

In case you are wondering, the following is just as valid:

 Adding the Rest of the Images
The following images also need to be added to our HTML page:

• SZ_gun.png

• SZ_reload.png

• SZ_score.png

There will be many more images by the time we finish the game;

however, this is all that we need at this stage.

Chapter 2 In the BegInnIng, there Was htML

21

As before, go into the images folder in the Raw Images folder of the

My_Work_Files folder. Locate the three new .png files and copy them over

to your Images folder, which should then look like this:

Now, reopen the default.html file and type the following new lines

(all the new text is in bold):

<html>

 <head>

 </head>

 <body>

 <div id="SZ_maincontent">

 </div>

 </body>

</html>

Save the file and then close it. Go back to the My_Work_Files folder and

double-click the default.html file.

Chapter 2 In the BegInnIng, there Was htML

22

You should now see the three new images. You may have to scroll

down the web page. Again, do not worry about how the images appear on

the page. Just ensure you can see the background image from before and

the three new images that we just added.

At this stage quite a few people ask me if HTML5 game development

is just the same as being a web developer. Yes in the same way an Xbox

console developer is just a C#/C++ Forms developer. However HTML5

games do not look and feel like a normal website, do they? As you develop

this game you will find out that a HTML5 games developer has to learn

everything about being a web developer and then more. You will need to

work out where the supposed boundaries lie for a web developer and then

learn how far you can push them for your game’s engine.

In this chapter we have managed to code our four initial graphical

elements on to our screen. They may not look like much to look at as they

do not seem to be in the right place nor the right size. However not to

worry, as in the next chapter we will apply CSS to the four images which

will align them exactly where we want them to be.

Chapter 2 In the BegInnIng, there Was htML

23
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_3

CHAPTER 3

Time to Apply a Little
CSS
 #tower-of-pisa

 {

 font-style: italic;

 }

CSS, which stands for Cascading Style Sheets, is a language that is used to

help style and design web sites. It can be used to describe how the page

should look in terms of color, layout, and fonts.

So why do we need this for our game? Previously, we imagined HTML

as the skeleton or bone structure of our game. CSS code will be the look

and appearance of our game. If you are familiar with building web sites,

however, you may be wondering how big a role CSS actually plays in

HTML5 game development.

With the arrival of CSS3, animations in CSS allow the browser to

determine which elements should get GPU layers, which results in

hardware acceleration. Do not start moving all your animations over

to CSS en masse, however. It is generally not a good idea to give every

element its own layer. If you do, then your GPU will run out memory—

quickly. I am sure you will agree that there is no worse feeling as a

developer than when you receive the dreaded “Out of Memory” error.

24

 Start with a Quick Test
Before we align and resize our images, let’s start our CSS file with a simple

test. The test is to see if we can make the entire background of our page the

color red. By doing this, we will make sure that the default.html page is

communicating successfully with our CSS page.

Let’s open the SZ_master.css file. When the file opens, it should be

completely blank. Type the following lines:

html {

 height: 100%;

 }

body {

 padding: 0 0 0 0;

 margin: 0;

 user-select: none;

 background-colour: red;

}

You can now save and close this file.

As you can see from this code, the syntax of a CSS file consists of three

parts.

• selector

This is usually the HTML <tag> that you want to define.

In the preceding code, we defined the <html> and

<body> tags as selectors.

• property

As the name suggests, here we define what property

of the tag we wish to apply a style to. In our <html>

example, we defined the height property to style.

Chapter 3 time to apply a little CSS

25

• value

The actual style that you wish to define for the property.

In our case, we decided that the height of our <html>

tag is 100% of the screen size.

Interestingly, you can specify the same parameters for multiple tags by

simply grouping them.

Before testing, we need to link this file into our default.html file.

Reopen the default.html file and type the following new (in bold) line:

<html>

 <head>

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="SZ_maincontent">

 </div>

 </body>

</html>

Save the file and then close it. Go back to the My_Work_Files folder and

double-click the default.html file.

You should see the same screen as last time (i.e., the four images) but

with a red background instead of white. This is good because it means that

you successfully linked the CSS file to the main HTML page.

Chapter 3 time to apply a little CSS

26

We have covered quite a lot of CSS techniques in the SZ_master.css file.

Let’s go through them.

• html {height: 100%; }

This sets the height of our HTML page to 100%. It

means that our content should be able to cover the

visible screen from the top to the bottom.

It is worth noting that we can use the properties min-height and max-

height to override the height property.

• padding: 0 0 0 0;

This clears an area around the content of the page.

Think of making a four-sided margin where you specify

how thick you want it to be. In our case, we want the

content to cover the entire page, so we set the padding

for all four sides to 0. The four 0’s correspond to top,

right, bottom, left.

• position: fixed;

As the name suggests, this positions the image to a fixed

location based on the browser window. So top: 0;

means 0 pixels (pixels is a measurement) from the top of

the browser (i.e., you want it fixed to the top). Similarly,

bottom: 0; means that you want the image placed at

the bottom of the browser window. Finally, left: 0;

and right: 0; refer to the image placed to the left or

the right of the browser window.

Chapter 3 time to apply a little CSS

27

• margin:0;

The margin sets the size of the white space around the

element. In our case, we do not want any white space

around the edges of the screen.

• user-select: none; We can control how our player

interacts with the text elements on the screen by using

the user-select property. In this case, it is set to none,

which means that we do not want the user to select or

click any text elements. The reason for this is that it may

distract from playing the actual game (for example, text

that allows the user to select the high score).

• background-colour: red; As the name suggests, this

sets the background color of the screen. If you wish,

try to replace the word red with yellow or any color of

your choice. Save the file and refresh the browser.

We also added another line of code to our HTML file:

<link href="css/SZ_master.css" rel="stylesheet" />

The link tag is the standard way to include a CSS file on the page. The

href specifies the location of the CSS file that we wish to include. The rel

tag specifies the relationship between the HTML file and the CSS file. In

this case, the CSS file acts as a style sheet for the HTML file.

Chapter 3 time to apply a little CSS

28

 Our Background Image
Let’s start fixing the images. We will start with the background image. Ideally,

we want this image to fill our page (much like the red background color did).

Open the SZ_master.css file and type the following new lines(all new

text is in bold):

html {

 height: 100%;

 }

body {

 padding: 0 0 0 0;

 margin: 0;

 user-select: none;

 }

img {

 max-width: 100%;

 height: auto;

 user-drag: none;

 user-select: none;

 -moz-user-select: none;

 -webkit-user-drag: none;

 -webkit-user-select: none;

 -ms-user-select: none;

 }

#SZ0_0 {

 position: fixed;

 top: 0;

 left: 0;

 min-width: 100%;

 min-height: 100%;

 }

Chapter 3 time to apply a little CSS

29

Save the file and then close it. Go back to the My_Work_Files folder and

double-click the default.html file.

Note that we have removed the background-colour: red; from body

tag. Ensure that you remove that line from your code. Your file should look

exactly like what is shown.

You may be wondering why we have coded the user-select property

in four different ways. The first method is the standard property in CSS

(i.e., user-select). We then go on to define the vendor-prefixed properties

offered by the various rendering engines. This allows properties to be

set specific to each individual browser engine to safely account for

inconsistencies between implementations.

The following are the vendor-prefixed properties that we used:

• webkit for Chrome and Safari

• moz for Firefox

• ms for Internet Explorer

Historically, we used these prefixes to implement new CSS features

prior to final clarification by the W3. Therefore, over time, the prefixes will

be removed for the final version of the property.

Save the file and then close it. Go back to the My_Work_Files folder and

double-click the default.html file.

Your screen should look the following screenshot.

Chapter 3 time to apply a little CSS

30

You should first notice the background image now covers the entire

screen. Also, the other three images are completely gone from the screen.

Not to worry. They are still there— behind the background image.

The first style added to our CSS was for the tag. This means that the

styles defined apply to every image that we add to our page. I am sure you

will agree that this is a big time-saving technique, because the alternative is

to repeat the styles laboriously for every image that we add.

Anyhow, not every image requires the same styles. You can see the

second style is specifically written for one of the image tags, which is

identified as #SZ0_0.

The styles that we put in the tag are the more generic styles

that should apply to all images. We can then add an individual style to a

specific image and add more styles. We can even override styles that were

written in the tag.

Chapter 3 time to apply a little CSS

31

Before we leave this, why did we call the tag #SZ0_0? If you go back to

Section 2.3, notice the following:

This image is identified as SZ0_0. In CSS, you can identify the image by

placing the hash sign (#) before the ID.

Let’s take a look at the new CSS techniques that we used.

• max-width: 100%; height: auto;

We want the images to stretch to the full width of their

container. Also, we want the code to automatically

determine what the height should be when the new

width is applied. This ensures that we keep the aspect

ratio of the image when resizing.

• user-drag: none;

We do not want the user to be able to drag the images

on the screen.

• -moz, -webkit and -ms

These are CSS extensions, which are properties that

web browsers support but are not (yet) part of the

official CSS specification.

• top: 0; left: 0;

Sets the top and left edge of the image. In this case, we

want the image to always position itself in the top-left

corner of its container.

• min-width: 100%; min-height: 100%;

As it suggests, we want the image’s minimum width

and height to be the full size of its container.

Chapter 3 time to apply a little CSS

32

 Our Other Images
We can start fixing the other three images. First, here’s a reminder about

the images and where they should go:

• SZ_gun

The gun image should reside in the bottom-right

corner of the screen.

• SZ_reload

The Reload button should appear in the top-left corner

of the screen.

• SZ_score

The score image should appear in the top-right corner

of the screen.

Now open the SZ_master.css file and type the following new lines

(all new text is in bold):

html {

 height: 100%;

 }

body {

 padding: 0 0 0 0;

 margin: 0;

 user-select: none;

 }

img {

 max-width: 100%;

 height: auto;

 user-drag: none;

 user-select: none;

Chapter 3 time to apply a little CSS

33

 -moz-user-select: none;

 -webkit-user-drag: none;

 -webkit-user-select: none;

 -ms-user-select: none;

 }

#SZ0_0 {

 position: fixed;

 top: 0;

 left: 0;

 min-width: 100%;

 min-height: 100%;

 }

 #SZ0_1 {

 position: fixed;

 bottom: 0;

 right: 0;

}

 #SZ0_2 {

 position: fixed;

 top: 0;

 left: 0;

}

 #SZ0_3 {

 position: fixed;

 top: 0;

 right: 0;

}

Save the file and then close it.

Chapter 3 time to apply a little CSS

34

In this code, we have defined three properties for each of the three

images. However, notice that the properties and their subsequent values

are exactly the same. Earlier, I touched on the fact that we can specify the

same parameters for multiple tags by simply grouping them. So if you wish,

you can try that with the preceding code by replacing the bold code with

the following:

#SZ0_1, #SZ0_2, #SZ0_3 {

 position: fixed;

 top: 0;

 right: 0;

}

Go back to the My_Work_Files folder and double-click the default.

html file.

Your screen should look like the following screenshot.

Although you can now see all four images in their aligned positions,

they aren’t quite the right size; however, do not worry about that. In the

next chapter, we will use JavaScript to resize the images.

Chapter 3 time to apply a little CSS

35

The position property specifies the type of positioning method used

for an element (static, relative, fixed, or absolute). Elements are then

positioned using the top, right, bottom, and left properties. However, these

properties will not work unless the position property is set first. They also

work differently, depending on the position value.

Let’s take a brief look at the four position values.

• static elements are not affected by the top, right,

bottom, left properties.

• relative means setting the top, right, bottom, and left

properties of a relatively positioned element causes it to

be adjusted away from its normal position.

• fixed means positioned relative to the viewport, which

means it always stays in the same place even if the page

is scrolled. The top, right, bottom, and left properties

are used to position the element.

• absolute means positioned relative to the nearest

ancestor (instead of positioned relative to the viewport,

like fixed).

In our case, we used fixed along with bottom: 0; right: 0;. In the

previous section, we set the image’s top-left corner; whereas here we can

set the image from the bottom-right corner of its container.

Since we need our gun to always be positioned in the bottom-right

corner of the screen, it makes more sense in this case to use the bottom-

right property rather than the top-left property.

Chapter 3 time to apply a little CSS

37
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_4

CHAPTER 4

Apply Intelligence
with JavaScript

“Always code as if the guy who ends up maintaining your code
will be a violent psychopath who knows where you live.”

Rick Osborne

As you have learned, HTML is the bone structure and CSS is the look and

appearance of our game. So what does JavaScript bring to the table? JavaScript

is a programming language used for creating interactivity in web sites. So we

could say that we use JavaScript as the master controller of our game.

So why do we need it for our game? The obvious answer is that the

game needs to be able to create the zombies, fire the gun, and respond

to user commands. This is true, but there is a huge amount of other work

that the game needs JavaScript to perform. For example, in the previous

chapter, we discovered a need to resize our images based on the browser

size. Let’s do that now using JavaScript.

 Why Do We Need to Resize?
Our game will be playable on many types of devices; computer PCs,

laptops, mobile devices, tablets and even consoles linked to massive TVs.

Within each of these devices, there are many different screen sizes. Mobile

phones and laptops come in a wide range of screen sizes.

38

Let’s go one step further. What if someone resizes their Internet

browser window? Now we are talking an infinite number of combinations.

Creating graphics for everything conceivable would be extremely

time-consuming. Actually, it would be impossible because it seems there

is always a new model of phone (therefore, a new screen size) or a new

computer monitor coming out. So we need to find a universal way to resize

the images for any screen size.

 How Do We Universally Resize?
If you have a 30cm ruler handy, take a look at it. Imagine we design

our game for the 15cm mark. We can use JavaScript to tell us what the

actual size is on the ruler. So let’s say that it comes back as 10cm. We can

then work out a ratio (i.e., 10 divided by 15) that can be used against all

measurements; 10 divided by 15 is 0.67. This means when we apply this to

our images, they will be made smaller, which is what we want. Similarly,

if the size came back bigger, let’s say 20cm, the ratio would reflect this and

make all images bigger than we had designed them.

Let’s write a function to work out this ratio. Open SZ_main.js. This file

should be completely blank. Type the following lines:

//global vars

 //need to store the ratio

 var ratio;

 //need easy access to the width

 var newWidth;

//function that gets called when game starts

$(window).load(function () {

 //need to grab an instance of our screen

 var div = $(window);

 //we can now work out the ratio

 ratio = (div.width() / 1024);

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

www.allitebooks.com

http://www.allitebooks.org

39

 //while we are here we can grab the width for future use

 newWidth = div.width();

});

You can now save and close this file.

Definitions for the various JavaScript terms can be found in the Further

Information section below. One other thing to note is that I have tried to

enter as many comments for explanations as we have lines of code (as you

are accustomed to in your own programming language).

Before we can test, we need to link this file to our default.html file. So,

let’s reopen default.html and type the following three new lines (all the

new text is in bold):

<html>

 <head>

 <script src="js/jquery.js"></script>

 <script src="js/jquery-ui.js"></script>

 <script src="js/SZ_main.js"></script>

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="SZ_maincontent">

 </div>

 </body>

</html>

Save the file and then close it.

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

40

These three new lines involve the <script> tag. In our case, we

chose to link this tag to an external script file through the src attribute.

Alternatively, we could have used the same tag to define a client-side script

containing scripting statements.

Now double-click the default.html file.

Nothing has changed, has it? This is due to the JavaScript code working

on background tasks. Also, we have not yet told it to do anything to our

images. All we did was store a value in the code (i.e., the ratio).

All the same, it would be nice to see if our first bit of code is working.

Let’s add a line of code that will show a message box on our screen. In this

box, we will put the value that our code has just worked out for the ratio.

This is not terribly exciting but at least we get some form of feedback from

our code. Now that is exciting.

Now open the SZ_main.js file and type the following new lines (those

that are in bold):

//global vars

 //need to store the ratio

 var ratio;

 //need easy access to the width

 var newWidth;

//function that gets called when game starts

$(window).load(function () {

 //need to grab an instance of our screen

 var div = $(window);

 //we can now work out the ratio

 ratio = (div.width() / 1024);

 //while we are here we can grab the width for future use

 newWidth = div.width();

 //We are adding in a temporary bit of code here

 window.alert("Hi this is your code and I have just worked out

that the ratio will be "+ratio);

});

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

41

We can now save and close this file.

We just used the window.alert() method, which typically displays an

alert box with a specified message and an OK button. Normally, alert boxes

are used to make sure that important information is displayed to our users.

In our case, we used the alert box to inform us of the value of a variable,

which at this point in our coding, we do not have access to.

I should note that alert boxes take the focus away from the current

window by forcing the browser to read the message. I would not

recommend overusing this method, as it removes the user’s focus from

playing the game until the box is closed.

Go back to our My_Work_Files folder and double-click the default.

html file. You should see our web site with a message box:

What we have here is our code talking to us. It is telling us the value it

worked out for the ratio.

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

42

Before we go on, we need to remove the two lines that we just added.

Open the SZ_main.js file. After you remove the two lines, the code should

look like this again:

//global vars

 //need to store the ratio

 var ratio;

 //need easy access to the width

 var newWidth;

//function that gets called when game starts

$(window).load(function () {

 //need to grab an instance of our screen

 var div = $(window);

 //we can now work out the ratio

 ratio = (div.width() / 1024);

 //while we are here we can grab the width for future use

 newWidth = div.width();

});

You will create many wonderful functions in this book, and no doubt

in the games that you go on to develop. However, I hope you treasure this

moment as I did back in 1994 when I was learning to code Pascal.

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

43

Did the window box not appear? Not to worry. One of these tips should

help:

• Go back and recheck that every line of code is the same

• Did you miss any semicolons (;) at the end of your lines?

• Did you make sure that you added the three lines of

code in the HTML file?

• Are all nine files in the js folder as they should be?

If your code is still not working, then please do not hesitate to message

me on Twitter @zarrarchishti.

Next, we will put this ratio to work.

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

44

 What is a function?

We will write a lot of functions in JavaScript. A function is simply a set of

instructions that are executed when the function itself is called to run. So

when our function is called, it determines the ratio and stores the width of

the screen.

 Why are lines starting with // written like conversational English?

When you start the line with double forward slashes (//), you are telling

the computer to ignore this line. Why would you do that? Well, it is there

for us and it is called a comment line. Its purpose is to leave messages for

ourselves (or other programmers). By leaving messages, we break up the

code and make the whole program easier to read. You can write anything

you like. I like to use it to explain why the code after the comment was

originally written.

You do not have to comment every line; however, I was always taught

to comment as many lines as I code. This may appear overkill to some

programmers; however, I have found that when I return to my code after a

few years, the comments I wrote help me understand the reasoning behind

the code.

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

45

 Why did we add the other two files to our HTML file?

When it came to adding the SZ_main.js file, we also added jQuery and

jQuery-UI files. These are essentially filled with advanced functions (like

the one you wrote). As long as we use their functions, all we have to do is

add them to our HTML.

These functions are fast, reliable, and rich with features. Some of the

biggest companies in the world use them, as do small game developers like us.

Let’s now look at some of the JavaScript code we wrote.

• var ratio;

We are declaring a variable here called ratio. A

variable is a container that can store data. We can put

data into ratio and read from it.

• $(window).load(function () {

This function is called once the entire page has loaded.

This makes it extremely useful, because the instructions

inside this function require the elements (for instance,

the images) to be present and loaded on the screen.

• var div = $(window);

As we discovered before, the var creates a container

to store data. However, in this case, we are using it to

pass an instance of the entire window. This variable

called div now contains all the important information

concerning our window. For example, we go on to use

the following statement.

• newWidth = div.width();

This means we can store the window’s width in our

variable called newWidth.

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

46

 Let’s Resize Our Images
As a reminder, these are the images with their ideal sizes:

• SZ_gunWidth 133px and Height 150px

• SZ_reloadWidth 200px and Height 90px

• SZ_scoreWidth 235px and Height 100px

Open the SZ_setupContent.js file in the js folder. When the file

opens, it should be completely blank. Type the following lines:

//main function

 function main_call_setupContent() {

 //need to resize all elements

 //first we set their normal sizes in CSS

 //Gun

 $('#SZ0_1').css('width', 150 * ratio);

 $('#SZ0_1').css('height', 150 * ratio);

 //Reload Button

 $('#SZ0_2').css('width', 200 * ratio);

 $('#SZ0_2').css('height', 90 * ratio);

 //Score

 $('#SZ0_3').css('width', 235 * ratio);

 $('#SZ0_3').css('height', 100 * ratio);

}

Save and close this file.

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

47

At some point, you may wish to revisit this function and recode the

flow. I recommend that you place the values of the image IDs into an array;

for example,

var image_ids= ["#SZ0_1","#SZ0_2","#SZ0_3"];

You would then also need to place the values for each image into

another array; for example,

var image_sizes = [[150, 150], [200, 90], [235, 100]];

You could then code a for loop to execute the same code three times,

substituting the ID with the next value in the ID array, and substituting the

width and height values with the values in the size array.

Open the SZ_main.js file and type the following new lines (the new

text is in bold):

//global vars

 //need to store the ratio

 var ratio;

 //need easy access to the width

 var newWidth;

//function that gets called when game starts

$(window).load(function () {

 //need to grab an instance of our screen

 var div = $(window);

 //we can now work out the ratio

 ratio = (div.width() / 1024);

 //while we are here we can grab the width for future use

 newWidth = div.width();

 //let’s apply the ratio to our elements

 main_call_setupContent();

});

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

48

Before we can test, we need to link this file to our default.html file.

Reopen the default.html file and type the following line (the new text is in

bold):

<html>

 <head>

 <script src="js/jquery.js"></script>

 <script src="js/jquery-ui.js"></script>

 <script src="js/SZ_main.js"></script>

 <script src="js/SZ_setupContent.js"></script>

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="SZ_maincontent">

 </div>

 </body>

</html>

Go back to the My_Work_Files folder and double-click the default.

html file. You should now see the three elements resized, as shown in the

following screenshot:

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

49

Congratulations! We have now finished the first part of the game! We

will now develop the game further in the coming chapters. However, the

main building blocks are done. From this point forward, we will be adding

more HTML, more CSS, and yes, even more JavaScript until our game is

finally playable.

Where did the ideal sizes come from (for example, the gun: Width
175px and Height 200px)?

The step that is taken before any development can start is the layout design

of each screen. This is where you physically place the elements, like the

gun, on a screen.

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

50

You first need to choose a normal size. In our case, we chose the screen

width 1025px and height 800px. Of course, the chances that a user will

have this exact screen size are very slim. This is why we worked out the

ratio earlier.

You can use any software design program, such as Macromedia

Photoshop or Fireworks, to create layout files. Once we create our new

canvas size of 1024 × 800, we can then resize and reposition our elements

exactly where we would like them on the canvas. So, for example, we

placed our gun in the bottom-right corner, with a 175px width and a 200px

height.

We can now apply our ratio to the width and height to get an accurate

size for the screen being used.

We created a function in JavaScript as follows:

• function main_call_setupContent() {

It is important to note that the instructions within this

function are not executed until we call this function,

which we do in SZ_main.js by calling main_call_

setupContent();.

• main_call_setupContent();

Only now are the instructions executed by the program.

Finally, let’s take a look at the following line of code:

• $('#SZ0_1').css('width', 150 * ratio);

We can manipulate an element’s CSS directly from the

JavaScript. This is an extremely powerful and useful

tool in game development. For instance, if we want an

element to become bigger after shooting it, we can do

this directly from the JavaScript code that was used to

identify the button click.

Chapter 4 apply IntellIgenCe wIth JavaSCrIpt

51
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_5

CHAPTER 5

Take a Shot: Part 1
“Code never lies, comments sometimes do.”

Ron Jeffries

In this chapter, we’ll work on what we want our gun to do. When the user

presses anywhere on the screen, apart from the Reload button, it should be

treated as a shot. How a shot happens and the consequences of a shot are

dealt with in Chapter 7. For now, let’s look at reacting to a user click.

There will be a few awesome techniques employed, including sprite

sheets for animation and mathematics for fluid movement. As you

build other games in the future, you may find yourself coming back and

reusing these functions and techniques. This is exactly what happens in

commercial game development.

Incidentally, some of the code in this chapter is from a project I did

recently for a children’s game that is hosted in the Kelvingrove Art Gallery

and Museum in Glasgow.

 Changing Our Cursor and
Registering a Click

In shooting games like the one we are developing, the mouse

cursor typically becomes a crosshair.

52

Changing the cursor can be done simply using CSS. Open the SZ_

master.css file in our CSS folder. Type the following new line (in bold):

html {

 height: 100%;

 }

+

body {

 padding: 0 0 0 0;

 margin: 0;

 user-select: none;

 cursor: crosshair;

 }

img {

 max-width: 100%;

 height: auto;

 user-drag: none;

 user-select: none;

 -moz-user-select: none;

 -webkit-user-drag: none;

 -webkit-user-select: none;

 -ms-user-select: none;

 }

#SZ0_0 {

 position: fixed;

 top: 0;

 left: 0;

 min-width: 100%;

 min-height: 100%;

 }

Chapter 5 take a Shot: part 1

53

 #SZ0_1 {

 position: fixed;

 bottom: 0;

 right: 0;

}

 #SZ0_2 {

 position: fixed;

 top: 0;

 left: 0;

}

 #SZ0_3 {

 position: fixed;

 top: 0;

 right: 0;

}

Save the file and then close it. Go back to our My_Work_Files folder

and double-click the default.html file.

Notice that the mouse cursor has changed from an arrow to crosshairs.

So what is the line that we just wrote?

cursor: crosshair; specifies the type of cursor to be displayed when

pointing with a mouse.

You may be curious as to what other types of cursors are available to

you. The following is a list of cursor types. If you wish, replace the word

crosshair in the CSS file with any of these words.

Chapter 5 take a Shot: part 1

54

• e-resize

• move

• nw-resize

• s-resize

• text

• no-drop

• grab

• n-resize

• pointer

• se-resize

• w-resize

• not-allowed

• help

• ne-resize

• progress

• sw-resize

• wait

Chapter 5 take a Shot: part 1

55

 Making Our Gun Act More Realistic
The more engaging the gameplay is for users, the more they will

enjoy playing it over and over again. One of the ways to increase user

engagement is with the small details that we can add to our game. For

instance, wouldn’t it be nice if the gun reacted when the user moved the

cursor across the screen?

To do this, we will use JavaScript. Open the SZ_movement.js file in the

js folder. When the file opens, it should be completely blank. Type the

following lines:

function rotateGun(e) {

//using the e value we can deduce the X co-ordinates

var xPos = e.clientX;

//We need to work out where the mouse cursor is as a percentage

of the width of the screen

//We will work this out by dividing the current X position

by the overall screen width which if you remember we put in

newWidth

var currentXPositionPercentage = xPos/newWidth;

//We now want to apply this to the maximum amount of rotation

which is 50 however the starting rotation is -15 not 0

var amountToRotate = -15 + (currentXPositionPercentage * 50);

//Let’s rotate the gun!

 $("#SZ0_1").css('transform', 'rotate('+amountToRotate+'deg)');

}

Chapter 5 take a Shot: part 1

56

We can now save and close this file.

A detailed explanation of this code is in the following “Further

Information” section.

Before we can test, we need to link this file to our default.html file.

Reopen the default.html file and type the following new line along with

the extra bit of text in one of our existing lines (all new text is in bold):

<html>

 <head>

 <script src="js/jquery.js"></script>

 <script src="js/jquery-ui.js"></script>

 <script src="js/SZ_main.js"></script>

 <script src="js/SZ_setupContent.js"></script>

 <script src="js/SZ_movement.js"></script>

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="SZ_maincontent">

 <img id="SZ0_0" onmousemove="rotateGun(event)" src="images/

SZ_background_image.jpg" />

 </div>

 </body>

</html>

Save the file and then close it. Now double-click the default.html file.

Try moving the mouse along the screen. The gun should rotate as if

looking to aim at the target we are looking to shoot at. I am sure you will

agree that this is far more engaging than a static gun.

Chapter 5 take a Shot: part 1

57

I want to discuss an interesting point about something in the preceding

code. onmousemove, as the name suggests, triggers a JavaScript function

when the user moves the mouse over the image. It does not trigger on

touchscreen devices such as mobile phones. You may wish to revisit this

portion of code in the future and modify it so that it triggers when the user

touches any part of the image.

Next, we will look at making the gun fire!

Did the code not work? One of the new lines is different from the usual way

we add code. Let’s go through this together:

Open the default.html file.

Locate the line that starts with

<img id="SZ0_0" onmousemove="rotateGun(event)"

src="images/SZ_background_image.jpg" />

Have you added the extra bit of text exactly as it’s shown?

Add the following text:

onmousemove="rotateGun(event)"

between

id="SZ0_0" and src="

If your code is still not working, then please do not hesitate to message

me on Twitter @zarrarchishti.

Chapter 5 take a Shot: part 1

58

We wrote the following line in JavaScript:

var xPos = e.clientX;

the e was passed to our function as follows:

function rotateGun(e) {

The e contains all the information from an event that has occurred. In

this instance, it is a mouse movement on our image, which we declared as

follows:

<img id="SZ0_0" onmousemove="rotateGun(event)"

src="images/SZ_background_image.jpg" />

When the user moves the mouse over this image, our rotateGun

function is called and the data from the movement is passed in.

In the first line, you see that we extract the “clientX” from e. This is the

horizontal coordinate (more commonly referred to as the x axis) of the

mouse event that has just occurred.

So what is this X-axis? Try to imagine the left-to-right user action of

your screen as the X axis. The following image illustrates the relationship

we want with the X-axis and the gun’s rotation.

Chapter 5 take a Shot: part 1

59

The maximum rotation between the far left and the far right gun is 50

degrees. So by finding out exactly where we are on the screen, we can use

a mathematical equation to determine what the exact rotation of the gun

should be.

One further point: the code we use to actually rotate the gun is done by

using both JavaScript and CSS. The JavaScript does most of the work here

by namely doing the following:

• Alerts a function every time the user moves the mouse

• Determines how much of the mouse has moved

• Applies the value above to our mathematical equation

From here, we hand this value over to CSS, which then actually rotates

the gun.

Feel free to play with the numbers and test the different rotations that

occur; for example, change the following line

var amountToRotate = -15 + (currentXPositionPercentage * 50);

Change the 50 to 100. You will notice a far bigger change in how the gun

moves. Keep changing the number until you reach a level of rotation that

you are happy with. If you want to go back, simple type the preceding code.

Chapter 5 take a Shot: part 1

60

Finally, we come across another example of manipulating CSS in

JavaScript in the following line:

$("#SZ0_1").css('transform', 'rotate('+amountToRotate+'deg)');

As the word indicates, the transform property applies a transformation

to any element. Other transformations include scale, move, and skew.

 Animating the Gun with Sprite Sheets
When the user clicks the screen, we want to make our gun fire. To do

this, we will work with something called sprite sheets. Before we can start

adding our sprite sheets, we need to write some code. This is because a

sprite sheet is not something your browser (e.g., Chrome) can process by

itself like it does with the images we have used so far.

We need to write some code that instructs the browser on how to

handle our sprite sheet images. To do this, we will use JavaScript. As a word

of caution, the code is slightly lengthier than what you have written so far.

I encourage you to persevere since this particular function can be reused

in every project that you do, without changing anything in the code. Please

ensure that you copy all the code exactly as shown.

 Part 1
Open the SZ_SS.js file in your js folder. When the file opens, it should be

completely blank. Type the following lines:

//We need a one stop function that will allow us to process

sprite sheets

function setup_SpriteSheet(div_name, image_name, no_of_frames,

widthx, heightx) {

Chapter 5 take a Shot: part 1

61

 //need the ratio of the container's width/height

 var imageOrgRatio = $(div_name).height() / $(div_name).

width() ;

 //need to ensure no trailing decimals

 var ratio2 = Math.round(ratio * 10) / 10;

 //check that the width is completely divisible by the no of

frames

 var newDivisible = Math.round((widthx * ratio2) / no_of_

frames);

 //the new width will be the number of frames multiplied by our

new divisible

 var newWidthx = newDivisible * no_of_frames;

 //also the new height will be our ratio times the height of

the div containing our image

 var newHeightx = heightx * ratio2;

 //apply our new width to our CSS

 $(div_name).css('width', (newWidthx));

 //apply our new height to our CSS

 $(div_name).css('height', newHeightx);

//

 //take the image name and apply as a background image to our div

 $(div_name).css('background-image', 'url(' + image_name + ')');

 //finally we need to apply a background size remembering we

need to multiply width by the number of frames

 $(div_name).css('background-size', newWidthx * no_of_frames

+ 'px ' + newHeightx + 'px');

}

Chapter 5 take a Shot: part 1

62

Initially, I was tempted to just add a standard sprite sheet library;

however, by coding it ourselves, we have more flexibility in future games.

As you build more games, you discover that not all sprite sheets—or all

parameters for using them—are the same. Therefore, you will need to

revisit the preceding function and tweak it to make sure that it fits your

current project. If we had only used a standard function, it would have

severely limited the types of sprite sheets that you could use.

As with all the other standard functions, as long as we link this file to

any HTML file in the future, our little function can be used.

What are sprite sheets?

A sprite sheet is a special image that contains several images in a tiled grid

arrangement.

So why use sprite sheets?

Sprite sheets allow games to run faster, and more importantly, to take up

less memory. By compiling several graphics into a single file, you enable

your game to use the graphics while only needing to load a single file.

How are sprite sheets designed?

There are three parts to our sprite sheet. First, the normal static state is

when the gun reloads and when the gun fires. The following illustrates this:

Chapter 5 take a Shot: part 1

63

Why did we need to write our own special function to use sprite sheets?

There are many ways to deal with sprite sheets. Each programmer designs

their code to manipulate the sprite sheet that suits them. I have used a

very simple method here, which deals with sprites that have been laid out

linearly.

Also, our game does not require sophisticated use of any sprite sheets.

As you are writing all the code, I wanted to make sure that you only had to

write the minimum amount necessary. However, you can use this code as

a basis for your next game and build on it as you see necessary.

 Part 2
Now that we have set up our function to handle any sprite sheets, we can

test it with our gun. First, we need to replace the static image for our gun

with the sprite sheet version.

Go to the images folder in the Raw Images folder of the My_Work_Files

folder. Copy the file named SZ_gun_SS.png to the Images folder, which

should now look like the following screenshot.

Chapter 5 take a Shot: part 1

64

 Part 3
Next, we need to inform the code that the gun is a sprite sheet and pass all

the information about it (e.g., the image name that you copied).

We will use JavaScript to do this. Reopen the SZ_SS.js file in the js

folder. Type the following new lines (all new text is in bold):

//We need a one stop function that will allow us to process

sprite sheets

function setup_SpriteSheet(div_name, image_name, no_of_frames,

widthx, heightx) {

 //need the ratio of the container's width/height

 var imageOrgRatio = $(div_name).height() / $(div_name).

width() ;

 //need to ensure no trailing decimals

 var ratio2 = Math.round(ratio * 10) / 10;

 //check that the width is completely divisible by the no of

frames

 var newDivisible = Math.round((widthx * ratio2) / no_of_

frames);

 //the new width will be the number of frames multiplied by our

new divisible

 var newWidthx = newDivisible * no_of_frames;

 //also the new height will be our ratio times the height of

the div containing our image

 var newHeightx = heightx * ratio2;

 //apply our new width to our CSS

 $(div_name).css('width', (newWidthx));

 //apply our new height to our CSS

Chapter 5 take a Shot: part 1

65

 $(div_name).css('height', newHeightx);

//

 //take the image name and apply as a background image to our div

 $(div_name).css('background-image', 'url(' + image_name + ')');

 //finally we need to apply a background size remembering we

need to multiply width by the no of frames

 $(div_name).css('background-size', newWidthx * no_of_frames

+ 'px ' + newHeightx + 'px');

}

//setup the Gun

function setup_gun_SS(){

 //first let’s setup our gun SS

 setup_SpriteSheet("#SZ0_1","Images/SZ_gun_SS.png",28,150,150);

 //need to access a special function in our js/ss.js file

 $("#SZ0_1").animateSprite({

 fps: 10,

 animations: {

 static: [0],

 reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,20,21,22,23],

 fire: [24,25,26,27,28],

 },

 duration: 50,

 loop: false,

 complete: function () {

 // use complete only when you set animations with

'loop: false'

 //alert("animation End");

 }

 });

}

Chapter 5 take a Shot: part 1

66

Save and close the file.

It can get quite tedious to write in all the different frames needed for

a particular animation. Imagine if you had over 500 frames! In the future,

when revisiting the animateSprite function, change it to take a range of

values. You could also try to code the function to take a set of ranges; for

example, frames (1 to 7, 9 to 11, and 29 to 31).

Before we can test, we need to make the following two changes to our

HTML file:

• Reference new JavaScript files in the head

• Enclose the images inside their own divs

Reopen the default.html file and type the following new lines. Please

be careful to replace the existing lines of code so that the entire file looks

like the following code (all new text is in bold):

<html>

 <head>

 <script src="js/jquery.js"></script>

 <script src="js/jquery-ui.js"></script>

 <script src="js/SZ_main.js"></script>

 <script src="js/SZ_setupContent.js"></script>

 <script src="js/SZ_movement.js"></script>

 <script src="js/ss.js"></script>

 <script src="js/SZ_SS.js"></script>

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="SZ_maincontent">

 <img id="SZ0_0" src="images/SZ_background_image.

jpg" onmousemove="rotateGun(event)" />

 <div id="SZ0_1" ></div>

 <div id="SZ0_2" >

Chapter 5 take a Shot: part 1

67

 </div>

 <div id="SZ0_3" >

 </div>

 </div>

 </body>

</html>

In this section, we set up our first sprite sheet with the following code:

setup_SpriteSheet("#SZ0_1","Images/SZ_gun_SS.png",28,150,150);

Let’s take each parameter in the brackets separately.

• #SZ0_1 is the image ID

• Images/SZ_gun_SS.png is the location of the sprite

sheet

• 28 is the total number of images contained within our

sprite sheet

• 150,150 is the size of each individual image within the

sprite sheet

You may have noticed that we applied a special function to our image.

Let’s take a closer look at each line of this function.

Chapter 5 take a Shot: part 1

68

• fps:

The ideal frames per second that we would like to apply

to the sprite sheet animations

• animations: {

We can subdivide the images within a sprite sheet into

individual animations

• duration:

The length of time that we want to run each animation

for (in milliseconds)

• loop:

Once the animation finishes, do we want the animation

to repeat or stop?

• complete: function () {

If the loop option is set to false (i.e., no repeat), then

we can give a set of instructions to execute once the

animation has completed.

 Part 4
Finally, we need to ensure that we are calling the setup_gun_SS function.

We can do this in the SZ_setupContent file, which initializes all of our

images.

Open the SZ_setupContent.js file and type the following new lines

(all new text is in bold).

Chapter 5 take a Shot: part 1

69

//main function

 function main_call_setupContent() {

 //need to resize all elements

 //first we set their normal sizes in CSS

 //Gun

 $('#SZ0_1').css('width', 150 * ratio);

 $('#SZ0_1').css('height', 150 * ratio);

 //Reload Button

 $('#SZ0_2').css('width', 200 * ratio);

 $('#SZ0_2').css('height', 90 * ratio);

 //Score

 $('#SZ0_3').css('width', 235 * ratio);

 $('#SZ0_3').css('height', 100 * ratio);

 //Any sprite sheets?

 //Our Gun

 setup_gun_SS();

}

We are now ready to test! Do not expect much, however, because we

are initially telling the code to just show the first image. So let’s test this

and make sure that our code is working as expected.

Chapter 5 take a Shot: part 1

70

Save all the files and then close them. Go back to the My_Work_Files

folder and double-click the default.html file. The gun should look exactly

the same as before. In fact, the whole screen should look the same. This is

good because we have replaced our static image of the gun with a sprite

sheet and told it to show the first image.

Next, we look at using the code we have written to animate the gun

reloading.

Why does my screen look the same as before?

Well, this is great news. After all that work, I suppose it is natural to expect

something to be different. Maybe some of those animations like gun-firing

perhaps.

The fact that everything looks normal despite us removing the gun’s

image and replacing it with our massive sprite sheet image is exactly what

we wanted from our code.

The gun is not on the screen anymore.

Since this is a large portion of code, here are suggestions for some typical

coding errors that may have happened:

• Go back through each line of code and ensure that it

matches with what it is written here in the book.

• Check that you placed the } symbol where indicated.

• Make sure that the SZ_gun_SS.png is in the images folder.

• Make sure that you have included the two new

JavaScript files in the head of the HTML file (i.e., ss.js

and SZ_SS.js).

Chapter 5 take a Shot: part 1

71

The gun does not look right.

Either the gun looks a lot bigger than it should or it looks like a part of the

image has been cut off. This means that there is a problem with the way the

sprite sheet for the gun has been set up; in particular, the setup_gun_SS()

function in the SZ_SS.js file. Please recheck your code and ensure that all

the lines of code are exactly as shown.

If your code is still not working, then please do not hesitate to message

me on Twitter @zarrarchishti.

 Reloading Our Gun
We need to concentrate on two aspects of reloading the gun: cause and

effect. The cause comes from the user clicking the reload image on the

screen. The effect is the gun animating the appropriate images from the

sprite sheet.

Open the SZ_touch.js file in the js folder. When the file opens, it

should be completely blank. Type the following lines:

//this function is called to reload our gun

function reloadGun(e) {

 //play the reload animation of our SS

 $("#SZ0_1").animateSprite("play", "reload");

}

Save this file and close it.

When revisiting this project, it would be a good idea to provide options

for the reload sequence. I suggest a longer sequence if the gun is empty

and a shorter sequence if the gun is not. You would need to define two

reload functions and then check the gun’s status before calling the reload

function. This way, you are rewarding the user for reloading before the gun

is empty!

Chapter 5 take a Shot: part 1

72

Before we can test, we need to link this file and the function to the

default.html file. Reopen the default.html file and type the following

new line and an addition to an existing line (all in bold):

<html>

 <head>

 <script src="js/jquery.js"></script>

 <script src="js/jquery-ui.js"></script>

 <script src="js/SZ_main.js"></script>

 <script src="js/SZ_setupContent.js"></script>

 <script src="js/SZ_movement.js"></script>

 <script src="js/ss.js"></script>

 <script src="js/SZ_SS.js"></script>

 <script src="js/SZ_touch.js"></script>

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="SZ_maincontent">

 <img id="SZ0_0" src="images/SZ_background_image.jpg"

onmousemove="rotateGun(event)" />

 <div id="SZ0_1" ></div>

 <div id="SZ0_2" >

 <img src="images/SZ_reload.png" onmousedown="reloadGun

(event)" />

 </div>

 <div id="SZ0_3" >

 </div>

 </div>

 </body>

</html>

Chapter 5 take a Shot: part 1

73

Save the file and then close it. Go back to the My_Work_Files folder and

double-click the default.html file.

When the screen comes up, try to click the Reload button. You should

see that the gun animates. This time, click the button a few times before

the first animation has finished. It’s not smooth, is it? We need to fix this

so that the gun does not accept a reload request until the previous one has

finished.

Reopen the SZ_touch.js file in the js folder. Type the following new

lines (in bold):

//this function is called to reload our gun

function reloadGun(e) {

 //play the reload animation of our SS

 $("#SZ0_1").animateSprite("play", "reload");

}

//We need a flag to keep track to avoid repetition of animations

before the first has finished

var canIclick= 0;

//this function is called to reload our gun

function reloadGun(e) {

 //Let’s check if we can allow this to occur

 if(canIclick== 0){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "reload");

 }

}

Save this file and close it. Go back to the My_Work_Files folder and

double-click the default.html file. Again, click the Reload button a few

times before the first animation has finished. The problem has been solved.

Chapter 5 take a Shot: part 1

74

However, we now have another issue: the game only accepts the reload

request once. We cannot make the gun reload after the first try. This is

because we have not reset our flag anywhere in our code. So let’s do that

now. Reopen the SZ_SS.js file and type the following new lines (in bold):

//We need a one stop function that will allow us to process

sprite sheets

function setup_SpriteSheet(div_name, image_name, no_of_frames,

widthx, heightx) {

 //need the ratio of the container's width/height

 var imageOrgRatio = $(div_name).height() / $(div_name).width();

 //need to ensure no trailing decimals

 var ratio2 = Math.round(ratio * 10) / 10;

 //check that the width is completely divisible by the no of

frames

 var newDivisible = Math.round((widthx * ratio2) / no_of_frames);

 //the new width will be the number of frames multiplied by our

new divisible

 var newWidthx = newDivisible * no_of_frames;

 //also the new height will be our ratio times the height of

the div containing our image

 var newHeightx = heightx * ratio2;

 //apply our new width to our CSS

 $(div_name).css('width', (newWidthx));

 //apply our new height to our CSS

 $(div_name).css('height', newHeightx);

//

 //take the image name and apply as a background image to our div

 $(div_name).css('background-image', 'url(' + image_name + ')');

Chapter 5 take a Shot: part 1

75

 //finally we need to apply a background size remembering we

need to multiply width by the no of frames

 $(div_name).css('background-size', newWidthx * no_of_frames

+ 'px ' + newHeightx + 'px');

}

//setup the Gun

function setup_gun_SS(){

 //first let’s setup our gun SS

 setup_SpriteSheet("#SZ0_1","Images/SZ_gun_

SS.png",28,150,150);

 //need to access a special function in our js/ss.js file

 $("#SZ0_1").animateSprite({

 fps: 10,

 animations: {

 static: [0],

 reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,20,21,22,23],

 fire: [24,25,26,27,28],

 },

 duration: 50,

 loop: false,

 complete: function () {

 // use complete only when you set animations with

'loop: false'

 //alert("animation End");

 //we need to reset our universal flag

 canIclick=0;

 }

 });

}

Chapter 5 take a Shot: part 1

76

Save this file and close it.

When revisiting this project, it would be a good idea to store all of our

global vars in a separate file. I am sure that you practice this in your own

programming environment; it ensures that your project is manageable in

future. If you do create a global var file, make sure to link it in your HTML

file using the <script> tag.

Go back to the My_Work_Files folder and double-click the default.

html file.

Again, click the Reload button after the first animation has finished.

The problem should now be solved.

Next, we will complete this chapter by making our gun fire.

Why did the gun stop reloading after the first try?

Before we tell our code to run the reload command, we ask it if our flag

(i.e. canIclick) is set to 0. We initialize canIclick to 0 when the program

starts. Once it passes this test, the first thing the code does is set canIclick

to 1.

The next time you press the Reload button, it comes back negative—to

when asked if canIclick is 0. So ideally, we want to reset canIclick back

to 0 once the animation for reloading the gun completes. We do this in a

special subfunction of the animate command. This function specifically

asks if there are any special instructions to be executed once the animation

finishes.

Chapter 5 take a Shot: part 1

77

Recall when we discussed the onmousemove event, in which we used

the following:

<img src="images/SZ_reload.

png" onmousedown="reloadGun(event)" /> -

As its name suggests, this calls the reloadGun function every time the

image is clicked. The following is a shortened list of the event functions

that we can use.

• onmouseenter

This event occurs when the mouse is moved onto an

element.

• onmouseleave

This event occurs when the mouse is moved out of an

element.

• onmouseover

This event occurs when the mouse is moved onto an

element or onto one of its children.

• onmouseout

This event occurs when a user moves the mouse

pointer out of an element or out of one of its children.

• onmouseup

This event occurs when a user releases a mouse button

over an element.

Chapter 5 take a Shot: part 1

78

 Firing Our Gun
As you may expect, the method of making our gun fire is very similar to

how we made the gun reload. First, we need to register the user requesting

the gun to fire. Then, we need to make the gun animate.

Reopen the SZ_touch.js file in the js folder. Type the following new

lines (in bold):

//We need a flag to keep track to avoid repetition of animations

before the first has finished

var canIclick= 0;

//this function is called to reload our gun

function reloadGun(e) {

 //Let’s check if we can allow this to occur

 if(canIclick== 0){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "reload");

 }

}

//this function is called to fire our gun

function fireGun(e) {

 //Let’s check if we can allow this to occur

 if(canIclick== 0){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "fire");

 }

}

Save the file and close it.

Chapter 5 take a Shot: part 1

79

In the future, you may have more variables to check before allowing

the user to fire the gun (e.g., if the screen was paused, or at the end of a

level). It would be a good idea at this point to create a function that checks

for all parameter values and then outputs a resulting decision. This output

would then be checked globally by other functions (such as if it is possible

to pause) and the fireGun() function when deciding whether to proceed.

Before we can test, we need to add the function into the default.html

file. Reopen the default.html file. Type the following new line (in bold)

and an addition to an existing line (modified text is in red):

<html>

 <head>

 <script src="js/jquery.js"></script>

 <script src="js/jquery-ui.js"></script>

 <script src="js/SZ_main.js"></script>

 <script src="js/SZ_setupContent.js"></script>

 <script src="js/SZ_movement.js"></script>

 <script src="js/ss.js"></script>

 <script src="js/SZ_SS.js"></script>

 <script src="js/SZ_touch.js"></script>

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="SZ_maincontent">

 <img id="SZ0_0" src="images/SZ_background_image.jpg"

onmousemove="rotateGun(event)"onmousedown="fireGun(event)" />

 <div id="SZ0_1" ></div>

 <div id="SZ0_2" >

 <img src="images/SZ_reload.png"

onmousedown="reloadGun(event)" />

 </div>

 <div id="SZ0_3" >

Chapter 5 take a Shot: part 1

80

 </div>

 </div>

 </body>

</html>

Save the file and then close it. Go back to the My_Work_Files folder and

double-click the default.html file. Now click anywhere on the screen. The

gun should animate the firing sequence.

By now, the gun should be doing the following:

• Moving in response to the mouse on the screen

• Reloading when the user clicks the Reload button

• Firing when the user clicks anywhere on our play area

of the screen

In this section, we invoked a specific set of sprite animation using the

following line:

$("#SZ0_1").animateSprite("play", "fire");

How does the system know what to do with "fire"? If you go back to

the code, notice we wrote the following:

animations: {

 static: [0],

 reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,20,21,22,23],

Chapter 5 take a Shot: part 1

81

 fire: [24,25,26,27,28],

 },

One of the animations we defined was called "fire" and it was images

24 to 28 of the individual sprite images.

Note that we inserted two mouse events into an image tag with the

following code:

<img id="SZ0_0" src="images/SZ_background_image.jpg"

onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />

This is entirely possible because (a) you can have multiple mouse

events defined for an element, and (b) the two mouse events do not

conflict with each other.

 One Last Thing…
You may have noticed that when you click the Reload button, the cursor

remains as a crosshair. It would be nice if it changes back to a more

appropriate cursor, which is more intuitive and makes for a better

gameplay experience.

We can do this by changing the CSS. You will now need to reopen the

SZ_master.css file and type the following new line (in bold):

html {

 height: 100%;

 }

body {

 padding: 0 0 0 0;

 margin: 0;

 user-select: none;

Chapter 5 take a Shot: part 1

82

 cursor: crosshair;

 }

img {

 max-width: 100%;

 height: auto;

 user-drag: none;

 user-select: none;

 -moz-user-select: none;

 -webkit-user-drag: none;

 -webkit-user-select: none;

 -ms-user-select: none;

 }

#SZ0_0 {

 position: fixed;

 top: 0;

 left: 0;

 min-width: 100%;

 min-height: 100%;

 }

 #SZ0_1 {

 position: fixed;

 bottom: 0;

 right: 0;

}

 #SZ0_2 {

 position: fixed;

 top: 0;

 left: 0;

 cursor: pointer;

}

Chapter 5 take a Shot: part 1

83

 #SZ0_3 {

 position: fixed;

 top: 0;

 right: 0;

}

Save the file and then close it. Go back to the My_Work_Files folder and

double-click the default.html file.

Now when you move the cursor over the Reload button, it should

change instantly into a normal “hand” image. Similarly, when you move

the mouse away from the Reload button, it should change back to the

cursor image.

The next chapter introduces the zombies to our game, which finally

gives our players some interactivity.

The cursor does not change to a pointer when it’s over the Reload
button?

This error may be from the HTML file. First, check that you have inserted

the this line

cursor: pointer;

in the #SZ0_2 section.

If you have done this already, then we need to take a look at the

default.html file. Ensure that you have replaced all the image tags into

the div tags as indicated.

Chapter 5 take a Shot: part 1

84

For example, what used to be

Should now be

<div id="SZ0_1" ></div>

 <div id="SZ0_2" >

 <img src="images/SZ_reload.png"

onmousedown="reloadGun(event)" />

 </div>

 <div id="SZ0_3" >

 </div>

If your code is still not working, then please do not hesitate to message

me on Twitter @zarrarchishti.

Chapter 5 take a Shot: part 1

85
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_6

CHAPTER 6

Where Are
the Zombies?

“Measuring programming progress by lines of code is like
measuring aircraft building progress by weight.”

Bill Gates

Let’s recap what our zombies need to do in our game. We need six zombies

that will walk toward the screen. Each zombie has a sprite sheet with

its walking animation. When a zombie reaches the end of its animation

toward the screen, it needs to reset to its original position.

 Creating a Zombie: Part 1
First, we need to add the following four sprite sheets to your image folder:

• zombiesSS_1.png: the scientist zombie walking

• zombiesSS_2.png: the female zombie walking

• zombiesSS_3.png: the male zombie walking

• SZ_bubble.png: the three zombies stuck in a bubble

86

Go to the images folder in the Raw Images folder of the My_Work_Files

folder. Locate the files named zombiesSS_1.png, zombiesSS_2.png,

zombiesSS_3.png, and SZ_bubble.png, and copy these to the Images

folder, which should now look like this:

 Creating a Zombie: Part 2
By the end of this section, you will see a zombie at the edge of our planet. To

do this, we need to code a zombie from scratch. Again, I apologize in advance,

as there will be a fair bit of coding. However, the excitement of seeing your

very own zombie appearing on the screen is worth all the hard work.

Open the SZ_zombie_movement.js file, which should be completely

blank. Type the following lines:

//let’s create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;')

Chapter 6 Where are the Zombies?

87

 //we want to position our zombie exactly at the tip of the planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top =

top_position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

}

You can now save and close this file.

We have introduced a few new elements in the code, which are

explored in the “Further Information” section.

Before we do further coding, we need to link this new file to our

default.html file. Reopen the default.html file and type the following

new line, along with the extra bit of text in one of our existing lines (all the

new text is in bold):

Chapter 6 Where are the Zombies?

88

<html>

 <head>

 <script src="js/jquery.js"></script>

 <script src="js/jquery-ui.js"></script>

 <script src="js/SZ_main.js"></script>

 <script src="js/SZ_setupContent.js"></script>

 <script src="js/SZ_movement.js"></script>

 <script src="js/ss.js"></script>

 <script src="js/SZ_SS.js"></script>

 <script src="js/SZ_touch.js"></script>

 <script src="js/SZ_zombie_movement.js"></script>

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="SZ_maincontent">

 <img id="SZ0_0" src="images/SZ_background_image.jpg"

onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />

 <div id="SZ0_1" ></div>

 <div id="SZ0_2" >

 <img src="images/SZ_reload.png"

onmousedown="reloadGun(event)" />

 </div>

 <div id="SZ0_3" >

 </div>

 </div>

 </body>

</html>

Chapter 6 Where are the Zombies?

www.allitebooks.com

http://www.allitebooks.org

89

Save the file and then close it. Now we can go ahead and further

develop our zombie sprite sheets. Reopen the SZ_SS file in your js folder.

Type the following new lines (all new text is in bold):

//We need a one stop function that will allow us to process

sprite sheets

function setup_SpriteSheet(div_name, image_name, no_of_frames,

widthx, heightx) {

 //need the ratio of the container's width/height

 var imageOrgRatio = $(div_name).height() / $(div_name).

width() ;

 //need to ensure no trailing decimals

 var ratio2 = Math.round(ratio * 10) / 10;

 //check that the width is completely divisible by the no of

frames

 var newDivisible = Math.round((widthx * ratio2) / no_of_

frames);

 //the new width will be the number of frames multiplied by our

new divisible

 var newWidthx = newDivisible * no_of_frames;

 //also the new height will be our ratio times the height of

the div containing our image

 var newHeightx = heightx * ratio2;

 //apply our new width to our CSS

 $(div_name).css('width', (newWidthx));

 //apply our new height to our CSS

 $(div_name).css('height', newHeightx);

//

Chapter 6 Where are the Zombies?

90

 //take the image name and apply as a background image to our div

 $(div_name).css('background-image', 'url(' + image_name + ')');

 //finally we need to apply a background size remembering we

need to multiply width by the no of frames

 $(div_name).css('background-size', newWidthx * no_of_frames

+ 'px ' + newHeightx + 'px');

}

//setup the Gun

function setup_gun_SS(){

 //first let’s setup our gun SS

 setup_SpriteSheet("#SZ0_1","Images/SZ_gun_SS.png",28,150,150);

 //need to access a special function in our js/ss.js file

 $("#SZ0_1").animateSprite({

 fps: 10,

 animations: {

 static: [0],

 reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,20,21,22,23],

 fire: [24,25,26,27,28],

 },

 duration: 50,

 loop: false,

 complete: function () {

 // use complete only when you set animations with

'loop: false'

 //alert("animation End");

 //we need to reset our universal flag

 canIclick=0;

 }

 });

}

Chapter 6 Where are the Zombies?

91

//setup a newly created zombie

function setup_zombie_SS(whichOne){

 //let’s identify what type of zombie we should create

 var type_zombie = [1,2,3,1,2,3];

 //let’s setup a speed for each type of zombie

 var speed_zombie = [100,50,150];

 //first let’s setup our zombie SS

 setup_SpriteSheet("#zombie"+whichOne,"Images/

zombiesSS_"+type_zombie[whichOne-1]+".png",9,20,20);

 //need to access a special function in our js/ss.js file

 $("#zombie"+whichOne).animateSprite({

 fps: 10,

 animations: {

 static: [0,1,2,3,4,5,6,7],

 },

 duration: speed_zombie[type_zombie[whichOne-1]-1],

 loop: true,

 complete: function () {

 // use complete only when you set animations with

'loop: false'

 //alert("animation End");

 }

 });

}

Save the file and then close it.

You will have noticed that we keep repeating the code to set up a sprite

sheet in various JavaScript files. I have done it like this to keep the code

flowing linearly; however, you may decide to create one file for all sprite

sheet operations.

Chapter 6 Where are the Zombies?

92

We now need to call this function in our setup file to create a zombie.

Reopen the SZ_setupContent file in your js folder and type the following

new lines (all new text is in bold):

//main function

 function main_call_setupContent() {

 //need to resize all elements

 //first we set their normal sizes in CSS

 //Gun

 $('#SZ0_1').css('width', 150 * ratio);

 $('#SZ0_1').css('height', 150 * ratio);

 //Reload Button

 $('#SZ0_2').css('width', 200 * ratio);

 $('#SZ0_2').css('height', 90 * ratio);

 //Score

 $('#SZ0_3').css('width', 235 * ratio);

 $('#SZ0_3').css('height', 100 * ratio);

 //Any sprite sheets?

 //Our Gun

 setup_gun_SS();

 //Create a zombie

 SZ_createZombie(1);

}

We are now ready to test! Save all the files and then close them. Go

back to your My_Work_Files folder and double-click the default.html file.

What you should see is a scientist zombie at the edge of the planet surface.

If you click your browser’s Refresh button (alternatively, you could press

F5), the zombie should appear in a different location (yet still at the edge of

the planet surface). Continue to refresh a few times and test this behavior.

Chapter 6 Where are the Zombies?

93

We have now managed to spawn a zombie in our game! Our next step

will be to make our zombie come toward us.

Did it not work? Here are a few areas to check:

• Check that you have linked the SZ_zombie_movement.

js file correctly in your default.html.

• We are using arrays for the first time (see the “Further

Information” section about what arrays are). Ensure

that you are using the square brackets located next to

the P key on your keyboard.

• Finally, ensure that the following line is as coded exactly

as shown: setup_SpriteSheet("#zombie"+whichOne,

"Images/zombiesSS_"+type_zombie[whichOne-1]+".

png",9,20,20);

If your code is still not working, then please do not hesitate to message

me on Twitter @zarrarchishti.

Three exciting features in this section. Let’s explore them a little more.

Chapter 6 Where are the Zombies?

94

• Creating a div dynamically. What does dynamically

mean? It means that the div for the zombie was

generated when the game was running; that is, we did not

code a div for the zombie in the default.html file where

we have all of our other divs. The main reason for doing

it this way is to generate multiple zombies by calling one

function rather than writing out each div manually.

• Arrays. If you were reading a conventional coding book in

any computer language, you would have been introduced

to arrays on day 1. However, I think it is better to learn

it now because you just had a practical use for one, and

therefore you are able to understand the explanation

better. Let’s take a quick look at one of our arrays.

var type_zombie = [1,2,3,1,2,3];

• var declares the array as a new element.

• type_zombie is the name of the array.

• [] anything in these brackets are the contents of

the array, separated by commas

We have an array of six integers starting with the

number 1 and ending with the number 3.

We used a couple of math functions in our coding. Let’s have a look at

some of them.

• Math.random() is a special JavaScript function to generate

a random number. This random number was used (with

some manipulation) to randomly place our zombie.

• Math.floor() is a function that essentially rounds

down a number; for example, 45.89 would return

45. Incidentally, the opposite of this function (i.e.,

rounding up) is Math.ceil(), so 45.89 would return 46.

Chapter 6 Where are the Zombies?

95

 Moving the Zombie Closer
To bring our zombie toward us, we will use JavaScript. The code will do

two animations simultaneously. First, it will pull the zombie down the

screen. Second, the zombie will be scaled to look larger. By doing these two

animations together, we give the illusion of the zombie walking toward us.

Open the SZ_zombie_movement.js file and type the following new lines

(all new text is in bold):

//let’s create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;')

 //we want to position our zombie exactly at the tip of the planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top =

top_position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

Chapter 6 Where are the Zombies?

96

 //put this new zombie through our animate function

 SZ_animateZombie(whichOne);

}

//let’s animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -($zombiex.

height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.animate({

 //first bring our zombie slowly down the screen

 left: amty+ "px",

 },{ easing:ZS_ease[whichOne-1], duration:

timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 //apply the scale

 $(this).css('transform','scale('+xx+')');

Chapter 6 Where are the Zombies?

97

 }

 }, complete: function () {

 }

 });

}

Save this file and then close it. Go back to the My_Work_Files folder

and double-click the default.html file.

When the screen comes up, you should see the zombie coming toward

you! Depending on your screen resolution, the zombie may overstep the

edge or stop a little before it should. Do not worry about that; we will

handle it in Chapter 8.

Next, let’s look into creating all the zombies that we need for the game.

The following array has text values, but what are they?

var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad','eas

eInSine','easeOutQuart','easeInOutQuad'];

These values are what we use for our easing function. An easing

function specifies a zombie’s rate of change over time. The simplest and

most widely used easing value is a linear one. This is where the zombie

moves at a constant speed for the duration of its walk. That would be a

little boring and unrealistic, however.

Chapter 6 Where are the Zombies?

98

We have a wide range of easing functions to choose from. The

following are the ones that we will use:

• For our scientist zombie, easeInSine. It starts quite

slowly and then accelerates for the rest of the journey.

Here is a graph depicting the function:

• For our female zombie, easeOutQuart. There is no

delay at the start; she begins abruptly and eases off

near the end. Here is a graph depicting the function:

• For our male zombie, easeInOutQuad. There is a delay

both at the start and at the finish. The midway section

is fairly average as well. Here is a graph depicting the

function:

Chapter 6 Where are the Zombies?

99

 Creating All the Zombies
We will create six zombies for our game. We could create as many (or

as few) as we want; however, we need to consider memory issues when

creating a game. If we create too many zombies, the game may run out

of computer memory. On the other hand, if we create too few, then the

game may not be challenging enough. Essentially, it’s all about finding the

perfect parameters for the game and the player.

Open the SZ_setupContent.js file in the js folder. First, locate the

following two lines and remove them:

//Create a zombie

 SZ_createZombie(1);

Type the following new lines (all new text is in bold):

//main function

 function main_call_setupContent() {

 //need to resize all elements

 //first we set their normal sizes in CSS

 //Gun

 $('#SZ0_1').css('width', 150 * ratio);

 $('#SZ0_1').css('height', 150 * ratio);

 //Reload Button

 $('#SZ0_2').css('width', 200 * ratio);

 $('#SZ0_2').css('height', 90 * ratio);

 //Score

 $('#SZ0_3').css('width', 235 * ratio);

 $('#SZ0_3').css('height', 100 * ratio);

 //Any sprite sheets?

 //Our Gun

 setup_gun_SS();

Chapter 6 Where are the Zombies?

100

 //Create all our 6 zombies

 for (i = 1; i < 7; i++) {

 //this will get called 6 times

 SZ_createZombie(i);

 }

}

Save this file and then close it.

For the purposes of this book, we have determined to keep the

maximum number of zombies to six. To keep this function future-proof,

however, I recommend revisiting it to accept the maximum number of

zombies as a parameter. You would replace the 7 in the for loop with this

parameter name.

Go back to the My_Work_Files folder and double-click the default.

html file.

When the screen comes up, you should see all six zombies make their

way toward the screen. You will see not only the scientist zombie but also

the female and the male zombies too. I should note that their speed is

relative to what we discussed in Chapter 1.

I am noting the following concerns:

• The zombies overlap each other.

• The gun is hidden behind the zombies.

• The mouse cursor does not turn into crosshairs when

over a zombie.

Chapter 6 Where are the Zombies?

101

I illustrated the first two points in the following screenshot:

Do not worry about these issues too much at this stage. All of these

concerns are addressed in Chapter 8. Next, we will look at recycling the life

of our zombie so that once it finishes, the element is ready for our program

to use again.

In this section, we came across a for loop to create our six zombies:

for (i = 1; i < 7; i++) {

By using this loop, we eliminated the need to write the same code to

create a zombie six times. If that had been the case, then imagine if we

were to create 100 zombies!

As shown in the example, loops are essential if you want to run the

same code over and over again with a different value.

Chapter 6 Where are the Zombies?

102

Here are four different kinds of loops that we can use in our game:

• for loops through a block of code a number of times

• for/in loops through the properties of an object

• while loops through a block of code while a specified

condition is true

• do/while also loops through a block of code while a

specified condition is true

 Generating a Zombie Life Cycle
As you can see, the zombies remain on the screen once they reach the

screen. Eventually, we will want to end the game if any zombie reaches the

screen. For now, we are happy to just send them back to the start.

Open the SZ_zombie_movement.js file and type the following new lines

(all new text is in bold):

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;')

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

Chapter 6 Where are the Zombies?

103

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top =

top_position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

 //put this new zombie through our animate function

 SZ_animateZombie(whichOne);

}

//let’s animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -($zombiex.

height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

Chapter 6 Where are the Zombies?

104

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

 //first bring our zombie slowly down the screen

 left: "+="+1+ "px",

 },{ easing:ZS_ease[whichOne-1], duration:

timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 //do a check to see if we should end this animation

 if(xx>15){

 //stop all animation

 $(this).stop();

 //call a function to reset this zombie

 SZ_resetZombie(whichOne);

 } else {

 //apply the scale

 $(this).css('transform','scale('+xx+')');

 }

 }

 }, complete: function () {

 }

 });

}

//a function to completely reset our zombie

function SZ_resetZombie(whichOne){

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

Chapter 6 Where are the Zombies?

105

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px', left: left_

position+'px'});

 //finally let’s make the zombie come towards the screen again

 SZ_animateZombie(whichOne);

}

Save this file and then close it.

Again, the function to reset the zombie needs to be future-proofed. I

suggest placing all the possible parameters for a zombie’s starting position

in a separate file. In this function, we instruct the code to access the new

file for instructions with possible parameters for different variances (e.g., if

the user is in a higher level, the values could be different).

Go back to the My_Work_Files folder and double-click the default.

html file.

When the screen comes up, you should see the zombies come to the

screen as before but then disappear. When they reappear, they should

appear in a different position when coming toward the screen.

In the next chapter, we look at taking a shot at our zombies.

Chapter 6 Where are the Zombies?

106

Did it not work? This could be due to a few lines that we added around

some existing code. Let’s have a look.

The original line of code was

$zombiex. animate({

Make sure that the new line of code looks like this:

$zombiex.delay(timex[whichOne-1]/2).animate({

The original line of code was

//apply the scale

 $(this).css('transform',

'scale('+xx+')');

Make sure that the new line of code looks like this:

//do a check to see if we should end this animation

 if(xx>15){

 //stop all animation

 $(this).stop();

 //call a function to reset this zombie

 SZ_resetZombie(whichOne);

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

 }

 }

If your code is still not working, then please do not hesitate to message

me on Twitter @zarrarchishti.

Chapter 6 Where are the Zombies?

107
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_7

CHAPTER 7

Take a Shot: Part 2
“If you do it right, it will last forever”

Massimo Vignelli

The good news is that we are near the end. The slightly bad news is that

there will be a fair bit of coding in this chapter. So what will we see at the

end of this chapter?

• The gun will be able to fire on zombies.

• The zombies will register the hits. If the maximum number

of hits is reached, a zombie will turn into a bubble.

• The bubble zombie will fly away into the distance.

• We need to keep track of the number of times the gun

has been fired, and require the user to reload when the

maximum has been reached.

• Finally, if a zombie reaches the screen, we need to

declare the game over.

 Hitting a Zombie
You may have noticed that when you try to click a zombie, the gun does

not fire. This is because we have not bound a mouse-click event to the

zombie elements. We can place this mouse-click code in the function

where we create each zombie.

108

Open the SZ_zombie_movement.js file and type the following new lines

(all new text is in bold):

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;')

 //we want to position our zombie exactly at the tip of the planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top = top_

position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

 //put this new zombie through our animate function

 SZ_animateZombie(whichOne);

 //bind the users mouse click to this zombie

 $("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

Chapter 7 take a Shot: part 2

109

 //first we want to fire the gun

 fireGun(event);

 });

}

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -($zombiex.

height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

 //first bring our zombie slowly down the screen

 left: "+="+1+ "px",

 },{ easing:ZS_ease[whichOne-1], duration:

timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

Chapter 7 take a Shot: part 2

110

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 //do a check to see if we should end this

animation

 if(xx>15){

 //stop all animation

 $(this).stop();

 //call a function to reset this zombie

 SZ_resetZombie(whichOne);

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

 }

 }

 }, complete: function () {

 }

 });

}

//a function to completely reset our zombie

function SZ_resetZombie(whichOne){

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

Chapter 7 take a Shot: part 2

111

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px', left: left_

position+'px'});

 //finally let's make the zombie come towards the screen

again

 SZ_animateZombie(whichOne);

}

Navigate to the menu, click File, and then click Save. You can now close

this file.

We are now ready to test! Go back to the My_Work_Files folder and

double-click the default.html file. You should see the gun firing when you

click over any of the zombies coming toward the screen.

This was made possible by adding 'mousedown touchstart' events to

each zombie’s div. When revisiting this project, you may wish to consider

installing a “headshot” type of feature. For this to work, you need to do the

following:

 1. Place a div within the zombie’s div that defines its

head.

 2. Place the same 'mousedown touchstart' events to

this new div, which should override the outer div’s

functionality.

 3. If this new div is hit, then give the user more points.

 4. You may want to consider awarding the maximum hits

if the div is hit; for example, if it usually takes three

hits to kill a zombie (this functionality is added in the

next section), only one of the headshots is sufficient.

Chapter 7 take a Shot: part 2

112

In earlier chapters, we bound mouse events by adding them to the image

tag; for example

<img id="SZ0_0" onmousemove="rotateGun(event)"

src="images/SZ_background_image.jpg" />

In this section, however, we needed to add a mouse event to our

zombies, which are not created in our HTML page.

So just as we created the zombies dynamically, we have to bind the

events to them at runtime as well. This was done by using JavaScript code,

as follows:

$("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

In this line, we have not only bound the mousedown event to each zombie,

but also defined the instructions that execute when that event occurs.

Did the code not work? Check to see if you have typed whichOne (make

sure that the O is a capital letter) in the new code that you have written.

When writing any code from this book, it is extremely important to

be aware that JavaScript makes a sharp distinction between capital and

lowercase letters.

Chapter 7 take a Shot: part 2

113

JavaScript does not consider a variable named whichone to be the

same as a variable named whichOne.

If the code is still not working, then please do not hesitate to message

me on Twitter @zarrarchishti.

 Making the Hits Count
Let’s recap the number of hits each zombie will be able to take before

“dying.”

• Professor Z: two hits

• Belladonna: one hit

• Brad: three hits

To keep track of the number of hits each zombie has taken, we need to

use an array. Also, we need to remember to reset each zombie’s hit count

when it resets.

Open the SZ_zombie_movement.js file and type the following new lines

(all new text is in bold):

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;')

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

Chapter 7 take a Shot: part 2

114

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top = top_

position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

 //put this new zombie through our animate function

 SZ_animateZombie(whichOne);

 //bind the users mouse click to this zombie

 $("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

 //first we want to fire the gun

 fireGun(event);

 //acknowledge the hit

 zombieHit(whichOne-1);

 });

}

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

Chapter 7 take a Shot: part 2

115

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -($zombiex.

height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

 //first bring our zombie slowly down the screen

 left: "+="+1+ "px",

 },{ easing:ZS_ease[whichOne-1], duration:

timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 //do a check to see if we should end this

animation

 if(xx>15){

 //stop all animation

 // $(this).stop();

 //call a function to reset this zombie

 SZ_resetZombie(whichOne);

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

Chapter 7 take a Shot: part 2

116

 }

 }

 }, complete: function () {

 }

 });

}

//a function to completely reset our zombie

function SZ_resetZombie(whichOne){

 //reset this zombies hit counter

 zombieHits_counter[whichOne-1]=0;

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //we need to stop this zombies animations

 $zombiex.stop();

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px',

left: left_position+'px'});

 //finally let's make the zombie come towards the screen

again

 SZ_animateZombie(whichOne);

}

Save and close this file.

Chapter 7 take a Shot: part 2

117

If you are developing levels for this game in the future, you want to add

a check before resetting the zombie. For example, if the result of killing

a zombie is a new level, then rather than just resetting that particular

zombie, you want to reset all the zombies. I would even go as far as making

this operation its own function, which performed all of these checks.

Open the SZ_touch.js file in the js folder. Type the following new

lines (all new text is in bold):

//We need a flag to keep track to avoid repetition of

animations before the first has finished

var canIclick= 0;

//this function is called to reload our gun

function reloadGun(e) {

 //Let's check if we can allow this to occur

 if(canIclick== 0){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "reload");

 }

}

//this function is called to fire our gun

function fireGun(e) {

 //Let's check if we can allow this to occur

 if(canIclick== 0){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "fire");

 }

}

//array to keep track of the zombie hits

 var zombieHits_counter = [0,0,0,0,0,0];

Chapter 7 take a Shot: part 2

118

//array for each zombies limit

 var zombieHits_limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act

accordingly

function zombieHit(whichOne){

 //increment the counter

 zombieHits_counter[whichOne]++;

 //check to see if this zombie has reached its limit

 if(zombieHits_counter[whichOne] >= zombieHits_

limits[whichOne]){

 //reset this zombie

 SZ_resetZombie(whichOne+1);

 }

}

Save and close this file. We are now ready to test! Go back to the

My_Work_Files folder and double-click the default.html file.

Now, the zombies should reset before they reach the screen when we

have fired on them the correct number of times. So if we fire once on the

female zombie, she should reset immediately. Similarly, if we fire three

times on the male zombie, he should reset. Finally, if we fire twice on the

scientist zombie, then he should reset.

Next, I introduce our bubble zombies.

We used a couple of techniques to keep track and compare values in our

code. Let’s take a closer look at some of them.

Chapter 7 take a Shot: part 2

119

var ZS_ease = zombieHits_counter[whichOne]++;

The ++ is an assignment operator that adds one to the current value of

the variable.

Next, let’s look at how we checked to see if the maximum number of

hits had been reached.

if(zombieHits_counter[whichOne] >= zombieHits_limits[whichOne]){

An if statement is what we call a conditional statement. Conditional

statements are used when you want to perform different actions on

different decisions. So in this case, if the zombie has had the maximum

number of hits, then we want to reset it; otherwise, do nothing.

And, you see >= in the statement, which means if the first value is

greater than or equal to the second value. Here are some other conditional

statements we could use for other instances:

• <= (less than or equal to)

• == (equal to)

• < (less than)

• > (greater than)

• != (not equal to)

 Zombie Down!
When a zombie has been hit the maximum number of times, it is reset. We

also need the zombie to appear in a bubble, however, to give the illusion

that the zombie has been subdued and dealt with in the game.

To do this, the following needs to completed.

 1. Create six bubble zombie elements that are ready to

be deployed when needed.

Chapter 7 take a Shot: part 2

120

 2. Before resetting a zombie, activate its counter

bubble zombie.

 3. Make sure that the bubble zombie has the same

scale and location values to make it seem as if the

walking zombie has been transformed into the

bubble.

 4. Finally, we want the bubble zombie to float away

into space.

 Part 1: Create Six Bubble Zombie Elements
To create the six bubble zombies, we need to open the SZ_zombie_

movement.js file and type the following new lines (all new text is in bold):

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //and another for the bubble zombie SS

 var div2 = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;')

 //and the same for our bubble zombie

 div2.setAttribute('style','position: fixed; top:0; left:0;')

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

Chapter 7 take a Shot: part 2

121

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top = top_

position+'px';

 //and the same for our bubble zombie

 div2.style.left = left_position+'px'; div2.style.top = top_

position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //also for our bubble zombie

 div2.id = 'bubble_zombie'+whichOne;

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //finally add in our bubble zombie to the screen too

 document.body.appendChild(div2);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

 //put this new zombie through our animate function

 SZ_animateZombie(whichOne);

 //bind the users mouse click to this zombie

 $("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

 //first we want to fire the gun

 fireGun(event);

 //acknowledge the hit

 zombieHit(whichOne-1);

 });

}

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

Chapter 7 take a Shot: part 2

122

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -($zombiex.

height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

 //first bring our zombie slowly down the screen

 left: "+="+1+ "px",

 },{ easing:ZS_ease[whichOne-1], duration:

timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 //do a check to see if we should end this

animation

 if(xx>15){

 //stop all animation

 // $(this).stop();

Chapter 7 take a Shot: part 2

123

 //call a function to reset this zombie

 SZ_resetZombie(whichOne);

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

 }

 }

 }, complete: function () {

 }

 });

}

//a function to completely reset our zombie

function SZ_resetZombie(whichOne){

 //reset this zombies hit counter

 zombieHits_counter[whichOne-1]=0;

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //we need to stop this zombies animations

 $zombiex.stop();

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px', left: left_

position+'px'});

Chapter 7 take a Shot: part 2

124

 //finally let's make the zombie come towards the screen

again

 SZ_animateZombie(whichOne);

}

Save and close this file.

appendChild() is an interesting method used in this code. This

method appends a node as the last child of another node. So in our case,

we are adding our zombie’s div to the end of our HTML body.

If in the future, you need to add an element, but not as the last child.

You may wish to use insertBefore() rather than appendChild(). The

insertBefore() method inserts a node as a child, right before an existing

child, which you specify.

Before we can test to see our newly created bubble zombie divs, we

need to add their sprite sheet functionality.

To do this, we now need to open the SZ_SS.js file in our js folder. Type

the following new lines (all new text is in bold):

//We need a one stop function that will allow us to process

sprite sheets

function setup_SpriteSheet(div_name, image_name, no_of_frames,

widthx, heightx) {

 //need the ratio of the container's width/height

 var imageOrgRatio = $(div_name).height() / $(div_name).

width() ;

 //need to ensure no trailing decimals

 var ratio2 = Math.round(ratio * 10) / 10;

 //check that the width is completely divisible by the no of

frames

 var newDivisible = Math.round((widthx * ratio2) / no_of_

frames);

Chapter 7 take a Shot: part 2

125

 //the new width will be the number of frames multiplied by our

new divisible

 var newWidthx = newDivisible * no_of_frames;

 //also the new height will be our ratio times the height of

the div containing our image

 var newHeightx = heightx * ratio2;

 //apply our new width to our CSS

 $(div_name).css('width', (newWidthx));

 //apply our new height to our CSS

 $(div_name).css('height', newHeightx);

//

 //take the image name and apply as a background image to our div

 $(div_name).css('background-image', 'url(' + image_name + ')');

 //finally we need to apply a background size remembering we

need to multiply width by the no of frames

 $(div_name).css('background-size', newWidthx * no_of_frames

+ 'px ' + newHeightx + 'px');

}

//setup the Gun

function setup_gun_SS(){

 //first let's apply our gun to our SS function

 setup_SpriteSheet("#SZ0_1","Images/SZ_gun_SS.png",28,150,150);

 //need to access a special function in our js/ss.js file

 $("#SZ0_1").animateSprite({

 fps: 10,

 animations: {

 static: [0],

 reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,20,21,22,23],

 fire: [24,25,26,27,28],

Chapter 7 take a Shot: part 2

126

 },

 duration: 50,

 loop: false,

 complete: function () {

 // use complete only when you set animations with

'loop: false'

 //alert("animation End");

 //we need to reset our universal flag

 canIclick=0;

 }

 });

}

//setup a newly created zombie

function setup_zombie_SS(whichOne){

 //let's identify what type of zombie we should create

 var type_zombie = [1,2,3,1,2,3];

 //let's setup a speed for each type of zombie

 var speed_zombie = [100,50,150];

 //first let's setup our zombie SS

 setup_SpriteSheet("#zombie"+whichOne,"Images/zombiesSS_"+type_

zombie[whichOne-1]+".png",9,20,20);

 //need to access a special function in our js/ss.js file

 $("#zombie"+whichOne).animateSprite({

 fps: 10,

 animations: {

 static: [0,1,2,3,4,5,6,7],

 },

 duration: speed_zombie[type_zombie[whichOne-1]-1],

 loop: true,

Chapter 7 take a Shot: part 2

127

 complete: function () {

 // use complete only when you set animations with

'loop: false'

 //alert("animation End");

 }

 });

 //now let’s setup our bubble zombie SS

setup_SpriteSheet("#bubble_zombie"+whichOne,"Images/SZ_bubble.

png",3,20,20);

 //need to access a special function in our js/ss.js file

 $("#bubble_zombie"+whichOne).animateSprite({

 fps: 10,

 animations: {

 z1: [type_zombie[whichOne-1]-1],

 },

 duration: 1,

 loop: false,

 complete: function () {

 // use complete only when you set animations with

'loop: false'

 //alert("animation End");

 }

 });

}

Save and close this file.

Although we have touched on this before, using the alert() command

is extremely useful when trying to pinpoint where a problem may lie

in your code. In the preceding code, you see a commented alert()

statement. At some point, I may have had some issues with this function’s

completion function triggering. By placing this alert() statement, I was

able to test whether the function’s completion timing was accurate.

Chapter 7 take a Shot: part 2

128

As always, remember to remove (or comment out) all alert()

statements.

Now we are ready to test! Go back to the My_Work_Files folder and

double-click the default.html file.

Before the zombies come darting toward the screen, you should

initially see six bubble zombies randomly placed along the planet’s edge.

Did the code not work? Check to see if you have typed div2 in the new

code you have written in SZ_zombie_movement.js.

Also in the new code for SZ_SS.js, make sure that you have typed

bubble_zombie and not just zombie (as per the preceding code).

If the code is still not working, then please do not hesitate to message

me on Twitter @zarrarchishti.

Chapter 7 take a Shot: part 2

129

 Part 2: Activate the Counter Bubble Zombie
In this section, we concentrate on replacing the walking zombie with our

new bubble zombie when the maximum number of hits has been reached.

Also, we have to make sure that the corresponding bubble zombie is not

shown until the maximum number of hits is reached.

First, open the SZ_touch.js file in the js folder. Modify the following

line in bold:

//We need a flag to keep track to avoid repetition of

animations before the first has finished

var canIclick= 0;

//this function is called to reload our gun

function reloadGun(e) {

 //Let's check if we can allow this to occur

 if(canIclick== 0){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "reload");

 }

}

//this function is called to fire our gun

function fireGun(e) {

 //Let's check if we can allow this to occur

 if(canIclick== 0){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "fire");

 }

}

Chapter 7 take a Shot: part 2

130

//array to keep track of the zombie hits

 var zombieHits_counter = [0,0,0,0,0,0];

//array for each zombies limit

 var zombieHits_limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act

accordingly

function zombieHit(whichOne){

 //increment the counter

 zombieHits_counter[whichOne]++;

 //check to see if this zombie has reached its limit

 if(zombieHits_counter[whichOne] >= zombieHits_limits[whichOne]){

 //reset this zombie

 SZ_resetZombie(whichOne+1,1);

 }

}

Save and close this file. Open the SZ_zombie_movement.js file.

Carefully modify some old lines and type the following new lines (all

modified and new text is in bold):

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //and another for the bubble zombie SS

 var div2 = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;')

 //and the same for our bubble zombie

 div2.setAttribute('style','position: fixed; top:0; left:0;')

Chapter 7 take a Shot: part 2

131

 //we want to position our zombie exactly at the tip of the planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top = top_

position+'px';

 //and the same for our bubble zombie

 div2.style.left = left_position+'px'; div2.style.top = top_

position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //also for our bubble zombie

 div2.id = 'bubble_zombie'+whichOne;

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //finally add in our bubble zombie to the screen too

 document.body.appendChild(div2);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

 //put this new zombie through our animate function

 SZ_animateZombie(whichOne);

 //hide the bubble zombies at the start

 $("#bubble_zombie"+whichOne).css('transform','scale('+0+')');

Chapter 7 take a Shot: part 2

132

 //bind the users mouse click to this zombie

 $("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

 //first we want to fire the gun

 fireGun(event);

 //acknowledge the hit

 zombieHit(whichOne-1);

 });

}

//we need to keep track of the current scale values

 var scalex_zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position

 var leftx_zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -($zombiex.

height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

Chapter 7 take a Shot: part 2

133

 //first bring our zombie slowly down the screen

 left: "+="+0.001+ "px",

 },{ easing:ZS_ease[whichOne-1],

duration: timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 //do a check to see if we should end this

 animation

 if(xx>15){

 //stop all animation

 // $(this).stop();

 //call a function to reset this zombie

 SZ_resetZombie(whichOne,0);

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

 //record this new scale value

 scalex_zombie[whichOne-1]=xx;

 }

 }

 }, complete: function () {

 }

 });

}

//a function to completely reset our zombie

function SZ_resetZombie(whichOne, zombieBubble_generate){

Chapter 7 take a Shot: part 2

134

 //reset this zombies hit counter

 zombieHits_counter[whichOne-1]=0;

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //we need to stop this zombies animations

 $zombiex.stop();

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //should we generate a bubble zombie?

 if(zombieBubble_generate==1){

 //assign a user friendly name for our bubble zombie div

 var $bubble_zombiex = $("#bubble_zombie"+whichOne);

 //let's re-position our bubble zombie to our stored

value

 $bubble_zombiex.css({top: top_position+'px',left:

$zombiex.css("left")});

 //apply the scale

$bubble_zombiex.css('transform',

'scale('+scalex_zombie[whichOne-1]+')');

 }

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px', left:

left_position+'px'});

Chapter 7 take a Shot: part 2

135

 //finally let's make the zombie come towards the screen again

 SZ_animateZombie(whichOne);

}

You can now save and close this file. There is more code to write,

however, let’s quickly test what we have so far. Go back to the My_Work_

Files folder and double-click the default.html file. You should observe

the following changes in our game:

• When the game starts, the bubble zombies in the

distance have disappeared.

• When you reach the maximum number of hits on a

zombie, it is replaced with a bubble zombie.

• The bubble zombie should correspond with the zombie

you have just hit.

• The bubble zombie should be roughly the same size

and position of the zombie it is replacing.

• Please note that you may notice that the zombies may

stop coming all together. This has been done on purpose

for some code that we will write later. For now, just refresh

your browser (press F5) and the game should restart.

Next, we make the bubble zombies animate into space.

Did the code not work? First, check to see that you have modified the SZ_

resetZombie function to include an extra parameter (this code is in red):

function SZ_resetZombie(whichOne, zombieBubble_generate){

Chapter 7 take a Shot: part 2

136

Also, the two times that we call this function need to be modified.

Please make sure that your calls look like the following code:

In SZ_touch.js

SZ_resetZombie(whichOne+1,1);

And in SZ_zombie_movement.js

SZ_resetZombie(whichOne,0);

Finally, ensure that the following lines are placed exactly as shown (i.e.,

outside the function call):

//we need to keep track of the current scale values

var scalex_zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position

 var leftx_zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

If the code is still not working, then please do not hesitate to message

me on Twitter @zarrarchishti.

 Part 3: Animate the Bubble Zombies
In this final section, we animate each bubble zombie, which in turn

triggers its corresponding zombie to start its animation toward the screen

again. Then we provide a reset function for the bubble zombie so that it

can be safely used again.

First, open the SZ_movement.js file and type the following new lines

(all new text is in bold):

Chapter 7 take a Shot: part 2

137

function rotateGun(e) {

//using the e value we can deduce the X co-ordinates

var xPos = e.clientX;

//We need to work out where the mouse cursor is as a percentage

of the width of the screen

//We will work this out by dividing the current X position

by the overall screen width which if you remember we put in

newWidth

var currentXPositionPercentage = xPos/newWidth;

//We now want to apply this to the maximum amount of rotation

which is 50 however the starting rotation is -15 not 0

var amountToRotate = -15 + (currentXPositionPercentage * 50);

//Let's rotate the gun!

 $("#SZ0_1").css('transform', 'rotate('+amountToRotate+'deg)');

}

//movement for our bubble zombie

function bubbleZombie_flyAway(whichOne){

 //assign a user friendly name for our div

 var $zombiex = $("#bubble_zombie"+whichOne);

 //first it should animate upwards with a bounce

 $zombiex.animate({

 //bring our zombie up the screen

 top: "-="+100*ratio+ "px",

 },{ easing:"easeOutElastic", duration: 400,

 complete: function () {

 //now the final animation where the bubble

zombie disappears into space

Chapter 7 take a Shot: part 2

138

 $(this).delay(150).animate({

 //slowly turn the alpha down

 opacity: "-="+1,

 },{ easing:"easeOutQuint", duration: 1000,

 step: function(now, fx){

 //at each step we can adjust the scale

to make it look smaller

 if (fx.prop == "opacity" && fx.pos>=0.1) {

 //work out the amount to scale

 var xx = 0.5/(fx.pos);

 //apply the scale

 $(this).css('transform','scale('+xx+')');

 }

 }, complete: function () {

 }//end of second complete function

 });//end of second animation

 }//end of first complete function

 }); //end of first animation

}

Save and close this file.

 In the code above we have written

$(this).delay(150).animate({

This normally would have been written as

$(this).animate({

As the name suggests, however, we have applied a delay before calling

this function. The jQuery function sets a timer to delay the execution of

items in its queue. It accepts an integer as a parameter, indicating the

number of milliseconds to delay execution. So in our case, we asked for the

code to wait 150 milliseconds before executing our animate function.

Chapter 7 take a Shot: part 2

139

I would like to add that this delay() method is best for only certain

game engines where you are delaying between queued jQuery effects. It

doesn't offer a way to cancel the delay; therefore, in certain cases, delay()

is not a replacement for JavaScript's native setTimeout function, which

may be more appropriate.

Next, we need to call our new function. Open the SZ_zombie_

movement.js file in the js folder. Carefully modify some old lines and type

the following new lines (all modified and new text is in bold):

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //and another for the bubble zombie SS

 var div2 = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;')

 //and the same for our bubble zombie

 div2.setAttribute('style','position: fixed; top:0; left:0;')

 //we want to position our zombie exactly at the tip of the planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top = top_

position+'px';

Chapter 7 take a Shot: part 2

140

 //and the same for our bubble zombie

 div2.style.left = left_position+'px'; div2.style.top = top_

position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //also for our bubble zombie

 div2.id = 'bubble_zombie'+whichOne;

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //finally add in our bubble zombie to the screen too

 document.body.appendChild(div2);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

 //put this new zombie through our animate function

 SZ_animateZombie(whichOne);

 //hide the bubble zombies at the start

 $("#bubble_zombie"+whichOne).css('transform','scale('+0+')');

 //bind the users mouse click to this zombie

 $("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

 //make sure the zombie is currently walking

 if($("#zombie"+whichOne).css('opacity') != 0) {

 //first we want to fire the gun

 fireGun(event);

 //acknowledge the hit

 zombieHit(whichOne-1);

 }

 });

}

Chapter 7 take a Shot: part 2

141

//we need to keep track of the current scale values

 var scalex_zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position

 var leftx_zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

 //reset the zombies opacity

 $zombiex.css({opacity:1});

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -($zombiex.

height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

 //first bring our zombie slowly down the screen

 left: "+="+0.001+ "px",

 },{ easing:ZS_ease[whichOne-1], duration:

timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

Chapter 7 take a Shot: part 2

142

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 //do a check to see if we should end this

animation

 if(xx>15){

 //stop all animation

 // $(this).stop();

 //call a function to reset this zombie

 SZ_resetZombie(whichOne,0);

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

 //record this new scale value

 scalex_zombie[whichOne-1]=xx;

 }

 }

 }, complete: function () {

 }

 });

}

//a function to completely reset our zombie

function SZ_resetZombie(whichOne, zombieBubble_generate){

 //reset this zombies hit counter

 zombieHits_counter[whichOne-1]=0;

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //we need to stop this zombies animations

 $zombiex.stop();

Chapter 7 take a Shot: part 2

143

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //should we generate a bubble zombie?

 if(zombieBubble_generate==1){

 //assign a user friendly name for our bubble zombie div

 var $bubble_zombiex = $("#bubble_zombie"+whichOne);

 //let's re-position our bubble zombie to our stored

value

 $bubble_zombiex.css({top: top_position+'px',left:

$zombiex.css("left"), opacity:1});

 //apply the scale

 $bubble_zombiex.css('transform','scale('+scalex_

zombie[whichOne-1]+')');

 //call our bubble zombie animation function

 bubbleZombie_flyAway(whichOne);

 }

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px', left: left_

position+'px', opacity:0});

 //finally let's make the zombie come towards the screen

again

 //SZ_animateZombie(whichOne);

}

Chapter 7 take a Shot: part 2

144

You can now save and close this file. We are now ready to test our code.

Go back to the My_Work_Files folder and double-click the default.html

file. You should now see the bubble zombies animate upward and then

away into the distance.

Again, please note that you may notice that the zombies may stop

coming all together. This was done on purpose for some code that we will

write later. For now, just refresh your browser (press F5) and the game

should restart.

Next, we will only allow a certain number of shots from our gun before

it needs to be reloaded.

Did the code not work? First, check to see that you have modified the SZ_

resetZombie function to include an extra parameter (the code in red):

$bubble_zombiex.css({top: top_position+'px',left: $zombiex.

css("left"), opacity:1});

and

$zombiex.css({top: top_position+'px', left: left_position+'px',

opacity:0});

Also, the tail end of the code in the SZ_movement.js file has a few

repetitive characters. Please make sure that they are all written as shown here:

 }

 }, complete: function () {

 }//end of second complete function

 });//end of second animation

Chapter 7 take a Shot: part 2

145

 }//end of first complete function

 }); //end of first animation

If the code is still not working, then please do not hesitate to message

me on Twitter @zarrarchishti.

What caused the bubble zombie to bounce upward?

You learned about easing functions in Chapter 6. As a reminder, an easing

function specifies a zombie’s rate of change over time. So in our case,

we want to make the bubble zombie go upward and bounce, so we used

easeOutElastic:.

What is opacity?

The opacity property sets or returns the transparency level of an element.

This is where 1 is not transparent at all, 0.5 is 50% see-through, and 0 is

completely transparent.

What is happening after the bubble zombie flies off?

It is important to note that the first thing that we do is perform the

following check:

if (fx.prop == "opacity" && fx.pos>=0.1) {

Chapter 7 take a Shot: part 2

146

The && means logical AND (i.e., if the fx property is opacity AND the

fx position is greater than or equal to 0.1).

The reason we needed to place this check for the position is because

the first value is almost always 0. If we allowed this, then we would be

dividing by zero, which, of course, is undefined. This would lead to

problems and indeterminable behavior.

Finally, we take this value and place it as a scale value for the bubble

zombie. Over time, this makes the bubble zombie appear smaller, thus

giving it the impression of disappearing into the distance.

 Reloading the Gun
You may have noticed that our Reload button is pretty redundant so far.

Of course, it does cause our gun to animate despite playing no part in our

game. So far, the ultimate aim is to give the user a fixed amount of shots

before the gun stops shooting. At this time, the Reload button prompts the

user to press it to continue with their game.

The first thing we will do is make the Reload button invisible at the

start of the game. Open the SZ_master.css file in our CSS folder. Type the

following new line (all new text is in bold):

html {

 height: 100%;

 }

body {

 padding: 0 0 0 0;

 margin: 0;

 user-select: none;

 cursor: crosshair;

 }

img {

 max-width: 100%;

Chapter 7 take a Shot: part 2

147

 height: auto;

 user-drag: none;

 user-select: none;

 -moz-user-select: none;

 -webkit-user-drag: none;

 -webkit-user-select: none;

 -ms-user-select: none;

 }

#SZ0_0 {

 position: fixed;

 top: 0;

 left: 0;

 min-width: 100%;

 min-height: 100%;

 }

 #SZ0_1 {

 position: fixed;

 bottom: 0;

 right: 0;

}

 #SZ0_2 {

 position: fixed;

 top: 0;

 left: 0;

 cursor: pointer;

 opacity:0;

}

 #SZ0_3 {

 position: fixed;

 top: 0;

 right: 0;

}

Chapter 7 take a Shot: part 2

148

Save and close this file.

In Chapter 3, I suggested that you group these three divs (i.e., #SZ0_1,

#SZ0_2, #SZ0_3) together since they shared the same properties. However,

how would we be able to add a new property just for #SZ0_2? We would do

this with the following code:

#SZ0_1, #SZ0_2, #SZ0_3 {

 position: fixed;

 top: 0;

 right: 0;

}

#SZ0_2 {

opacity:0;

}

Anything written with the extra #SZ0_2 code appends whatever is

already coded for it.

Go back to the My_Work_Files folder and double-click the default.

html file. The Reload button should have disappeared. If you try to click it,

however, it still shoots. So we need to place a check to make sure that we

only perform the gun animation when the Reload button is visible. Also,

it’s a good time to place a maximum number of shots on the gun.

Open the SZ_zombie_movement.js file and type the following modified

line (all modified text is in red):

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //and another for the bubble zombie SS

 var div2 = document.createElement('div');

Chapter 7 take a Shot: part 2

149

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;')

 //and the same for our bubble zombie

 div2.setAttribute('style','position: fixed; top:0; left:0;')

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top = top_

position+'px';

 //and the same for our bubble zombie

 div2.style.left = left_position+'px'; div2.style.top =

top_position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //also for our bubble zombie

 div2.id = 'bubble_zombie'+whichOne;

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //finally add in our bubble zombie to the screen too

 document.body.appendChild(div2);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

Chapter 7 take a Shot: part 2

150

 //put this new zombie through our animate function

 SZ_animateZombie(whichOne);

 //hide the bubble zombies at the start

 $("#bubble_zombie"+whichOne).css('transform','scale('+0+')');

 //bind the users mouse click to this zombie

 $("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

 //make sure the zombie is currently walking

 if($("#zombie"+whichOne).css('opacity') != 0 &&

$("#SZ0_2").css('opacity') != 1) {

 //first we want to fire the gun

 fireGun(event);

 //acknowledge the hit

 zombieHit(whichOne-1);

 }

 });

}

//we need to keep track of the current scale values

 var scalex_zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position

 var leftx_zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

Chapter 7 take a Shot: part 2

151

 //reset the zombies opacity

 $zombiex.css({opacity:1});

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -($zombiex.

height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

 //first bring our zombie slowly down the screen

 left: "+="+0.001+ "px",

 },{ easing:ZS_ease[whichOne-1], duration:

timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 //do a check to see if we should end this

 animation

 if(xx>15){

 //stop all animation

 // $(this).stop();

 //call a function to reset this zombie

 SZ_resetZombie(whichOne,0);

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

Chapter 7 take a Shot: part 2

152

 //record this new scale value

 scalex_zombie[whichOne-1]=xx;

 }

 }

 }, complete: function () {

 }

 });

}

//a function to completely reset our zombie

function SZ_resetZombie(whichOne, zombieBubble_generate){

 //reset this zombies hit counter

 zombieHits_counter[whichOne-1]=0;

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //we need to stop this zombies animations

 $zombiex.stop();

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //should we generate a bubble zombie?

 if(zombieBubble_generate==1){

 //assign a user friendly name for our bubble zombie div

 var $bubble_zombiex = $("#bubble_zombie"+whichOne);

 //let's re-position our bubble zombie to our stored

value

 $bubble_zombiex.css({top: top_position+'px',left:

$zombiex.css("left"), opacity:1});

 //apply the scale

 $bubble_zombiex.css('transform',

'scale('+scalex_zombie[whichOne-1]+')');

Chapter 7 take a Shot: part 2

153

 //call our bubble zombie animation function

 bubbleZombie_flyAway(whichOne);

 }

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px',

left: left_position+'px', opacity:0});

 //finally let's make the zombie come towards the screen

again

 //SZ_animateZombie(whichOne);

}

You can now save and close this file.

Here we are basing our decision on the opacity of various elements. We

will continue to do so in the next section of code as well. It would be a good

idea to place these checks in a separate function, and then simply call that

function in the code that requires it.

Next, we need to ensure that we show and hide our Reload button at

the appropriate times. Open the SZ_touch.js file and type the following

new and modified lines (all new text is in bold):

//We need a flag to keep track to avoid repetition of

animations before the first has finished

var canIclick= 0;

//this function is called to reload our gun

function reloadGun(e) {

Chapter 7 take a Shot: part 2

154

 //Let's check if we can allow this to occur

 if(canIclick== 0 && $("#SZ0_2").css('opacity') == 1){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "reload");

 //reset the current shots

 current_shots=0;

 //hide the reload button

 $("#SZ0_2").css({opacity:0});

 }

}

//place a maximum number of shots

var max_shots=5;

//keep track of current number of shots

var current_shots=0;

//this function is called to fire our gun

function fireGun(e) {

 //Let's check if we can allow this to occur

 if(canIclick== 0 && $("#SZ0_2").css('opacity') != 1){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "fire");

 //increment our shots

 current_shots++;

 //check to see if we have reached the maximum

 if(current_shots>=max_shots){

 //show the reload button

 $("#SZ0_2").css({opacity:1});

 }//if

 }

}

Chapter 7 take a Shot: part 2

155

//array to keep track of the zombie hits

 var zombieHits_counter = [0,0,0,0,0,0];

//array for each zombies limit

 var zombieHits_limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act

accordingly

function zombieHit(whichOne){

 //increment the counter

 zombieHits_counter[whichOne]++;

 //check to see if this zombie has reached its limit

 if(zombieHits_counter[whichOne] >= zombieHits_

limits[whichOne]){

 //reset this zombie

 SZ_resetZombie(whichOne+1,1);

 }

}

You can now save and close this file.

Go back to the My_Work_Files folder and double-click the default.

html file. You should see that the gun needs to be reloaded after firing

five times. By pressing the Reload button, two things happen: the Reload

button disappears and you are able to fire the gun again.

Next, we solve a few problematic areas that have arisen in our game.

Chapter 7 take a Shot: part 2

156

How does the code know when to fire and reload the gun?

This is a good question and I would like to point out that the code you

have just entered is probably one of the more complex and interesting we

have written to date. There are two steps to determining the answer to this

question: (1) check and set the opacity of the Reload button, and (2) check

the number of shots fired against the maximum allowed. So let’s take a

closer look at what we wrote.

You will have noticed we deal a lot with opacity; for instance, the first

portion of code we wrote was

opacity:0;

As you discovered earlier in the previous section, opacity is essentially

the object’s level of transparency. In this case, the object is SZ0_2, which is

the Reload button image.

At the start, we set the opacity of the Reload button to 0. From this

point onward, all we have to do is check the opacity of this button before

proceeding. This is done by using the following check:

$("#SZ0_2").css('opacity') != 1

!= means “not equal to”

By using this check, we can tell the code to fire the gun or show the

Reload button.

Once the Reload button is pressed, we can hide it, thus allowing the

gun to be fired again.

One final thought. When do we stop allowing the gun to be fired? The

following code sets the maximum number of shots that can be fired before

reloading:

var max_shots=5;

We also need to keep track of the current number of shots fired. We do

this using the following variable:

var current_shots=0;

Chapter 7 take a Shot: part 2

157

Now every time a shot is fired, we can compare the two variables, as

follows:

if(current_shots>=max_shots){

If this is true, we stop any further shots and force the user to reload

their gun.

 Clean up the Depths and Click Zones
You may have noticed that there are some areas of the planet’s surface that

do not result in a gun fire when clicked. The reason for this is because you

are clicking a zombie or a bubble zombie that is invisible (i.e., not in use).

But, our current code does not allow the gun to be fired.

 Part 1: Ensuring Gun Fire
Open the SZ_zombie_movement.js file and type the following new lines (all

new text is in bold) and some modified lines (all in red):

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //and another for the bubble zombie SS

 var div2 = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;')

 //and the same for our bubble zombie

 div2.setAttribute('style','position: fixed; top:0; left:0;')

 //we want to position our zombie exactly at the tip of the planet

 var top_position= $('#SZ0_0').height() * 0.435;

Chapter 7 take a Shot: part 2

158

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top =

top_position+'px';

 //and the same for our bubble zombie

 div2.style.left = left_position+'px'; div2.style.top =

top_position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //also for our bubble zombie

 div2.id = 'bubble_zombie'+whichOne;

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //finally add in our bubble zombie to the screen too

 document.body.appendChild(div2);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

 //put this new zombie through our animate function

 SZ_animateZombie(whichOne);

 //hide the bubble zombies at the start

 $("#bubble_zombie"+whichOne).css('transform',

'scale('+0+')');

 //bind the users mouse click to this zombie

 $("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

Chapter 7 take a Shot: part 2

159

 //make sure the reload button is showing

 if($("#SZ0_2").css('opacity') != 1) {

 //first we want to fire the gun

 fireGun(event);

 //acknowledge the hit

if($("#zombie"+whichOne).css('opacity') != 0){

 zombieHit(whichOne-1);

}

 }

 });

//bind the users mouse click to the bubble zombie

 $("#bubble_zombie"+whichOne).bind('mousedown touchstart',

function (e) {

 //make sure the reload button is showing

 if($("#SZ0_2").css('opacity') != 1) {

 //first we want to fire the gun

 fireGun(event);

 }

 });

}

//we need to keep track of the current scale values

 var scalex_zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position

 var leftx_zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

Chapter 7 take a Shot: part 2

160

 var $zombiex = $("#zombie"+whichOne);

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

 //reset the zombies opacity

 $zombiex.css({opacity:1});

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -($zombiex.

height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

 //first bring our zombie slowly down the screen

 left: "+="+0.001+ "px",

 },{ easing:ZS_ease[whichOne-1], duration:

timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 //do a check to see if we should end this

animation

 if(xx>15){

 //stop all animation

 // $(this).stop();

 //call a function to reset this zombie

Chapter 7 take a Shot: part 2

161

 SZ_resetZombie(whichOne,0);

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

 //record this new scale value

 scalex_zombie[whichOne-1]=xx;

 }

 }

 }, complete: function () {

 }

 });

}

//a function to completely reset our zombie

function SZ_resetZombie(whichOne, zombieBubble_generate){

 //reset this zombies hit counter

 zombieHits_counter[whichOne-1]=0;

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //we need to stop this zombies animations

 $zombiex.stop();

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //should we generate a bubble zombie?

 if(zombieBubble_generate==1){

 //assign a user friendly name for our bubble zombie div

 var $bubble_zombiex = $("#bubble_zombie"+whichOne);

 //let's re-position our bubble zombie to our stored value

Chapter 7 take a Shot: part 2

162

 $bubble_zombiex.css({top: top_position+'px',left:

$zombiex.css("left"), opacity:1});

 //apply the scale

 $bubble_zombiex.css('transform',

'scale('+scalex_zombie[whichOne-1]+')');

 //call our bubble zombie animation function

 bubbleZombie_flyAway(whichOne);

 }

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px', left:

left_position+'px', opacity:0});

 //finally let's make the zombie come towards the screen

again

 //SZ_animateZombie(whichOne);

}

You can now save and close this file.

I want to explain the preceding red code. Originally, the line of code was

if($("#zombie"+whichOne).css('opacity') != 0 && $("#SZ0_2").

css('opacity') != 1) {

However, we removed the first part of the if statement and placed it

further down. This is because we need to ensure that the Reload button is

visible, regardless of the zombie’s div.

Chapter 7 take a Shot: part 2

163

Go back to the My_Work_Files folder and double-click the default.html

file. You should see that the gun can fire anywhere on the planet surface.

Next, we look at the zombie depth levels.

 Part 2: Zombie Depth Levels
Another issue that you may have noticed is that sometimes one zombie

appears to walk over another, such as in the following screenshot of the

current game:

What is happening here is that the female zombie is of a lower depth;

however, because she is faster in this case, she appears on top of the slower

zombie. To counter this, we need to continually check and adjust the

depths while the game is being played. Also, we always want our gun to be

above the zombies.

Open the SZ_zombie_movement.js file and type the following new lines

(all new text is in bold) and some modified lines (all in red):

Chapter 7 take a Shot: part 2

164

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //and another for the bubble zombie SS

 var div2 = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;')

 //and the same for our bubble zombie

 div2.setAttribute('style','position: fixed; top:0; left:0;')

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top =

top_position+'px';

 //and the same for our bubble zombie

 div2.style.left = left_position+'px'; div2.style.top =

top_position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //also for our bubble zombie

 div2.id = 'bubble_zombie'+whichOne;

Chapter 7 take a Shot: part 2

165

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //finally add in our bubble zombie to the screen too

 document.body.appendChild(div2);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

 //put this new zombie through our animate function

 SZ_animateZombie(whichOne);

 //hide the bubble zombies at the start

 $("#bubble_zombie"+whichOne).css('transform','scale('+0+')');

 //set the zindex for the zombie

 $("#zombie"+whichOne).css("z-index", whichOne+100);

 //set the zindex for the bubble zombie

 $("#bubble_zombie"+whichOne).css("z-index", whichOne);

 //ensure the zindex for the gun is the highest

 $("#SZ0_1").css("z-index", 200);

 //bind the users mouse click to this zombie

 $("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

 //make sure the reload button is showing

 if($("#SZ0_2").css('opacity') != 1) {

 //first we want to fire the gun

 fireGun(event);

 //acknowledge the hit

if($("#zombie"+whichOne).css('opacity') != 0){

 zombieHit(whichOne-1);

}

 }

 });

Chapter 7 take a Shot: part 2

166

//bind the users mouse click to the bubble zombie

 $("#bubble_zombie"+whichOne).bind('mousedown touchstart',

function (e) {

 //make sure the reload button is showing

 if($("#SZ0_2").css('opacity') != 1) {

 //first we want to fire the gun

 fireGun(event);

 }

 });

}

//we need to keep track of the current scale values

 var scalex_zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position

 var leftx_zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

 //reset the zombies opacity

 $zombiex.css({opacity:1});

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -($zombiex.

height()*2));//topx);

Chapter 7 take a Shot: part 2

167

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

 //first bring our zombie slowly down the screen

 left: "+="+0.001+ "px",

 },{ easing:ZS_ease[whichOne-1], duration:

timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 //do a check to see if we should end this

animation

 if(xx>15){

 //stop all animation

 // $(this).stop();

 //call a function to reset this zombie

 SZ_resetZombie(whichOne,0);

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

 //record this new scale value

 scalex_zombie[whichOne-1]=xx;

 //check the depth levels

 var i = 0;

 while (i < 6) {

Chapter 7 take a Shot: part 2

168

 //check to see if the scale is

bigger

 if(scalex_zombie[whichOne- 1]

>scalex_zombie[i] && ($(this).

zIndex() < $("#zombie"+(i+1)).

zIndex()) &&

scalex_zombie[i]!=0){

 var i_index =

$("#zombie"+(i+1)).zIndex();

 //change the i one first

 $("#zombie"+(i+1)).css("z- index",

$(this).css("z-index"));

 //now change this one

 $(this).css("z-index", i_index);

 } //end of if

 i++;

 }//end of while loop

 }

 }

 }, complete: function () {

 }

 });

}

//need to keep track of the current zindex for zombies

var zindex_current=0;

//a function to completely reset our zombie

function SZ_resetZombie(whichOne, zombieBubble_generate){

 //reset this zombies hit counter

 zombieHits_counter[whichOne-1]=0;

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

Chapter 7 take a Shot: part 2

169

 //we need to stop this zombies animations

 $zombiex.stop();

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //should we generate a bubble zombie?

 if(zombieBubble_generate==1){

 //assign a user friendly name for our bubble zombie div

 var $bubble_zombiex = $("#bubble_zombie"+whichOne);

 //let's re-position our bubble zombie to our stored

value

 $bubble_zombiex.css({top: top_position+'px',left:

$zombiex.css("left"), opacity:1});

 //apply the scale

 $bubble_zombiex.css('transform',

'scale('+scalex_zombie[whichOne-1]+')');

 //call our bubble zombie animation function

 bubbleZombie_flyAway(whichOne);

 }

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px', left: left_

position+'px', opacity:0});

 //set the zindex for the zombie

 zindex_current++;

Chapter 7 take a Shot: part 2

170

 $("#zombie"+whichOne).css("z-index", zindex_current);

 //finally let's make the zombie come towards the screen

again

 //SZ_animateZombie(whichOne);

}

You can now save and close this file.

Go back to the My_Work_Files folder and double-click the default.

html file. You should see that the zombies do not overlap each other as

they did before. Also, the gun should always appear above the zombies.

Next, we look at creating a Game Over screen.

What exactly is a z-index?

The z-index is the order of each element. Imagine that all of our elements,

such as the gun image or the score image, are lined up like a pack of cards.

If you slightly spread the cards, you see the top card fully while the ones

underneath are only slightly visible. This is because when cards overlap,

the visibility of one particular card depends on its location from the top.

In the same way, when our elements overlap each other, their visibility

depends on their stack order or z-index. So an element with a bigger

z-index will be more visible when overlapped with an element of a lower

z-index.

Chapter 7 take a Shot: part 2

171

This really becomes useful when our zombies, which are continuously

randomly placed, start to overlap each other. JavaScript allows us to

manipulate the z-indices, and therefore we can program the elements

to reorder to ensure that elements that are further away from us are kept

behind those elements that are closer.

What is happening in the following line of code that we just wrote?

while (i < 6) {

This is an example of the while loop. Almost all programming

languages have a while loop, which essentially allows code to be executed

repeatedly, depending on the conditions placed.

So in our case, the code inside the while loop executes continuously

until the i variable is no longer less than six.

 Intro Splash and “Game Over” Screens
So far, our game starts immediately and does not really end. It would be

nice to have both an intro screen and a Game Over screen.

 Part 1: Images Folder
Go to the images folder in the Raw Images folder of the My_Work_Files

folder. Locate the files named splash_intro.png and splash_gameover.

png, and copy them to the Images folder, which should now look like the

following screenshot:

Chapter 7 take a Shot: part 2

172

 Part 2: Stopping and Starting
To stop and start the game for the intro splash screen and the Game Over

screen, we need to add a lot of new code and perform changes to existing

code. Please pay close attention to the new lines (in bold) and the modified

lines (in red).

Nearly all of our existing files will need to be modified. So let’s start by

opening the default.html file and type the following new lines (all new

text is in bold):

<html>

 <head>

 <script src="js/jquery.js"></script>

 <script src="js/jquery-ui.js"></script>

 <script src="js/SZ_main.js"></script>

 <script src="js/SZ_setupContent.js"></script>

 <script src="js/SZ_movement.js"></script>

 <script src="js/ss.js"></script>

 <script src="js/SZ_SS.js"></script>

 <script src="js/SZ_touch.js"></script>

 <script src="js/SZ_zombie_movement.js"></script>

Chapter 7 take a Shot: part 2

173

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="SZ_maincontent">

 <img id="SZ0_0" src="images/SZ_background_image.jpg"

onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />

 <div id="SZ0_1" ></div>

 <div id="SZ0_2" >

 <img src="images/SZ_reload.png"

onmousedown="reloadGun(event)" />

 </div>

 <div id="SZ0_3" >

 </div>

 <div id="SZ0_4" onmousedown="start_game();"/>

 </div>

 </body>

</html>

Save the file and then close it.

Open the SZ_master.css file and type the following new lines (all new

text is in bold):

html {

 height: 100%;

 }

body {

 padding: 0 0 0 0;

 margin: 0;

 user-select: none;

 cursor: crosshair;

 }

Chapter 7 take a Shot: part 2

174

img {

 max-width: 100%;

 height: auto;

 user-drag: none;

 user-select: none;

 -moz-user-select: none;

 -webkit-user-drag: none;

 -webkit-user-select: none;

 -ms-user-select: none;

 }

#SZ0_0 {

 position: fixed;

 top: 0;

 left: 0;

 min-width: 100%;

 min-height: 100%;

 }

 #SZ0_1 {

 position: fixed;

 bottom: 0;

 right: 0;

 opacity:0;

}

 #SZ0_2 {

 position: fixed;

 top: 0;

 left: 0;

 cursor: pointer;

 opacity:0;

}

Chapter 7 take a Shot: part 2

175

 #SZ0_3 {

 position: fixed;

 top: 0;

 right: 0;

 opacity:0;

}

 #SZ0_4 {

 position: fixed;

 cursor: pointer;

 background-size:cover;

 opacity:0;

}

Save the file and then close it.

Open the SZ_setupContent.js file and type the following new lines

(all new text is in bold):

 //we will need a new ratio var

 var ratio_use = ratio;

//main function

 function main_call_setupContent() {

 //need to resize all elements

 //first we set their normal sizes in CSS

 //Gun

 $('#SZ0_1').css('width', 150 * ratio);

 $('#SZ0_1').css('height', 150 * ratio);

 //Reload Button

 $('#SZ0_2').css('width', 200 * ratio);

 $('#SZ0_2').css('height', 90 * ratio);

Chapter 7 take a Shot: part 2

176

 //Score

 $('#SZ0_3').css('width', 235 * ratio);

 $('#SZ0_3').css('height', 100 * ratio);

 //Intro and Game over

 if($(window).height()<$(window).width()){

 //work out a ratio based on height

 ratio_use = $(window).height()/800;

 }//end if

 //apply this new ratio to our intro/game over

 $('#SZ0_4').css('width', 868 * ratio_use);

 $('#SZ0_4').css('height', 701 * ratio_use);

 $('#SZ0_4').css('left', ($(window).width()/2)-

((868 * ratio_use)/2));

 //make sure it is half way

 $('#SZ0_4').css('top', ($(window).height()/2)-

((701 * ratio_use)/2));

 //Any sprite sheets?

 //Our Gun

 setup_gun_SS();

 //Create all our 6 zombies

 for (i = 1; i < 7; i++) {

 //this will get called 6 times

 SZ_createZombie(i);

 }

 //call the intro

 start_end_game(0);

}

var gameEnded=0;

//Intro or Game Over of game

 function start_end_game(whichOne) {

Chapter 7 take a Shot: part 2

177

 //hide the elements

 for (i = 1; i < 4; i++) {

 //this will get called 3 times

 $('#SZ0_'+i).css({opacity:0});

 }//for

 //hide the zombies

 for (i = 1; i < 7; i++) {

 //we need to stop this zombies animations

 $('#zombie_'+i).stop();

 $('#zombie_'+i).css({opacity:0});

 $('#bubble_zombie_'+i).css({opacity:0});

 }//for

 if(whichOne==0){

 //START OF GAME

 //change the background image

 $('#SZ0_4').css('background-image', 'url(images/

splash_intro.png)');

 } else {

 //GAME OVER

 //show the score

 $('#SZ0_3').css({opacity:1});

 //change the background image

 $('#SZ0_4').css('background-image',

'url(images/splash_gameover.png)');

 }

 //make sure it is half way

 $('#SZ0_4').css('top', ($(window).height()/2)-

((701 * ratio_use)/2));

 //finally show the intro or game over image

 $('#SZ0_4').css({opacity:1});

 //stop the user from firing

Chapter 7 take a Shot: part 2

178

 gameEnded= 1;

}//end of function

//start the game

 function start_game() {

 //reset the zindex

 zindex_current=0;

 //reload the gun

 current_shots=0;

 //allow user to fire

 gameEnded= 0;

 //hide the intro or game over image

 $('#SZ0_4').css({opacity:0});

 //make sure it is out of the way

 $('#SZ0_4').css('top', ($(window).height()));

 //show the elements

 for (i = 1; i < 4; i++) {

 //this will get called 3 times

 $('#SZ0_'+i).css({opacity:1});

 }//for

 //hide the reload button!

 $('#SZ0_2').css({opacity:0});

 //show the zombies

 for (i = 0; i < 7; i++) {

 //reset the Zombie

 SZ_resetZombie(i,0);

 }//for

 //ensure the score board is half opacity

 $('#SZ0_3').css({opacity:0.5});

}//end of function

Chapter 7 take a Shot: part 2

179

Save the file and then close it.

In the start_end_game function, there is a plethora of checks and

actions made at one time. As you further this game, this function will

become unmanageable, so I suggest that you try to section off the checks to

another file so that this function is checking the status of various elements.

One possibility is to set flags for certain conditions. These flags can be

set on certain events. This means that when we come to this function, all

that we are doing is checking the flag’s status.

In the same way, some of the actions should be in a function of their

own; for instance, hiding the various elements based on the preceding

checks.

Open the SZ_touch.js file and type the following new lines (all new

text is in bold) and some modified lines (all in red):

 //We need a flag to keep track to avoid repetition of

animations before the first has finished

var canIclick= 0;

//this function is called to reload our gun

function reloadGun(e) {

 //Let's check if we can allow this to occur

 if(canIclick== 0 && $("#SZ0_2").css('opacity') == 1){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "reload");

 //reset the current shots

 current_shots=0;

 //hide the reload button

 $("#SZ0_2").css({opacity:0});

 }

}

Chapter 7 take a Shot: part 2

180

//place a maximum number of shots

var max_shots=5;

//keep track of current number of shots

var current_shots=0;

//this function is called to fire our gun

function fireGun(e) {

 //Let's check if we can allow this to occur

 if(canIclick== 0 && gameEnded==0 && $("#SZ0_2").

css('opacity') != 1){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "fire");

 //increment our shots

 current_shots++;

 //check to see if we have reached the maximum

 if(current_shots>=max_shots){

 //show the reload button

 $("#SZ0_2").css({opacity:1});

 }//if

 }

}

//array to keep track of the zombie hits

 var zombieHits_counter = [0,0,0,0,0,0];

//array for each zombies limit

 var zombieHits_limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act

accordingly

function zombieHit(whichOne){

 //increment the counter

Chapter 7 take a Shot: part 2

181

 zombieHits_counter[whichOne]++;

 //check to see if this zombie has reached its limit

 if(zombieHits_counter[whichOne] >= zombieHits_limits[whichOne]){

 //reset this zombie

 SZ_resetZombie(whichOne+1,1);

 }

}

Save the file and then close it.

It is essential to the readability of your code to give meaningful names

to variables and functions. This is seen in the preceding code. As your game

becomes bigger and more complex, you will cut down on the time needed

to understand your previously written code if you can read it like a novel.

Open the SZ_zombie_movement.js file and type the following new lines

(all new text is in bold) and some modified lines (all in red):

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //and another for the bubble zombie SS

 var div2 = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;

opacity:0');

 //and the same for our bubble zombie

 div2.setAttribute('style','position: fixed; top:0; left:0;');

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

Chapter 7 take a Shot: part 2

182

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top =

top_position+'px';

 //and the same for our bubble zombie

 div2.style.left = left_position+'px'; div2.style.top =

top_position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //also for our bubble zombie

 div2.id = 'bubble_zombie'+whichOne;

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //finally add in our bubble zombie to the screen too

 document.body.appendChild(div2);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

 //put this new zombie through our animate function

 // SZ_animateZombie(whichOne);

 //hide the bubble zombies at the start

 $("#bubble_zombie"+whichOne).css('transform','scale('+0+')');

 //set the zindex for the zombie

 $("#zombie"+whichOne).css("z-index", whichOne+100);

Chapter 7 take a Shot: part 2

183

 //set the zindex for the bubble zombie

 $("#bubble_zombie"+whichOne).css("z-index", whichOne);

 //ensure the zindex for the gun is the highest

 $("#SZ0_1").css("z-index", 200);

 //also ensure the zindex for the intro/game over is the highest

 $("#SZ0_4").css("z-index", 201);

 //bind the users mouse click to this zombie

 $("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

 //make sure the reload button is showing

 if($("#SZ0_2").css('opacity') != 1) {

 //first we want to fire the gun

 fireGun(event);

 //acknowledge the hit

if($("#zombie"+whichOne).css('opacity') != 0){

 zombieHit(whichOne-1);

}

 }

 });

//bind the users mouse click to the bubble zombie

 $("#bubble_zombie"+whichOne).bind('mousedown touchstart',

function (e) {

 //make sure the reload button is showing

 if($("#SZ0_2").css('opacity') != 1) {

 //first we want to fire the gun

 fireGun(event);

 }

 });

}

Chapter 7 take a Shot: part 2

184

//we need to keep track of the current scale values

 var scalex_zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position

 var leftx_zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

 //reset the zombies opacity

 $zombiex.css({opacity:1});

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -($zombiex.

height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

 //first bring our zombie slowly down the screen

 left: "+="+0.001+ "px",

 },{ easing:ZS_ease[whichOne-1], duration:

timex[whichOne-1],

 step: function(now, fx){

Chapter 7 take a Shot: part 2

185

 //at each step we can manipulate the scale of

our zombie

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 if(gameEnded==1){

 xx=999;

 }

 //do a check to see if we should end this

animation

 if(xx>15){

 //stop all animation

 $(this).stop();

 //call a function to reset this zombie

 //SZ_resetZombie(whichOne,0);

 //game Over

 $(this).css({opacity:0});

 $(this).stop(true, true);

 $(this).finish();

 if(gameEnded==0 && xx!=999){

 start_end_game(1);

 }

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

 //record this new scale value

 scalex_zombie[whichOne-1]=xx;

 //check the depth levels

 var i = 0;

 while (i < 6) {

Chapter 7 take a Shot: part 2

186

 //check to see if the scale is

bigger

 if(scalex_zombie[whichOne- 1]>

scalex_zombie[i] && ($(this).

zIndex() < $("#zombie"+(i+1)).

zIndex()) && scalex_zombie[i]!=0){

 var i_index =

$("#zombie"+(i+1)).zIndex();

 //change the i one first

 $("#zombie"+(i+1)).css("z- index",

$(this).css("z-index"));

 //now change this one

 $(this).css("z-index", i_index);

 } //end of if

 i++;

 }//end of while loop

 }

 }

 }, complete: function () {

 }

 });

}

//need to keep track of the current zindex for zombies

var zindex_current=0;

//a function to completely reset our zombie

function SZ_resetZombie(whichOne, zombieBubble_generate){

 //reset this zombies hit counter

 zombieHits_counter[whichOne-1]=0;

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

Chapter 7 take a Shot: part 2

187

 //we need to stop this zombies animations

 $zombiex.stop();

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //should we generate a bubble zombie?

 if(zombieBubble_generate==1){

 //assign a user friendly name for our bubble zombie div

 var $bubble_zombiex = $("#bubble_zombie"+whichOne);

 //let's re-position our bubble zombie to our stored

value

 $bubble_zombiex.css({top: top_position+'px',left:

$zombiex.css("left"), opacity:1});

 //apply the scale

 $bubble_zombiex.css('transform','scale('+scalex_

zombie[whichOne-1]+')');

 //call our bubble zombie animation function

 bubbleZombie_flyAway(whichOne);

 }

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px', left:

left_position+'px', opacity:0});

 //set the zindex for the zombie

 zindex_current++;

Chapter 7 take a Shot: part 2

188

 $("#zombie"+whichOne).css("z-index", zindex_current);

 //finally let's make the zombie come towards the screen

again

 if(zombieBubble_generate==0){

 SZ_animateZombie(whichOne);

 }

}

Save the file and then close it.

Go back to the My_Work_Files folder and double-click the default.

html file. You should see the intro splash screen straightaway. You should

also note that the score and gun images are not there, as we wanted.

When we start the game, it should look like as it did before the most recent

changes. When a zombie arrives at the end of its path, you should now see

the Game Over screen.

Congratulations! You have developed a working game.

Next, let’s refine our game to be more presentable for our users.

Chapter 7 take a Shot: part 2

189

Did the code not work? We changed a lot of files here, so the advice I give

is to meticulously go through every line of code in each of the files and

compare it to your own. Even the old grayed out code. Have patience and

work through your code.

Here are some problems that I identified:

Make sure that you have the closing tag (shown in red) in the following

line:

<div id="SZ0_4" onmousedown="start_game();"/>

Make sure that you place this line above the main function:

 var ratio_use = ratio;

//main function

Make sure that you are using ratio_use and not ratio in the following

lines:

$('#SZ0_4').css('width', 868 * ratio_use);

$('#SZ0_4').css('height', 701 * ratio_use);

Make sure that you have commented out (//)the following lines:

// SZ_animateZombie(whichOne);

//SZ_resetZombie(whichOne,0);

If the code is still not working, then please do not hesitate to message

me on Twitter @zarrarchishti.

Chapter 7 take a Shot: part 2

190

How does the game know when to show the Intro Splash screen and
when to show the Game Over screen?

When called, the following function stops the game and shows either the

introduction or the Game Over screen:

function start_end_game(whichOne) {

One of the tasks of this function is to show either the intro image or the

Game Over image, depending on the whichOne passed parameter in. The

following lines will show either of those images:

$('#SZ0_4').css('background-image', 'url(images/

splash_intro.png)');

$('#SZ0_4').css('background-image', 'url(images/

splash_gameover.png)');

Chapter 7 take a Shot: part 2

191
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0_8

CHAPTER 8

Add Some Bling
to Our Game

“Simplicity is the ultimate sophistication.”

Leonardo da Vinci

I am sure you have noticed that there is no actual score in our Score box.

What we need in there is some text that increments every time we send a

zombie off into space. To do this, we need to do the following:

 1. Add a text field in our HTML.

 2. Format this text field so that it changes size and

location, depending on the screen size.

 3. Start at zero and increment every time a bubble

zombie appears.

 4. Reset back to zero every time a new game is played.

192

 What’s the Score?
Open the default.html file and type the following new lines (all new text

is in bold) and some modified lines (all in red):

<html>

 <head>

 <script src="js/jquery.js"></script>

 <script src="js/jquery-ui.js"></script>

 <script src="js/SZ_main.js"></script>

 <script src="js/SZ_setupContent.js"></script>

 <script src="js/SZ_movement.js"></script>

 <script src="js/ss.js"></script>

 <script src="js/SZ_SS.js"></script>

 <script src="js/SZ_touch.js"></script>

 <script src="js/SZ_zombie_movement.js"></script>

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="SZ_maincontent">

 <img id="SZ0_0" src="images/SZ_background_image.jpg"

onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />

 <div id="SZ0_1" ></div>

 <div id="SZ0_2" >

 <img src="images/SZ_reload.png"

onmousedown="reloadGun(event)" />

 </div>

 <div id="SZ0_3" style="background-image: url

(images/SZ_score.png);">

 <div id="textx">0</div>

 </div>

Chapter 8 add Some Bling to our game

193

 <div id="SZ0_4" onmousedown="start_game();"/>

 </div>

 </body>

</html>

Save this file and then close it.

We have come across background-image a few times in this project.

As you can guess, the background-image property sets one or more

background images for an element. It is important to remember that a

background-image is placed at the top-left corner of an element by default

and repeated both vertically and horizontally. So these properties need

to be addressed if you want the property to act differently. I always advise

setting a background-color property as well. This is in case the image is

unavailable or takes too long to load.

Open the SZ_master.css file and type the following new lines (all new

text is in bold) and some modified lines (all in red):

html {

 height: 100%;

 }

body {

 padding: 0 0 0 0;

 margin: 0;

 user-select: none;

 cursor: crosshair;

 }

img {

 max-width: 100%;

 height: auto;

 user-drag: none;

 user-select: none;

Chapter 8 add Some Bling to our game

194

 -moz-user-select: none;

 -webkit-user-drag: none;

 -webkit-user-select: none;

 -ms-user-select: none;

 }

#SZ0_0 {

 position: fixed;

 top: 0;

 left: 0;

 min-width: 100%;

 min-height: 100%;

 }

 #SZ0_1 {

 position: fixed;

 bottom: 0;

 right: 0;

 opacity:0;

}

 #SZ0_2 {

 position: fixed;

 top: 0;

 left: 0;

 cursor: pointer;

 opacity:0;

}

 #SZ0_3 {

 position: fixed;

 top: 0;

 right: 0;

 opacity:0;

 background-size:cover;

}

Chapter 8 add Some Bling to our game

195

 #SZ0_4 {

 position: fixed;

 cursor: pointer;

 background-size:cover;

 opacity:0;

}

 #textx {

 position: relative;

 float: left;

 top: 40%;

 text-align:center;

 font-size: 4vmax;

 font-weight: bolder;

 colour: white;

 font-family: "Arial Black";

}

Save this file and then close it.

Nearly done! Now open the SZ_setupContent.js file and type the

following new lines (all new text is in bold) and some modified lines:

 //we will need a new ratio var

 var ratio_use = ratio;

//main function

 function main_call_setupContent() {

 //need to resize all elements

 //first we set their normal sizes in CSS

 //Gun

 $('#SZ0_1').css('width', 150 * ratio);

 $('#SZ0_1').css('height', 150 * ratio);

Chapter 8 add Some Bling to our game

196

 //Reload Button

 $('#SZ0_2').css('width', 200 * ratio);

 $('#SZ0_2').css('height', 90 * ratio);

 //Score

 $('#SZ0_3').css('width', 235 * ratio);

 $('#SZ0_3').css('height', 100 * ratio);

 //Intro and Game over

 if($(window).height()<$(window).width()){

 //work out a ratio based on height

 ratio_use = $(window).height()/800;

 }//end if

 //apply this new ratio to our intro/game over

 $('#SZ0_4').css('width', 868 * ratio_use);

 $('#SZ0_4').css('height', 701 * ratio_use);

 $('#SZ0_4').css('left', ($(window).width()/2)

-((868 * ratio_use)/2));

 //make sure it is half way

 $('#SZ0_4').css('top', ($(window).height()/2)

-((701 * ratio_use)/2));

 $('#textx').css('width', '100%');

 $('#textx').css('height', '50%');

 //Any sprite sheets?

 //Our Gun

 setup_gun_SS();

 //Create all our 6 zombies

 for (i = 1; i < 7; i++) {

 //this will get called 6 times

 SZ_createZombie(i);

 }

Chapter 8 add Some Bling to our game

197

 //call the intro

 start_end_game(0);

}

var gameEnded=0;

//Intro or Game Over of game

 function start_end_game(whichOne) {

 //hide the elements

 for (i = 1; i < 4; i++) {

 //this will get called 3 times

 $('#SZ0_'+i).css({opacity:0});

 }//for

 //hide the zombies

 for (i = 1; i < 7; i++) {

 //we need to stop this zombies animations

 $('#zombie_'+i).stop();

 $('#zombie_'+i).css({opacity:0});

 $('#bubble_zombie_'+i).css({opacity:0});

 //set the zindex for the zombie

 $("#zombie"+i).css("z-index", i+100);

 }//for

 if(whichOne==0){

 //START OF GAME

 //change the background image

 $('#SZ0_4').css('background-image',

'url(images/splash_intro.png)');

 } else {

 //GAME OVER

 //show the score

 $('#SZ0_3').css({opacity:1});

 //change the background image

Chapter 8 add Some Bling to our game

198

 $('#SZ0_4').css('background-image',

'url(images/splash_gameover.png)');

 }

 //make sure it is half way

 $('#SZ0_4').css('top', ($(window).height()/2)

-((701 * ratio_use)/2));

 //finally show the intro or game over image

 $('#SZ0_4').css({opacity:1});

 //stop the user from firing

 gameEnded= 1;

}//end of function

//need to store the current score

var current_score=0;

//we can call this function to update the score

function updateScore(){

 $("#textx").text(current_score);

}

//start the game

 function start_game() {

 //reset the score

 current_score=0;

 updateScore();

 //reset the zindex

 zindex_current=0;

 //reload the gun

 current_shots=0;

 //allow user to fire

 gameEnded= 0;

Chapter 8 add Some Bling to our game

199

 //hide the intro or game over image

 $('#SZ0_4').css({opacity:0});

 //make sure it is out of the way

 $('#SZ0_4').css('top', ($(window).height()));

 //show the elements

 for (i = 1; i < 4; i++) {

 //this will get called 3 times

 $('#SZ0_'+i).css({opacity:1});

 }//for

 //hide the reload button!

 $('#SZ0_2').css({opacity:0});

 //show the zombies

 for (i = 0; i < 7; i++) {

 //reset the Zombie

 SZ_resetZombie(i,0);

 }//for

 //ensure the score board is half opacity

 $('#SZ0_3').css({opacity:0.5});

}//end of function

Save this file and then close it.

As you further develop this game or start a new one, I would suggest

you store the z-index values (or even starting values) in another file. This

will help in the future when you come to make amendments and need to

keep track of what the various elements’ z-index values are.

Finally, open the SZ_movement.js file and type the following new lines

(all new text is in bold) and some modified lines (all in red):

Chapter 8 add Some Bling to our game

200

function rotateGun(e) {

//using the e value we can deduce the X co-ordinates

var xPos = e.clientX;

//We need to work out where the mouse cursor is as a percentage

of the width of the screen

//We will work this out by dividing the current X position by the

overall screen width which if you remember we put in newWidth

var currentXPositionPercentage = xPos/newWidth;

//We now want to apply this to the maximum amount of rotation

which is 50 however the starting rotation is -15 not 0

var amountToRotate = -15 + (currentXPositionPercentage * 50);

//Let's rotate the gun!

 $("#SZ0_1").css('transform', 'rotate('+amountToRotate+'deg)');

}

//movement for our bubble zombie

function bubbleZombie_flyAway(whichOne){

 //update the score

 current_score++;

 updateScore();

 //assign a user friendly name for our div

 var $zombiex = $("#bubble_zombie"+whichOne);

 //first it should animate upwards with a bounce

 $zombiex.animate({

 //bring our zombie up the screen

 top: "-="+50*ratio+ "px",

 },{ easing:"easeOutElastic", duration: 400,

Chapter 8 add Some Bling to our game

201

 complete: function () {

 //now the final animation where the bubble

zombie disappears into space

 $(this).delay(150).animate({

 //slowly turn the alpha down

 opacity: "-="+1,

 },{ easing:"easeOutQuint", duration: 1000,

 step: function(now, fx){

 //at each step we can adjust the scale

to make it look smaller

 if (fx.prop == "opacity" && fx.pos>=0.1) {

 //work out the amount to scale

 var xx = 0.5/(fx.pos);

 //apply the scale

 $(this).css('transform','scale('+xx+')');

 }

 }, complete: function () {

 //finally let's make the zombie come towards

the screen again

 SZ_animateZombie(whichOne);

 }//end of second complete function

 });//end of second animation

 }//end of first complete function

 }); //end of first animation

}

Save this file and then close it.

We are now ready to test! Go back to the My_Work_Files folder and

double-click the default.html file. You should now see the score text

appear. Every time we send a zombie off into space, you should get a point.

Chapter 8 add Some Bling to our game

202

Did this not work? If not, it is most likely the code written in default.html.

Originally, the code was this:

 <div id="SZ0_3" >

 </div>

Now, we are changing it to this:

<div id="SZ0_3" style="background-image: url(images/

SZ_score.png);">

 <div id="textx">0</div>

 </div>

Please make sure that you have coded the lines exactly as shown.

If the code is still not working, then please do not hesitate to message

me on Twitter (@zarrarchishti).

Chapter 8 add Some Bling to our game

203

How does updateScore(){ actually update the text on the screen?

As you may have noticed, we initially created a variable called

var current_score=0;

This is then updated using the following line whenever a bubble

zombie animation is called:

current_score++;

We know from before that the ++ increments the variable by 1. This

alone does not update the text on the screen. Look at the code in our

function.

updateScore(){ :

$("#textx").text(current_score);

This replaces the text in our text div with the value in the current score

variable. At this point, the screen text value changes.

 Sprinkle of Special Effects
You may have noticed there is no visual feedback given to the user when

they fire on a zombie. Only when the maximum number of hits has been

reached do you see feedback in the form of a bubble zombie. So in this

chapter, we add a special effect to the zombie when it has been hit.

Chapter 8 add Some Bling to our game

204

 Part 1: Get Started
Go to the images folder in the Raw Images folder of the My_Work_Files

folder. Locate the file named SZ_effect_ss.png and copy into the Images

folder, which should now look like this:

 Part 2: Displaying the Effects
To add our special effect to the screen, we need to pinpoint exactly where

the user has hit a zombie. Once we have done this, we can then use our

sprite sheet library to display our effects.

Open the SZ_zombie_movement.js file and type the following new lines

(all new text are in bold) and some modified lines (all in red):

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //and another for the bubble zombie SS

 var div2 = document.createElement('div');

 //and another for the special effect SS

 var div3 = document.createElement('div');

Chapter 8 add Some Bling to our game

205

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;

opacity:0');

 //and the same for our bubble zombie

 div2.setAttribute('style','position: fixed; top:0; left:0;');

 //and the same for our special effect SS

 div3.setAttribute('style','position: fixed; top:0; left:0;');

 //we want to position our zombie exactly at the tip of the planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top =

top_position+'px';

 //and the same for our bubble zombie

 div2.style.left = left_position+'px'; div2.style.top =

top_position+'px';

 //and the same for our special effect SS

 div3.style.left = left_position+'px'; div3.style.top =

top_position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //also for our bubble zombie

 div2.id = 'bubble_zombie'+whichOne;

 //also for our special effect SS

 div3.id = 'zombie_effect'+whichOne;

Chapter 8 add Some Bling to our game

206

 //finally let's add our zombie to the screen

 document.body.appendChild(div);

 //finally add in our bubble zombie to the screen too

 document.body.appendChild(div2);

 //finally add in our special effect SS to the screen too

 document.body.appendChild(div3);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

 //put this new zombie through our animate function

 // SZ_animateZombie(whichOne);

 //hide the bubble zombies at the start

 $("#bubble_zombie"+whichOne).css('transform','scale('+0+')');

//ensure no hits are registered on the special effects

$("#zombie_effect"+whichOne).css('pointer-events', 'none');

 //set the zindex for the zombie

 $("#zombie"+whichOne).css("z-index", whichOne+100);

 //set the zindex for the bubble zombie

 $("#bubble_zombie"+whichOne).css("z-index", whichOne);

 //set the zindex for the special effect SS

 $("#zombie_effect"+whichOne).css("z-index", whichOne+150);

 //ensure the zindex for the gun is the highest

 $("#SZ0_1").css("z-index", 200);

 //also ensure the zindex for the intro/game over is the highest

 $("#SZ0_4").css("z-index", 201);

 //bind the users mouse click to this zombie

 $("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

 //make sure the reload button is showing

 if($("#SZ0_2").css('opacity') != 1) {

 //first we want to fire the gun

Chapter 8 add Some Bling to our game

207

 fireGun(event);

 //acknowledge the hit

if($("#zombie"+whichOne).css('opacity') != 0){

 var offset = $(this).offset();

 zombieHit(whichOne-1, e.pageX, e.pageY);

}

 }

 });

//bind the users mouse click to the bubble zombie

 $("#bubble_zombie"+whichOne).bind('mousedown touchstart',

function (e) {

 //make sure the reload button is showing

 if($("#SZ0_2").css('opacity') != 1) {

 //first we want to fire the gun

 fireGun(event);

 }

 });

}

//we need to keep track of the current scale values

 var scalex_zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position

 var leftx_zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

Chapter 8 add Some Bling to our game

208

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

 //reset the zombies opacity

 $zombiex.css({opacity:1});

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);

// -($zombiex.height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

 //first bring our zombie slowly down the screen

 left: "+="+0.001+ "px",

 },{ easing:ZS_ease[whichOne-1], duration:

timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 if(gameEnded==1){

 xx=999;

 }

 //do a check to see if we should end this animation

 if(xx>15){

 //stop all animation

 $(this).stop();

Chapter 8 add Some Bling to our game

209

 //call a function to reset this zombie

 //SZ_resetZombie(whichOne,0);

 //game Over

 $(this).css({opacity:0});

 $(this).stop(true, true);

 $(this).finish();

 if(gameEnded==0 && xx!=999){

 start_end_game(1);

 }

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

 //record this new scale value

 scalex_zombie[whichOne-1]=xx;

 //check the depth levels

 var i = 0;

 while (i < 6) {

 //check to see if the scale is

bigger

 if(scalex_zombie[whichOne- 1]

>scalex_zombie[i] &&

($(this).zIndex() <

$("#zombie"+(i+1)).zIndex())

&& scalex_zombie[i]!=0){

 var i_index =

$("#zombie"+(i+1)).zIndex();

 //change the i one first

 $("#zombie"+(i+1)).css("z- index",

$(this).css("z-index"));

 //now change this one

Chapter 8 add Some Bling to our game

210

 $(this).css("z-index",

i_index);

 } //end of if

 i++;

 }//end of while loop

 }

 }

 }, complete: function () {

 }

 });

}

//need to keep track of the current zindex for zombies

var zindex_current=0;

//a function to completely reset our zombie

function SZ_resetZombie(whichOne, zombieBubble_generate){

 //reset this zombies hit counter

 zombieHits_counter[whichOne-1]=0;

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //we need to stop this zombies animations

 $zombiex.stop();

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //should we generate a bubble zombie?

 if(zombieBubble_generate==1){

 //assign a user friendly name for our bubble zombie div

 var $bubble_zombiex = $("#bubble_zombie"+whichOne);

Chapter 8 add Some Bling to our game

211

 //let's re-position our bubble zombie to our stored value

 $bubble_zombiex.css({top: top_position+'px',left:

$zombiex.css("left"), opacity:1});

 //apply the scale

 $bubble_zombiex.css('transform','scale('+scalex_

zombie[whichOne-1]+')');

 //call our bubble zombie animation function

 bubbleZombie_flyAway(whichOne);

 }

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px', left:

left_position+'px', opacity:0});

 //set the zindex for the zombie

zindex_current++;

 $("#zombie"+whichOne).css("z-index", zindex_current);

 //finally let's make the zombie come towards the screen again

 if(zombieBubble_generate==0){

 SZ_animateZombie(whichOne);

 }

}

Save the file and then close it.

Chapter 8 add Some Bling to our game

212

We referenced e.pageX and e.pageY properties in the preceding code.

They return the position of the mouse pointer relative to the left edge of the

document. These properties take into account any horizontal or vertical

scrolling of the page. In case you are referencing some older code in the

future, this property was originally defined as a long integer; however, the

CSSOM View Module redefined it as a double float.

Open the SZ_touch.js file and type the following new lines (all new

text is in bold) and some modified lines (all in red):

 //We need a flag to keep track to avoid repetition of

animations before the first has finished

var canIclick= 0;

//this function is called to reload our gun

function reloadGun(e) {

 //Let's check if we can allow this to occur

 if(canIclick== 0 && $("#SZ0_2").css('opacity') == 1){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "reload");

 //reset the current shots

 current_shots=0;

 //hide the reload button

 $("#SZ0_2").css({opacity:0});

 }

}

//place a maximum number of shots

var max_shots=5;

//keep track of current number of shots

var current_shots=0;

//this function is called to fire our gun

function fireGun(e) {

Chapter 8 add Some Bling to our game

213

 //Let's check if we can allow this to occur

 if(canIclick== 0 && gameEnded==0 && $("#SZ0_2").css

('opacity') != 1){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "fire");

 //increment our shots

 current_shots++;

 //check to see if we have reached the maximum

 if(current_shots>=max_shots){

 //show the reload button

 $("#SZ0_2").css({opacity:1});

 }//if

 }

}

//array to keep track of the zombie hits

 var zombieHits_counter = [0,0,0,0,0,0];

//array for each zombies limit

 var zombieHits_limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act

accordingly

function zombieHit(whichOne, xx, yy){

 //increment the counter

 zombieHits_counter[whichOne]++;

 //check to see if this zombie has reached its limit

 if(zombieHits_counter[whichOne] >= zombieHits_

limits[whichOne]){

 //reset this zombie

 SZ_resetZombie(whichOne+1,1);

 }

Chapter 8 add Some Bling to our game

214

 //let’s add in our special effect

 var whichOne2=whichOne+1;

 var $effect_zombiex = $("#zombie_effect"+whichOne2);

 //let's re-position our bubble zombie to our stored value

 $effect_zombiex.css({top: yy+'px',left: xx+'px',

opacity:1});

 $effect_zombiex.animateSprite("play", "z1");

 //apply the scale

 $effect_zombiex.css('transform',

'scale('+scalex_zombie[whichOne]+')');

}

Save the file and then close it.

In the preceding code, we dynamically position our special effect

to appear exactly on the zombie’s div. In some cases, depending on the

size of your special effect sprite, you may need to take other factors into

consideration. For example, some effects may need to be positioned on an

element other than a zombie. You may want a special effect to show that

when the user shoots the ground, chunks of the ground are blown up. This

is not very hard; we would replace the ground’s div with the zombie div.

Where it becomes a slight challenge is when we offset the shooting

area so it could include the zombie’s foot and the ground area—giving an

overall realistic scene where the ground effect and the zombie-hit effect

are triggered. As I suggested, we would need to accommodate for both

events.

Open the SZ_SS.js file and type the following new lines (all new text is

in bold):

Chapter 8 add Some Bling to our game

215

//We need a one stop function that will allow us to process

sprite sheets

function setup_SpriteSheet(div_name, image_name, no_of_frames,

widthx, heightx) {

 //need the ratio of the container's width/height

 var imageOrgRatio = $(div_name).height() /

$(div_name).width() ;

 //need to ensure no trailing decimals

 var ratio2 = Math.round(ratio * 10) / 10;

 //check that the width is completely divisible by the no of

frames

 var newDivisible = Math.round((widthx * ratio2) /

no_of_frames);

 //the new width will be the number of frames multiplied by our

new divisible

 var newWidthx = newDivisible * no_of_frames;

 //also the new height will be our ratio times the height of

the div containing our image

 var newHeightx = heightx * ratio2;

 //apply our new width to our CSS

 $(div_name).css('width', (newWidthx));

 //apply our new height to our CSS

 $(div_name).css('height', newHeightx);

//

 //take the image name and apply as a background image to our div

 $(div_name).css('background-image', 'url(' + image_name + ')');

 //finally we need to apply a background size remembering we

need to multiply width by the no of frames

Chapter 8 add Some Bling to our game

216

 $(div_name).css('background-size', newWidthx * no_of_frames

+ 'px ' + newHeightx + 'px');

}

//setup the Gun

function setup_gun_SS(){

 //first let's apply our gun to our SS function

 setup_SpriteSheet("#SZ0_1","Images/SZ_gun_SS.png",28,150,150);

 //need to access a special function in our js/ss.js file

 $("#SZ0_1").animateSprite({

 fps: 10,

 animations: {

 static: [0],

 reload: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,20,21,22,23],

 fire: [24,25,26,27,28],

 },

 duration: 50,

 loop: false,

 complete: function () {

 // use complete only when you set animations with

'loop: false'

 //alert("animation End");

 //we need to reset our universal flag

 canIclick=0;

 }

 });

}

//setup a newly created zombie

function setup_zombie_SS(whichOne){

 //let's identify what type of zombie we should create

 var type_zombie = [1,2,3,1,2,3];

Chapter 8 add Some Bling to our game

217

 //let's setup a speed for each type of zombie

 var speed_zombie = [100,50,150];

 //first let's setup our zombie SS

 setup_SpriteSheet("#zombie"+whichOne,"Images/zombiesSS_"

+type_zombie[whichOne-1]+".png",9,20,20);

 //need to access a special function in our js/ss.js file

 $("#zombie"+whichOne).animateSprite({

 fps: 10,

 animations: {

 static: [0,1,2,3,4,5,6,7],

 },

 duration: speed_zombie[type_zombie[whichOne-1]-1],

 loop: true,

 complete: function () {

 // use complete only when you set animations with

'loop: false'

 //alert("animation End");

 }

 });

 //now let's setup our bubble zombie SS

 setup_SpriteSheet("#bubble_zombie"+whichOne,

"Images/SZ_bubble.png",3,20,20);

 //need to access a special function in our js/ss.js file

 $("#bubble_zombie"+whichOne).animateSprite({

 fps: 10,

 animations: {

 z1: [type_zombie[whichOne-1]-1],

 },

 duration: 1,

 loop: false,

Chapter 8 add Some Bling to our game

218

 complete: function () {

 // use complete only when you set animations with

'loop: false'

 //alert("animation End");

 }

 });

 //not to forget our special effects SS

setup_SpriteSheet("#zombie_effect"+whichOne,"Images/SZ_effect_

ss.png",4,13,15);

 //need to access a special function in our js/ss.js file

 $("#zombie_effect"+whichOne).animateSprite({

 fps: 10,

 animations: {

 z1: [0,1,2,3],

 },

 duration: 20,

 loop: false,

 complete: function () {

 // use complete only when you set animations with

'loop: false'

 //alert("animation End");

 $("#zombie_effect"+whichOne).css({opacity:0});

 }

 });

}

Save the file and then close it.

We are now ready to test! Go back to the My_Work_Files folder and

double-click the default.html file. Now when you fire on the zombies,

you should see our special effect appear exactly where you click. I am sure

you will agree that this adds a nice depth to the game playing experience

for our players!

Chapter 8 add Some Bling to our game

219

How did we position the special effects exactly where we click?

To position the special effects, we first need to ensure that we pass through

the x and y coordinates when there is a mouse click on a zombie. We do

this in SZ_zombie_movement.js.

var offset = $(this).offset();

zombieHit(whichOne-1, e.pageX, e.pageY);

The offset() method returns the coordinates for us. We can then

pass them through to our zombieHit function. This means that we have to

modify the zombieHit function in SZ_touch.js.

function zombieHit(whichOne, xx, yy){

We have added two variables that can be passed in for us to use now.

$effect_zombiex.css({top: yy+'px',left: xx+'px', opacity:1});

So when we come to position our special effect, we can use our two

new variables for the x and y positions.

 Turn up the Sound Effects
We noticed that by adding special effects, we could enhance the user’s

playing experience. Similarly, we can go one step further and provide

audio feedback for the various actions that the player performs.

Chapter 8 add Some Bling to our game

220

 Part 1: Getting Started
Go to the images folder in the Raw Images folder of the My_Work_Files

folder. Locate the folder named sounds and copy this into the My_Work_

Files folder.

Your My_Work_Files folder should now look like this:

 Part 2: Adding Sound Effects
We are going to add two sound effects to our game. The first will be when

the player fires their gun. The second will be when the player reloads.

Getting the game to play the sounds is not that hard, but controlling when

the sounds play is where it can get tricky.

Open the default.html file and type the following new lines (all new

text is in bold):

<html>

 <head>

 <script src="js/jquery.js"></script>

 <script src="js/jquery-ui.js"></script>

 <script src="sounds/jquery.playSound.js"></script>

 <script src="js/SZ_main.js"></script>

 <script src="js/SZ_setupContent.js"></script>

Chapter 8 add Some Bling to our game

221

 <script src="js/SZ_movement.js"></script>

 <script src="js/ss.js"></script>

 <script src="js/SZ_SS.js"></script>

 <script src="js/SZ_touch.js"></script>

 <script src="js/SZ_zombie_movement.js"></script>

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="SZ_maincontent">

 <img id="SZ0_0" src="images/SZ_background_image.jpg"

onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />

 <div id="SZ0_1" ></div>

 <div id="SZ0_2" >

 <img src="images/SZ_reload.png"

onmousedown="reloadGun(event)" />

 </div>

 <div id="SZ0_3" style="background-image:

url(images/SZ_score.png);">

 <div id="textx">999</div>

 </div>

 <div id="SZ0_4" onmousedown="start_game();"/>

 </div>

 </body>

</html>

Save the file and then close it.

You can certainly source your own sound library or even write your

own! The type of library you choose, however, depends on your game’s

requirements. For instance, in our game we require short sound blasts but

not long music files.

At the very basic level, you can use the <audio> tag and then call the

play() method.

Chapter 8 add Some Bling to our game

222

Open the SZ_touch.js file and type the following new lines (all new

text is in bold):

//We need a flag to keep track to avoid repetition of animations

before the first has finished

var canIclick= 0;

//this function is called to reload our gun

function reloadGun(e) {

 //Let's check if we can allow this to occur

 if(canIclick== 0 && $("#SZ0_2").css('opacity') == 1){

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "reload");

 //reset the current shots

 current_shots=0;

 //hide the reload button

 $("#SZ0_2").css({opacity:0});

 //play the reload sound

 $.playSound('sounds/reload');

 }

}

//place a maximum number of shots

var max_shots=5;

//keep track of current number of shots

var current_shots=0;

//this function is called to fire our gun

function fireGun(e) {

 //Let's check if we can allow this to occur

 if(canIclick== 0 && gameEnded==0 && $("#SZ0_2").css

('opacity') != 1){

Chapter 8 add Some Bling to our game

223

 //looks like we can so we better set our flag

 canIclick=1;

 $("#SZ0_1").animateSprite("play", "fire");

 //increment our shots

 current_shots++;

 //play the fire sound

 $.playSound('sounds/fire');

 //check to see if we have reached the maximum

 if(current_shots>=max_shots){

 //show the reload button

 $("#SZ0_2").css({opacity:1});

 }//if

 }

}

//array to keep track of the zombie hits

 var zombieHits_counter = [0,0,0,0,0,0];

//array for each zombies limit

 var zombieHits_limits = [2,1,3,2,1,3];

//this function will keep track of the zombie hits and act

accordingly

function zombieHit(whichOne, xx, yy){

 //increment the counter

 zombieHits_counter[whichOne]++;

 //check to see if this zombie has reached its limit

 if(zombieHits_counter[whichOne] >= zombieHits_limits[whichOne]){

 //reset this zombie

 SZ_resetZombie(whichOne+1,1);

 }

Chapter 8 add Some Bling to our game

224

 //let's add in our special effect

 var whichOne2=whichOne+1;

 var $effect_zombiex = $("#zombie_effect"+whichOne2);

 //let's re-position our bubble zombie to our stored value

 $effect_zombiex.css({top: yy+'px',left: xx+'px',

opacity:1});

 $effect_zombiex.animateSprite("play", "z1");

 //apply the scale

 $effect_zombiex.css('transform',

'scale('+scalex_zombie[whichOne]+')');

}

Save the file and then close it.

We are now ready to test! Go back to the My_Work_Files folder and

double-click the default.html file. Now when you fire your gun, you

should hear a sound. Also, when you press the Reload button, you should

hear the reload sound. Again, I am sure you will agree that this adds a

much needed dimension to our game.

Did the sound not work? First, make sure that you have written the

following line as it is shown in your default.html.

 <script src="sounds/jquery.playSound.js"></script>

Also, make sure that you have the sounds folder copied, as shown in

Part 1.

Chapter 8 add Some Bling to our game

225

If it is still not working, make sure that the following lines are copied as

shown here; pay attention to the lowercase letters.

$.playSound('sounds/reload');

$.playSound('sounds/fire');

If is still not working, then please do not hesitate to message me on

Twitter (@zarrarchishti).

 Embedding the Game
You have noticed that the game spans your entire browser window.

Although a few games do play in this manner, most games are embedded

in a smaller window. We are going to place all of our code to fit inside a

window by using a few tweaks to our files.

 Part 1: Getting Started
Go to the images folder in the Raw Images folder of the My_Work_Files

folder. Locate the folder named html_web and copy this to the My_Work_

Files folder, which should now look like this:

Chapter 8 add Some Bling to our game

226

 Part 2: Modify the default.html File
To embed the game, we first need to modify the default.html file.

Opening the default.html file and type the following new lines (all new

text is in bold):

<html>

 <head>

 <script src="js/jquery.js"></script>

 <script src="js/jquery-ui.js"></script>

 <script src="sounds/jquery.playSound.js"></script>

 <script src="js/SZ_main.js"></script>

 <script src="js/SZ_setupContent.js"></script>

 <script src="js/SZ_movement.js"></script>

 <script src="js/ss.js"></script>

 <script src="js/SZ_SS.js"></script>

 <script src="js/SZ_touch.js"></script>

 <script src="js/SZ_zombie_movement.js"></script>

 <link href="css/SZ_master.css" rel="stylesheet" />

 </head>

 <body>

 <div id="logo"></div>

 <div id="box1"></div>

 <div id="SZ_maincontent">

 <img id="SZ0_0" src="images/SZ_background_image.jpg"

onmousemove="rotateGun(event)" onmousedown="fireGun(event)" />

 <div id="SZ0_1" ></div>

 <div id="SZ0_2" >

 <img src="images/SZ_reload.png" onmousedown="reloadGun

(event)" />

 </div>

 <div id="SZ0_3" style="background-image:

url(images/SZ_score.png);">

Chapter 8 add Some Bling to our game

227

 <div id="textx">999</div>

 </div>

 <div id="SZ0_4" onmousedown="start_game();"/>

 </div>

 </body>

</html>

Save the file and then close it.

Now open the SZ_master.css file and type the following new lines

(all new text is in bold) and some modified lines (all in red):

html {

 height: 100%;

 background: url(../html_web/webBG.jpg);

background- size:cover;

}

body {

 padding: 0 0 0 0;

 margin: 0;

 user-select: none;

 cursor: crosshair;

 }

img {

 max-width: 100%;

 height: 100%;

 user-drag: none;

 user-select: none;

 -moz-user-select: none;

 -webkit-user-drag: none;

 -webkit-user-select: none;

 -ms-user-select: none;

Chapter 8 add Some Bling to our game

228

 }

#logo {

 position: absolute;

 z-index:9999;

 background: url(../html_web/logo.png);

background- size:cover;

 pointer-events:none;

}

#box1 {

 position: absolute;

 z-index:9998;

 background: url(../html_web/box.png);

background- size:cover;

 pointer-events:none;

}

#SZ_maincontent {

 position: relative;

 overflow: hidden;

}

#SZ0_0 {

 position: absolute;

 top: 0;

 left: 0;

 min-width: 100%;

 min-height: 100%;

 }

 #SZ0_1 {

 position: absolute;

 bottom: 0;

 right: 0;

 opacity:0;

}

Chapter 8 add Some Bling to our game

229

 #SZ0_2 {

 position: absolute;

 top: 0;

 left: 0;

 cursor: pointer;

 opacity:0;

}

 #SZ0_3 {

 position: absolute;

 top: 0;

 right: 0;

 opacity:0;

 background-size:cover;

}

 #SZ0_4 {

 position: absolute;

 cursor: pointer;

 background-size:cover;

 opacity:0;

}

 #textx {

 position: relative;

 float: left;

 top: 40%;

 text-align:center;

 font-size: 4vmax;

 font-weight: bolder;

 colour: white;

 font-family: "Arial Black";

}

Chapter 8 add Some Bling to our game

230

Save this file and then close it.

You are nearly done. Open the SZ_setupContent.js file and type

the following new lines (all new text is in bold) and some modified lines

(all in red):

 //we will need a new ratio var

 var ratio_use = ratio;

//main function

 function main_call_setupContent() {

 //need to resize all elements

 //first we set their normal sizes in CSS

//Main Div

 $('#SZ_maincontent').css('width', 600 * ratio);

 $('#SZ_maincontent').css('height', 400 * ratio);

 //make sure it is half way

 $('#SZ_maincontent').css('left',

($(window).width()/2)-((600 * ratio)/2));

 $('#SZ_maincontent').css('top',

($(window).height()/2)-((400 * ratio)/2));

//box1

 $('#box1').css('width', 631 * ratio);

 $('#box1').css('height', 457 * ratio);

 //make sure it is half way

 $('#box1').css('left', ($(window).width()/2)-

((637 * ratio)/2));

 $('#box1').css('top', ($(window).height()/2)-

((457 * ratio)/2));

//logo

 $('#logo').css('width', 400 * ratio);

 $('#logo').css('height', 146 * ratio);

Chapter 8 add Some Bling to our game

231

 //make sure it is half way

 $('#logo').css('left', 0);

 $('#logo').css('top', 0);

 //Gun

 $('#SZ0_1').css('width', 150 * ratio);

 $('#SZ0_1').css('height', 150 * ratio);

 //Reload Button

 $('#SZ0_2').css('width', 200 * ratio);

 $('#SZ0_2').css('height', 90 * ratio);

 //Score

 $('#SZ0_3').css('width', 235 * ratio);

 $('#SZ0_3').css('height', 100 * ratio);

 //Intro and Game over

 if($(window).height()<$(window).width()){

 //work out a ratio based on height

 ratio_use = $(window).height()/800;

 }//end if

 //apply this new ratio to our intro/game over

 $('#SZ0_4').css('width', 458 * ratio);

 $('#SZ0_4').css('height', 370 * ratio);

 $('#SZ0_4').css('left', 71 * ratio);

 // $('#SZ0_4').css('left', ($(window).width()/2)-

((600 * ratio_use)/2));

 //make sure it is half way

 //$('#SZ0_4').css('top', ($(window).height()/2)-

((400 * ratio_use)/2));

 $('#textx').css('width', '100%');

 $('#textx').css('height', '50%');

 //Any sprite sheets?

Chapter 8 add Some Bling to our game

232

 //Our Gun

 setup_gun_SS();

 //Create all our 6 zombies

 for (i = 1; i < 7; i++) {

 //this will get called 6 times

 SZ_createZombie(i);

 }

 //call the intro

 start_end_game(0);

}

var gameEnded=0;

//Intro or Game Over of game

 function start_end_game(whichOne) {

 //hide the elements

 for (i = 1; i < 4; i++) {

 //this will get called 3 times

 $('#SZ0_'+i).css({opacity:0});

 }//for

 //hide the zombies

 for (i = 1; i < 7; i++) {

 //we need to stop this zombies animations

 $('#zombie_'+i).stop();

 $('#zombie_'+i).css({opacity:0});

 $('#bubble_zombie_'+i).css({opacity:0});

 //set the zindex for the zombie

 $("#zombie"+i).css("z-index", i+100);

 }//for

 if(whichOne==0){

 //START OF GAME

Chapter 8 add Some Bling to our game

233

 //change the background image

 $('#SZ0_4').css('background-image',

'url(images/splash_intro.png)');

 } else {

 //GAME OVER

 //show the score

 $('#SZ0_3').css({opacity:1});

 //change the background image

 $('#SZ0_4').css('background-image',

'url(images/splash_gameover.png)');

 }

 //make sure it is half way

 $('#SZ0_4').css('top', 0);

 //finally show the intro or game over image

 $('#SZ0_4').css({opacity:1});

 //stop the user from firing

 gameEnded= 1;

}//end of function

//need to store the current score

var current_score=0;

//we can call this function to update the score

function updateScore(){

 $("#textx").text(current_score);

}

//start the game

 function start_game() {

 //reset the score

 current_score=0;

 updateScore();

Chapter 8 add Some Bling to our game

234

 //reset the zindex

 zindex_current=0;

 //reload the gun

 current_shots=0;

 //allow user to fire

 gameEnded= 0;

 //hide the intro or game over image

 $('#SZ0_4').css({opacity:0});

 //make sure it is out of the way

 $('#SZ0_4').css('top', ($(window).height()));

 //show the elements

 for (i = 1; i < 4; i++) {

 //this will get called 3 times

 $('#SZ0_'+i).css({opacity:1});

 }//for

 //hide the reload button!

 $('#SZ0_2').css({opacity:0});

 //show the zombies

 for (i = 0; i < 7; i++) {

 //reset the Zombie

 SZ_resetZombie(i,0);

 }//for

 //ensure the score board is half opacity

 $('#SZ0_3').css({opacity:0.5});

}//end of function

Save this file and then close it.

Chapter 8 add Some Bling to our game

235

Finally, open the SZ_zombie_movement.js file and type the following

new lines (all new text is in bold) and some modified lines (all in red):

//let's create a zombie

function SZ_createZombie(whichOne){

 //create a new div to hold the zombie SS

 var div = document.createElement('div');

 //and another for the bubble zombie SS

 var div2 = document.createElement('div');

 //and another for the special effect SS

 var div3 = document.createElement('div');

 //we need to hard code the CSS styles we want

 div.setAttribute('style','position: fixed; top:0; left:0;

opacity:0; position: absolute; display: inherit;');

 //and the same for our bubble zombie

 div2.setAttribute('style','position: fixed; top:0; left:0;

position: absolute;');

 //and the same for our special effect SS

 div3.setAttribute('style','position: fixed; top:0; left:0;

position: absolute;');

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() * ($('#SZ0_0').

width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

Chapter 8 add Some Bling to our game

236

 //let's position our zombie

 div.style.left = left_position+'px'; div.style.top =

top_position+'px';

 //and the same for our bubble zombie

 div2.style.left = left_position+'px'; div2.style.top =

top_position+'px';

 //and the same for our special effect SS

 div3.style.left = left_position+'px'; div3.style.top =

top_position+'px';

 //give it an id

 div.id = 'zombie'+whichOne;

 //also for our bubble zombie

 div2.id = 'bubble_zombie'+whichOne;

 //also for our special effect SS

 div3.id = 'zombie_effect'+whichOne;

 //finally let's add our zombie to the screen

 //document.body.appendChild(div);

 $('#SZ_maincontent').append(div);

 //finally add in our bubble zombie to the screen too

 //document.body.appendChild(div2);

 $('#SZ_maincontent').append(div2);

 //finally add in our special effect SS to the screen too

 document.body.appendChild(div3);

 //put this new zombie through our SS function

 setup_zombie_SS(whichOne);

 //put this new zombie through our animate function

 // SZ_animateZombie(whichOne);

 //hide the bubble zombies at the start

 $("#bubble_zombie"+whichOne).css('transform','scale('+0+')');

Chapter 8 add Some Bling to our game

237

//ensure no hits are registered on the special effects

$("#zombie_effect"+whichOne).css('pointer-events', 'none');

 //set the zindex for the zombie

 $("#zombie"+whichOne).css("z-index", whichOne+100);

 //set the zindex for the bubble zombie

 $("#bubble_zombie"+whichOne).css("z-index", whichOne);

 //set the zindex for the special effect SS

 $("#zombie_effect"+whichOne).css("z-index", whichOne+150);

 //ensure the zindex for the gun is the highest

 $("#SZ0_1").css("z-index", 200);

 //also ensure the zindex for the intro/game over is the highest

 $("#SZ0_4").css("z-index", 201);

 //bind the users mouse click to this zombie

 $("#zombie"+whichOne).bind('mousedown touchstart', function (e) {

 //make sure the reload button is showing

 if($("#SZ0_2").css('opacity') != 1) {

 //first we want to fire the gun

 fireGun(event);

 //acknowledge the hit

if($("#zombie"+whichOne).css('opacity') != 0){

 var offset = $(this).offset();

 zombieHit(whichOne-1, e.pageX, e.pageY);

}

 }

 });

//bind the users mouse click to the bubble zombie

 $("#bubble_zombie"+whichOne).bind('mousedown touchstart',

function (e) {

 //make sure the reload button is showing

 if($("#SZ0_2").css('opacity') != 1) {

Chapter 8 add Some Bling to our game

238

 //first we want to fire the gun

 fireGun(event);

 }

 });

}

//we need to keep track of the current scale values

 var scalex_zombie = [0,0,0,0,0,0];

//we also need to keep track of the left position

 var leftx_zombie = [0,0,0,0,0,0];

//let's animate our zombie towards us

function SZ_animateZombie(whichOne){

 //assign the speed for each of our zombies

 var timex = [13000,8000,16000,14000,10000,18000];

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //reset the zombies scale value

 $zombiex.css('transform','scale('+0+')');

 //reset the zombies opacity

 $zombiex.css({opacity:1});

 //work out the amount the zombie has to come towards us

 var amty = ($(window).height()*0.7);// -

($zombiex.height()*2));//topx);

 //each type of zombie will have their own walking style

 var ZS_ease = ['easeInSine','easeOutQuart','easeInOutQuad',

'easeInSine','easeOutQuart','easeInOutQuad'];

 //finally we are ready to animate

 $zombiex.delay(timex[whichOne-1]/3).animate({

Chapter 8 add Some Bling to our game

239

 //first bring our zombie slowly down the screen

 left: "+="+0.001+ "px",

 },{ easing:ZS_ease[whichOne-1],

duration: timex[whichOne-1],

 step: function(now, fx){

 //at each step we can manipulate the scale of

our zombie

 if (fx.prop == "left") {

 //work out the amount to scale

 var xx = (fx.pos)*16;

 if(gameEnded==1){

 xx=999;

 }

 //do a check to see if we should end this animation

 if(xx>15){

 //stop all animation

 $(this).stop();

 //call a function to reset this zombie

 //SZ_resetZombie(whichOne,0);

 //game Over

 $(this).css({opacity:0});

 $(this).stop(true, true);

 $(this).finish();

 if(gameEnded==0 && xx!=999){

 start_end_game(1);

 }

 } else {

 //apply the scale

 $(this).css('transform',

'scale('+xx+')');

 //record this new scale value

 scalex_zombie[whichOne-1]=xx;

Chapter 8 add Some Bling to our game

240

 //check the depth levels

 var i = 0;

 while (i < 6) {

 //check to see if the scale is

bigger

 if(scalex_zombie[whichOne- 1]>

scalex_zombie[i] &&

($(this).zIndex() <

$("#zombie"+(i+1)).zIndex())

&& scalex_zombie[i]!=0){

 var i_index =

$("#zombie"+(i+1)).zIndex();

 //change the i one first

 $("#zombie"+(i+1)).css

("z- index", $(this).css

("z-index"));

 //now change this one

 $(this).css("z-index", i_index);

 } //end of if

 i++;

 }//end of while loop

 }

 }

 }, complete: function () {

 }

 });

}

//need to keep track of the current zindex for zombies

var zindex_current=0;

//a function to completely reset our zombie

function SZ_resetZombie(whichOne, zombieBubble_generate){

Chapter 8 add Some Bling to our game

241

 //reset this zombies hit counter

 zombieHits_counter[whichOne-1]=0;

 //assign a user friendly name for our div

 var $zombiex = $("#zombie"+whichOne);

 //we need to stop this zombies animations

 $zombiex.stop();

 //we want to position our zombie exactly at the tip of the

planet

 var top_position= $('#SZ0_0').height() * 0.435;

 //should we generate a bubble zombie?

 if(zombieBubble_generate==1){

 //assign a user friendly name for our bubble zombie div

 var $bubble_zombiex = $("#bubble_zombie"+whichOne);

 //let's re-position our bubble zombie to our stored

value

 $bubble_zombiex.css({top: top_position+'px',

left: $zombiex.css("left"), opacity:1});

 //apply the scale

 $bubble_zombiex.css('transform',

'scale('+scalex_zombie[whichOne-1]+')');

 //call our bubble zombie animation function

 bubbleZombie_flyAway(whichOne);

 }

 //Xpos can be anywhere on our x axis

 var left_position = Math.floor(Math.random() *

($('#SZ0_0').width())-(ratio*50)) + (ratio*50);

 //record this left position

 leftx_zombie[whichOne-1]=left_position;

Chapter 8 add Some Bling to our game

242

 //let's re-position our zombie

 $zombiex.css({top: top_position+'px', left:

left_position+'px', opacity:0});

 //set the zindex for the zombie

 zindex_current++;

 $("#zombie"+whichOne).css("z-index", zindex_current);

 //finally let's make the zombie come towards the screen again

 if(zombieBubble_generate==0){

 SZ_animateZombie(whichOne);

 }

}

Save this file and then close it.

We are now ready to test! Go back to the My_Work_Files folder and

double-click the default.html file. You should see the following screen:

Chapter 8 add Some Bling to our game

243

You will agree that, with just a few tweaks of code, we have created a

huge improvement in the overall design of our game.

Did it not work? A lot of the code written here are changes to code that was

already written. It is important to go through the bolded code line by line

and ensure that it looks exactly as shown.

Pay careful attention to the changes in SZ_master.css, especially

where we have added the same line to several places.

Finally, take care with changes like this:

 // $('#SZ0_4').css('left', ($(window).width()/2)-

((600 * ratio_use)/2));

Please make sure that you have coded the lines exactly as shown.

If it is still not working, then please do not hesitate to message me on

Twitter (@zarrarchishti).

Chapter 8 add Some Bling to our game

244

How did the game get smaller?

The game itself is exactly the same; all we did was reduce the amount of

space the game takes on the screen:

 $('#SZ_maincontent').css('width', 600 * ratio);

 $('#SZ_maincontent').css('height', 400 * ratio);

How did we put the extra graphics on the screen?
Let’s take each one separately. The box that surrounds our game is

created in the following line:

 <div id="box1"></div>

The logo at the top left was created using

 <div id="logo"></div>

Finally, we put the background image using

 background: url(../html_web/webBG.jpg); background- size:cover;

 Game Over. Restart?
This concludes our development. I hope that you enjoyed coding this game

as much as I have. I also hope that you have developed a passion for game

development and that you go on to create some truly awesome games.

Please contact me if you have any problems or wish to discuss your

ideas for other games.

Chapter 8 add Some Bling to our game

245

Wondering where to go from here? I have put together a few ideas on

ways to further develop the game, which you should be able to do on your

own now.

• If you are a database developer, you may want to record

the scores to a local or server database. To go one step

further, you may want to create a screen to capture the

user’s information, such as their email address.

• Have a small spider-like animation created into

sprite sheets. Include this in the gameplay at random

intervals. When the user shoots it, give them double

points.

• We have explored some options within each chapter

(e.g., installing a “head shot” feature). It might be

worth going back to revisit these suggestions and try to

rewrite the code yourself.

• Place a Pause button. As the name suggests, when

clicked, all gameplay should pause. I usually display a

fullscreen image, which resumes the game play when

clicked.

• Create levels! You will need some way to stop the

gameplay and reset all the gameplay parameters. Also,

you will want to give some thought as to why each level

is different. I would introduce Professor Z in level 1,

and then Belladonna in level 2, and, finally, Brad in

level 3. In the final stage, I would have all three zombies

come out in a random order.

Chapter 8 add Some Bling to our game

246

• Finally, get creative! Use this engine for something

completely different. For instance, I used the same

engine to create a circus-themed game. In this game,

the gun was replaced with a rifle and the zombies were

replaced with three different types of targets to shoot

(e.g., a duck). The targets would move from left to right

and move in three different depths. Although I had to

change the graphics and tweak the code slightly, the

engine for the game remained the same.

Let me know what other games you managed to create using this

engine. Join me on Twitter (@zarrarchishti) and let’s discuss!

Chapter 8 add Some Bling to our game

247
© Zarrar Chishti 2017
Z. Chishti, Cross Over to HTML5 Game Development,
https://doi.org/10.1007/978-1-4842-3291-0

Index

A
Absolute, 35
alert(), 41, 127, 128
animateSprite function, 66
Animation, 13, 23, 51, 66, 68, 70, 73,

76, 80, 81, 85, 95, 136, 148,
203, 245

appendChild(), 124
Aptana, 6
Arrays, 47, 93, 94, 97, 113

B
Background-colour, 27
Background image, 2, 3, 18–20, 22,

28–31, 193

C
Cascading Style Sheets (CSS), 23–35
Cloud hosting, 11
Coding errors, 70
Conditional statements, 119
Counter, 129–136
Crosshair cursor, 51, 53, 81, 100
CSSOM View Module, 212

D
delay() method, 139
Depth levels, 163–171
Depths and click zones, 157–171
div, 17, 45, 94, 111
do/while loop, 102
duration function, 68

E
easeInOutQuad, 98
easeInSine, 98
easeOutQuart, 98
Easing function, 97, 98, 145
Eclipse, 6
Embedding, 3, 225–244
e.pageX and e.pageY

properties, 212

F
File, 6–14, 226–244
Fireworks, 50
Fixed, 26, 35
for/in loops, 102
Frames per second (fps), 68

https://doi.org/10.1007/978-1-4842-3291-0

248

G
Gameplay, 3, 18, 55, 81, 245
Gun fire, 57, 60, 62, 70, 76, 78, 111,

157–163
Gun reloading, 62, 70, 74, 78

H
Hardware acceleration, 23
Hits count, 113–119
Hitting zombie, 107–113
Hosting server, 10–11
Hypertext Markup Language

(HTML), 15–22

I
Image resizing, 46–50
, 19, 30
insertBefore(), 124

J, K
JavaScript code, 40, 45, 50, 112

L
Life cycle generation, 102–106
load(function (), 45
Loop option, 68
Low memory usage, 62

M
Macromedia Photoshop, 50
main_call_setupContent()

function, 50
Margin, 26, 27
Math.floor(), 94
Math functions, 94
Math.random(), 94
Max-width, 31
Min-width, 31
Mousedown touchstart events, 111

N
NetBeans, 6
newWidth, 45

O
offset() method, 219
onmouseenter, 77
onmouseleave, 77
onmouseout, 77
onmouseover, 77
onmouseup, 77
Opacity, 145, 156

P, Q
Padding, 26
Pascal coding, 42

Index

249

play() method, 221
Position, 26, 35
Property, 24

R
Ratio, 45
Relative, 35
Reload button, 3, 32, 51, 73,

76, 80, 81, 83, 146, 148,
153, 155, 156,
162, 224

rotateGun function, 58

S
Selector, 24
setup_SpriteSheet, 93
Sound effects, 219–225
Sprite animation, 80
Sprite sheet functionality,

60–71, 85, 91,
124, 245

Static elements, 35

T
Testing, 25
Tiled grid arrangement, 62
Transform property, 60

U
updateScore(), 203
User-drag, 31
User-select, 27, 29

V
Visual Studio Community, 6

W, X, Y
while loop, 102, 171
WinRAR, 14
WINZIP, 14

Z
z-index, 170, 199

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Introduction
	 Introducing Our Game: Space Zombies
	 Setting up Your Work Environment
	 Part 1: Setting up Our Folders
	 Part 2: Setting up Our Files

	 Hosting and Media Files
	 Part 1: Your Computer vs. Hosting Servers
	 Part 2: Download the Media for Your Project

	Chapter 2: In the Beginning, There Was HTML
	 Hello World
	 Background Image
	 Adding the Rest of the Images

	Chapter 3: Time to Apply a Little CSS
	 Start with a Quick Test
	 Our Background Image
	 Our Other Images

	Chapter 4: Apply Intelligence with JavaScript
	 Why Do We Need to Resize?
	 How Do We Universally Resize?
	 Let’s Resize Our Images

	Chapter 5: Take a Shot: Part 1
	 Changing Our Cursor and Registering a Click
	 Making Our Gun Act More Realistic
	 Animating the Gun with Sprite Sheets
	 Part 1
	 Part 2
	 Part 3
	 Part 4

	 Reloading Our Gun
	 Firing Our Gun
	 One Last Thing…

	Chapter 6: Where Are the Zombies?
	 Creating a Zombie: Part 1
	 Creating a Zombie: Part 2
	 Moving the Zombie Closer
	 Creating All the Zombies
	 Generating a Zombie Life Cycle

	Chapter 7: Take a Shot: Part 2
	 Hitting a Zombie
	 Making the Hits Count
	 Zombie Down!
	 Part 1: Create Six Bubble Zombie Elements
	 Part 2: Activate the Counter Bubble Zombie
	 Part 3: Animate the Bubble Zombies

	 Reloading the Gun
	 Clean up the Depths and Click Zones
	 Part 1: Ensuring Gun Fire
	 Part 2: Zombie Depth Levels

	 Intro Splash and “Game Over” Screens
	 Part 1: Images Folder
	 Part 2: Stopping and Starting

	Chapter 8: Add Some Bling to Our Game
	 What’s the Score?
	 Sprinkle of Special Effects
	 Part 1: Get Started
	 Part 2: Displaying the Effects

	 Turn up the Sound Effects
	 Part 1: Getting Started
	 Part 2: Adding Sound Effects

	 Embedding the Game
	 Part 1: Getting Started
	 Part 2: Modify the default.html File

	 Game Over. Restart?

	Index

