

THIRD EDITION

PHP Cookbook

 David Sklar and Adam Trachtenberg

PHP Cookbook, Third Edition

by David Sklar and Adam Trachtenberg

Copyright © 2014 David Sklar and Adam Trachtenberg. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are

also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/

institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Rachel Roumeliotis and Allyson MacDonald Indexer: Judith McConville

Production Editor: Melanie Yarbrough

Cover Designer: Karen Montgomery

Copyeditor: Kim Cofer

Interior Designer: David Futato

Proofreader: Charles Roumeliotis

Illustrator: Rebecca Demarest

June 2001:

First Edition

June 2004:

Second Edition

June 2014:

Third Edition

Revision History for the Third Edition:

2014-06-25: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449363758 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. PHP Cookbook, the image of a Galapagos land iguana, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume

no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 978-1-449-36375-8

[LSI]

Table of Contents

Preface. xv

1. Strings. 1

1.1 Accessing Substrings 5

1.2 Extracting Substrings 6

1.3 Replacing Substrings 7

1.4 Processing a String One Byte at a Time 9

1.5 Reversing a String by Word or Byte 10

1.6 Generating a Random String 11

1.7 Expanding and Compressing Tabs 12

1.8 Controlling Case 14

1.9 Interpolating Functions and Expressions Within Strings 16

1.10 Trimming Blanks from a String 17

1.11 Generating Comma-Separated Data 18

1.12 Parsing Comma-Separated Data 20

1.13 Generating Fixed-Width Field Data Records 21

1.14 Parsing Fixed-Width Field Data Records 22

1.15 Taking Strings Apart 25

1.16 Wrapping Text at a Certain Line Length 27

1.17 Storing Binary Data in Strings 28

1.18 Program: Downloadable CSV File 31

2. Numbers. 35

2.1 Checking Whether a Variable Contains a Valid Number 36

2.2 Comparing Floating-Point Numbers 37

2.3 Rounding Floating-Point Numbers 38

2.4 Operating on a Series of Integers 40

2.5 Generating Random Numbers Within a Range 42

2.6 Generating Predictable Random Numbers 43

iii

2.7 Generating Biased Random Numbers 44

2.8 Taking Logarithms 46

2.9 Calculating Exponents 46

2.10 Formatting Numbers 47

2.11 Formatting Monetary Values 49

2.12 Printing Correct Plurals 50

2.13 Calculating Trigonometric Functions 51

2.14 Doing Trigonometry in Degrees, Not Radians 52

2.15 Handling Very Large or Very Small Numbers 53

2.16 Converting Between Bases 55

2.17 Calculating Using Numbers in Bases Other Than Decimal 56

2.18 Finding the Distance Between Two Places 58

3. Dates and Times. 61

3.1 Finding the Current Date and Time 63

3.2 Converting Time and Date Parts to an Epoch Timestamp 66

3.3 Converting an Epoch Timestamp to Time and Date Parts 68

3.4 Printing a Date or Time in a Specified Format 69

3.5 Finding the Difference of Two Dates 71

3.6 Finding the Day in a Week, Month, or Year 73

3.7 Validating a Date 75

3.8 Parsing Dates and Times from Strings 77

3.9 Adding to or Subtracting from a Date 79

3.10 Calculating Time with Time Zones and Daylight Saving Time 80

3.11 Generating a High-Precision Time 82

3.12 Generating Time Ranges 83

3.13 Using Non-Gregorian Calendars 84

3.14 Program: Calendar 87

4. Arrays. 93

4.1 Specifying an Array Not Beginning at Element 0 96

4.2 Storing Multiple Elements per Key in an Array 97

4.3 Initializing an Array to a Range of Integers 99

4.4 Iterating Through an Array 99

4.5 Deleting Elements from an Array 102

4.6 Changing Array Size 104

4.7 Appending One Array to Another 106

4.8 Turning an Array into a String 108

4.9 Printing an Array with Commas 109

4.10 Checking if a Key Is in an Array 110

4.11 Checking if an Element Is in an Array 111

4.12 Finding the Position of a Value in an Array 113

iv | Table of Contents

4.13 Finding Elements That Pass a Certain Test 114

4.14 Finding the Largest or Smallest Valued Element in an Array 115

4.15 Reversing an Array 116

4.16 Sorting an Array 116

4.17 Sorting an Array by a Computable Field 118

4.18 Sorting Multiple Arrays 120

4.19 Sorting an Array Using a Method Instead of a Function 122

4.20 Randomizing an Array 123

4.21 Removing Duplicate Elements from an Array 123

4.22 Applying a Function to Each Element in an Array 124

4.23 Finding the Union, Intersection, or Difference of Two Arrays 126

4.24 Iterating Efficiently over Large or Expensive Datasets 128

4.25 Accessing an Object Using Array Syntax 131

5. Variables. 135

5.1 Avoiding == Versus = Confusion 137

5.2 Establishing a Default Value 138

5.3 Exchanging Values Without Using Temporary Variables 139

5.4 Creating a Dynamic Variable Name 140

5.5 Persisting a Local Variable’s Value Across Function Invocations 141

5.6 Sharing Variables Between Processes 143

5.7 Encapsulating Complex Data Types in a String 149

5.8 Dumping Variable Contents as Strings 151

6. Functions. 157

6.1 Accessing Function Parameters 158

6.2 Setting Default Values for Function Parameters 159

6.3 Passing Values by Reference 161

6.4 Using Named Parameters 162

6.5 Enforcing Types of Function Arguments 163

6.6 Creating Functions That Take a Variable Number of Arguments 164

6.7 Returning Values by Reference 167

6.8 Returning More Than One Value 169

6.9 Skipping Selected Return Values 170

6.10 Returning Failure 171

6.11 Calling Variable Functions 172

6.12 Accessing a Global Variable Inside a Function 175

6.13 Creating Dynamic Functions 176

7. Classes and Objects. 179

7.1 Instantiating Objects 183

7.2 Defining Object Constructors 184

Table of Contents | v

7.3 Defining Object Destructors 185

7.4 Implementing Access Control 186

7.5 Preventing Changes to Classes and Methods 189

7.6 Defining Object Stringification 190

7.7 Requiring Multiple Classes to Behave Similarly 191

7.8 Creating Abstract Base Classes 195

7.9 Assigning Object References 197

7.10 Cloning Objects 198

7.11 Overriding Property Accesses 201

7.12 Calling Methods on an Object Returned by Another Method 205

7.13 Aggregating Objects 206

7.14 Accessing Overridden Methods 210

7.15 Creating Methods Dynamically 212

7.16 Using Method Polymorphism 213

7.17 Defining Class Constants 215

7.18 Defining Static Properties and Methods 217

7.19 Controlling Object Serialization 220

7.20 Introspecting Objects 222

7.21 Checking If an Object Is an Instance of a Specific Class 226

7.22 Autoloading Class Files upon Object Instantiation 229

7.23 Instantiating an Object Dynamically 230

7.24 Program: whereis 231

8. Web Fundamentals. 235

8.1 Setting Cookies 236

8.2 Reading Cookie Values 238

8.3 Deleting Cookies 238

8.4 Building a Query String 239

8.5 Reading the POST Request Body 240

8.6 Using HTTP Basic or Digest Authentication 241

8.7 Using Cookie Authentication 245

8.8 Reading an HTTP Header 248

8.9 Writing an HTTP Header 249

8.10 Sending a Specific HTTP Status Code 250

8.11 Redirecting to a Different Location 251

8.12 Flushing Output to the Browser 252

8.13 Buffering Output to the Browser 253

8.14 Compressing Web Output 255

8.15 Reading Environment Variables 255

8.16 Setting Environment Variables 256

8.17 Communicating Within Apache 257

8.18 Redirecting Mobile Browsers to a Mobile Optimized Site 258

vi | Table of Contents

8.19 Program: Website Account (De)activator 259

8.20 Program: Tiny Wiki 262

8.21 Program: HTTP Range 265

9. Forms. 275

9.1 Processing Form Input 277

9.2 Validating Form Input: Required Fields 279

9.3 Validating Form Input: Numbers 281

9.4 Validating Form Input: Email Addresses 283

9.5 Validating Form Input: Drop-Down Menus 284

9.6 Validating Form Input: Radio Buttons 285

9.7 Validating Form Input: Checkboxes 287

9.8 Validating Form Input: Dates and Times 289

9.9 Validating Form Input: Credit Cards 290

9.10 Preventing Cross-Site Scripting 291

9.11 Processing Uploaded Files 292

9.12 Working with Multipage Forms 295

9.13 Redisplaying Forms with Inline Error Messages 296

9.14 Guarding Against Multiple Submissions of the Same Form 299

9.15 Preventing Global Variable Injection 301

9.16 Handling Remote Variables with Periods in Their Names 303

9.17 Using Form Elements with Multiple Options 304

9.18 Creating Drop-Down Menus Based on the Current Date 305

10. Database Access. 307

10.1 Using DBM Databases 310

10.2 Using an SQLite Database 313

10.3 Connecting to an SQL Database 315

10.4 Querying an SQL Database 316

10.5 Retrieving Rows Without a Loop 319

10.6 Modifying Data in an SQL Database 320

10.7 Repeating Queries Efficiently 321

10.8 Finding the Number of Rows Returned by a Query 324

10.9 Escaping Quotes 325

10.10 Logging Debugging Information and Errors 327

10.11 Creating Unique Identifiers 329

10.12 Building Queries Programmatically 331

10.13 Making Paginated Links for a Series of Records 336

10.14 Caching Queries and Results 339

10.15 Accessing a Database Connection Anywhere in Your Program 341

10.16 Program: Storing a Threaded Message Board 343

Table of Contents | vii

10.17 Using Redis 351

11. Sessions and Data Persistence. 353

11.1 Using Session Tracking 354

11.2 Preventing Session Hijacking 356

11.3 Preventing Session Fixation 357

11.4 Storing Sessons in Memcached 358

11.5 Storing Sessions in a Database 359

11.6 Storing Arbitrary Data in Shared Memory 362

11.7 Caching Calculated Results in Summary Tables 365

12. XML. 369

12.1 Generating XML as a String 372

12.2 Generating XML with DOM 373

12.3 Parsing Basic XML Documents 376

12.4 Parsing Complex XML Documents 379

12.5 Parsing Large XML Documents 381

12.6 Extracting Information Using XPath 387

12.7 Transforming XML with XSLT 390

12.8 Setting XSLT Parameters from PHP 392

12.9 Calling PHP Functions from XSLT Stylesheets 394

12.10 Validating XML Documents 398

12.11 Handling Content Encoding 400

12.12 Reading RSS and Atom Feeds 401

12.13 Writing RSS Feeds 404

12.14 Writing Atom Feeds 407

13. Web Automation. 413

13.1 Marking Up a Web Page 414

13.2 Cleaning Up Broken or Nonstandard HTML 416

13.3 Extracting Links from an HTML File 420

13.4 Converting Plain Text to HTML 422

13.5 Converting HTML to Plain Text 423

13.6 Removing HTML and PHP Tags 424

13.7 Responding to an Ajax Request 428

13.8 Integrating with JavaScript 429

13.9 Program: Finding Stale Links 433

13.10 Program: Finding Fresh Links 435

14. Consuming RESTful APIs. 439

14.1 Fetching a URL with the GET Method 440

14.2 Fetching a URL with the POST Method and Form Data 444

viii | Table of Contents

14.3 Fetching a URL with an Arbitrary Method and POST Body 446

14.4 Fetching a URL with Cookies 448

14.5 Fetching a URL with Arbitrary Headers 450

14.6 Fetching a URL with a Timeout 451

14.7 Fetching an HTTPS URL 453

14.8 Debugging the Raw HTTP Exchange 453

14.9 Making an OAuth 1.0 Request 458

14.10 Making an OAuth 2.0 Request 460

15. Serving RESTful APIs. 465

15.1 Exposing and Routing to a Resource 468

15.2 Exposing Clean Resource Paths 471

15.3 Exposing a Resource for Reading 472

15.4 Creating a Resource 474

15.5 Editing a Resource 479

15.6 Deleting a Resource 481

15.7 Indicating Errors and Failures 482

15.8 Supporting Multiple Formats 484

16. Internet Services. 487

16.1 Sending Mail 488

16.2 Sending MIME Mail 490

16.3 Reading Mail with IMAP or POP3 491

16.4 Getting and Putting Files with FTP 495

16.5 Looking Up Addresses with LDAP 498

16.6 Using LDAP for User Authentication 499

16.7 Performing DNS Lookups 502

16.8 Checking If a Host Is Alive 504

16.9 Getting Information About a Domain Name 506

17. Graphics. 509

17.1 Drawing Lines, Rectangles, and Polygons 512

17.2 Drawing Arcs, Ellipses, and Circles 515

17.3 Drawing with Patterned Lines 517

17.4 Drawing Text 518

17.5 Drawing Centered Text 520

17.6 Building Dynamic Images 524

17.7 Getting and Setting a Transparent Color 526

17.8 Overlaying Watermarks 527

17.9 Creating Thumbnail Images 530

17.10 Reading EXIF Data 533

17.11 Serving Images Securely 535

Table of Contents | ix

17.12 Program: Generating Bar Charts from Poll Results 536

18. Security and Encryption. 541

18.1 Preventing Session Fixation 542

18.2 Protecting Against Form Spoofing 543

18.3 Ensuring Input Is Filtered 544

18.4 Avoiding Cross-Site Scripting 545

18.5 Eliminating SQL Injection 546

18.6 Keeping Passwords Out of Your Site Files 547

18.7 Storing Passwords 548

18.8 Dealing with Lost Passwords 551

18.9 Verifying Data with Hashes 553

18.10 Encrypting and Decrypting Data 555

18.11 Storing Encrypted Data in a File or Database 557

18.12 Sharing Encrypted Data with Another Website 560

18.13 Detecting SSL 562

18.14 Encrypting Email with GPG 563

19. Internationalization and Localization. 567

19.1 Determining the User’s Locale 569

19.2 Localizing Text Messages 570

19.3 Localizing Dates and Times 573

19.4 Localizing Numbers 577

19.5 Localizing Currency Values 579

19.6 Localizing Images 581

19.7 Localizing Included Files 583

19.8 Sorting in a Locale-Aware Order 584

19.9 Managing Localization Resources 584

19.10 Setting the Character Encoding of Outgoing Data 587

19.11 Setting the Character Encoding of Incoming Data 587

19.12 Manipulating UTF-8 Text 588

20. Error Handling. 593

20.1 Finding and Fixing Parse Errors 594

20.2 Creating Your Own Exception Classes 596

20.3 Printing a Stack Trace 599

20.4 Reading Configuration Variables 602

20.5 Setting Configuration Variables 603

20.6 Hiding Error Messages from Users 604

20.7 Tuning Error Handling 606

20.8 Using a Custom Error Handler 608

20.9 Logging Errors 609

x | Table of Contents

20.10 Eliminating “headers already sent” Errors 611

20.11 Logging Debugging Information 612

21. Software Engineering. 615

21.1 Using a Debugger Extension 615

21.2 Writing a Unit Test 619

21.3 Writing a Unit Test Suite 620

21.4 Applying a Unit Test to a Web Page 622

21.5 Setting Up a Test Environment 624

21.6 Using the Built-in Web Server 625

22. Performance Tuning. 629

22.1 Using an Accelerator 630

22.2 Timing Function Execution 631

22.3 Timing Program Execution by Function 632

22.4 Timing Program Execution by Statement 634

22.5 Timing Program Execution by Section 636

22.6 Profiling with a Debugger Extension 638

22.7 Stress-Testing Your Website 642

22.8 Avoiding Regular Expressions 643

23. Regular Expressions. 647

23.1 Switching from ereg to preg 651

23.2 Matching Words 652

23.3 Finding the nth Occurrence of a Match 654

23.4 Choosing Greedy or Nongreedy Matches 656

23.5 Finding All Lines in a File That Match a Pattern 658

23.6 Capturing Text Inside HTML Tags 659

23.7 Preventing Parentheses from Capturing Text 660

23.8 Escaping Special Characters in a Regular Expression 662

23.9 Reading Records with a Pattern Separator 663

23.10 Using a PHP Function in a Regular Expression 664

24. Files. 667

24.1 Creating or Opening a Local File 671

24.2 Creating a Temporary File 672

24.3 Opening a Remote File 673

24.4 Reading from Standard Input 674

24.5 Reading a File into a String 675

24.6 Counting Lines, Paragraphs, or Records in a File 676

24.7 Processing Every Word in a File 679

24.8 Picking a Random Line from a File 680

Table of Contents | xi

24.9 Randomizing All Lines in a File 681

24.10 Processing Variable-Length Text Fields 682

24.11 Reading Configuration Files 683

24.12 Modifying a File in Place Without a Temporary File 685

24.13 Flushing Output to a File 687

24.14 Writing to Standard Output 688

24.15 Writing to Many Filehandles Simultaneously 688

24.16 Escaping Shell Metacharacters 689

24.17 Passing Input to a Program 691

24.18 Reading Standard Output from a Program 692

24.19 Reading Standard Error from a Program 693

24.20 Locking a File 694

24.21 Reading and Writing Custom File Types 697

24.22 Reading and Writing Compressed Files 702

25. Directories. 705

25.1 Getting and Setting File Timestamps 708

25.2 Getting File Information 709

25.3 Changing File Permissions or Ownership 710

25.4 Splitting a Filename into Its Component Parts 711

25.5 Deleting a File 713

25.6 Copying or Moving a File 713

25.7 Processing All Files in a Directory 714

25.8 Getting a List of Filenames Matching a Pattern 715

25.9 Processing All Files in a Directory Recursively 717

25.10 Making New Directories 717

25.11 Removing a Directory and Its Contents 718

25.12 Program: Web Server Directory Listing 719

25.13 Program: Site Search 723

26. Command-Line PHP. 727

26.1 Parsing Program Arguments 729

26.2 Parsing Program Arguments with getopt 730

26.3 Reading from the Keyboard 732

26.4 Running PHP Code on Every Line of an Input File 734

26.5 Reading Passwords 736

26.6 Colorizing Console Output 738

26.7 Program: DOM Explorer 740

27. Packages. 745

27.1 Defining and Installing Composer Dependencies 748

27.2 Finding Composer Packages 749

xii | Table of Contents

27.3 Installing Composer Packages 751

27.4 Using the PEAR Installer 754

27.5 Finding PEAR Packages 757

27.6 Finding Information About a Package 759

27.7 Installing PEAR Packages 760

27.8 Upgrading PEAR Packages 762

27.9 Uninstalling PEAR Packages 763

27.10 Installing PECL Packages 764

Index. 767

Table of Contents | xiii

Preface

PHP is the engine behind millions of dynamic web applications. Its broad feature set,

approachable syntax, and support for different operating systems and web servers have

made it an ideal language for both rapid web development and the methodical con‐

struction of complex systems.

One of the major reasons for PHP’s success as a web scripting language is its origins as

a tool to process HTML forms and create web pages. This makes PHP very web-friendly.

Additionally, it is eagerly promiscuous when it comes to external applications and li‐

braries. PHP can speak to a multitude of databases, and it knows numerous Internet

protocols. PHP also makes it simple to parse form data and make HTTP requests. This

web-specific focus carries over to the recipes and examples in the PHP Cookbook.

This book is a collection of solutions to common tasks in PHP. We’ve tried to include

material that will appeal to everyone from newbies to wizards. If we’ve succeeded, you’ll

learn something (or perhaps many things) from PHP Cookbook. There are tips in here

for everyday PHP programmers as well as for people coming to PHP with experience

in another language.

PHP, in source code and binary forms, is available for download free from http://

 www.php.net/. The PHP website also contains installation instructions, comprehensive documentation, and pointers to online resources, user groups, mailing lists, and other

PHP resources.

Who This Book Is For

This book is for programmers who need to solve problems with PHP. If you don’t know

any PHP, make this your second PHP book. The first should be Learning PHP 5, also

from O’Reilly.

If you’re already familiar with PHP, this book helps you overcome a specific problem

and get on with your life (or at least your programming activities). The PHP Cook‐

xv

 book can also show you how to accomplish a particular task in PHP, such as sending email or parsing JSON, that you may already know how to do in another language.

Programmers converting applications from other languages to PHP will find this book

a trusty companion.

What Is in This Book

We don’t expect that you’ll sit down and read this book from cover to cover (although

we’ll be happy if you do!). PHP programmers are constantly faced with a wide variety

of challenges on a wide range of subjects. Turn to the PHP Cookbook when you en‐

counter a problem you need to solve. Each recipe is a self-contained explanation that

gives you a head start toward finishing your task. When a recipe refers to topics outside

its scope, it contains pointers to related recipes and other online and offline resources.

If you choose to read an entire chapter at once, that’s OK. The recipes generally flow

from easy to hard, with example programs that “put it all together” at the end of many

chapters. The chapter introduction provides an overview of the material covered in the

chapter, including relevant background material, and points out a few highlighted rec‐

ipes of special interest.

The book begins with four chapters about basic data types. Chapter 1 covers details like processing substrings, manipulating case, taking strings apart into smaller pieces, and

parsing comma-separated data. Chapter 2 explains operations with floating-point num‐

bers, random numbers, converting between bases, and number formatting. Chapter 3

shows you how to manipulate dates and times, format them, handle time zones and

daylight saving time, and find time to microsecond precision. Chapter 4 covers array

operations like iterating, merging, reversing, sorting, and extracting particular elements.

Next are three chapters that discuss program building blocks. Chapter 5 covers notable features of PHP’s variable handling, such as default values, static variables, and producing string representations of complex data types. The recipes in Chapter 6 deal with

using functions in PHP: processing arguments, passing and returning variables by ref‐

erence, creating functions at runtime, and scoping variables. Chapter 7 covers PHP’s

object-oriented capabilities, with recipes on OOP basics as well as more advanced fea‐

tures, such as magic methods, destructors, access control, reflection, traits, and name‐

spaces.

After the data types and building blocks come six chapters devoted to topics that are

central to web programming. Chapter 8 covers cookies, headers, authentication, work‐

ing with query strings, and other fundamentals of web applications. Chapter 9 covers

processing and validating form input, displaying multipage forms, showing forms with

error messages, and guarding against problems such as cross-site scripting and multiple

submissions of the same form. Chapter 10 explains the differences between DBM and

SQL databases and, using the PDO database access abstraction layer, shows how to

xvi | Preface

connect to a database, assign unique ID values, retrieve rows, change data, escape quotes, and log debugging information. Chapter 11 covers PHP’s built-in sessions module,

which lets you maintain information about a user as he moves from page to page on

your website. This chapter also highlights some of the security issues associated with

sessions. Chapter 12 discusses all things XML: the SimpleXML extension and DOM

functions, using XPath and XSLT, and reading and writing both RSS and Atom feeds.

Chapter 13 explores topics useful to PHP applications that integrate with external websites and client-side JavaScript such as retrieving remote URLs, cleaning up HTML, and

responding to an Ajax request.

The next three chapters are all about network interaction. Chapter 14 details the ins and outs of consuming a web service—using an external REST service from within your

code. Chapter 15 handles the other side of the web services equation—serving up REST

requests to others. Both chapters discuss authentication, headers, and error handling.

Chapter 16 discusses other network services such as sending email messages, using

LDAP, and doing DNS lookups.

The next section of the book is a series of chapters on features and extensions of PHP

that help you build applications that are robust, secure, user-friendly, and efficient.

Chapter 17 shows you how to create graphics, with recipes on drawing text, lines,

polygons, and curves. Chapter 18 focuses on security topics such as avoiding session

fixation and cross-site scripting, working with passwords, and encrypting data. Chap‐

ter 19 helps you make your applications globally friendly and includes recipes for localizing text, dates and times, currency values, and images, as well as a recipe working

with text in UTF-8 character encoding. Chapter 20 goes into detail on error handling

and logging, while Chapter 21 discusses debugging techniques, writing tests for your

code, and using PHP’s built-in web server. Chapter 22 explains how to compare the

performance of two functions and provides tips on getting your programs to run at

maximum speed. Chapter 23 covers regular expressions, including capturing text inside of HTML tags, calling a PHP function from inside a regular expression, and using greedy

and nongreedy matching.

Chapters 24 and 25 cover the filesystem. Chapter 24 focuses on files: opening and closing them, using temporary files, locking files, sending compressed files, and processing the

contents of files. Chapter 25 deals with directories and file metadata, with recipes on changing file permissions and ownership, moving or deleting a file, and processing all

files in a directory.

Last, there are two chapters on topics that extend the reach of what PHP can do. Chap‐

ter 26 covers using PHP outside of web programming. Its recipes cover command-line

topics such as parsing program arguments and reading passwords. Chapter 27 covers

Composer, PEAR (PHP Extension and Application Repository), and PECL (PHP Ex‐

tension Community Library). Composer and PEAR provide access to a collection of

PHP code that provides functions and extensions to PHP. PECL is a similar collection,

Preface | xvii

but of extensions to PHP written in C. We use PEAR and PECL modules throughout

the book and Chapter 27 shows you how to install and upgrade them.

Other Resources

Websites

There is a tremendous amount of PHP reference material online. With everything from

the annotated PHP manual to sites with periodic articles and tutorials, a fast Internet

connection rivals a large bookshelf in PHP documentary usefulness. Here are some key

sites:

 The Annotated PHP Manual

Available in 11 languages, this site includes both official documentation of functions

and language features as well as user-contributed comments.

 PHP mailing lists

There are many PHP mailing lists covering installation, programming, extending

PHP, and various other topics; there is also a read-only web interface to the mailing lists.

 PHP support resources

This handy collection of support resources has information on PHP user groups,

events, and other support channels.

 Composer

Composer is a dependency manager for PHP that provides a structured way both

to declare dependencies in your project and to install them.

 PEAR

PEAR calls itself “a framework and distribution system for reusable PHP compo‐

nents.” You’ll find lots of useful PHP classes and sample code there. Read more

about PEAR in Chapter 27.

 PECLPECL calls itself “a repository for PHP Extensions, providing a directory of extensions and hosting facilities for downloading and development of PHP extensions.”

Read more about PECL in Chapter 27.

 PHP.net: A Tourist’s Guide

This is a guide to the various websites under the php.net umbrella.

 PHP: The Right Way

A quick reference that attempts to be a comprehensive source of PHP best practices.

A great place to start if you’re wondering about the idiomatic way to do something

in PHP.

xviii | Preface

 Planet PHP

An aggregation of blog posts by PHP developers, about PHP.

 SitePoint Blogs on PHP

A good collection of information that explores PHP.

Books

This section lists books that are helpful references and tutorials for building applications

with PHP. Most are specific to web-related programming; look for books on MySQL,

HTML, XML, and HTTP.

At the end of the section, we’ve included a few books that are useful for every program‐

mer regardless of language of choice. These works can make you a better programmer

by teaching you how to think about programming as part of a larger pattern of problem

solving:

• Learning PHP 5 by David Sklar (O’Reilly)

• Programming PHP by Rasmus Lerdorf, Kevin Tatroe, and Peter MacIntyre (O’Reilly)

• Extending and Embedding PHP by Sara Golemon (Sams)

• Learning PHP, MySQL, JavaScript, and CSS by Robin Nixon (O’Reilly)

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• MySQL Reference Manual

• MySQL, by Paul DuBois (New Riders)

• The Practice of Programming, by Brian W. Kernighan and Rob Pike (Addison-

Wesley)

• Programming Pearls by Jon Louis Bentley (Addison-Wesley)

• The Mythical Man-Month, by Frederick P. Brooks (Addison-Wesley)

Conventions Used in This Book

Programming Conventions

The examples in this book were written to run under PHP version 5.4.28 (and, where

applicable, PHP 5.5.12). Sample code should work on both Unix and Windows, except

where noted in the text. We’ve generally noted in the text when we depend on a feature

added to PHP in or after 5.5.

Preface | xix

Some examples rely on the $php_errormsg variable, which is only available when the

track_errors configuration directive is turned on.

Typesetting Conventions

The following typographic conventions are used in this book:

 Italic Used for commands, filenames, and example URLs. It is also used to define new

terms when they first appear in the text.

Constant width

Used in code examples to show partial or complete PHP source code program

listings. It is also used for class names, method names, variable names, and other

fragments of PHP code.

Constant width bold

Used for user input, such as commands that you type on the command line.

 Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐

mined by context.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at http://bit.ly/phpckbk3.

To comment or ask technical questions about this book, send email to bookques

 tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website

at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xx | Preface

Acknowledgments

Most importantly, a huge thanks to everyone who has contributed their time, creativity,

and skills to making PHP what it is today. This amazing volunteer effort has created not

only hundreds of thousands of lines of source code, but also comprehensive documen‐

tation, a QA infrastructure, lots of add-on applications and libraries, and a thriving user

community worldwide. It’s a thrill and an honor to add the PHP Cookbook to the world of PHP.

Thanks also to our reviewers: Paul Huff, Peter MacIntyre, Simon MacIntyre, and Russ

Uman. Special mention to Chris Shiflett and Clay Lovelace for their contributions to

the second edition of this book.

And big thanks to the folks at O’Reilly that made this book a reality: Rachel Roumeliotis,

Allyson MacDonald, Melanie Yarbrough, and Maria Gulick as well as the nameless orcs

and dwarves that toil in the subterranean caverns of Sebastopol and Cambridge to make

sure that the production process runs smoothly.

David Sklar

Thanks twice again to Adam. We’ve been working together (in one way or another) for

18 years and PHPing together for 17. There is still no one with whom I’d rather have

written this book (except, to be completely honest, maybe Ben Franklin, if he could

somehow be brought back to life).

Thanks to my family members of all ages. You gave me the time and space to focus on

the book. Now I will give you time and space to read the entire thing!

Adam Trachtenberg

David: It’s tough to complete with Ben Franklin. Please know that I support the turkey

as the official animal of PHP instead of the elephant. Many thanks for your support over

all these years, beginning long ago in the days of PHP/FI. Without you, this book would

merely be a dream.

Thanks to my family and friends for their support and encouragement over these many

months. All my love to my two sons, even the one who helped me relearn that human

children don’t give you extensions after 40 weeks if your work on PHP Cookbook isn’t

complete. Finally, special thanks to my wife Elizabeth Anne; I should take your good

advice more often.

Preface | xxi

CHAPTER 1

Strings

1.0 Introduction

Strings in PHP are sequences of bytes, such as “We hold these truths to be self-evident”

or “Once upon a time” or even “111211211.” When you read data from a file or output

it to a web browser, your data is represented as strings.

PHP strings are binary-safe (i.e., they can contain null bytes) and can grow and shrink

on demand. Their size is limited only by the amount of memory that is available to PHP.

Usually, PHP strings are ASCII strings. You must do extra work to

handle non-ASCII data like UTF-8 or other multibyte character en‐

codings (see Chapter 19).

Similar in form and behavior to Perl and the Unix shell, strings can be initialized in

three ways: with single quotes, with double quotes, and with the “here document”

(heredoc) format. With single-quoted strings, the only special characters you need to

escape inside a string are the backslash and the single quote itself. This example shows

four single-quoted strings:

print 'I have gone to the store.';

print 'I\'ve gone to the store.';

print 'Would you pay $1.75 for 8 ounces of tap water?';

print 'In double-quoted strings, newline is represented by \n';

It prints:

I have gone to the store.

I've gone to the store.

Would you pay $1.75 for 8 ounces of tap water?

In double-quoted strings, newline is represented by \n

1

The preceding output shows what the raw output looks like. If you

view it in a web browser, you will see all the sentences on the same

line because HTML requires additional markup to insert line breaks.

Because PHP doesn’t check for variable interpolation or almost any escape sequences

in single-quoted strings, defining strings this way is straightforward and fast.

Double-quoted strings don’t recognize escaped single quotes, but they do recognize

interpolated variables and the escape sequences shown in Table 1-1.

 Table 1-1. Double-quoted string escape sequences

Escape sequence

Character

\n

Newline (ASCII 10)

\r

Carriage return (ASCII 13)

\t

Tab (ASCII 9)

\\

Backslash

\$

Dollar sign

\"

Double quote

\0 through \777

Octal value

\x0 through \xFF Hex value

Example 1-1 shows some double-quoted strings.

 Example 1-1. Double-quoted strings

print "I've gone to the store.";

print "The sauce cost \$10.25.";

$cost = '$10.25';

print "The sauce cost $cost.";

print "The sauce cost \$\061\060. \x32\x35.";

Example 1-1 prints:

I've gone to the store.

The sauce cost $10.25.

The sauce cost $10.25.

The sauce cost $10.25.

The last line of Example 1-1 prints the price of sauce correctly because the character 1

is ASCII code 49 decimal and 061 octal. Character 0 is ASCII 48 decimal and 060 octal;

2 is ASCII 50 decimal and 32 hex; and 5 is ASCII 53 decimal and 35 hex.

Heredoc-specified strings recognize all the interpolations and escapes of double-quoted

strings, but they don’t require double quotes to be escaped. Heredocs start with <<< and

2 | Chapter 1: Strings

a token. That token (with no leading or trailing whitespace), followed by a semicolon

to end the statement (if necessary), ends the heredoc. Example 1-2 shows how to define a heredoc.

 Example 1-2. Defining a here document

print <<< END

It's funny when signs say things like:

Original "Root" Beer

"Free" Gift

Shoes cleaned while "you" wait

or have other misquoted words.

END;

Example 1-2 prints:

It's funny when signs say things like:

 Original "Root" Beer

 "Free" Gift

 Shoes cleaned while "you" wait

or have other misquoted words.

Newlines, spacing, and quotes are all preserved in a heredoc. By convention, the end-

of-string identifier is usually all caps, and it is case sensitive. Example 1-3 shows two more valid heredocs.

 Example 1-3. More here documents

print <<< PARSLEY

It's easy to grow fresh:

Parsley

Chives

on your windowsill

PARSLEY;

print <<< DOGS

If you like pets, yell out:

DOGS AND CATS ARE GREAT!

DOGS;

Heredocs are especially useful for printing out HTML with interpolated variables be‐

cause you don’t have to escape the double quotes that appear in the HTML elements.

Example 1-4 uses a heredoc to print HTML.

 Example 1-4. Printing HTML with a here document

if ($remaining_cards > 0) {

$url = '/deal.php';

$text = 'Deal More Cards';

} else {

$url = '/new-game.php';

$text = 'Start a New Game';

}

1.0 Introduction | 3

print <<< HTML

There are $remaining_cards left.

<p>

$text

HTML;

In Example 1-4, the semicolon needs to go after the end-of-string delimiter to tell PHP

the statement is ended. In some cases, however, you shouldn’t use the semicolon. One

of these cases is shown in Example 1-5, which uses a heredoc with the string concate‐

nation operator.

 Example 1-5. Concatenation with a here document

$html = <<< END

<div class="$divClass">

<ul class="$ulClass">

END

. $listItem . '</div>';

print $html;

Assuming some reasonable values for the $divClass, $ulClass, and $listItem vari‐

ables, Example 1-5 prints:

<div class="class1">>

<ul class="class2">

 The List Item </div>

In Example 1-5, the expression needs to continue on the next line, so you don’t use a

semicolon. Note also that in order for PHP to recognize the end-of-string delimiter,

the . string concatenation operator needs to go on a separate line from the end-of-string

delimiter.

Nowdocs are similar to heredocs, but there is no variable interpolation. So, nowdocs

are to heredocs as single-quoted strings are to double-quoted strings. They’re best when

you have a block of non-PHP code, such as JavaScript, that you want to print as part of

an HTML page or send to another program.

For example, if you’re using jQuery:

$js = <<<'__JS__'

$.ajax({

'url': '/api/getStock',

'data': {

'ticker': 'LNKD'

},

'success': function(data) {

$("#stock-price").html("$" + data + "");

}

});

4 | Chapter 1: Strings

__JS__;

print $js;

Individual bytes in strings can be referenced with square brackets. The first byte in the

string is at index 0. Example 1-6 grabs one byte from a string.

 Example 1-6. Getting an individual byte in a string

$neighbor = 'Hilda';

print $neighbor[3];

Example 1-6 prints:

d

1.1 Accessing Substrings

Problem

You want to know if a string contains a particular substring. For example, you want to

find out if an email address contains a @.

Solution

Use strpos(), as in Example 1-7.

 Example 1-7. Finding a substring with strpos()

if (strpos($_POST['email'], '@') === false) {

print 'There was no @ in the e-mail address!';

}

Discussion

The return value from strpos() is the first position in the string (the “haystack”) at

which the substring (the “needle”) was found. If the needle wasn’t found at all in the

haystack, strpos() returns false. If the needle is at the beginning of the haystack,

strpos() returns 0 because position 0 represents the beginning of the string. To dif‐

ferentiate between return values of 0 and false, you must use the identity operator

(===) or the not–identity operator (!==) instead of regular equals (==) or not-equals

(!=). Example 1-7 compares the return value from strpos() to false using ===. This

test only succeeds if strpos() returns false, not if it returns 0 or any other number.

See Also

Documentation on strpos().

1.1 Accessing Substrings | 5

1.2 Extracting Substrings

Problem

You want to extract part of a string, starting at a particular place in the string. For

example, you want the first eight characters of a username entered into a form.

Solution

Use substr() to select your substring, as in Example 1-8.

 Example 1-8. Extracting a substring with substr()

$substring = substr($string,$start,$length);

$username = substr($_GET['username'],0,8);

Discussion

If $start and $length are positive, substr() returns $length characters in the string,

starting at $start. The first character in the string is at position 0. Example 1-9 has positive $start and $length.

 Example 1-9. Using substr() with positive $start and $length

print substr('watch out for that tree',6,5);

Example 1-9 prints:

out f

If you leave out $length, substr() returns the string from $start to the end of the

original string, as shown in Example 1-10.

 Example 1-10. Using substr() with positive start and no length

print substr('watch out for that tree',17);

Example 1-10 prints:

t tree

If $start is bigger than the length of the string, substr() returns false.

If $start plus $length goes past the end of the string, substr() returns all of the string

from $start forward, as shown in Example 1-11.

 Example 1-11. Using substr() with length past the end of the string

print substr('watch out for that tree',20,5);

Example 1-11 prints:

6 | Chapter 1: Strings

ree

If $start is negative, substr() counts back from the end of the string to determine

where your substring starts, as shown in Example 1-12.

 Example 1-12. Using substr() with negative start

print substr('watch out for that tree',-6);

print substr('watch out for that tree',-17,5);

Example 1-12 prints:

t tree

out f

With a negative $start value that goes past the beginning of the string (for example, if

$start is −27 with a 20-character string), substr() behaves as if $start is 0.

If $length is negative, substr() counts back from the end of the string to determine

where your substring ends, as shown in Example 1-13.

 Example 1-13. Using substr() with negative length

print substr('watch out for that tree',15,-2);

print substr('watch out for that tree',-4,-1);

Example 1-13 prints:

hat tr

tre

See Also

Documentation on substr().

1.3 Replacing Substrings

Problem

You want to replace a substring with a different string. For example, you want to obscure

all but the last four digits of a credit card number before printing it.

Solution

Use substr_replace(), as in Example 1-14.

 Example 1-14. Replacing a substring with substr_replace()

 // Everything from position $start to the end of $old_string

 // becomes $new_substring

$new_string = substr_replace($old_string,$new_substring,$start);

1.3 Replacing Substrings | 7

 // $length characters, starting at position $start, become $new_substring

$new_string = substr_replace($old_string,$new_substring,$start,$length);

Discussion

Without the $length argument, substr_replace() replaces everything from $start

to the end of the string. If $length is specified, only that many characters are replaced:

print substr_replace('My pet is a blue dog.','fish.',12);

print substr_replace('My pet is a blue dog.','green',12,4);

$credit_card = '4111 1111 1111 1111';

print substr_replace($credit_card,'xxxx ',0,strlen($credit_card)-4);

My pet is a fish.

My pet is a green dog.

xxxx 1111

If $start is negative, the new substring is placed by counting $start characters from

the end of $old_string, not from the beginning:

print substr_replace('My pet is a blue dog.','fish.',-9);

print substr_replace('My pet is a blue dog.','green',-9,4);

My pet is a fish.

My pet is a green dog.

If $start and $length are 0, the new substring is inserted at the start of $old_string:

print substr_replace('My pet is a blue dog.','Title: ',0,0);

Title: My pet is a blue dog.

The function substr_replace() is useful when you’ve got text that’s too big to display

all at once, and you want to display some of the text with a link to the rest. Example 1-15

displays the first 25 characters of a message with an ellipsis after it as a link to a page

that displays more text.

 Example 1-15. Displaying long text with an ellipsis

$r = mysql_query("SELECT id,message FROM messages WHERE id = $id") or die();

$ob = mysql_fetch_object($r);

printf('%s',

$ob->id, substr_replace($ob->message,' ...',25));

The more-text.php page referenced in Example 1-15 can use the message ID passed in the query string to retrieve the full message and display it.

See Also

Documentation on substr_replace().

8 | Chapter 1: Strings

1.4 Processing a String One Byte at a Time

Problem

You need to process each byte in a string individually.

Solution

Loop through each byte in the string with for. Example 1-16 counts the vowels in a

string.

 Example 1-16. Processing each byte in a string

$string = "This weekend, I'm going shopping for a pet chicken.";

$vowels = 0;

for ($i = 0, $j = strlen($string); $i < $j; $i++) {

if (strstr('aeiouAEIOU',$string[$i])) {

$vowels++;

}

}

Discussion

Processing a string a character at a time is an easy way to calculate the “Look and Say”

sequence, as shown in Example 1-17.

 Example 1-17. The Look and Say sequence

function lookandsay($s) {

 // initialize the return value to the empty string

$r = '';

 // $m holds the character we're counting, initialize to the first

 // character in the string

$m = $s[0];

 // $n is the number of $m's we've seen, initialize to 1

$n = 1;

for ($i = 1, $j = strlen($s); $i < $j; $i++) {

 // if this character is the same as the last one

if ($s[$i] == $m) {

 // increment the count of this character

$n++;

} else {

 // otherwise, add the count and character to the return value

$r .= $n.$m;

 // set the character we're looking for to the current one

$m = $s[$i];

 // and reset the count to 1

$n = 1;

}

}

 // return the built up string as well as the last count and character

1.4 Processing a String One Byte at a Time | 9

 return $r.$n.$m;

}

for ($i = 0, $s = 1; $i < 10; $i++) {

$s = lookandsay($s);

print "$s\n";

}

Example 1-17 prints:

1

11

21

1211

111221

312211

13112221

1113213211

31131211131221

13211311123113112211

It’s called the “Look and Say” sequence because each element is what you get by looking

at the previous element and saying what’s in it. For example, looking at the first element,

1, you say “one one.” So the second element is “11.” That’s two ones, so the third element

is “21.” Similarly, that’s one two and one one, so the fourth element is “1211,” and so on.

See Also

Documentation on for; more about the “Look and Say” sequence.

1.5 Reversing a String by Word or Byte

Problem

You want to reverse the words or the bytes in a string.

Solution

Use strrev() to reverse by byte, as in Example 1-18.

 Example 1-18. Reversing a string by byte

print strrev('This is not a palindrome.');

Example 1-18 prints:

.emordnilap a ton si sihT

To reverse by words, explode the string by word boundary, reverse the words, and then

rejoin, as in Example 1-19.

10 | Chapter 1: Strings

 Example 1-19. Reversing a string by word

$s = "Once upon a time there was a turtle.";

 // break the string up into words

$words = explode(' ',$s);

 // reverse the array of words

$words = array_reverse($words);

 // rebuild the string

$s = implode(' ',$words);

print $s;

Example 1-19 prints:

turtle. a was there time a upon Once

Discussion

Reversing a string by words can also be done all in one line with the code in

Example 1-20.

 Example 1-20. Concisely reversing a string by word

$reversed_s = implode(' ',array_reverse(explode(' ',$s)));

See Also

Recipe 24.7 discusses the implications of using something other than a space character as your word boundary; documentation on strrev() and array_reverse().

1.6 Generating a Random String

Problem

You want to generate a random string.

Solution

Use str_rand():

function str_rand($length = 32,

$characters = ↵

'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ') {

if (!is_int($length) || $length < 0) {

return false;

}

$characters_length = strlen($characters) - 1;

$string = '';

1.6 Generating a Random String | 11

for ($i = $length; $i > 0; $i--) {

$string .= $characters[mt_rand(0, $characters_length)];

}

return $string;

}

Discussion

PHP has native functions for generating random numbers, but nothing for random

strings. The str_rand() function returns a 32-character string constructed from letters

and numbers.

Pass in an integer to change the length of the returned string. To use an alternative set

of characters, pass them as a string as the second argument. For example, to get a 16-

digit Morse Code:

print str_rand(16, '.-');

.--..-.-.--.----

See Also

Recipe 2.5 for generating random numbers.

1.7 Expanding and Compressing Tabs

Problem

You want to change spaces to tabs (or tabs to spaces) in a string while keeping text

aligned with tab stops. For example, you want to display formatted text to users in a

standardized way.

Solution

Use str_replace() to switch spaces to tabs or tabs to spaces, as shown in Example 1-21.

 Example 1-21. Switching tabs and spaces

$rows = $db->query('SELECT message FROM messages WHERE id = 1');

$obj = $rows->fetch(PDO::FETCH_OBJ);

$tabbed = str_replace(' ' , " \t", $obj->message);

$spaced = str_replace(" \t", ' ' , $obj->message);

print "With Tabs: <pre>$tabbed</pre>";

print "With Spaces: <pre>$spaced</pre>";

12 | Chapter 1: Strings

Using str_replace() for conversion, however, doesn’t respect tab stops. If you want

tab stops every eight characters, a line beginning with a five-letter word and a tab should

have that tab replaced with three spaces, not one. Use the tab_expand() function shown

in Example 1-22 to turn tabs to spaces in a way that respects tab stops.

 Example 1-22. tab_expand()

function tab_expand($text) {

while (strstr($text," \t")) {

$text = preg_replace_callback('/^([^\t\n]*)(\t+)/m',

'tab_expand_helper', $text);

}

return $text;

}

function tab_expand_helper($matches) {

$tab_stop = 8;

return $matches[1] .

str_repeat(' ',strlen($matches[2]) *

$tab_stop - (strlen($matches[1]) % $tab_stop));

}

$spaced = tab_expand($obj->message);

You can use the tab_unexpand() function shown in Example 1-23 to turn spaces back

to tabs.

 Example 1-23. tab_unexpand()

function tab_unexpand($text) {

$tab_stop = 8;

$lines = explode(" \n",$text);

foreach ($lines as $i => $line) {

 // Expand any tabs to spaces

$line = tab_expand($line);

$chunks = str_split($line, $tab_stop);

$chunkCount = count($chunks);

 // Scan all but the last chunk

for ($j = 0; $j < $chunkCount - 1; $j++) {

$chunks[$j] = preg_replace('/ {2,}$/'," \t",$chunks[$j]);

}

 // If the last chunk is a tab-stop's worth of spaces

 // convert it to a tab; Otherwise, leave it alone

if ($chunks[$chunkCount-1] == str_repeat(' ', $tab_stop)) {

$chunks[$chunkCount-1] = " \t";

}

 // Recombine the chunks

$lines[$i] = implode('',$chunks);

}

 // Recombine the lines

1.7 Expanding and Compressing Tabs | 13

 return implode(" \n",$lines);

}

$tabbed = tab_unexpand($obj->message);

Both functions take a string as an argument and return the string appropriately modi‐

fied.

Discussion

Each function assumes tab stops are every eight spaces, but that can be modified by

changing the setting of the $tab_stop variable.

The regular expression in tab_expand() matches both a group of tabs and all the text

in a line before that group of tabs. It needs to match the text before the tabs because the

length of that text affects how many spaces the tabs should be replaced with so that

subsequent text is aligned with the next tab stop. The function doesn’t just replace each

tab with eight spaces; it adjusts text after tabs to line up with tab stops.

Similarly, tab_unexpand() doesn’t just look for eight consecutive spaces and then re‐

place them with one tab character. It divides up each line into eight-character chunks

and then substitutes ending whitespace in those chunks (at least two spaces) with tabs.

This not only preserves text alignment with tab stops; it also saves space in the string.

See Also

Documentation on str_replace(), on preg_replace_callback(), and on

str_split(). Recipe 23.10 has more information on preg_replace_callback().

1.8 Controlling Case

Problem

You need to capitalize, lowercase, or otherwise modify the case of letters in a string. For

example, you want to capitalize the initial letters of names but lowercase the rest.

Solution

Use ucfirst() or ucwords() to capitalize the first letter of one or more words, as shown

in Example 1-24.

 Example 1-24. Capitalizing letters

print ucfirst("how do you do today?");

print ucwords("the prince of wales");

14 | Chapter 1: Strings

Example 1-24 prints:

How do you do today?

The Prince Of Wales

Use strtolower() or strtoupper() to modify the case of entire strings, as in

Example 1-25.

 Example 1-25. Changing case of strings

print strtoupper("i'm not yelling!");

print strtolower('one');

Example 1-25 prints:

I'M NOT YELLING!

one

Discussion

Use ucfirst() to capitalize the first character in a string:

print ucfirst('monkey face');

print ucfirst('1 monkey face');

This prints:

Monkey face

1 monkey face

Note that the second phrase is not “1 Monkey face.”

Use ucwords() to capitalize the first character of each word in a string:

print ucwords('1 monkey face');

print ucwords("don't play zone defense against the philadelphia 76-ers");

This prints:

1 Monkey Face

Don't Play Zone Defense Against The Philadelphia 76-ers

As expected, ucwords() doesn’t capitalize the “t” in “don’t.” But it also doesn’t capitalize

the “e” in “76-ers.” For ucwords(), a word is any sequence of nonwhitespace characters

that follows one or more whitespace characters. Because both ' and - aren’t whitespace

characters, ucwords() doesn’t consider the “t” in “don’t” or the “e” in “76-ers” to be word-

starting characters.

Both ucfirst() and ucwords() don’t change the case of non–first letters:

print ucfirst('macWorld says I should get an iBook');

print ucwords('eTunaFish.com might buy itunaFish.Com!');

This prints:

1.8 Controlling Case | 15

MacWorld says I should get an iBook

ETunaFish.com Might Buy ItunaFish.Com!

The functions strtolower() and strtoupper() work on entire strings, not just indi‐

vidual characters. All alphabetic characters are changed to lowercase by strtolow

er() and strtoupper() changes all alphabetic characters to uppercase:

print strtolower("I programmed the WOPR and the TRS-80.");

print strtoupper('"since feeling is first" is a poem by e. e. cummings.');

This prints:

i programmed the wopr and the trs-80.

"SINCE FEELING IS FIRST" IS A POEM BY E. E. CUMMINGS.

When determining upper- and lowercase, these functions respect your locale settings.

See Also

For more information about locale settings, see Chapter 19; documentation on uc

first(), ucwords(), strtolower(), and strtoupper().

1.9 Interpolating Functions and Expressions Within

Strings

Problem

You want to include the results of executing a function or expression within a string.

Solution

Use the string concatenation operator (.), as shown in Example 1-26, when the value

you want to include can’t be inside the string.

 Example 1-26. String concatenation

print 'You have '.($_POST['boys'] + $_POST['girls']).' children.';

print "The word '$word' is ".strlen($word).' characters long.';

print 'You owe '.$amounts['payment'].' immediately.';

print "My circle's diameter is ".$circle->getDiameter().' inches.';

Discussion

You can put variables, object properties, and array elements (if the subscript is unquo‐

ted) directly in double-quoted strings:

print "I have $children children.";

print "You owe $amounts[payment] immediately.";

print "My circle's diameter is $circle->diameter inches.";

16 | Chapter 1: Strings

Interpolation with double-quoted strings places some limitations on the syntax of what

can be interpolated. In the previous example, $amounts['payment'] had to be written

as $amounts[payment] so it would be interpolated properly. Use curly braces around

more complicated expressions to interpolate them into a string. For example:

print "I have {$children} children.";

print "You owe {$amounts['payment']} immediately.";

print "My circle's diameter is {$circle->getDiameter()} inches.";

Direct interpolation or using string concatenation also works with heredocs. Interpo‐

lating with string concatenation in heredocs can look a little strange because the closing

heredoc delimiter and the string concatenation operator have to be on separate lines:

print <<< END

Right now, the time is

END

. strftime('%c') . <<< END

but tomorrow it will be

END

. strftime('%c',time() + 86400);

Also, if you’re interpolating with heredocs, make sure to include appropriate spacing

for the whole string to appear properly. In the previous example, Right now, the time

is has to include a trailing space, and but tomorrow it will be has to include leading

and trailing spaces.

See Also

For the syntax to interpolate variable variables (such as ${"amount_$i"}), see

Recipe 5.4; documentation on the string concatenation operator.

1.10 Trimming Blanks from a String

Problem

You want to remove whitespace from the beginning or end of a string. For example, you

want to clean up user input before validating it.

Solution

Use ltrim(), rtrim(), or trim(). The ltrim() function removes whitespace from the

beginning of a string, rtrim() from the end of a string, and trim() from both the

beginning and end of a string:

$zipcode = trim($_GET['zipcode']);

$no_linefeed = rtrim($_GET['text']);

$name = ltrim($_GET['name']);

1.10 Trimming Blanks from a String | 17

Discussion

For these functions, whitespace is defined as the following characters: newline, carriage

return, space, horizontal and vertical tab, and null.

Trimming whitespace off of strings saves storage space and can make for more precise

display of formatted data or text within <pre> tags, for example. If you are doing com‐

parisons with user input, you should trim the data first, so that someone who mistakenly

enters 98052 followed by a few spaces as their zip code isn’t forced to fix an error that

really isn’t one. Trimming before exact text comparisons also ensures that, for example,

“salami\n” equals “salami.” It’s also a good idea to normalize string data by trimming it

before storing it in a database.

The trim() functions can also remove user-specified characters from strings. Pass the

characters you want to remove as a second argument. You can indicate a range of char‐

acters with two dots between the first and last characters in the range:

 // Remove numerals and space from the beginning of the line

print ltrim('10 PRINT A$',' 0..9');

 // Remove semicolon from the end of the line

print rtrim('SELECT * FROM turtles;',';');

This prints:

PRINT A$

SELECT * FROM turtles

PHP also provides chop() as an alias for rtrim(). However, you’re best off using

rtrim() instead because PHP’s chop() behaves differently than Perl’s chop() (which is

deprecated in favor of chomp(), anyway), and using it can confuse others when they

read your code.

See Also

Documentation on trim(), ltrim(), and rtrim().

1.11 Generating Comma-Separated Data

Problem

You want to format data as comma-separated values (CSV) so that it can be imported

by a spreadsheet or database.

Solution

Use the fputcsv() function to generate a CSV-formatted line from an array of data.

Example 1-27 writes the data in $sales into a file.

18 | Chapter 1: Strings

 Example 1-27. Generating comma-separated data

$sales = array(array('Northeast','2005-01-01','2005-02-01',12.54),

array('Northwest','2005-01-01','2005-02-01',546.33),

array('Southeast','2005-01-01','2005-02-01',93.26),

array('Southwest','2005-01-01','2005-02-01',945.21),

array('All Regions','--','--',1597.34));

$filename = './sales.csv';

$fh = fopen($filename,'w') or die("Can't open $filename");

foreach ($sales as $sales_line) {

if (fputcsv($fh, $sales_line) === false) {

die("Can't write CSV line");

}

}

fclose($fh) or die("Can't close $filename");

Discussion

To print the CSV-formatted data instead of writing it to a file, use the special output

stream php://output, as shown in Example 1-28.

 Example 1-28. Printing comma-separated data

$sales = array(array('Northeast','2005-01-01','2005-02-01',12.54),

array('Northwest','2005-01-01','2005-02-01',546.33),

array('Southeast','2005-01-01','2005-02-01',93.26),

array('Southwest','2005-01-01','2005-02-01',945.21),

array('All Regions','--','--',1597.34));

$fh = fopen('php://output','w');

foreach ($sales as $sales_line) {

if (fputcsv($fh, $sales_line) === false) {

die("Can't write CSV line");

}

}

fclose($fh);

To put the CSV-formatted data into a string instead of printing it or writing it to a file,

combine the technique in Example 1-28 with output buffering, as shown in

Example 1-29.

 Example 1-29. Putting comma-separated data into a string

$sales = array(array('Northeast','2005-01-01','2005-02-01',12.54),

array('Northwest','2005-01-01','2005-02-01',546.33),

array('Southeast','2005-01-01','2005-02-01',93.26),

array('Southwest','2005-01-01','2005-02-01',945.21),

array('All Regions','--','--',1597.34));

ob_start();

1.11 Generating Comma-Separated Data | 19

$fh = fopen('php://output','w') or die("Can't open php://output"); foreach ($sales as $sales_line) {

if (fputcsv($fh, $sales_line) === false) {

die("Can't write CSV line");

}

}

fclose($fh) or die("Can't close php://output");

$output = ob_get_contents();

ob_end_clean();

See Also

Documentation on fputcsv(); Recipe 8.13 has more information about output buffering.

1.12 Parsing Comma-Separated Data

Problem

You have data in comma-separated values (CSV) format—for example, a file exported

from Excel or a database—and you want to extract the records and fields into a format

you can manipulate in PHP.

Solution

If the CSV data is in a file (or available via a URL), open the file with fopen() and read

in the data with fgetcsv(). Example 1-30 prints out CSV data in an HTML table.

 Example 1-30. Reading CSV data from a file

$fp = fopen($filename,'r') or die("can't open file");

print "<table> \n";

while($csv_line = fgetcsv($fp)) {

print '<tr>';

for ($i = 0, $j = count($csv_line); $i < $j; $i++) {

print '<td>'.htmlentities($csv_line[$i]).'</td>';

}

print "</tr> \n";

}

print "</table> \n";

fclose($fp) or die("can't close file");

Discussion

By default, fgetcsv() reads in an entire line of data. If your average line length is more

than 8,192 bytes, your program may run faster if you specify an explicit line length

instead of letting PHP figure it out. Do this by providing a second argument to

fgetcsv() that is a value larger than the maximum length of a line in your CSV file.

20 | Chapter 1: Strings

(Don’t forget to count the end-of-line whitespace.) If you pass a line length of 0, PHP

will use the default behavior.

You can pass fgetcsv() an optional third argument, a delimiter to use instead of a

comma (,). However, using a different delimiter somewhat defeats the purpose of CSV

as an easy way to exchange tabular data.

Don’t be tempted to bypass fgetcsv() and just read a line in and explode() on the

commas. CSV is more complicated than that so that it can deal with field values that

have, for example, literal commas in them that should not be treated as field delimiters.

Using fgetcsv() protects you and your code from subtle errors.

See Also

Documentation on fgetcsv().

1.13 Generating Fixed-Width Field Data Records

Problem

You need to format data records such that each field takes up a set amount of characters.

Solution

Use pack() with a format string that specifies a sequence of space-padded strings.

Example 1-31 transforms an array of data into fixed-width records.

 Example 1-31. Generating fixed-width field data records

$books = array(array('Elmer Gantry', 'Sinclair Lewis', 1927),

array('The Scarlatti Inheritance','Robert Ludlum', 1971),

array('The Parsifal Mosaic','William Styron', 1979));

foreach ($books as $book) {

print pack('A25A15A4', $book[0], $book[1], $book[2]) . " \n";

}

Discussion

The format string A25A14A4 tells pack() to transform its subsequent arguments into a

25-character space-padded string, a 14-character space-padded string, and a 4-

character space-padded string. For space-padded fields in fixed-width records, pack()

provides a concise solution.

To pad fields with something other than a space, however, use substr() to ensure that

the field values aren’t too long and str_pad() to ensure that the field values aren’t too

1.13 Generating Fixed-Width Field Data Records | 21

short. Example 1-32 transforms an array of records into fixed-width records with .-padded fields.

 Example 1-32. Generating fixed-width field data records without pack()

$books = array(array('Elmer Gantry', 'Sinclair Lewis', 1927),

array('The Scarlatti Inheritance','Robert Ludlum', 1971),

array('The Parsifal Mosaic','William Styron', 1979));

foreach ($books as $book) {

$title = str_pad(substr($book[0], 0, 25), 25, '.');

$author = str_pad(substr($book[1], 0, 15), 15, '.');

$year = str_pad(substr($book[2], 0, 4), 4, '.');

print "$title$author$year\n";

}

See Also

Documentation on pack() and on str_pad(). Recipe 1.17 discusses pack() format strings in more detail.

1.14 Parsing Fixed-Width Field Data Records

Problem

You need to break apart fixed-width records in strings.

Solution

Use substr() as shown in Example 1-33.

 Example 1-33. Parsing fixed-width records with substr()

$fp = fopen('fixed-width-records.txt','r', true) or die ("can't open file"); while ($s = fgets($fp,1024)) {

$fields[1] = substr($s,0,25); // first field: first 25 characters of the line

$fields[2] = substr($s,25,15); // second field: next 15 characters of the line

$fields[3] = substr($s,40,4); // third field: next 4 characters of the line

$fields = array_map('rtrim', $fields); // strip the trailing whitespace

 // a function to do something with the fields

process_fields($fields);

}

fclose($fp) or die("can't close file");

Or unpack(), as shown in Example 1-34.

 Example 1-34. Parsing fixed-width records with unpack()

function fixed_width_unpack($format_string,$data) {

$r = array();

22 | Chapter 1: Strings

 for ($i = 0, $j = count($data); $i < $j; $i++) {

$r[$i] = unpack($format_string,$data[$i]);

}

return $r;

}

Discussion

Data in which each field is allotted a fixed number of characters per line may look like

this list of books, titles, and publication dates:

$booklist=<<<END

Elmer Gantry Sinclair Lewis 1927

The Scarlatti InheritanceRobert Ludlum 1971

The Parsifal Mosaic Robert Ludlum 1982

Sophie's Choice William Styron 1979

END;

In each line, the title occupies the first 25 characters, the author’s name the next 15

characters, and the publication year the next 4 characters. Knowing those field widths,

you can easily use substr() to parse the fields into an array:

$books = explode(" \n",$booklist);

for($i = 0, $j = count($books); $i < $j; $i++) {

$book_array[$i]['title'] = substr($books[$i],0,25);

$book_array[$i]['author'] = substr($books[$i],25,15);

$book_array[$i]['publication_year'] = substr($books[$i],40,4);

}

Exploding $booklist into an array of lines makes the looping code the same whether

it’s operating over a string or a series of lines read in from a file.

The loop can be made more flexible by specifying the field names and widths in a

separate array that can be passed to a parsing function, as shown in the

fixed_width_substr() function in Example 1-35.

 Example 1-35. fixed_width_substr()

function fixed_width_substr($fields,$data) {

$r = array();

for ($i = 0, $j = count($data); $i < $j; $i++) {

$line_pos = 0;

foreach($fields as $field_name => $field_length) {

$r[$i][$field_name] = rtrim(substr($data[$i],$line_pos,$field_length));

$line_pos += $field_length;

}

}

return $r;

}

$book_fields = array('title' => 25,

1.14 Parsing Fixed-Width Field Data Records | 23

 'author' => 15,

'publication_year' => 4);

$book_array = fixed_width_substr($book_fields,$booklist);

The variable $line_pos keeps track of the start of each field and is advanced by the

previous field’s width as the code moves through each line. Use rtrim() to remove

trailing whitespace from each field.

You can use unpack() as a substitute for substr() to extract fields. Instead of specifying

the field names and widths as an associative array, create a format string for unpack().

A fixed-width field extractor using unpack() looks like the fixed_width_unpack()

function shown in Example 1-36.

 Example 1-36. fixed_width_unpack()

function fixed_width_unpack($format_string,$data) {

$r = array();

for ($i = 0, $j = count($data); $i < $j; $i++) {

$r[$i] = unpack($format_string,$data[$i]);

}

return $r;

}

Because the A format to unpack() means space-padded string, there’s no need to rtrim()

off the trailing spaces.

Once the fields have been parsed into $book_array by either function, the data can be

printed as an HTML table, for example:

$book_array = fixed_width_unpack('A25title/A15author/A4publication_year',

$books);

print "<table> \n";

 // print a header row

print '<tr><td>';

print join('</td><td>',array_keys($book_array[0]));

print "</td></tr> \n";

 // print each data row

foreach ($book_array as $row) {

print '<tr><td>';

print join('</td><td>',array_values($row));

print "</td></tr> \n";

}

print "</table> \n";

Joining data on </td><td> produces a table row that is missing its first <td> and last

</td>. We produce a complete table row by printing out <tr><td> before the joined

data and </td></tr> after the joined data.

24 | Chapter 1: Strings

Both substr() and unpack() have equivalent capabilities when the fixed-width fields

are strings, but unpack() is the better solution when the elements of the fields aren’t just

strings.

If all of your fields are the same size, str_split() is a handy shortcut for chopping up

incoming data. It returns an array made up of sections of a string. Example 1-37 uses

str_split() to break apart a string into 32-byte pieces.

 Example 1-37. Chopping up a string with str_split()

$fields = str_split($line_of_data,32);

 // $fields[0] is bytes 0 - 31

 // $fields[1] is bytes 32 - 63

 // and so on

See Also

For more information about unpack(), see Recipe 1.17 and the PHP website; documentation on str_split(); Recipe 4.8 discusses join().

1.15 Taking Strings Apart

Problem

You need to break a string into pieces. For example, you want to access each line that a

user enters in a <textarea> form field.

Solution

Use explode() if what separates the pieces is a constant string:

$words = explode(' ','My sentence is not very complicated');

Use preg_split() if you need a Perl-compatible regular expression to describe the

separator:

$words = preg_split('/\d\. /','my day: 1. get up 2. get dressed 3. eat toast');

$lines = preg_split('/[\n\r]+/',$_POST['textarea']);

Use the /i flag to preg_split() for case-insensitive separator matching:

$words = preg_split('/ x /i','31 inches x 22 inches X 9 inches');

Discussion

The simplest solution of the bunch is explode(). Pass it your separator string, the string

to be separated, and an optional limit on how many elements should be returned:

1.15 Taking Strings Apart | 25

$dwarves = 'dopey,sleepy,happy,grumpy,sneezy,bashful,doc';

$dwarf_array = explode(',',$dwarves);

This makes $dwarf_array a seven-element array, so print_r($dwarf_array) prints:

Array

(

 [0] => dopey

 [1] => sleepy

 [2] => happy

 [3] => grumpy

 [4] => sneezy

 [5] => bashful

 [6] => doc

)

If the specified limit is less than the number of possible chunks, the last chunk contains

the remainder:

$dwarf_array = explode(',',$dwarves,5);

print_r($dwarf_array);

This prints:

Array

(

 [0] => dopey

 [1] => sleepy

 [2] => happy

 [3] => grumpy

 [4] => sneezy,bashful,doc

)

The separator is treated literally by explode(). If you specify a comma and a space as a

separator, it breaks the string only on a comma followed by a space, not on a comma or

a space.

With preg_split(), you have more flexibility. Instead of a string literal as a separator,

it uses a Perl-compatible regular expression engine. With preg_split(), you can take

advantage of various Perl-ish regular expression extensions, as well as tricks such as

including the separator text in the returned array of strings:

$math = "3 + 2 / 7 - 9";

$stack = preg_split('/ *([+\-\/*]) */',$math,-1,PREG_SPLIT_DELIM_CAPTURE);

print_r($stack);

This prints:

Array

(

 [0] => 3

 [1] => +

 [2] => 2

 [3] => /

26 | Chapter 1: Strings

 [4] => 7

 [5] => -

 [6] => 9

)

The separator regular expression looks for the four mathematical operators (+, -, /, *),

surrounded by optional leading or trailing spaces. The PREG_SPLIT_DELIM_CAPTURE flag

tells preg_split() to include the matches as part of the separator regular expression

in parentheses in the returned array of strings. Only the mathematical operator character

class is in parentheses, so the returned array doesn’t have any spaces in it.

See Also

Regular expressions are discussed in more detail in Chapter 23; documentation on

explode() and preg_split().

1.16 Wrapping Text at a Certain Line Length

Problem

You need to wrap lines in a string. For example, you want to display text by using <pre>

and </pre> tags but have it stay within a regularly sized browser window.

Solution

Use wordwrap():

$s = "Four score and seven years ago our fathers brought forth on this continent ↵

a new nation, conceived in liberty and dedicated to the proposition ↵

that all men are created equal.";

print "<pre>\n".wordwrap($s)."\n</pre>";

This prints:

<pre>

Four score and seven years ago our fathers brought forth on this continent

a new nation, conceived in liberty and dedicated to the proposition that

all men are created equal.

</pre>

Discussion

By default, wordwrap() wraps text at 75 characters per line. An optional second argu‐

ment specifies a different line length:

print wordwrap($s,50);

This prints:

1.16 Wrapping Text at a Certain Line Length | 27

Four score and seven years ago our fathers brought

forth on this continent a new nation, conceived in

liberty and dedicated to the proposition that all

men are created equal.

Other characters besides \n can be used for line breaks. For double spacing, use "\n\n":

print wordwrap($s,50," \n\n");

This prints:

Four score and seven years ago our fathers brought

forth on this continent a new nation, conceived in

liberty and dedicated to the proposition that all

men are created equal.

There is an optional fourth argument to wordwrap() that controls the treatment of words

that are longer than the specified line length. If this argument is 1, these words are

wrapped. Otherwise, they span past the specified line length:

print wordwrap('jabberwocky',5) . " \n";

print wordwrap('jabberwocky',5," \n",1);

This prints:

jabberwocky

jabbe

rwock

y

See Also

Documentation on wordwrap().

1.17 Storing Binary Data in Strings

Problem

You want to parse a string that contains values encoded as a binary structure or encode

values into a string. For example, you want to store numbers in their binary represen‐

tation instead of as sequences of ASCII characters.

Solution

Use pack() to store binary data in a string:

$packed = pack('S4',1974,106,28225,32725);

28 | Chapter 1: Strings

Use unpack() to extract binary data from a string:

$nums = unpack('S4',$packed);

Discussion

The first argument to pack() is a format string that describes how to encode the data

that’s passed in the rest of the arguments. The format string S4 tells pack() to produce

four unsigned short 16-bit numbers in machine byte order from its input data. Given

1974, 106, 28225, and 32725 as input on a little-endian machine, this returns eight bytes:

182, 7, 106, 0, 65, 110, 213, and 127. Each two-byte pair corresponds to one of the input

numbers: 7 * 256 + 182 is 1974; 0 * 256 + 106 is 106; 110 * 256 + 65 = 28225; 127 * 256

+ 213 = 32725.

The first argument to unpack() is also a format string, and the second argument is the

data to decode. Passing a format string of S4, the eight-byte sequence that pack()

produced returns a four-element array of the original numbers. print_r($nums) prints:

Array

(

 [1] => 1974

 [2] => 106

 [3] => 28225

 [4] => 32725

)

In unpack(), format characters and their count can be followed by a string to be used

as an array key. For example:

$nums = unpack('S4num',$packed);

print_r($nums);

This prints:

Array

(

 [num1] => 1974

 [num2] => 106

 [num3] => 28225

 [num4] => 32725

)

Multiple format characters must be separated with / in unpack():

$nums = unpack('S1a/S1b/S1c/S1d',$packed);

print_r($nums);

This prints:

Array

(

 [a] => 1974

1.17 Storing Binary Data in Strings | 29

 [b] => 106

 [c] => 28225

 [d] => 32725

)

The format characters that can be used with pack() and unpack() are listed in Table 1-2.

 Table 1-2. Format characters for pack() and unpack()

Format character Data type

a

NUL-padded string

A

Space-padded string

h

Hex string, low nibble first

H

Hex string, high nibble first

c

signed char

C

unsigned char

s

signed short (16 bit, machine byte order)

S

unsigned short (16 bit, machine byte order)

n

unsigned short (16 bit, big endian byte order)

v

unsigned short (16 bit, little endian byte order)

i

signed int (machine-dependent size and byte order)

I

unsigned int (machine-dependent size and byte order)

l

signed long (32 bit, machine byte order)

L

unsigned long (32 bit, machine byte order)

N

unsigned long (32 bit, big endian byte order)

V

unsigned long (32 bit, little endian byte order)

f

float (machine-dependent size and representation)

d

double (machine-dependent size and representation)

x

NUL byte

X

Back up one byte

@

NUL-fill to absolute position

For a, A, h, and H, a number after the format character indicates how long the string is.

For example, A25 means a 25-character space-padded string. For other format charac‐

ters, a following number means how many of that type appear consecutively in a string.

Use * to take the rest of the available data.

You can convert between data types with unpack(). This example fills the array $as

cii with the ASCII values of each character in $s:

$s = 'platypus';

$ascii = unpack('c*',$s);

print_r($ascii);

30 | Chapter 1: Strings

This prints:

Array

(

 [1] => 112

 [2] => 108

 [3] => 97

 [4] => 116

 [5] => 121

 [6] => 112

 [7] => 117

 [8] => 115

)

See Also

Documentation on pack() and unpack().

1.18 Program: Downloadable CSV File

Combining the header() function to change the content type of what your PHP pro‐

gram outputs with the fputcsv() function for data formatting lets you send CSV files

to browsers that will be automatically handed off to a spreadsheet program (or whatever

application is configured on a particular client system to handle CSV files).

Example 1-38 formats the results of an SQL SELECT query as CSV data and provides the

correct headers so that it is properly handled by the browser.

 Example 1-38. Downloadable CSV file

$db = new PDO('sqlite:/usr/local/data/sales.db');

$query = $db->query('SELECT region, start, end, amount FROM sales', PDO::FETCH_NUM);

$sales_data = $db->fetchAll();

 // Open filehandle for fputcsv()

$output = fopen('php://output','w') or die("Can't open php://output");

$total = 0;

 // Tell browser to expect a CSV file

header('Content-Type: application/csv');

header('Content-Disposition: attachment; filename="sales.csv"');

 // Print header row

fputcsv($output, array('Region','Start Date','End Date','Amount'));

 // Print each data row and increment $total

foreach ($sales_data as $sales_line) {

fputcsv($output, $sales_line);

$total += $sales_line[3];

}

 // Print total row and close file handle

1.18 Program: Downloadable CSV File | 31

fputcsv($output, array('All Regions','--','--',$total));

fclose($output) or die("Can't close php://output");

Example 1-38 sends two headers to ensure that the browser handles the CSV output

properly. The first header, Content-Type, tells the browser that the output is not HTML,

but CSV. The second header, Content-Disposition, tells the browser not to display the

output but to attempt to load an external program to handle it. The filename attribute

of this header supplies a default filename for the browser to use for the downloaded file.

If you want to provide different views of the same data, you can combine the formatting

code in one page and use a query string variable to determine which kind of data for‐

matting to do. In Example 1-39, the format query string variable controls whether the

results of an SQL SELECT query are returned as an HTML table or CSV.

 Example 1-39. Dynamic CSV or HTML

$db = new PDO('sqlite:/usr/local/data/sales.db');

$query = $db->query('SELECT region, start, end, amount FROM sales', PDO::FETCH_NUM);

$sales_data = $db->fetchAll();

$total = 0;

$column_headers = array('Region','Start Date','End Date','Amount');

 // Decide what format to use

$format = $_GET['format'] == 'csv' ? 'csv' : 'html';

 // Print format-appropriate beginning

if ($format == 'csv') {

$output = fopen('php://output','w') or die("Can't open php://output");

header('Content-Type: application/csv');

header('Content-Disposition: attachment; filename="sales.csv"');

fputcsv($output,$column_headers);

} else {

echo '<table><tr><th>';

echo implode('</th><th>', $column_headers);

echo '</th></tr>';

}

foreach ($sales_data as $sales_line) {

 // Print format-appropriate line

if ($format == 'csv') {

fputcsv($output, $sales_line);

} else {

echo '<tr><td>' . implode('</td><td>', $sales_line) . '</td></tr>';

}

$total += $sales_line[3];

}

$total_line = array('All Regions','--','--',$total);

 // Print format-appropriate footer

if ($format == 'csv') {

fputcsv($output,$total_line);

32 | Chapter 1: Strings

 fclose($output) or die("Can't close php://output");

} else {

echo '<tr><td>' . implode('</td><td>', $total_line) . '</td></tr>'; echo '</table>';

}

Accessing the program in Example 1-39 with format=csv in the query string causes it

to return CSV-formatted output. Any other format value in the query string causes it

to return HTML output. The logic that sets $format to CSV or HTML could easily be

extended to other output formats such as JSON. If you have many places where you

want to offer for download the same data in multiple formats, package the code in

Example 1-39 into a function that accepts an array of data and a format specifier and

then displays the right results.

1.18 Program: Downloadable CSV File | 33

CHAPTER 2

Numbers

2.0 Introduction

In everyday life, numbers are easy to identify. They’re 3:00 P.M., as in the current time,

or $1.29, as in the cost of a pint of milk. Maybe they’re like π, the ratio of the circum‐

ference to the diameter of a circle. They can be pretty large, like Avogadro’s number,

which is about 6 × 1023. In PHP, numbers can be all these things.

However, PHP doesn’t treat all these numbers as numbers. Instead, it breaks them down

into two groups: integers and floating-point numbers. Integers are whole numbers, such

as –4, 0, 5, and 1,975. Floating-point numbers are decimal numbers, such as –1.23, 0.0,

3.14159, and 9.9999999999.

Conveniently, most of the time PHP doesn’t make you worry about the differences

between the two because it automatically converts integers to floating-point numbers

and floating-point numbers to integers. This conveniently allows you to ignore the un‐

derlying details. It also means 3/2 is 1.5, not 1, as it would be in some programming

languages. PHP also automatically converts from strings to numbers and back. For

instance, 1+"1" is 2.

However, sometimes this blissful ignorance can cause trouble. First, numbers can’t be

infinitely large or small; there’s a minimum size of 2.2e–308 and a maximum size of

about 1.8e308.1 If you need larger (or smaller) numbers, you must use the BCMath or

GMP libraries, which are discussed in Recipe 2.15.

Next, floating-point numbers aren’t guaranteed to be exactly correct but only correct

plus or minus a small amount. This amount is small enough for most occasions, but

you can end up with problems in certain instances. For example, humans automatically

1. These numbers are actually platform-specific, but the values are common because they are from the 64-bit IEEE standard 754.

35

convert 6 followed by an endless string of 9s after the decimal point to 7, but PHP thinks it’s 6 with a bunch of 9s. Therefore, if you ask PHP for the integer value of that number,

it returns 6, not 7. For similar reasons, if the digit located in the 200th decimal place is

significant to you, don’t use floating-point numbers—instead, use the BCMath and GMP

libraries. But for most occasions, PHP behaves very nicely when playing with numbers

and lets you treat them just as you do in real life.

2.1 Checking Whether a Variable Contains a Valid Number

Problem

You want to ensure that a variable contains a number, even if it’s typed as a string.

Alternatively, you want to check if a variable is not only a number, but is also specifically

typed as one.

Solution

Use is_numeric() to discover whether a variable contains a number:

foreach ([5, '5', '05', 12.3, '16.7', 'five', 0xDECAFBAD, '10e200']

as $maybeNumber) {

$isItNumeric = is_numeric($maybeNumber);

$actualType = gettype($maybeNumber);

print "Is the $actualType $maybeNumber numeric? ";

if (is_numeric($maybeNumber)) {

print "yes";

} else {

print "no";

}

print " \n";

}

The example code prints:

Is the integer 5 numeric? yes

Is the string 5 numeric? yes

Is the string 05 numeric? yes

Is the double 12.3 numeric? yes

Is the string 16.7 numeric? yes

Is the string five numeric? no

Is the integer 3737844653 numeric? yes

Is the string 10e200 numeric? yes

Discussion

Numbers come in all shapes and sizes. You cannot assume that something is a number

simply because it only contains the characters 0 through 9. What about decimal points,

or negative signs? You can’t simply add them into the mix because the negative must

36 | Chapter 2: Numbers

come at the front, and you can only have one decimal point. And then there’s hexadec‐

imal numbers and scientific notation.

Instead of rolling your own function, use is_numeric() to check whether a variable

holds something that’s either an actual number (as in it’s typed as an integer or floating

point), or a string containing characters that can be translated into a number.

There’s an actual difference here. Technically, the integer 5 and the string 5 aren’t the

same in PHP. However, most of the time you won’t actually be concerned about the

distinction, which is why the behavior of is_numeric() is useful.

Helpfully, is_numeric() properly parses decimal numbers, such as 5.1; however, num‐

bers with thousands separators, such as 5,100, cause is_numeric() to return false.

To strip the thousands separators from your number before calling is_numeric(), use

str_replace():

$number = "5,100";

 // This is_numeric() call returns false

$withCommas = is_numeric($number);

 // This is_numeric() call returns true

$withoutCommas = is_numeric(str_replace(',', '', $number));

To check if your number is a specific type, there are a variety of related functions with

self-explanatory names: is_float() (or is_double() or is_real(); they’re all the

same) and is_int() (or is_integer() or is_long()).

To validate input data, use the techniques from Recipe 9.3 instead of is_numeric().

That recipe describes how to check for positive or negative integers, decimal numbers,

and a handful of other formats.

See Also

Recipe 9.3 for validating numeric user input; documentation on is_numeric() and

str_replace().

2.2 Comparing Floating-Point Numbers

Problem

You want to check whether two floating-point numbers are equal.

2.2 Comparing Floating-Point Numbers | 37

Solution

Use a small delta value, and check if the numbers have a difference smaller than that

delta:

$delta = 0.00001;

$a = 1.00000001;

$b = 1.00000000;

if (abs($a - $b) < $delta) {

print '$a and $b are equal enough.';

}

Discussion

Floating-point numbers are represented in binary form with only a finite number of

bits for the mantissa and the exponent. You get overflows when you exceed those bits.

As a result, sometimes PHP (just like some other languages) doesn’t believe that two

equal numbers are actually equal because they may differ toward the very end.

To avoid this problem, instead of checking if $a == $b, make sure the first number is

within a very small amount ($delta) of the second one. The size of your delta should

be the smallest amount of difference you care about between two numbers. Then use

abs() to get the absolute value of the difference.

See Also

Recipe 2.3 for information on rounding floating-point numbers; documentation on

floating-point numbers in PHP.

2.3 Rounding Floating-Point Numbers

Problem

You want to round a floating-point number, either to an integer value or to a set number

of decimal places.

Solution

To round a number to the closest integer, use round():

$number = round(2.4);

printf("2.4 rounds to the float %s", $number);

This prints:

2.4 rounds to the float 2

38 | Chapter 2: Numbers

To round up, use ceil():

$number = ceil(2.4);

printf("2.4 rounds up to the float %s", $number);

This prints:

2.4 rounds up to the float 3

To round down, use floor():

$number = floor(2.4);

printf("2.4 rounds down to the float %s", $number);

This prints:

2.4 rounds down to the float 2

Discussion

If a number falls exactly between two integers, PHP rounds away from 0:

$number = round(2.5);

printf("Rounding a positive number rounds up: %s\n", $number);

$number = round(-2.5);

printf("Rounding a negative number rounds down: %s\n", $number);

This prints:

Rounding a positive number rounds up: 3

Rounding a negative number rounds down: -3

You may remember from Recipe 2.2 that floating-point numbers don’t always work out

to exact values because of how the computer stores them. This can create confusion. A

value you expect to have a decimal part of “0.5” might instead be “.499999…9” (with a

whole bunch of 9s) or “.500000…1” (with many 0s and a trailing 1).

PHP automatically incorporates a little “fuzz factor” into its rounding calculations, so

you don’t need to worry about this.

To keep a set number of digits after the decimal point, round() accepts an optional

precision argument. For example, perhaps you are calculating the total price for the

items in a user’s shopping cart:

$cart = 54.23;

$tax = $cart * .05;

$total = $cart + $tax;

$final = round($total, 2);

print "Tax calculation uses all the digits it needs: $total, but ";

print "round() trims it to two decimal places: $final";

This prints:

2.3 Rounding Floating-Point Numbers | 39

Tax calculation uses all the digits it needs: 56.9415, but round()

trims it to two decimal places: 56.94

To round a number down, use the floor() function:

$number1 = floor(2.1); // floor(2.1) is the float 2.0

$number2 = floor(2.9); // floor(2.9) is the float 2.0, also

$number3 = floor(-2.1); // floor(-2.1) is the float -3.0

$number4 = floor(-2.9); // floor(-2.9) is the float 3.0, also

To round up, use the ceil() function:

$number1 = ceil(2.1); // ceil(2.1) is the float 3.0

$number2 = ceil(2.9); // ceil(2.9) is the float 3.0, also

$number3 = ceil(-2.1); // ceil(-2.1) is the float -2.0

$number4 = ceil(-2.9); // ceil(-2.9) is the float 2.0, also

These two functions are named because when you’re rounding down, you’re rounding

“toward the floor,” and when you’re rounding up, you’re rounding “toward the ceiling.”

See Also

Recipe 2.2 for information on comparing floating-point numbers; documentation on

ceil(), on floor(), on round(), and on printf formatting strings such as %s.

2.4 Operating on a Series of Integers

Problem

You want to apply a piece of code to a range of integers.

Solution

Use a for loop:

$start = 3;

$end = 7;

for ($i = $start; $i <= $end; $i++) {

printf("%d squared is %d\n", $i, $i * $i);

}

You can increment using values other than 1. For example:

$start = 3;

$end = 7;

for ($i = $start; $i <= $end; $i += 2) {

printf("The odd number %d squared is %d\n", $i, $i * $i);

}

If you want to preserve the numbers for use beyond iteration, use the range() method:

40 | Chapter 2: Numbers

$numbers = range(3, 7);

foreach ($numbers as $n) {

printf("%d squared is %d\n", $n, $n * $n);

}

foreach ($numbers as $n) {

printf("%d cubed is %d\n", $n, $n * $n * $n);

}

Discussion

Loops like this are common. For instance, you could be plotting a function and need to

calculate the results for multiple points on the graph. Or you could be a student counting

down the number of seconds until the end of school.

The for loop method uses a single integer and you have great control over the loop,

because you can increment and decrement $i freely. Also, you can modify $i from inside

the loop.

In the last example in the Solution, range() returns an array with values from $start

to $end. The advantage of using range() is its brevity, but this technique has a disad‐

vantage: a large array can take up unnecessary memory.

If you want range to skip steps, provide a third argument indicating how big each step

should be. For example, range(1, 10, 2) returns an array containing 1, 3, 5, 7,

9. It’s also valid for $start to be larger than $end. In this case, the numbers returned by

range() are in descending order.

range() can also be used to retrieve character sequences:

print_r(range('l', 'p'));

This prints:

Array

(

 [0] => l

 [1] => m

 [2] => n

 [3] => o

 [4] => p

)

Note that the character sequences range() generates are just ASCII bytes, so it won’t

work with multibyte Unicode characters.

Starting with PHP 5.5, you can use a generator to operate on a series. A generator is a

function that, instead of calling return to return a value, calls yield (perhaps within a

loop). Then a call to that function can be used where you’d otherwise use an array, and

you operate on the series of values passed to the yield keyword. For example, here’s

how to use a generator to produce a list of squares:

2.4 Operating on a Series of Integers | 41

function squares($start, $stop) {

if ($start < $stop) {

for ($i = $start; $i <= $stop; $i++) {

yield $i => $i * $i;

}

}

else {

for ($i = $stop; $i >= $start; $i--) {

yield $i => $i * $i;

}

}

}

foreach (squares(3, 15) as $n => $square) {

printf("%d squared is %d\n", $n, $square);

}

PHP keeps calling the squares() function as long as it calls yield. The key and value

passed to yield can be used in the foreach just like a regular array element.

Generators are handy because you can have arbitrary behavior to create each value

(whatever you put inside your function) but the values are generated on demand. You

don’t have to commit the memory (or processing) to create the whole array first, as with

range(), before you start operating on it.

See Also

Recipe 4.3 for details on initializing an array to a range of integers; documentation on

range().

2.5 Generating Random Numbers Within a Range

Problem

You want to generate a random number within a range of numbers.

Solution

Use mt_rand():

$lower = 65;

$upper = 97;

 // random number between $upper and $lower, inclusive

$random_number = mt_rand($lower, $upper);

42 | Chapter 2: Numbers

Discussion

Generating random numbers is useful when you want to display a random image on a

page, randomize the starting position of a game, select a random record from a database,

or generate a unique session identifier. To generate a random number between two

endpoints, pass mt_rand() two arguments: the minimum number that can be returned

and the maximum number that can be returned. Calling mt_rand() without any argu‐

ments returns a number between 0 and the maximum random number, which is re‐

turned by mt_getrandmax().

Generating truly random numbers is hard for computers to do. Computers excel at

following instructions methodically; they’re not so good at spontaneity. If you want to

instruct a computer to return random numbers, you need to give it a specific set of

repeatable commands; the fact that they’re repeatable undermines the desired random‐

ness.

PHP has two different random number generators, a classic function called rand() and

a better function called mt_rand(). MT stands for Mersenne Twister, which is named

for the French monk and mathematician Marin Mersenne and the type of prime num‐

bers he’s associated with. The algorithm is based on these prime numbers. Because

mt_rand() is less predictable and faster than rand(), we prefer it to rand().

See Also

Recipe 2.7 for generating biased random numbers and Recipe 1.6 for generating random strings; documentation on mt_rand() and rand().

2.6 Generating Predictable Random Numbers

Problem

You want to make the random number generate predictable numbers so you can guar‐

antee repeatable behavior.

Solution

Seed the random number generator with a known value using mt_srand() (or srand()):

<?php

function pick_color() {

$colors = array('red','orange','yellow','blue','green','indigo','violet');

$i = mt_rand(0, count($colors) - 1);

return $colors[$i];

}

2.6 Generating Predictable Random Numbers | 43

mt_srand(34534);

$first = pick_color();

$second = pick_color();

 // Because a specific value was passed to mt_srand(), we can be

 // sure the same colors will get picked each time: red and yellow

print "$first is red and $second is yellow.";

Discussion

For unpredictable random numbers, letting PHP generate the seed is perfect. But seed‐

ing your random number generator with a known value is useful when you want the

random number generator to generate a predictable series of values. This is handy when

writing tests for your code. If you are writing a unit test to verify the behavior of a

function that retrieves a random element from an array, the condition you’re testing for

will change each time the test runs if your numbers are really random. But by calling

mt_srand() (or srand()) with a specific value at the beginning of your test, you can

ensure that the sequence of random numbers that is generated is the same each time

the test is run.

See Also

Documentation on mt_srand() and on srand().

2.7 Generating Biased Random Numbers

Problem

You want to generate random numbers, but you want these numbers to be somewhat

biased, so that numbers in certain ranges appear more frequently than others. For ex‐

ample, you want to spread out a series of banner ad impressions in proportion to the

number of impressions remaining for each ad campaign.

Solution

Use the rand_weighted() function shown in Example 2-1.

 Example 2-1. rand_weighted()

 // returns the weighted randomly selected key

function rand_weighted($numbers) {

$total = 0;

foreach ($numbers as $number => $weight) {

$total += $weight;

$distribution[$number] = $total;

}

$rand = mt_rand(0, $total - 1);

44 | Chapter 2: Numbers

 foreach ($distribution as $number => $weights) {

if ($rand < $weights) { return $number; }

}

}

Discussion

Imagine if instead of an array in which the values are the number of remaining impres‐

sions, you have an array of ads in which each ad occurs exactly as many times as its

remaining number of impressions. You can simply pick an unweighted random place

within the array, and that’d be the ad that shows.

This technique can consume a lot of memory if you have millions of impressions re‐

maining. Instead, you can calculate how large that array would be (by totaling the re‐

maining impressions), pick a random number within the size of the make-believe array,

and then go through the array figuring out which ad corresponds to the number you

picked. For instance:

$ads = array('ford' => 12234, // advertiser, remaining impressions

'att' => 33424,

'ibm' => 16823);

$ad = rand_weighted($ads);

With a generator in PHP 5.5, you could select the weighted random number without

having to build the distribution array first:

function incremental_total($numbers) {

$total = 0;

foreach ($numbers as $number => $weight) {

$total += $weight;

yield $number => $total;

}

}

 // returns the weighted randomly selected key

function rand_weighted_generator($numbers) {

$total = array_sum($numbers);

$rand = mt_rand(0, $total - 1);

foreach (incremental_total($numbers) as $number => $weight) {

if ($rand < $weight) { return $number; }

}

}

See Also

Recipe 2.5 for how to generate random numbers within a range.

2.7 Generating Biased Random Numbers | 45

2.8 Taking Logarithms

Problem

You want to take the logarithm of a number.

Solution

For logs using base e (natural log), use log():

 // $log is about 2.30258

$log = log(10);

For logs using base 10, use log10():

 // $log10 == 1

$log10 = log10(10);

For logs using other bases, pass the base as the second argument to log():

 // log base 2 of 10 is about 3.32

$log2 = log(10, 2);

Discussion

Both log() and log10() are defined only for numbers that are greater than zero. If you

pass in a number equal to or less than zero, they return NAN, which stands for not a

 number.

See Also

Documentation on log() and log10().

2.9 Calculating Exponents

Problem

You want to raise a number to a power.

Solution

To raise e to a power, use exp():

 // $exp (e squared) is about 7.389

$exp = exp(2);

To raise it to any power, use pow():

46 | Chapter 2: Numbers

 // $exp (2^e) is about 6.58

$exp = pow(2, M_E);

 // $pow1 (2^10) is 1024

$pow1 = pow(2, 10);

 // $pow2 (2^-2) is 0.25

$pow2 = pow(2, -2);

 // $pow3 (2^2.5) is about 5.656

$pow3 = pow(2, 2.5);

 // $pow4 ((-2)^10) is 1024

$pow4 = pow(-2, 10);

 // is_nan($pow5) returns true, because

 // fractional exponent of negative 2 is not a real number.

$pow5 = pow(-2, -2.5);

Discussion

The built-in constant M_E is an approximation of the value of e. It equals

2.7182818284590452354. So exp($n) and pow(M_E, $n) are identical.

It’s easy to create very large numbers using exp() and pow(); if you outgrow PHP’s

maximum size (almost 1.8e308), see Recipe 2.15 for how to use the arbitrary precision

functions. With exp() and pow(), PHP returns INF (infinity) if the result is too large

and NAN (not a number) on an error.

See Also

Documentation on pow(), exp(), and information on predefined mathematical con‐

stants.

2.10 Formatting Numbers

Problem

You have a number and you want to print it with thousands and decimal separators. For

example, you want to display the number of people who have viewed a page, or the

percentage of people who have voted for an option in a poll.

Solution

If you always need specific characters as decimal point and thousands separators, use

number_format():

$number = 1234.56;

 // $formatted1 is "1,235" - 1234.56 gets rounded up and , is

 // the thousands separator");

$formatted1 = number_format($number);

2.10 Formatting Numbers | 47

 // Second argument specifies number of decimal places to use.

 // $formatted2 is 1,234.56

$formatted2 = number_format($number, 2);

 // Third argument specifies decimal point character

 // Fourth argument specifies thousands separator

 // $formatted3 is 1.234,56

$formatted3 = number_format($number, 2, ",", ".");

If you need to generate appropriate formats for a particular locale, use NumberFormat

ter:

$number = '1234.56';

 // $formatted1 is 1,234.56

$usa = new NumberFormatter("en-US", NumberFormatter::DEFAULT_STYLE);

$formatted1 = $usa->format($number);

 // $formatted2 is 1 234,56

 // Note that it's a "non breaking space (\u00A0) between the 1 and the 2

$france = new NumberFormatter("fr-FR", NumberFormatter::DEFAULT_STYLE);

$formatted2 = $france->format($number);

Discussion

The number_format() function formats a number with decimal and thousands sepa‐

rators. By default, it rounds the number to the nearest integer. If you want to preserve

the entire number, but you don’t know ahead of time how many digits follow the decimal

point in your number, use this:

$number = 31415.92653; // your number

list($int, $dec) = explode('.', $number);

 // $formatted is 31,415.92653

$formatted = number_format($number, strlen($dec));

The NumberFormatter class, part of the intl extension, uses the extensive formatting

rules that are part of the ICU library to give you an easy and powerful way to format

numbers appropriately for anywhere in the world. You can even do fancy things such

as spell out a number in words:

$number = '1234.56';

$france = new NumberFormatter("fr-FR", NumberFormatter::SPELLOUT);

 // $formatted is "mille-deux-cent-trente-quatre virgule cinq six"

$formatted = $france->format($number);

Recipe 19.4 discusses NumberFormatter in more detail.

48 | Chapter 2: Numbers

See Also

Chapter 19 for information on internationalization and localization; documentation on

number_format() and NumberFormatter.

2.11 Formatting Monetary Values

Problem

You have a number and you want to print it with thousands and decimal separators. For

instance, you want to display prices for items in a shopping cart.

Solution

Use the NumberFormatter class with the NumberFormatter::CURRENCY format style:

$number = 1234.56;

 // US uses $, and .

 // $formatted1 is $1,234.56

$usa = new NumberFormatter("en-US", NumberFormatter::CURRENCY);

$formatted1 = $usa->format($number);

 // France uses , and €

 // $formatted2 is 1 234,56 €

$france = new NumberFormatter("fr-FR", NumberFormatter::CURRENCY);

$formatted2 = $france->format($number);

Discussion

The NumberFormatter::CURRENCY format style formats a number by inserting the cor‐

rect currency symbol, decimal, and thousands separators for the locale used to create

the NumberFormatter object instance. It assumes that the currency to use is the one

native to the locale—US Dollars for the en-US locale, Euro for the fr-FR locale, and so

on.

To produce the right format for a currency other than the locale’s native currency, use

the formatCurrency() method. Its second argument lets you specify the currency to

use. For example, what’s the correct way, in the USA, to format the price of something

in Euro?

$number = 1234.56;

 // US uses € , and . for Euro

 // $formatted is €1,234.56

$usa = new NumberFormatter("en-US", NumberFormatter::CURRENCY);

$formatted = $usa->formatCurrency($number, 'EUR');

2.11 Formatting Monetary Values | 49

ISO-4217 specifies the three-letter codes to use for the various currencies of Earth.

Recipe 19.5 discusses using NumberFormatter to format currency values in more detail.

See Also

Chapter 19 for information on internationalization and localization; documentation on

ISO-4217 currency codes and on NumberFormatter.

2.12 Printing Correct Plurals

Problem

You want to correctly pluralize words based on the value of a variable. For instance, you

are returning text that depends on the number of matches found by a search.

Solution

Use a conditional expression:

$number = 4;

print "Your search returned $number " . ($number == 1 ? 'hit' : 'hits') . '.';

This prints:

Your search returned 4 hits.

Discussion

Another option is to use one function for all pluralization, as shown in the may_plural

ize() function in Example 2-2.

 Example 2-2. may_pluralize()

function may_pluralize($singular_word, $amount_of) {

 // array of special plurals

$plurals = array(

'fish' => 'fish',

'person' => 'people',

);

 // only one

if (1 == $amount_of) {

return $singular_word;

}

 // more than one, special plural

if (isset($plurals[$singular_word])) {

return $plurals[$singular_word];

50 | Chapter 2: Numbers

 }

 // more than one, standard plural: add 's' to end of word

return $singular_word . 's';

}

Here are some examples:

$number_of_fish = 1;

 // $out1 is "I ate 1 fish."

$out1 = "I ate $number_of_fish " . may_pluralize('fish', $number_of_fish) . '.';

$number_of_people = 4;

 // $out2 is "Soylent Green is people!"

$out2 = 'Soylent Green is ' . may_pluralize('person', $number_of_people) . '!';

If you plan to have multiple plurals inside your code, using a function such as may_plu

ralize() increases readability. To use the function, pass may_pluralize() the singular

form of the word as the first argument and the amount as the second. Inside the function,

there’s a large array, $plurals, that holds all the special cases. If the $amount is 1, you

return the original word. If it’s greater, you return the special pluralized word, if it exists.

As a default, just add an s to the end of the word.

As written, may_pluralize() encapsulates pluralization rules for American English.

Obviously, the rules are different for other languages. If your application only needs to

produce output in one language, then a function like may_pluralize() with language-

specific logic is reasonable. If your application needs to produce output in many lan‐

guages, then a more comprehensive approach is necessary. This is discussed in Chap‐

ter 19.

See Also

Recipe 19.2 discusses pluralization in multiple locales.

2.13 Calculating Trigonometric Functions

Problem

You want to use trigonometric functions, such as sine, cosine, and tangent.

Solution

PHP supports many trigonometric functions natively: sin(), cos(), and tan():

 // cosine of 2 pi is 1, $result = 1

$result = cos(2 * M_PI);

You can also use their inverses: asin(), acos(), and atan():

2.13 Calculating Trigonometric Functions | 51

 // arctan of pi/4 is about 0.665773

$result = atan(M_PI / 4);

Discussion

These functions assume all angles are in radians, not degrees. (See Recipe 2.14 if this is a problem.)

The function atan2() takes two variables $x and $y, and computes atan($x/$y). How‐

ever, it always returns the correct sign because it uses both parameters when finding the

quadrant of the result.

For secant, cosecant, and cotangent, you should manually calculate the reciprocal values

of sin(), cos(), and tan():

$n = 0.707;

 // secant of 0.707 is about 1.53951

$secant = 1 / sin($n);

 // cosecant of 0.707 is about 1.31524

$cosecant = 1 / cos($n);

 // cotangent of 0.707 is about 1.17051

$cotangent = 1 / tan($n);

You can also use hyperbolic functions: sinh(), cosh(), and tanh(), plus, of course,

asinh(), acosh(), and atanh(). The inverse functions, however, aren’t supported on

Windows for PHP versions before 5.3.0.

See Also

Recipe 2.14 for how to perform trig operations in degrees, not radians; documentation

on sin(), cos(), tan(), asin(), acos(), atan(), and atan2().

2.14 Doing Trigonometry in Degrees, Not Radians

Problem

You have numbers in degrees but want to use the trigonometric functions.

Solution

Use deg2rad() and rad2deg() on your input and output:

$degree = 90;

 // cosine of 90 degrees is 0

$cosine = cos(deg2rad($degree));

52 | Chapter 2: Numbers

Discussion

By definition, 360 degrees is equal to 2π radians, so it’s easy to manually convert between

the two formats. However, these functions use PHP’s internal value of π, so you’re as‐

sured a high-precision answer. To access this number for other calculations, use the

constant M_PI, which is 3.14159265358979323846.

There is no built-in support for gradians. This is considered a feature, not a bug.

See Also

Recipe 2.13 for trig basics; documentation on deg2rad() and rad2deg().

2.15 Handling Very Large or Very Small Numbers

Problem

You need to use numbers that are too large (or small) for PHP’s built-in floating-point

numbers.

Solution

Use either the BCMath or GMP libraries.

Using BCMath:

 // $sum = "9999999999999999"

$sum = bcadd('1234567812345678', '8765432187654321');

Using GMP:

$sum = gmp_add('1234567812345678', '8765432187654321');

 // $sum is now a GMP resource, not a string; use gmp_strval() to convert

print gmp_strval($sum); // prints 9999999999999999

Discussion

The BCMath library is easy to use. You pass in your numbers as strings, and the function

returns the sum (or difference, product, etc.) as a string. However, the range of actions

you can apply to numbers using BCMath is limited to basic arithmetic.

Another option is the GMP library. While most members of the GMP family of func‐

tions accept integers and strings as arguments, they prefer to pass numbers around as

resources, which are essentially pointers to internal representations of the numbers. So

unlike BCMath functions, which return strings, GMP functions return only resources.

You then pass the resource to any GMP function, and it acts as your number.

2.15 Handling Very Large or Very Small Numbers | 53

The only downside is that when you want to view or use the resource with a non-GMP

function, you need to explicitly convert it using gmp_strval() or gmp_intval().

GMP functions are liberal in what they accept. For instance, see Example 2-3.

 Example 2-3. Adding numbers using GMP

$four = gmp_add(2, 2); // You can pass integers

$eight = gmp_add('4', '4'); // Or strings

$twelve = gmp_add($four, $eight); // Or GMP resources

However, you can do many more things with GMP numbers than addition, such as

raising a number to a power, computing large factorials very quickly, finding a greatest

common divisor (GCD), and other fancy mathematical stuff, as shown in Example 2-4.

 Example 2-4. Computing fancy mathematical stuff using GMP

 // Raising a number to a power

$pow = gmp_pow(2, 10);

 // Computing large factorials very quickly

$factorial = gmp_fact(20);

 // Finding a GCD

$gcd = gmp_gcd(123, 456);

 // Other fancy mathematical stuff

$legendre = gmp_legendre(1, 7);

The BCMath and GMP libraries aren’t necessarily enabled with all PHP configurations.

BCMath is bundled with PHP, so it’s likely to be available. However, GMP isn’t bundled

with PHP, so you’ll need to download, install it, and instruct PHP to use it during the

configuration process. Check the values of function_defined('bcadd') and func

tion_defined('gmp_init') to see if you can use BCMath and GMP.

Another option for high-precision mathematics is PECL’s big_int library, shown in

Example 2-5.

 Example 2-5. Adding numbers using big_int

$two = bi_from_str('2');

$four = bi_add($two, $two);

 // Use bi_to_str() to get strings from big_int resources

print bi_to_str($four); // prints 4

 // Computing large factorials very quickly

$factorial = bi_fact(20);

It’s faster than BCMath, and almost as powerful as GMP. However, whereas GMP is

licensed under the LGPL, big_int is under a BSD-style license.

54 | Chapter 2: Numbers

See Also

Documentation on BCMath, big_int, and GMP.

2.16 Converting Between Bases

Problem

You need to convert a number from one base to another.

Solution

Use the base_convert() function:

 // hexadecimal number (base 16)

$hex = 'a1';

 // convert from base 16 to base 10

 // $decimal is '161'

$decimal = base_convert($hex, 16, 10);

Discussion

The base_convert() function changes a string representing a number in one base to

the correct string in another base. It works for all bases from 2 to 36 inclusive, using the

letters a through z as additional symbols for bases above 10. The first argument is the

number to be converted, followed by the base it is in and the base you want it to become.

There are also a few specialized functions for conversions to and from base 10 and the

most commonly used other bases of 2, 8, and 16. They’re bindec() and decbin(),

octdec() and decoct(), and hexdec() and dechex():

 // convert from base 2 to base 10

 // $a = 27

$a = bindec(11011);

 // convert from base 8 to base 10

 // $b = 27

$b = octdec(33);

 // convert from base 16 to base 10

 // $c = 27

$c = hexdec('1b');

 // convert from base 10 to base 2

 // $d = '11011'

$d = decbin(27);

 // $e = '33'

$e = decoct(27);

 // $f = '1b'

$f = dechex(27);

2.16 Converting Between Bases | 55

Note that the specialized functions that convert to base 10 return integers. The functions that convert from base 10 return strings.

Another alternative is to use the printf() family of functions, which allows you to

convert decimal numbers to binary, octal, and hexadecimal numbers with a wide range

of formatting, such as leading zeros and a choice between upper- and lowercase letters

for hexadecimal numbers.

For instance, say you want to print out HTML color values. You can use the %02X format

specifier:

$red = 0;

$green = 102;

$blue = 204;

 // $color is '#0066CC'

$color = sprintf('#%02X%02X%02X', $red, $green, $blue);

See Also

Documentation on base_convert() and sprintf() formatting options.

2.17 Calculating Using Numbers in Bases Other Than

Decimal

Problem

You want to perform mathematical operations with numbers formatted not in decimal,

but in octal or hexadecimal. For example, you want to calculate web-safe colors in hex‐

adecimal.

Solution

Prefix the number with a leading symbol, so PHP knows it isn’t in base 10. The leading

symbol 0b indicates binary (base 2), the leading symbol 0 indicates octal (base 8) and

the leading symbol 0x indicates hexadecimal (base 16). If $a = 100 and $b = 0144 and

$c = 0x64 and $d = 0b1100100, PHP considers $a, $b, $c, and $d to be equal.

Here’s how to count from decimal 1 to 15 using hexadecimal notation:

for ($i = 0x1; $i < 0x10; $i++) {

print "$i\n";

}

Discussion

Even if you use hexadecimally formatted numbers in a for loop, by default all numbers

are printed in decimal. In other words, the code in the Solution doesn’t print out …, 8,

56 | Chapter 2: Numbers

 9, a, b, …. To print in hexadecimal, use one of the methods listed in Recipe 2.16. Here’s an example:

for ($i = 0x1; $i < 0x10; $i++) { print dechex($i) . " \n"; }

For most calculations, it’s easier to use decimal. Sometimes, however, it’s more logical

to switch to another base—for example, when doing byte arithmetic. Dan Bernstein’s

popular “times 33” hash is a convenient and fast way to hash a string of arbitrary length

to an integer value. To compute the “times 33” hash, you start with the magic number

5381 as your hash value. Then, for each byte in the string you want to hash, you add the

byte and the previous hash value times 32 to the hash value. Translating that directly to

PHP produces code that looks like this:

function times_33_hash($str) {

$h = 5381;

for ($i = 0, $j = strlen($str); $i < $j; $i++) {

 // Shifting $h left by 5 bits is a quick way to multiply by 32

$h += ($h << 5) + ord($str[$i]);

}

return $h;

}

That code isn’t completely correct, however. It produces some strange results. For ex‐

ample, times_33_hash("Once, I ate a papaya.") returns a float, not an integer, with

a really, really large value (about 2.28375 x 1019). The repeated multiplications and ad‐

ditions, once for each byte in the string, have overflowed PHP’s maximum integer value

so PHP’s autoconversion to float (with loss of precision) kicked in. To fix this, all you

have to do is logical-AND the hash value with a mask of the significant bits you want

to keep in the hash value. Expressing those significant bits is a lot more understandable

in hexadecimal rather than decimal. For example, if you want 32 bits in the hashed value,

add a masking line inside the loop as follows:

function times_33_hash($str) {

$h = 5381;

for ($i = 0, $j = strlen($str); $i < $j; $i++) {

 // Shifting $h left by 5 bits is a quick way to multiply by 32

$h += ($h << 5) + ord($str[$i]);

 // Only keep the lower 32 bits of $h

$h = $h & 0xFFFFFFFF;

}

return $h;

}

Each hexadecimal F represents four bits, so masking with eight of them produces a 32-

bit mask. You could use 4294967295 in your code as the mask value instead of

0xFFFFFFFF, but it wouldn’t be as clear.

2.17 Calculating Using Numbers in Bases Other Than Decimal | 57

Note that although octal and hexadecimal number expressions have

been part of PHP for many versions, the use of the 0b prefix for binary

numbers is new to PHP 5.4.

See Also

Recipe 2.16 for details on converting between bases; Dan Bernstein’s comp.lang.c post

about the times 33 hash.

2.18 Finding the Distance Between Two Places

Problem

You want to find the distance between two coordinates on planet Earth.

Solution

Use sphere_distance(), as shown in Example 2-6.

 Example 2-6. Finding the distance between two points

function sphere_distance($lat1, $lon1, $lat2, $lon2, $radius = 6378.135) {

$rad = doubleval(M_PI/180.0);

$lat1 = doubleval($lat1) * $rad;

$lon1 = doubleval($lon1) * $rad;

$lat2 = doubleval($lat2) * $rad;

$lon2 = doubleval($lon2) * $rad;

$theta = $lon2 - $lon1;

$dist = acos(sin($lat1) * sin($lat2) +

cos($lat1) * cos($lat2) *

cos($theta));

if ($dist < 0) { $dist += M_PI; }

 // Default is Earth equatorial radius in kilometers

return $dist = $dist * $radius;

}

 // NY, NY (10040)

$lat1 = 40.858704;

$lon1 = -73.928532;

 // SF, CA (94144)

$lat2 = 37.758434;

$lon2 = -122.435126;

$dist = sphere_distance($lat1, $lon1, $lat2, $lon2);

58 | Chapter 2: Numbers

 // It's about 2570 miles from NYC to SF

 // $formatted is 2570.18

$formatted = sprintf("%.2f", $dist * 0.621); // Format and convert to miles

Discussion

Because the Earth is not flat, you cannot get an accurate distance between two locations

using a standard Pythagorean distance formula. You must use a Great Circle algorithm

instead, such as the one in sphere_distance().

Pass in the latitude and longitude of your two points as the first four arguments. The

latitude and longitude of the origin come first, and then the latitude and longitude of

the destination. The value returned is the distance between them in kilometers.

The code in Example 2-6 finds the distance between New York City and San Francisco,

converts the distance to miles, and then formats it to have two decimal places.

Because the Earth is not a perfect sphere, these calculations are somewhat approximate

and could have an error up to 0.5%.

sphere_distance() accepts an alternative sphere radius as an optional fifth argument.

This lets you, for example, discover the distance between points on Mars:

$martian_radius = 3397;

$dist = sphere_distance($lat1, $lon1, $lat2, $lon2, $martian_radius);

$formatted = sprintf("%.2f", $dist * 0.621); // Format and convert to miles

See Also

Recipe 2.13 for trig basics; the Wikipedia entry on Earth radius; and the article “Trip

Mapping with PHP.”

2.18 Finding the Distance Between Two Places | 59

CHAPTER 3

Dates and Times

3.0 Introduction

Displaying and manipulating dates and times seems simple at first but gets more difficult

depending on how diverse your users are. Do your users span more than one time zone?

Probably so, unless you are building an intranet or a site with a very specific geographical

audience. Is your audience frightened away by timestamps that look like “2015-07-20

14:56:34 EDT” or do they need to be calmed with familiar representations like “Saturday

July 20, 2015 (2:56 P.M.)”? Calculating the number of hours between today at 10 A.M.

and today at 7 P.M. is pretty easy. How about between today at 3 A.M. and noon on the

first day of next month? Finding the difference between dates is discussed in Recipes

3.5 and 3.6.

These calculations and manipulations are made even more hectic by daylight saving (or

summer) time (DST). Because of DST, there are times that don’t exist (in most of the

United States, 2 A.M. to 3 A.M. on a day in the spring) and times that exist twice (in

most of the United States, 1 A.M. to 2 A.M. on a day in the fall). Some of your users may

live in places that observe DST, some may not. Recipe 3.10 provides ways to work with time zones and DST.

Programmatic time handling is made much easier by two conventions. First, treat time

internally as Coordinated Universal Time (abbreviated UTC and also known as GMT,

Greenwich Mean Time), the patriarch of the time-zone family with no DST or summer

time observance. This is the time zone at 0 degrees longitude, and all other time zones

are expressed as offsets (either positive or negative) from it. Second, treat time not as

an array of different values for month, day, year, minute, second, etc., but as seconds

elapsed since the Unix epoch: midnight on January 1, 1970 (UTC, of course). This makes

calculating intervals much easier, and PHP has plenty of functions to help you move

easily between epoch timestamps and human-readable time representations.

61

The function mktime() produces epoch timestamps from a given set of time parts, while

date(), given an epoch timestamp, returns a formatted time string. Example 3-1 uses

these functions to find on what day of the week New Year’s Day 1986 occurred.

 Example 3-1. Using mktime() and date()

$stamp = mktime(0,0,0,1,1,1986);

print date('l',$stamp);

Example 3-1 prints:

Wednesday

In Example 3-1, mktime() returns the epoch timestamp at midnight on January 1, 1986.

The l format character to date() tells it to return the full name of the day of the week

that corresponds to the given epoch timestamp. Recipe 3.4 details the many format

characters available to date().

To ensure smooth date and time processing in your code, set the date.timezone con‐

figuration variable to an appropriate time zone (or call date_default_time zone_set() before you do any date or time operations). To always use UTC as the time

zone for your date calculations, set date.timezone to UTC. Then, as discussed in

Recipe 3.4, you can ensure a time or date is represented in a way appropriate to a user’s time zone and location at display time.

In this book, the phrase epoch timestamp refers to a count of seconds since the Unix

epoch. Time parts (or date parts or time and date parts) means an array or group of time and date components such as day, month, year, hour, minute, and second. Formatted

 time string (or formatted date string, etc.) means a string that contains some particular grouping of time and date parts—for example, “2002-03-12,” “Wednesday, 11:23 A.M.,”

or “February 25.”

If you used epoch timestamps as your internal time representation, you avoided any

Y2K issues, because the difference between 946702799 (1999-12-31 23:59:59 UTC) and

946702800 (2000-01-01 00:00:00 UTC) is treated just like the difference between any

other two timestamps. You may, however, run into a Y2038 problem. January 19, 2038

at 3:14:07 A.M. (UTC) is 2147483647 seconds after midnight January 1, 1970. What’s

special about 2147483647? It’s 231 − 1, which is the largest integer expressible when 32

bits represent a signed integer. (The 32nd bit is used for the sign.)

The PHP functions that rely on its bundled time handling library, such as date(),

mktime(), and the methods of the DateTime class store timestamps internally as 64-bit

integers. This gives you about a 600-billion year range, which is probably adequate for

your calculations. For this reason, as well as simplicity, this chapter uses those functions

for date and time operations instead of functions such as strftime() and

gmstrftime(). These functions rely on underlying system calls, which may not have

the same range or functionality.

62 | Chapter 3: Dates and Times

3.1 Finding the Current Date and Time

Problem

You want to know what the time or date is.

Solution

Use date() for a formatted time string, as in Example 3-2.

 Example 3-2. Finding the current date and time

print date('r');

It obviously depends on the time and date the code is run, but Example 3-2 prints

something like:

Fri, 01 Feb 2013 14:23:33 -0500

Or, use a DateTime object. Its format() method works just like the date() function:

$when = new DateTime();

print $when->format('r');

Use getdate() or localtime() if you want time parts. Example 3-3 shows how these

functions work.

 Example 3-3. Finding time parts

$now_1 = getdate();

$now_2 = localtime();

print "{$now_1['hours']}:{$now_1['minutes']}:{$now_1['seconds']}\n";

print "$now_2[2]:$now_2[1]:$now_2[0]";

Example 3-3 prints:

18:23:45

18:23:45

Discussion

The function date() (and the DateTime object) can produce a variety of formatted time

and date strings. They are discussed in more detail in Recipe 3.4. Both localtime() and getdate(), on the other hand, return arrays whose elements are the different pieces of

the specified date and time.

The associative array getdate() returns the key/value pairs listed in Table 3-1.

3.1 Finding the Current Date and Time | 63

 Table 3-1. Return array from getdate()

Key

Value

seconds Seconds

minutes Minutes

hours

Hours

mday

Day of the month

wday

Day of the week, numeric (Sunday is 0, Saturday is 6)

mon

Month, numeric

year

Year, numeric (4 digits)

yday

Day of the year, numeric (e.g., 299)

weekday Day of the week, textual, full (e.g., “Friday”)

month

Month, textual, full (e.g., “January”)

0

Seconds since epoch (what time() returns)

Example 3-4 shows how to use getdate() to print out the month, day, and year.

 Example 3-4. Finding the month, day, and year

$a = getdate();

printf('%s %d, %d',$a['month'],$a['mday'],$a['year']);

Example 3-4 prints:

February 4, 2013

Pass getdate() an epoch timestamp as an argument to make the returned array the

appropriate values for local time at that timestamp. The month, day, and year at epoch

timestamp 163727100 is shown in Example 3-5.

 Example 3-5. getdate() with a specific timestamp

$a = getdate(163727100);

printf('%s %d, %d',$a['month'],$a['mday'],$a['year']);

Example 3-5 prints:

March 10, 1975

The function localtime() also returns an array of time and date parts. It also takes an

epoch timestamp as an optional first argument, as well as a boolean as an optional second

argument. If that second argument is true, localtime() returns an associative array

instead of a numerically indexed array. The keys of that array are the same as the mem‐

bers of the tm_struct structure that the C function localtime() returns, as shown in

Table 3-2.

64 | Chapter 3: Dates and Times

 Table 3-2. Return array from localtime()

Numeric position Key

Value

0

tm_sec

Second

1

tm_min

Minutes

2

tm_hour

Hour

3

tm_mday

Day of the month

4

tm_mon

Month of the year (January is 0)

5

tm_year

Years since 1900

6

tm_wday

Day of the week (Sunday is 0)

7

tm_yday

Day of the year

8

tm_isdst Is daylight saving time in effect?

Example 3-6 shows how to use localtime() to print out today’s date in month/day/

year format.

 Example 3-6. Using localtime()

$a = localtime();

$a[4] += 1;

$a[5] += 1900;

print "$a[4]/$a[3]/$a[5]";

Example 3-6 prints:

2/4/2013

The month is incremented by 1 before printing because localtime() starts counting

months with 0 for January, but we want to display 1 if the current month is January.

Similarly, the year is incremented by 1900 because localtime() starts counting years

with 0 for 1900.

The functions getdate() and localtime() both use the same internal implementation

to generate the returned date and time parts. They differ only in the format of the

returned arrays and in some of the information they return. (For example, local

time() includes whether DST is in effect at the specified time.)

The time zone that getdate() and localtime() use for their calculations is the currently

active one, as set by the date.timezone configuration variable or a call to date_de

fault_timezone_set().

See Also

Documentation on date(), the DateTime class, getdate(), and localtime().

3.1 Finding the Current Date and Time | 65

3.2 Converting Time and Date Parts to an Epoch

Timestamp

Problem

You want to know what epoch timestamp corresponds to a set of time and date parts.

Solution

Use mktime() if your time and date parts are in the local time zone, as shown in

Example 3-7.

 Example 3-7. Getting a specific epoch timestamp

 // 7:45:03 PM on March 10, 1975, local time

 // Assuming your "local time" is US Eastern time

$then = mktime(19,45,3,3,10,1975);

Use gmmktime(), as in Example 3-8, if your time and date parts are in GMT.

 Example 3-8. Getting a specific GMT-based epoch timestamp

 // 7:45:03 PM on March 10, 1975, in GMT

$then = gmmktime(19,45,3,3,10,1975);

Use DateTime::createFromFormat(), as in Example 3-9, if your time and date parts

are in a formatted time string.

 Example 3-9. Getting a specific epoch timestamp from a formatted time string

 // 7:45:03 PM on March 10, 1975, in a particular timezone

$then = DateTime::createFromFormat(DateTime::ATOM, "1975-03-10T19:45:03-04:00");

Discussion

The functions mktime() and gmmktime() each take a date and time’s parts (hour, minute,

second, month, day, year) and return the appropriate Unix epoch timestamp. The com‐

ponents are treated as local time by mktime(), while gmmktime() treats them as a date

and time in UTC.

In Example 3-10, $stamp_future is set to the epoch timestamp for 3:25 P.M. on De‐

cember 3, 2024. The epoch timestamp can be fed back to date() to produce a formatted

time string.

 Example 3-10. Working with epoch timestamps

date_default_timezone_set('America/New_York');

 // $stamp_future is 1733257500

$stamp_future = mktime(15,25,0,12,3,2024);

66 | Chapter 3: Dates and Times

 // $formatted is '2024-12-03T15:25:00-05:00'

$formatted = date('c', $stamp_future);

Because the calls to mktime() in Example 3-10 were made with the time zone set to

America/New_York, using gmmktime() instead produces epoch timestamps that are

18,000 seconds (five hours) smaller, as shown in Example 3-11.

 Example 3-11. Epoch timestamps and gmmktime()

date_default_timezone_set('America/New_York');

 // $stamp_future is 1733239500, whch is 18000

 // smaller than 1733257500

$stamp_future = gmmktime(15,25,0,12,3,2024);

The createFromFormat() method of the DateTime class behaves more flexibly. Instead

of accepting already-chopped-up time parts, you give it a formatted time or date string

and tell it the structure of that string. It then decomposes the parts properly and calcu‐

lates the correct timestamp. In addition to the format strings listed in Recipe 3.4 that the date() function understands, createFromFormat() also uses the characters listed

in Table 3-3.

 Table 3-3. Format characters for DateTime::createFromFormat()

Character

Meaning

space or tab

#

Any one of the separation bytes ;, :, /, ., ,, -, (,)

;, :, /, ., ,, -, (,) Literal character

?

Any byte (not a character, just one byte)

*

Any number of bytes until the next digit or separation character

!

Reset all fields to “start of Unix epoch” values (without this, any unspecified fields will be set to the current date/time)

|

Reset any unparsed fields to “start of Unix epoch” values

+

Treat unparsed trailing data as a warning rather than an error

Example 3-12 shows how DateTime::createFromFormat() can be used to get time parts

out of a larger string.

 Example 3-12. Using DateTime::createFromFormat()

$text = "Birthday: May 11, 1918.";

$when = DateTime::createFromFormat("*: F j, Y.|", $text);

 // $formatted is "Saturday, 11-May-18 00:00:00 UTC"

$formatted = $when->format(DateTime::RFC850);

3.2 Converting Time and Date Parts to an Epoch Timestamp | 67

See Also

Recipe 3.3 for how to convert an epoch timestamp back to time and date parts; docu‐

mentation on mktime() and gmmktime(), date_default_timezone_set(), and Date

Time::createFromFormat().

3.3 Converting an Epoch Timestamp to Time and Date

Parts

Problem

You want the set of time and date parts that corresponds to a particular epoch timestamp.

Solution

Pass an epoch timestamp to getdate(): $time_parts = getdate(163727100);.

Discussion

The time parts returned by getdate() are detailed in Table 3-1. These time parts are

relative to whatever PHP’s time zone is set to. If you want time parts relative to another

time zone, you can change PHP’s time zone with date_default_timezone_set(), and

then change it back after your call to getdate(). You could also create a DateTime object,

set it to a specific time zone, then retrieve the time and date parts you need with that

object’s format() method:

$when = new DateTime("@163727100");

$when->setTimezone(new DateTimeZone('America/Los_Angeles'));

$parts = explode('/', $when->format('Y/m/d/H/i/s'));

 // Year, month, day, hour, minute, second

 // $parts is array('1975', '03','10', '16','45', '00'))

The @ character tells DateTime that the rest of the argument to the constructor is an

epoch timestamp. When specifying a timestamp as the initial value, DateTime ignores

any time zone also passed to the constructor, so setting that requires an additional call

to setTimezone(). Once that’s done, format() can generate any parts you need.

See Also

Recipe 3.2 for how to convert time and date parts back to epoch timestamps; Recipe 3.10

for more information on how to deal with time zones; documentation on getdate()

and DateTime.

68 | Chapter 3: Dates and Times

3.4 Printing a Date or Time in a Specified Format

Problem

You need to print out a date or time formatted in a particular way.

Solution

Use date() or DateTime::format(), as shown in Example 3-13.

 Example 3-13. Using date() and DateTime::format()

print date('d/M/Y') . " \n";

$when = new DateTime();

print $when->format('d/M/Y');

Example 3-13 prints something like:

06/Feb/2013

06/Feb/2013

Discussion

Both date() and DateTime::format() use the same code internally for generating for‐

matted time and date strings. They are flexible functions that can produce a formatted

time string with a variety of components. The format characters for these functions are

listed in Table 3-4.

 Table 3-4. date() format characters

Type

Character Description

Range or examples

Hour

H

Hour, numeric, 24-hour clock, leading zero

00–23

Hour

h

Hour, numeric, 12-hour clock, leading zero

01–12

Hour

G

Hour, numeric, 24-hour clock

0–23

Hour

g

Hour, numeric, 12-hour clock

1–12

Hour

A

Ante/Post Meridiem designation

AM, PM

Hour

a

Ante/Post Meridiem designation

am, pm

Minute

i

Minute, numeric

00–59

Second

s

Second, numeric

00–59

Second

u

Microseconds, string

000000–999999

Day

d

Day of the month, numeric, leading zero

01–31

Day

j

Day of the month, numeric

1–31

Day

z

Day of the year, numeric

0–365

Day

N

Day of the week, numeric (Monday is 1)

1–7

3.4 Printing a Date or Time in a Specified Format | 69

Type

Character Description

Range or examples

Day

w

Day of the week, numeric (Sunday is 0)

0–6

Day

S

English ordinal suffix for day of the month, textual “st,” “th,” “nd,” “rd”

Week

D

Abbreviated weekday name

Mon, Tue, Wed, Thu, Fri, Sat, Sun

Week

l

Full weekday name

Monday, Tuesday, Wednesday Thursday, Friday,

Saturday, Sunday

Week

W

ISO 8601:1988 week number in the year, numeric, 1–53

week 1 is the first week that has at least 4 days

in the current year, Monday is the first day of the

week

Month

F

Full month name

January–December

Month

M

Abbreviated month name

Jan–Dec

Month

m

Month, numeric, leading zero

01–12

Month

n

Month, numeric

1–12

Month

t

Month length in days, numeric

28, 29, 30, 31

Year

Y

Year, numeric, including century

e.g., 2016

Year

y

Year without century, numeric

e.g., 16

Year

o

ISO 8601 year with century; numeric; the four-

e.g. 2016

digit year corresponding to the ISO week number;

same as Y except if the ISO week number belongs

to the previous or next year, that year is used

instead

Year

L

Leap year flag (yes is 1)

0, 1

Time zone O

Hour offset from GMT, ±HHMM (e.g., −0400,

−1200–+1200

+0230)

Time zone P

Like O, but with a colon

−12:00 –+12:00

Time zone Z

Seconds offset from GMT; west of GMT is negative, -43200–50400

east of GMT is positive

Time zone e

Time zone identifier

e.g., America/New_York

Time zone T

Time zone abbreviation

e.g., EDT

Time zone I

Daylight saving time flag (yes is 1)

0, 1

Compound c

ISO 8601–formatted date and time

e.g., 2012-09-06T15:29:34+0000

Compound r

RFC 2822–formatted date

e.g., Thu, 22 Aug 2002 16:01:07

+0200

Other

U

Seconds since the Unix epoch

0−2147483647

Other

B

Swatch Internet time

000–999

Format characters such as F, M, or D, which generate words, not numbers, produce output

in English. To generate formatted date and time strings in other languages, see

Recipe 19.3.

70 | Chapter 3: Dates and Times

There are also some handy constants for common date formats that represent the format

string to be passed to date() or DateTime::format(). These constants are listed in

Table 3-5.

 Table 3-5. Constants for use with date()

Constant

Class constant

Value

Example

Usage

DATE_ATOM

DateTime::ATOM

Y-m-d\TH:i:sP 2013-02-22T20:25:31+00:00

Section 3.3 of the

Atom Syndication

format

DATE_ISO8601 Date

Y-m-d\TH:i:sO 2013-02-22T20:25:31+0000

ISO 8601 (as

Time::ISO8601

discussed at the W3C

website)

DATE_RFC822

DateTime::RFC822 D, d M y

Fri, 22 Feb 13 20:25:31 +0000

Email messages (as

H:i:s O

defined at FAQs)

DATE_RFC850

DateTime::RFC850 l, d-M-y

Friday, 22-Feb-13 20:25:31 UTC

Usenet messages (as

H:i:s T

defined by FAQs)

DATE_RFC1036 Date

D, d M y

Fri, 22 Feb 13 20:25:31 +0000

Usenet messages (as

Time::RFC1036

H:i:s O

defined by FAQs)

DATE_RFC1123 Date

D, d M Y

Fri, 22 Feb 2013 20:25:31 +0000 As defined by FAQs

Time::RFC1123

H:i:s O

DATE_RFC2822 Date

D, d M Y

Fri, 22 Feb 2013 20:25:31 +0000 E-mail messages (as

Time::RFC2822

H:i:s O

defined by FAQs)

DATE_RFC3339 Date

Y-m-d\TH:i:sP 2013-02-22T20:25:31+00:00

As described by FAQs

Time::RFC3339

DATE_RSS

DateTime::RSS

D, d M Y

Fri, 22 Feb 2013 20:25:31 +0000 RSS feeds (as defined

H:i:s O

at RSS 2.0)

DATE_W3C

DateTime::W3C

Y-m-d\TH:i:sP 2013-02-22T20:25:31+00:00

As described by W3C

See Also

Documentation on date() and DateTime::format(); Recipe 19.3 for generating formatted time and date strings in different languages.

3.5 Finding the Difference of Two Dates

Problem

You want to find the elapsed time between two dates. For example, you want to tell a

user how long it’s been since she last logged on to your site.

3.5 Finding the Difference of Two Dates | 71

Solution

Create DateTime objects for each date. Then use the DateTime::diff() method to ob‐

tain a DateInterval object that describes the difference between the dates.

Example 3-14 displays the difference in weeks, days, hours, minutes, and seconds.

 Example 3-14. Calculating the difference between two dates

 // 7:32:56 pm on May 10, 1965

$first = new DateTime("1965-05-10 7:32:56pm",

new DateTimeZone('America/New_York'));

 // 4:29:11 am on November 20, 1962

$second = new DateTime("1962-11-20 4:29:11am",

new DateTimeZone('America/New_York'));

$diff = $second->diff($first);

printf("The two dates have %d weeks, %s days, " .

"%d hours, %d minutes, and %d seconds " .

"elapsed between them.",

floor($diff->format('%a') / 7),

$diff->format('%a') % 7,

$diff->format('%h'),

$diff->format('%i'),

$diff->format('%s'));

Example 3-14 prints:

The two dates have 128 weeks, 6 days, 15 hours, 3 minutes, and 45 seconds

elapsed between them.

Discussion

There are a few subtleties about computing date differences that you should be aware

of. First of all, 1962 and 1965 precede the beginning of the Unix epoch. Because of the

600-billion year range of PHP’s built-in time library, however, this isn’t a problem.

Next, note that the results of DateTime::diff() produce what a clock would say is the

time difference, not necessarily the absolute amount of elapsed time. The two dates in

Example 3-14 are on different sides of a DST switch, so the actual amount of elapsed

time between them is an hour less (due to the repeating clock-hour in the fall switch to

standard time) than what’s shown in the output.

To compute elapsed time difference, build DateTime objects out of the epoch timestamps

from each local timestamp, then apply DateTime::diff() to those objects, as shown in

Example 3-15.

 Example 3-15. Calculating the elapsed-time difference between two dates

 // 7:32:56 pm on May 10, 1965

$first_local = new DateTime("1965-05-10 7:32:56pm",

new DateTimeZone('America/New_York'));

72 | Chapter 3: Dates and Times

 // 4:29:11 am on November 20, 1962

$second_local = new DateTime("1962-11-20 4:29:11am",

new DateTimeZone('America/New_York'));

$first = new DateTime('@' . $first_local->getTimestamp());

$second = new DateTime('@' . $second_local->getTimestamp());

$diff = $second->diff($first);

printf("The two dates have %d weeks, %s days, " .

"%d hours, %d minutes, and %d seconds " .

"elapsed between them.",

floor($diff->format('%a') / 7),

$diff->format('%a') % 7,

$diff->format('%h'),

$diff->format('%i'),

$diff->format('%s'));

Example 3-15 prints:

The two dates have 128 weeks, 6 days, 14 hours, 3 minutes, and 45 seconds

elapsed between them.

This, as you can see, is an hour different from the output of Example 3-14. The Date

Time objects created with a format string of @ plus an epoch timestamp always have a

time zone of UTC, so their difference is not affected by any daylight saving time or other

local time adjustments.

At the time of writing, PHP Bug 52480 is outstanding, which affects some rare date

interval calculations with certain hour values and time zone offsets. You can work

around this bug by using UTC as the time zone for interval calculations.

See Also

Documentation on DateTime::diff() and DateInterval. More information on PHP

Bug 52480.

3.6 Finding the Day in a Week, Month, or Year

Problem

You want to know the day or week of the year, the day of the week, or the day of the

month. For example, you want to print a special message every Monday, or on the first

of every month.

3.6 Finding the Day in a Week, Month, or Year | 73

Solution

Use the appropriate arguments to date() or DateTime::format(), as shown in

Example 3-16.

 Example 3-16. Finding days of the week, month, and year

print "Today is day " . date('d') . ' of the month and ' . date('z') .

' of the year.';

print " \n";

$birthday = new DateTime('January 17, 1706', new DateTimeZone('America/New_York'));

print "Benjamin Franklin was born on a " . $birthday->format('l') . ", " .

"day " . $birthday->format('N') . " of the week.";

Discussion

The functions date() and DateTime::format() use the same format characters.

Table 3-6 contains all the day and week number format characters they understand.

 Table 3-6. Day and week number format characters

Type Character Description

Range

Day

d

Day of the month, numeric, leading zero

01–31

Day

j

Day of the month, numeric

1–31

Day

z

Day of the year, numeric

0–365

Day

N

Day of the week, numeric (Monday is 1)

1–7

Day

w

Day of the week, numeric (Sunday is 0)

0–6

Day

S

English ordinal suffix for day of the month, textual

 st, th, nd, rd

Week D

Abbreviated weekday name

Mon, Tue, Wed, Thu, Fri, Sat, Sun

Week l

Full weekday name

Monday, Tuesday, Wednesday

Thursday, Friday, Saturday,

Sunday

Week W

ISO 8601:1988 week number in the year, numeric, week 1 is the first

1–53

week that has at least 4 days in the current year, Monday is the first

day of the week

To print out something only on Mondays, use the w format character, as in Example 3-17.

 Example 3-17. Checking for the day of the week

if (1 == date('w')) {

print "Welcome to the beginning of your work week.";

}

There are different ways to calculate week numbers and days in a week, so take care to

choose the appropriate one. The ISO standard (ISO 8601) says that weeks begin on

74 | Chapter 3: Dates and Times

Mondays and that the days in the week are numbered 1 (Monday) through 7 (Sunday).

Week 1 in a year is the first week in a year with a Thursday. This means the first week

in a year is the first week with a majority of its days in that year. These week numbers

range from 01 to 53.

Other week number standards range from 00 to 53, with days in a year’s week 53 po‐

tentially overlapping with days in the following year’s week 00.

As long as you’re consistent within your programs, you shouldn’t run into any trouble,

but be careful when interfacing with other PHP programs or your database. For example,

MySQL’s DAYOFWEEK() function treats Sunday as the first day of the week, but numbers

the days 1 to 7, which is the ODBC standard. Its WEEKDAY() function, however, treats

Monday as the first day of the week and numbers the days from 0 to 6. Its WEEK() function

lets you choose whether weeks should start on Sunday or Monday, but it’s incompatible

with the ISO standard.

See Also

Documentation on date() and DateTime::format(); MySQL’s DAYOFWEEK(), WEEK

DAY(), and WEEK() functions are documented at the MySQL website.

3.7 Validating a Date

Problem

You want to check if a date is valid. For example, you want to make sure a user hasn’t

provided a birthdate such as February 30, 1962.

Solution

Use checkdate():

 // $ok is true - March 10, 1993 is a valid date

$ok = checkdate(3, 10, 1993);

 // $not_ok is false - February 30, 1962 is not a valid date

$not_ok = checkdate(2, 30, 1962);

Discussion

The function checkdate() returns true if $month is between 1 and 12, $year is between

1 and 32767, and $day is between 1 and the correct maximum number of days for $month

and $year. Leap years are correctly handled by checkdate(), and dates are rendered

using the Gregorian calendar.

3.7 Validating a Date | 75

Because checkdate() has such a broad range of valid years, you should do additional

validation on user input if, for example, you’re expecting a valid birthdate. The longest

confirmed human life span is 122 years old. To check that a birthdate indicates that a

user is between 18 and 122 years old, use the checkbirthdate() function shown in

Example 3-18.

 Example 3-18. checkbirthdate()

function checkbirthdate($month,$day,$year) {

$min_age = 18;

$max_age = 122;

if (! checkdate($month,$day,$year)) {

return false;

}

$now = new DateTime();

$then_formatted = sprintf("%d-%d-%d", $year, $month, $day);

$then = DateTime::createFromFormat("Y-n-j|",$then_formatted);

$age = $now->diff($then);

if (($age->y < $min_age)|| ($age->y > $max_age)) {

return FALSE;

}

else {

return TRUE;

}

}

 // check December 3, 1974

if (checkbirthdate(12,3,1974)) {

print "You may use this web site.";

} else {

print "You are too young (or too old!!) to proceed.";

}

The function first uses checkdate() to make sure that $month, $day, and $year repre‐

sent a valid date. If they do, it builds two DateTime objects: one for “right now” and one

representing the passed-in month, day, and year. The call to sprintf() normalizes the

passed-in values as integers with no leading zeros, which matches what’s expected by

the Y-n-j format string given to DateTime::createFromFormat(). The trailing | in the

format string tells DateTime::createFromFormat() to initialize the unspecified hour,

minute, and second time parts to zero.

Once the two DateTime objects are built, determining whether the specified birthdate

produces an age within the acceptable range is just a matter of calling Date

Time::diff() and then checking the resultant DateInterval object to see if its y prop‐

erty, containing the number of years in the date interval, is appropriate.

76 | Chapter 3: Dates and Times

The function returns true if the supplied date is exactly $min_age years before the

current date, but false if the supplied date is exactly $max_age years after the current

date. That is, it would let you through on your 18th birthday, but not on your 123rd.

See Also

Documentation on checkdate(); information about Jeanne Calment, the person with the longest confirmed life span, is at Wikipedia.

3.8 Parsing Dates and Times from Strings

Problem

You need to get a date or time in a string into a format you can use in calculations. For

example, you want to convert date expressions such as “last Thursday” or “February 9,

2004” into an epoch timestamp.

Solution

The simplest way to parse a date or time string of arbitrary format is with strto

time(), which turns a variety of human-readable date and time strings into epoch

timestamps, as shown in Example 3-19.

 Example 3-19. Parsing strings with strtotime()

$a = strtotime('march 10'); // defaults to the current year

$b = strtotime('last thursday');

$c = strtotime('now + 3 months');

Discussion

The grammar strtotime() uses is both complicated and comprehensive. It incorpo‐

rates the GNU Date Input Formats specification (which is available from GNU) and some extensions.

The function strtotime() understands words about the current time:

$a = strtotime('now');

print date(DATE_RFC850, $a);

print " \n";

$a = strtotime('today');

print date(DATE_RFC850, $a);

Tuesday, 12-Feb-13 19:12:14 UTC

Tuesday, 12-Feb-13 00:00:00 UTC

It understands different ways to identify a time and date:

3.8 Parsing Dates and Times from Strings | 77

$a = strtotime('5/12/2014');

print date(DATE_RFC850, $a);

print " \n";

$a = strtotime('12 may 2014');

print date(DATE_RFC850, $a);

Monday, 12-May-14 00:00:00 UTC

Monday, 12-May-14 00:00:00 UTC

It understands relative times and dates:

$a = strtotime('last thursday'); // On February 12, 2013

print date(DATE_RFC850, $a);

print " \n";

$a = strtotime('2015-07-12 2pm + 1 month');

print date(DATE_RFC850, $a);

Thursday, 07-Feb-13 00:00:00 UTC

Wednesday, 12-Aug-15 14:00:00 UTC

It understands time zones. In the following code, the time part (2pm) doesn’t change

because both PHP’s default time zone identifier (America/New_York) and the time zone

in the string passed to strtotime() are the same (EDT is the time zone abbreviation

for daylight saving time in New York):

date_default_timezone_set('America/New_York');

$a = strtotime('2012-07-12 2pm America/New_York + 1 month');

print date(DATE_RFC850, $a);

Sunday, 12-Aug-12 14:00:00 EDT

However, with PHP’s default time zone identifier set to America/Denver (two hours

before America/New_York), the same string passed to strtotime() produces the time

in New York when it is 2 P.M. in Denver (two hours before New York):

date_default_timezone_set('America/New_York');

$a = strtotime('2012-07-12 2pm America/Denver + 1 month');

print date(DATE_RFC850, $a);

Sunday, 12-Aug-12 16:00:00 EDT

The same extensive grammar that strtotime() uses is also applied when creating a

DateTime object. So, although strtotime() is very useful if you just need an epoch

timestamp, you can pass the same strings to new DateTime() to build a DateTime object

for further manipulation.

If you find yourself with a date or time string with a known format, but that is not

parseable by strtotime(), you can still create DateTime objects based on the string by

using DateTime::createFromFormat(). Example 3-20 shows how to use Date

Time::createFromFormat() to parse date strings written in day-month-year order.

(PHP’s default is month-day-year order.)

78 | Chapter 3: Dates and Times

 Example 3-20. Parsing a date with a specific format

$dates = array('01/02/2015', '03/06/2015', '09/08/2015');

foreach ($dates as $date) {

$default = new DateTime($date);

$day_first = DateTime::createFromFormat('d/m/Y|', $date);

printf("The default interpretation is %s\n but day-first is %s. \n",

$default->format(DateTime::RFC850),

$day_first->format(DateTime::RFC850));

}

Example 3-20 prints:

The default interpretation is Friday, 02-Jan-15 00:00:00 UTC

 but day-first is Sunday, 01-Feb-15 00:00:00 UTC.

The default interpretation is Friday, 06-Mar-15 00:00:00 UTC

 but day-first is Wednesday, 03-Jun-15 00:00:00 UTC.

The default interpretation is Tuesday, 08-Sep-15 00:00:00 UTC

 but day-first is Sunday, 09-Aug-15 00:00:00 UTC.

See Also

Documentation on strtotime() and DateTime::createFromFormat(). Rules describ‐

ing what strtotime() can parse.

3.9 Adding to or Subtracting from a Date

Problem

You need to add or subtract an interval from a date.

Solution

Apply a DateInterval object to a DateTime object with either the DateTime::add() or

DateTime::sub() method, as shown in Example 3-21.

 Example 3-21. Adding and subtracting a date interval

$birthday = new DateTime('March 10, 1975');

 // When is 40 weeks before $birthday?

$human_gestation = new DateInterval('P40W');

$birthday->sub($human_gestation);

print $birthday->format(DateTime::RFC850);

print " \n";

 // What if it was an elephant, not a human?

$elephant_gestation = new DateInterval('P616D');

3.9 Adding to or Subtracting from a Date | 79

$birthday->add($elephant_gestation);

print $birthday->format(DateTime::RFC850);

Discussion

The add() and sub() methods of DateTime modify the DateTime method they are called

on by whatever amount is specified in the interval. The average human gestation time

is 40 weeks, so an interval of P40W walks back the birthday to 40 weeks earlier, approx‐

imating conception time. An elephant, on the other hand, has an average gestation time

of 616 days. So, adding an interval of P616D to that conception time produces the ex‐

pected due date of an elephant conceived at the same time as the human.

A DateTime object’s modify() method accepts, instead of a DateInterval object, a string

that strtotime() understands. This provides an easy way to find relative dates like “next

Tuesday” from a given object. For example, election day in the United States is the

Tuesday after the first Monday in November. (That is, the first Tuesday of November,

unless that’s the first of the month, in which case it’s the following Tuesday.) With

DateTime::modify() you can find the date of election day as follows:

$year = 2016;

$when = new DateTime("November 1, $year");

if ($when->format('D') != 'Mon') {

$when->modify("next Monday");

}

$when->modify("next Tuesday");

print "In $year, US election day is on the " .

$when->format('jS') . ' day of November.';

The format character D produces the day of the week. So if the first day of November is

not a Monday, the call to $when->modify("next Monday") advances the DateTime

object to the following Monday. Then, the subsequent call to modify() finds the first

Tuesday after that.

See Also

Documentation on creating DateInterval objects, DateTime::add(), Date

Time::sub(), and DateTime::modify().

3.10 Calculating Time with Time Zones and Daylight

Saving Time

Problem

You need to calculate times in different time zones. For example, you want to give users

information adjusted to their local time, not the local time of your server.

80 | Chapter 3: Dates and Times

Solution

Use appropriate DateTimeZone objects when you build DateTime objects and PHP will

do all the work for you, as in Example 3-22.

 Example 3-22. Simple time zone usage

$nowInNewYork = new DateTime('now', new DateTimeZone('America/New_York'));

$nowInCalifornia = new DateTime('now', new DateTimeZone('America/Los_Angeles'));

printf("It's %s in New York but %s in California.",

$nowInNewYork->format(DateTime::RFC850),

$nowInCalifornia->format(DateTime::RFC850));

This prints:

It's Friday, 15-Feb-13 14:50:25 EST in New York but

Friday, 15-Feb-13 11:50:25 PST in California.

Note how not only is the time localized (the hours shown differ by three) but the time

zone displayed is the locally appropriate one as well. If a time zone you’re using observes

daylight saving time, this is accounted for automatically.

PHP’s default time zone is set at request startup by the date.timezone configuration

parameter. Change this by calling date_default_time_zone_set(); that time zone be‐

comes the new default until changed again or the end of the request. Example 3-23 prints the current time twice—once as appropriate for New York and once for Paris.

 Example 3-23. Changing time zone with date_default_timezone_set()

$now = time();

date_default_timezone_set('America/New_York');

print date(DATE_RFC850, $now);

print " \n";

date_default_timezone_set('Europe/Paris');

print date(DATE_RFC850, $now);

Example 3-23 displays appropriately localized time values as well as time zones, just like

Example 3-22.

Discussion

Because DateTime objects cooperate with DateTimeZone objects (and other functions,

such as date(), respect the system-set time zone) it is very easy to twiddle time zones

and get appropriately formatted output. The time zone information that PHP relies on

incorporates daylight saving time transitions as well.

The time zones that PHP understands are listed in the PHP Manual. The names of these

time zones—such as America/New_York, Europe/Paris, and Africa/Dar_es_Salaam

3.10 Calculating Time with Time Zones and Daylight Saving Time | 81

—mirror the structure of the popular zoneinfo database. If you want to update your time zone database without updating your entire PHP installation, install (or update) the

timezonedb extension from PECL. This packages the IANA-managed Time Zone Da‐

tabase for PHP.

See Also

Documentation on date_default_timezone_set(), on date_default_time

zone_get(), and on the DateTimeZone class; the time zones that PHP knows about; information about the IANA Time Zone Database; the timezonedb PECL extension.

3.11 Generating a High-Precision Time

Problem

You need to measure time with finer than one-second resolution—for example, to gen‐

erate a unique ID or benchmark a function call.

Solution

Use microtime(true) to get the current time in seconds and microseconds.

Example 3-24 uses microtime(true) to time how long it takes to do 1,000 regular

expression matches.

 Example 3-24. Timing with microtime()

$start = microtime(true);

for ($i = 0; $i < 1000; $i++) {

preg_match('/age=\d{1,5}/',$_SERVER['QUERY_STRING']);

}

$end = microtime(true);

$elapsed = $end - $start;

Discussion

Without an argument that evaluates to true, microtime() returns a string that contains

the microseconds part of elapsed time since the epoch, a space, and seconds since the

epoch. For example, a return value of 0.41644100 1026683258 means that

1026683258.41644100 seconds have elapsed since the epoch. This allows for more pre‐

cision than can fit into a float, but makes it difficult to calculate with.

Since PHP 5.4.0, the $_SERVER superglobal array is populated with a RE

QUEST_TIME_FLOAT entry. This contains the time (including microseconds) when the

request started. This makes it easy to determine how long a request has been running

at any point—just compute microtime(true) - $_SERVER['REQUEST_TIME_FLOAT'].

82 | Chapter 3: Dates and Times

Time including microseconds is useful for generating unique IDs. When combined with

the current process ID, it guarantees a unique ID, as long as a process doesn’t generate

more than one ID per microsecond. Example 3-25 uses microtime() (with its string

return format) to generate just such an ID.

 Example 3-25. Generating an ID with microtime()

list($microseconds,$seconds) = explode(' ',microtime());

$id = $seconds.$microseconds.getmypid();

Note that the method in Example 3-25 is not as foolproof on multithreaded systems,

where there is a nonzero (but very tiny) chance that two threads of the same process

could call microtime() during the same microsecond.

See Also

Documentation on microtime().

3.12 Generating Time Ranges

Problem

You need to know all the days in a week or a month. For example, you want to print out

a list of appointments for a week.

Solution

Use the DatePeriod class, available starting with PHP 5.3.0. Its constructor accepts a

flexible combination of options that lets you control the range length, time between

items in the range, and how many items there are in the range.

You can build a DatePeriod with a start, interval, and end. Here’s how to construct a

range that represents every day in August 2014:

 // Start on August 1

$start = new DateTime('August 1, 2014');

 // End date is exclusive, so this will stop on August 31

$end = new DateTime('September 1, 2014');

 // Go 1 day at a time

$interval = new DateInterval('P1D');

$range1 = new DatePeriod($start, $interval, $end);

Here’s another way to do the same thing:

 // Start on August 1

$start = new DateTime('August 1, 2014');

 // Go 1 day at a time

$interval= new DateInterval('P1D');

3.12 Generating Time Ranges | 83

 // Recur 30 times more after the first occurrence.

$recurrences = 30;

$range2 = new DatePeriod($start, $interval, $recurrences);

And a third way, using the ISO 8601 specified format for describing date ranges:

$range3 = new DatePeriod('R30/2014-08-01T00:00:00Z/P1D');

The DatePeriod class implements the Traversable interface, so once you’ve construc‐

ted an object, just pass it to foreach and you’ll get a DateTime object for each item in

the range:

foreach ($range1 as $d) {

print "A day in August is " . $d->format('d') . " \n";

}

Discussion

By default a DatePeriod includes the time specified as its start and excludes the time

specified as its end. You can also exclude the start time by passing DatePeriod::EX

CLUDE_START_DATE as a final argument to the constructor.

DatePeriod only implements Traversable, not any of the other “make my object act

like an array” interfaces that PHP provides, so you can’t grab all the values at once, for

example, by passing it to implode(). You have to use foreach to accumulate the values

you want into a regular array.

See Also

Documentation on DatePeriod and DateInterval().

3.13 Using Non-Gregorian Calendars

Problem

You want to use a non-Gregorian calendar, such as a Julian, Jewish, or French Republican

calendar.

Solution

PHP’s calendar extension provides conversion functions for working with the Julian

calendar as well as the French Republican and Jewish calendars. To use these functions,

the calendar extension must be loaded.

These functions use the Julian day count (which is different than the Julian calendar)

as their intermediate format to move information between them. cal_to_jd() converts

84 | Chapter 3: Dates and Times

a month, day, and year to a Julian day count value; cal_from_jd() converts a Julian day

count value to a month, day, and year in a particular calendar. Example 3-26 converts between Julian days and the familiar Gregorian calendar.

 Example 3-26. Converting between Julian days and the Gregorian calendar

 // March 8, 1876

 // $jd is 2406323, the Julian day count

$jd = gregoriantojd(3,9,1876);

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);

 /* $gregorian is array('date' => '3/9/1876',

 'month' => 3,

 'day' => 9,

 'year' => 1876,

 'dow' => 4,

 'abbrevdayname' => 'Thu',

 'dayname' => 'Thursday',

 'abbrevmonth' => 'Mar',

 'monthname' => 'March'));

 */

The valid range for the Gregorian calendar is 4714 BCE to 9999 CE.

Discussion

To convert between Julian days and the Julian calendar, use the CAL_JULIAN constant,

as shown in Example 3-27.

 Example 3-27. Using the Julian calendar

 // February 29, 1900 (not a Gregorian leap year)

 // $jd is 2415092, the Julian day count

$jd = cal_to_jd(CAL_JULIAN, 2, 29, 1900);

$julian = cal_from_jd($jd, CAL_JULIAN);

 /* $julian is array('date' => '2/29/1900',

 'month' => 2,

 'day' => 29,

 'year' => 1900,

 'dow' => 2,

 'abbrevdayname' => 'Tue',

 'dayname' => 'Tuesday',

 'abbrevmonth' => 'Feb',

 'monthname' => 'February'));

 */

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);

 /* $gregorian is array('date' => '3/13/1900',

 'month' => 3,

 'day' => 13,

 'year' => 1900,

3.13 Using Non-Gregorian Calendars | 85

 'dow' => 2,

 'abbrevdayname' => 'Tue',

 'dayname' => 'Tuesday',

 'abbrevmonth' => 'Mar',

 'monthname' => 'March'));

 */

The valid range for the Julian calendar is 4713 BCE to 9999 CE, but because it was created

in 46 BCE, you run the risk of annoying Julian calendar purists if you use it for dates

before that.

To convert between Julian days and the French Republican calendar, use the CAL_FRENCH

constant, as shown in Example 3-28.

 Example 3-28. Using the French Republican calendar

 // 13 Floréal XI

 // $jd is 2379714, the Julian day count

$jd = cal_to_jd(CAL_FRENCH, 8, 13, 11);

$french = cal_from_jd($jd, CAL_FRENCH);

 /* $french is array('date' => '8/13/11',

 'month' => 8,

 'day' => 13,

 'year' => 11,

 'dow' => 2,

 'abbrevdayname' => 'Tue',

 'dayname' => 'Tuesday',

 'abbrevmonth' => 'Floreal',

 'monthname' => 'Floreal'));

 */

 // May 3, 1803 - sale of Louisiana to the US

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);

 /* $gregorian is array('date' => '5/3/1803',

 'month' => 5,

 'day' => 3,

 'year' => 1803,

 'dow' => 2,

 'abbrevdayname' => 'Tue',

 'dayname' => 'Tuesday',

 'abbrevmonth' => 'May',

 'monthname' => 'May'));

 */

The valid range for the French Republican calendar is September 1792 to September

1806, which is small, but because the calendar was only in use from October 1793 to

January 1806, that’s comprehensive enough. Note that the month names that

cal_from_jd() returns do not have proper accents—they are, for example, Floreal

instead of Floréal.

86 | Chapter 3: Dates and Times

To convert between Julian days and the Jewish calendar, use the CAL_JEWISH constant,

as shown in Example 3-29.

 Example 3-29. Using the Jewish calendar

 // 25 Kislev 5774 is the first night/day of Hanukah

 // $jd is 2456625, the Julian day count

$jd = cal_to_jd(CAL_JEWISH, 3, 25, 5774);

$jewish = cal_from_jd($jd, CAL_JEWISH);

 /* $jewish is array('date' => '3/25/5774',

 'month' => 3,

 'day' => 25,

 'year' => 5774,

 'dow' => 4,

 'abbrevdayname' => 'Thu',

 'dayname' => 'Thursday',

 'abbrevmonth' => 'Kislev',

 'monthname' => 'Kislev'));

 */

 // November 28, 2013 is US Thanksgiving holiday

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);

 /* $gregorian is array('date' => '11/28/2013',

 'month' => 11,

 'day' => 28,

 'year' => 2013,

 'dow' => 4,

 'abbrevdayname' => 'Thu',

 'dayname' => 'Thursday',

 'abbrevmonth' => 'Nov',

 'monthname' => 'November'));

 */

The valid range for the Jewish calendar starts with 3761 BCE (year 1 on the Jewish

calendar). Note that whether or not it falls within a leap year, the month Adar is always

returned as AdarI. In leap years, Adar II is returned as AdarII.

See Also

Documentation for the calendar functions; the history of the Gregorian calendar.

3.14 Program: Calendar

The LittleCalendar class shown in Example 3-31 prints out a month’s calendar, similar to the Unix cal program. Example 3-30 shows how you can use the class, including

default styles for its layout.

3.14 Program: Calendar | 87

 Example 3-30. Using LittleCalendar()

<style type="text/css">

.prev { text-align: left; }

.next { text-align: right; }

.day, .month, .weekday { text-align: center; }

.today { background: yellow; }

.blank { }

</style>

<?php

 // print the calendar for the current month if a month

 // or year isn't in the query string

$month = isset($_GET['month']) ? intval($_GET['month']) : date('m');

$year = isset($_GET['year']) ? intval($_GET['year']) : date('Y');

$cal = new LittleCalendar($month, $year);

print $cal->html();

The LittleCalendar class can produce a representation of a month’s calendar in dif‐

ferent formats. Its prepare() method calculates the right information about each day

of the month and appropriate beginning and end padding. Then, separate internal

methods, invoked by generate() based on its argument, produce formatting appro‐

priate for different contexts. The html() method produces an HTML calendar suitable

for display in a web page. The text() method produces a text-based calendar for display

in the shell.

 Example 3-31. LittleCalendar

class LittleCalendar {

 /** DateTime */

protected $monthToUse;

protected $prepared = false;

protected $days = array();

public function __construct($month, $year) {

 /* Build a DateTime for the month we're going to display */

$this->monthToUse = DateTime::createFromFormat('Y-m|',

sprintf("%04d-%02d",

$year, $month));

$this->prepare();

}

protected function prepare() {

 // Build up an array of information about each day

 // in the month including appropriate padding at the

 // beginning and end

 // First, days of the week across the first row

88 | Chapter 3: Dates and Times

 foreach (array('Su', 'Mo','Tu','We','Th','Fr','Sa') as $dow) {

$endOfRow = ($dow == 'Sa');

$this->days[] = array('type' => 'dow',

'label' => $dow,

'endOfRow' => $endOfRow);

}

 // Next, placeholders up to the first day of the week

for ($i = 0, $j = $this->monthToUse->format('w'); $i < $j; $i++) {

$this->days[] = array('type' => 'blank');

}

 // Then, one item for each day in the month

$today = date('Y-m-d');

$days = new DatePeriod($this->monthToUse,

new DateInterval('P1D'),

$this->monthToUse->format('t') - 1);

foreach ($days as $day) {

$isToday = ($day->format('Y-m-d') == $today);

$endOfRow = ($day->format('w') == 6);

$this->days[] = array('type' => 'day',

'label' => $day->format('j'),

'today' => $isToday,

'endOfRow' => $endOfRow);

}

 // Last, any placeholders for the end of the month, if we

 // didn't have an endOfWeek day as the last day in the month

if (! $endOfRow) {

for ($i = 0, $j = 6 - $day->format('w'); $i < $j; $i++) {

$this->days[] = array('type' => 'blank');

}

}

}

public function html($opts = array()) {

if (! isset($opts['id'])) {

$opts['id'] = 'calendar';

}

if (! isset($opts['month_link'])) {

$opts['month_link'] =

'<a href="'.htmlentities($_SERVER['PHP_SELF']) . '?' .

'month=%d&year=%d">%s';

}

$classes = array();

foreach (array('prev','month','next','weekday','blank','day','today')

as $class) {

if (isset($opts['class']) && isset($opts['class'][$class])) {

$classes[$class] = $opts['class'][$class];

}

else {

3.14 Program: Calendar | 89

 $classes[$class] = $class;

}

}

 /* Build a DateTime for the previous month */

$prevMonth = clone $this->monthToUse;

$prevMonth->modify("-1 month");

$prevMonthLink = sprintf($opts['month_link'],

$prevMonth->format('m'),

$prevMonth->format('Y'),

'«');

 /* Build a DateTime for the following month */

$nextMonth = clone $this->monthToUse;

$nextMonth->modify("+1 month");

$nextMonthLink = sprintf($opts['month_link'],

$nextMonth->format('m'),

$nextMonth->format('Y'),

'»');

$html = '<table id="'.htmlentities($opts['id']).'">

<tr>

<td class="'.htmlentities($classes['prev']).'">' .

$prevMonthLink . '</td>

<td class="'.htmlentities($classes['month']).'" colspan="5">'.

$this->monthToUse->format('F Y') .'</td>

<td class="'.htmlentities($classes['next']).'">' .

$nextMonthLink . '</td>

</tr>';

$html .= '<tr>';

$lastDayIndex = count($this->days) - 1;

foreach ($this->days as $i => $day) {

switch ($day['type']) {

case 'dow':

$class = 'weekday';

$label = htmlentities($day['label']);

break;

case 'blank':

$class = 'blank';

$label = ' ';

break;

case 'day':

$class = $day['today'] ? 'today' : 'day';

$label = htmlentities($day['label']);

break;

}

$html .=

'<td class="' . htmlentities($classes[$class]).'">'.

90 | Chapter 3: Dates and Times

 $label . '</td>';

if (isset($day['endOfRow']) && $day['endOfRow']) {

$html .= "</tr> \n";

if ($i != $lastDayIndex) {

$html .= '<tr>';

}

}

}

$html .= '</table>';

return $html;

}

public function text() {

$lineLength = strlen('Su Mo Tu We Th Fr Sa');

$header = $this->monthToUse->format('F Y');

$headerSpacing = floor(($lineLength - strlen($header))/2);

$text = str_repeat(' ', $headerSpacing) . $header . " \n";

foreach ($this->days as $i => $day) {

switch ($day['type']) {

case 'dow':

$text .= sprintf('% 2s', $day['label']);

break;

case 'blank':

$text .= ' ';

break;

case 'day':

$text .= sprintf("% 2d", $day['label']);

break;

}

$text .= (isset($day['endOfRow']) && $day['endOfRow']) ? " \n" : " ";

}

if ($text[strlen($text)-1] != " \n") {

$text .= " \n";

}

return $text;

}

}

The LittleCalendar constructor just builds a DateTime object for the month it needs

to render. Then, it calls prepare(), which does the work of building up the $days

member variable into an array of information about each of the days (or placeholders)

to be rendered. The prepare() function first puts elements for each day of the week (as

a header row) into $days, then some spacers based on the day of the week of the first

day of the month. Next, it puts an element for each day of the month, and finally spacers

to pad out the end of the month if necessary.

3.14 Program: Calendar | 91

Inside prepare(), the necessary information about each day of the month is retrieved

by calling format() on DateTime objects. This provides day-of-the-week information

for the spacers as well as per-day information for each day. The individual days of the

month are obtained by iterating through a DatePeriod spanning the month to use at a

1-day interval.

Although prepare() figures out enough information to lay out the calendar, it leaves

the actual formatting to other methods. The html() method produces an HTML-

formatted calendar and the text() method produces a text-formatted calendar.

The html() method takes an optional array of options as an argument. You can pass a

printf()-style format string in $opts['month_link'] to change how the links to the

previous and next months are printed as well as an id attribute for the table. The id

defaults to calendar if not specified.

Additionally, you can pass in class names to use for various elements in the layout. These

go in an array-valued class option. In that class array, the classes you can specify are

prev, month, next, weekday, blank, day, and today. Example 3-30 includes styles that

provide a basic pleasant layout for the table, including highlighting the current day in

yellow.

The html() method finds the previous and next months (using DateTime::modify())

in order to generate proper previous and next links. After making a short header, it

iterates through the calculated days, putting each one into an appropriate table cell. At

the end of each week, the table row is closed.

The text() method has similar logic, but (obviously) different output. It generates a

header containing the month and year and then iterates through the calculated days,

adding a newline at the end of each week.

By subclassing LittleCalendar, you could add other customized calendar outputs. For

example, for fancier console output you could make a colorText() method that uses

ANSI escape codes to display the current day in a different color.

92 | Chapter 3: Dates and Times

CHAPTER 4

Arrays

4.0 Introduction

Arrays are lists: lists of people, lists of sizes, lists of books. To store a group of related

items in a variable, use an array. Like a list on a piece of paper, the elements in an array

have an order. Usually, each new item comes after the last entry in the array, but just as

you can wedge a new entry between a pair of lines already in a paper list, you can do

the same with arrays in PHP.

Most languages have numerical arrays (sometimes referred to just as arrays). In a nu‐

merical array, if you want to find an entry, you need to know its position within the

array, known as an index. Positions are identified by numbers: they start at 0 and work

upward one by one.

In some languages, there is also another type of array: an associative array, also known

as a hash or a map or a dictionary. In an associative array, indexes aren’t integers, but

strings. So in a numerical array of US presidents, “Abraham Lincoln” might have index

16; in the associative-array version, the index might be “Honest.” However, whereas

numerical arrays have a strict ordering imposed by their keys, associative arrays fre‐

quently make no guarantees about the key ordering. Elements are added in a certain

order, but there’s no way to determine the order later.

When a language has both numerical and associative arrays, usually the numerical array

$presidents and the associative array $presidents are distinct arrays. Each array type

has a specific behavior, and you need to operate on it accordingly. PHP has both nu‐

merical and associative arrays, but they don’t behave independently.

In PHP, numerical arrays are associative arrays, and associative arrays are numerical

arrays. So which kind are they really? Both and neither. The line between them con‐

stantly blurs back and forth from one to another. At first, this can be disorienting,

especially if you’re used to rigid behavior, but soon you’ll find this flexibility an asset.

93

To assign multiple values to an array in one step, use array():

$fruits = array('Apples', 'Bananas', 'Cantaloupes', 'Dates');

Now, the value of $fruits[2] is 'Cantaloupes'.

array() is very handy when you have a short list of known values. The same array is

also produced by:

$fruits[0] = 'Apples';

$fruits[1] = 'Bananas';

$fruits[2] = 'Cantaloupes';

$fruits[3] = 'Dates';

and:

$fruits[] = 'Apples';

$fruits[] = 'Bananas';

$fruits[] = 'Cantaloupes';

$fruits[] = 'Dates';

As of PHP 5.4, you can also use the short array syntax, inspired by JavaScript:

$fruits = ['Apples', 'Bananas', 'Cantaloupes', 'Dates'];

Assigning a value to an array with an empty subscript is shorthand for adding a new

element to the end of the array. So PHP looks up the length of $fruits and uses that as

the position for the value you’re assigning. This assumes, of course, that $fruits isn’t

set to a scalar value, such as 3, and isn’t an object. PHP complains if you try to treat a

nonarray as an array; however, if this is the first time you’re using this variable, PHP

automatically converts it to an array and begins indexing at 0.

An identical feature is the function array_push(), which pushes a new value on top of

the array stack. However, the $foo[] notation is the more traditional PHP style; it’s also

faster. But sometimes, using array_push() more accurately conveys the stack nature of

what you’re trying to do, especially when combined with array_pop(), which removes

the last element from an array and returns it.

So far, we’ve placed integers and strings only inside arrays. However, PHP allows you

to assign any data type you want to an array element: booleans, integers, floating-point

numbers, strings, objects, resources, NULL, and even other arrays. So you can pull arrays

or objects directly from a database and place them into an array:

while ($row = mysqli_fetch_assoc($r)) {

$fruits[] = $row;

}

while ($obj = mysqli_fetch_object($s)) {

$vegetables[] = $obj;

}

94 | Chapter 4: Arrays

The first while statement creates an array of arrays; the second creates an array of

objects. See Recipe 4.2 for more on storing multiple elements per key.

To define an array using not integer keys but string keys, you can also use array(), but

specify the key/value pairs with =>:

$fruits = array('red' => 'Apples', 'yellow' => 'Bananas',

'beige' => 'Cantaloupes', 'brown' => 'Dates');

Now, the value of $fruits['beige'] is Cantaloupes. This is shorthand for:

$fruits['red'] = 'Apples';

$fruits['yellow'] = 'Bananas';

$fruits['beige'] = 'Cantaloupes';

$fruits['brown'] = 'Dates';

The short syntax works here, too:

$fruits = [

'red' => 'Apples',

'yellow' => 'Bananas',

'beige' => 'Cantaloupes',

'brown' => 'Dates'

];

Each array can only hold one unique value for each key. Adding:

$fruits['red'] = 'Strawberry';

overwrites the value of 'Apples'. However, you can always add another key at a later

time:

$fruits['orange'] = 'Orange';

The more you program in PHP, the more you find yourself using associative arrays

instead of numerical ones. Instead of creating a numeric array with string values, you

can create an associative array and place your values as its keys. If you want, you can

then store additional information in the element’s value. There’s no speed penalty for

doing this, and PHP preserves the ordering. Plus, looking up or changing a value is easy

because you already know the key.

The easiest way to cycle though an array and operate on all or some of the elements

inside is to use foreach:

$fruits = array('red' => 'Apples', 'yellow' => 'Bananas',

'beige' => 'Cantaloupes', 'brown' => 'Dates');

foreach ($fruits as $color => $fruit) {

print "$fruit are $color. \n";

}

Each time through the loop, PHP assigns the next key to $color and the key’s value to

$fruit. When there are no elements left in the array, the loop finishes.

4.0 Introduction | 95

To break an array apart into individual variables, use list():

$fruits = array('Apples', 'Bananas', 'Cantaloupes', 'Dates');

list($red, $yellow, $beige, $brown) = $fruits;

4.1 Specifying an Array Not Beginning at Element 0

Problem

You want to assign multiple elements to an array in one step, but you don’t want the first

index to be 0.

Solution

Instruct array() to use a different index using the => syntax:

$presidents = array(1 => 'Washington', 'Adams', 'Jefferson', 'Madison');

Discussion

Arrays in PHP—like most, but not all, computer languages—begin with the first entry

located at index 0. Sometimes, however, the data you’re storing makes more sense if the

list begins at 1. (And we’re not just talking to recovering Pascal programmers here.)

In the Solution, George Washington is the first president, not the zeroth, so if you wish

to print a list of the presidents, it’s simpler to do this:

foreach ($presidents as $number => $president) {

print "$number: $president\n";

}

than this:

foreach ($presidents as $number => $president) {

$number++;

print "$number: $president\n";

}

The feature isn’t restricted to the number 1; any integer works:

$reconstruction_presidents = array(16 => 'Lincoln', 'Johnson', 'Grant');

 // alternatively,

$reconstruction_presidents = [16 => 'Lincoln', 'Johnson', 'Grant'];

Also, you can use => multiple times in one call:1

1. John Tyler was elected as Harrison’s vice president under the Whig Party platform but was expelled from the party shortly after assuming the presidency following the death of Harrison.

96 | Chapter 4: Arrays

$whig_presidents = array(9 => 'Harrison', 'Tyler', 12 => 'Taylor', 'Fillmore');

 // alternatively,

$whig_presidents = [9 => 'Harrison', 'Tyler', 12 => 'Taylor', 'Fillmore'];

PHP even allows you to use negative numbers in the array() call. (In fact, this method

works for noninteger keys, too.) What you’ll get is technically an associative array, al‐

though as we said, the line between numeric arrays and associative arrays is often blurred

in PHP; this is just another one of these cases:

$us_leaders = array(-1 => 'George II', 'George III', 'Washington');

 // alternatively,

$us_leaders = [-1 => 'George II', 'George III', 'Washington'];

If Washington is the first US leader, George III is the zeroth, and his grandfather George

II is the negative-first.

Of course, you can mix and match numeric and string keys in one array() definition,

but it’s confusing and very rarely needed:

$presidents = array(1 => 'Washington', 'Adams', 'Honest' => 'Lincoln',

'Jefferson');

 // alternatively,

$presidents = [1 => 'Washington', 'Adams', 'Honest' => 'Lincoln', 'Jefferson'];

This is equivalent to:

$presidents[1] = 'Washington'; // Key is 1

$presidents[] = 'Adams'; // Key is 1 + 1 => 2

$presidents['Honest'] = 'Lincoln'; // Key is 'Honest'

$presidents[] = 'Jefferson'; // Key is 2 + 1 => 3

See Also

Documentation on array().

4.2 Storing Multiple Elements per Key in an Array

Problem

You want to associate multiple elements with a single key.

Solution

Store the multiple elements in an array:

$fruits = array('red' => array('strawberry','apple'),

'yellow' => array('banana'));

4.2 Storing Multiple Elements per Key in an Array | 97

Or use an object:

while ($obj = mysqli_fetch_assoc($r)) {

$fruits[] = $obj;

}

Discussion

In PHP, keys are unique per array, so you can’t associate more than one entry in a key

without overwriting the old value. Instead, store your values in an anonymous array:

$fruits = array();

$fruits['red'][] = 'strawberry';

$fruits['red'][] = 'apple';

$fruits['yellow'][] = 'banana';

print_r($fruits);

This prints:

Array

(

[red] => Array

(

[0] => strawberry

[1] => apple

)

[yellow] => Array

(

[0] => banana

)

)

Or, if you’re processing items in a loop:

while (list($color,$fruit) = mysqli_fetch_assoc($r)) {

$fruits[$color][] = $fruit;

}

To print the entries, loop through the array:

foreach ($fruits as $color => $color_fruit) {

 // $color_fruit is an array

foreach ($color_fruit as $fruit) {

print "$fruit is colored $color.
";

}

}

98 | Chapter 4: Arrays

Or use the array_to_comma_string() function from Recipe 4.9:

foreach ($fruits as $color => $color_fruit) {

print "$color colored fruits include " .

array_to_comma_string($color_fruit) . "
";

}

See Also

Recipe 4.9 for how to print arrays with commas.

4.3 Initializing an Array to a Range of Integers

Problem

You want to assign a series of consecutive integers to an array.

Solution

Use range($start, $stop):

$cards = range(1, 52);

Discussion

For increments other than 1, pass an increment to range() as a third argument.

So for odd numbers:

$odd = range(1, 52, 2);

And for even numbers:

$even = range(2, 52, 2);

See Also

Recipe 2.4 for how to operate on a series of integers; documentation on range().

4.4 Iterating Through an Array

Problem

You want to cycle though an array and operate on all or some of the elements inside.

Solution

Use foreach:

4.3 Initializing an Array to a Range of Integers | 99

foreach ($array as $value) {

 // Act on $value

}

Or to get an array’s keys and values:

foreach ($array as $key => $value) {

 // Act II

}

Another technique is to use for:

for ($key = 0, $size = count($array); $key < $size; $key++) {

 // Act III

}

Finally, you can use each() in combination with list() and while:

reset($array); // reset internal pointer to beginning of array

while (list($key, $value) = each ($array)) {

 // Final Act

}

Discussion

A foreach loop is the most concise way to iterate through an array:

 // foreach with values

foreach ($items as $cost) {

 // ...

}

 // foreach with keys and values

foreach($items as $item => $cost) {

 // ...

}

With foreach, PHP iterates over a copy of the array instead of the actual array. In

contrast, when using each() and for, PHP iterates over the original array. So if you

modify the array inside the loop, you may (or may not) get the behavior you expect.

If you want to modify the array, reference it directly:

foreach ($items as $item => $cost) {

if (! in_stock($item)) {

unset($items[$item]); // address the array directly

}

}

The variables returned by foreach() aren’t aliases for the original values in the array:

they’re copies, so if you modify them, it’s not reflected in the array. That’s why you need

to modify $items[$item] instead of $cost.

100 | Chapter 4: Arrays

When using each(), PHP keeps track of where you are inside the loop. After completing

a first pass through, to begin again at the start, call reset() to move the pointer back

to the front of the array. Otherwise, each() returns false.

The for loop works only for arrays with consecutive integer keys. Unless you’re mod‐

ifying the size of your array, it’s inefficient to recompute the count() of $items each

time through the loop, so we always use a $size variable to hold the array’s size:

for ($item = 0, $size = count($items); $item < $size; $item++) {

 // ...

}

If you prefer to count efficiently with one variable, count backward:

for ($item = count($items) - 1; $item >= 0; $item--) {

 // ...

}

The associative array version of the for loop is:

for (reset($array); $key = key($array); next($array)) {

 // ...

}

This fails if any element holds a string that evaluates to false, so a perfectly normal

value such as 0 causes the loop to end early. Therefore, this syntax is rarely used, and is

included only to help you understand older PHP code.

Finally, use array_map() to hand off each element to a function for processing:

 // lowercase all words

$lc = array_map('strtolower', $words);

The first argument to array_map() is a function to modify an individual element, and

the second is the array to be iterated through.

Generally, we find this function less flexible than the previous methods, but it is well-

suited for the processing and merging of multiple arrays.

If you’re unsure if the data you’ll be processing is a scalar or an array, you need to protect

against calling foreach with a nonarray. One method is to use is_array():

if (is_array($items)) {

 // foreach loop code for array

} else {

 // code for scalar

}

Another method is to coerce all variables into array form using settype():

settype($items, 'array');

 // loop code for arrays

4.4 Iterating Through an Array | 101

This turns a scalar value into a one-element array and cleans up your code at the expense of a little overhead.

See Also

Recipe 4.24 for how to use a generator to iterate efficiently overly large or expensive datasets; documentation on for, foreach, while, each(), reset(), and array_map().

4.5 Deleting Elements from an Array

Problem

You want to remove one or more elements from an array.

Solution

To delete one element, use unset():

unset($array[3]);

unset($array['foo']);

To delete multiple noncontiguous elements, also use unset():

unset($array[3], $array[5]);

unset($array['foo'], $array['bar']);

To delete multiple contiguous elements, use array_splice():

array_splice($array, $offset, $length);

Discussion

Using these functions removes all references to these elements from PHP. If you want

to keep a key in the array, but with an empty value, assign the empty string to the element:

$array[3] = $array['foo'] = '';

Besides syntax, there’s a logical difference between using unset() and assigning '' to

the element. The first says, “This doesn’t exist anymore,” and the second says, “This still

exists, but its value is the empty string.”

If you’re dealing with numbers, assigning 0 may be a better alternative. So if a company

stopped production of the model XL1000 sprocket, it would update its inventory with:

unset($products['XL1000']);

However, if the company temporarily ran out of XL1000 sprockets but was planning to

receive a new shipment from the plant later this week, this is better:

$products['XL1000'] = 0;

102 | Chapter 4: Arrays

If you unset() an element, PHP adjusts the array so that looping still works correctly.

It doesn’t compact the array to fill in the missing holes. This is what we mean when we

say that all arrays are associative, even when they appear to be numeric. Here’s an ex‐

ample:

 // create a "numeric" array

$animals = array('ant', 'bee', 'cat', 'dog', 'elk', 'fox');

print $animals[1]; // prints 'bee'

print $animals[2]; // prints 'cat'

count($animals); // returns 6

 // unset()

unset($animals[1]); // removes element $animals[1] = 'bee'

print $animals[1]; // prints nothing and throws an E_NOTICE error

print $animals[2]; // still prints 'cat'

count($animals); // returns 5, even though $array[5] is 'fox'

 // add new element

$animals[] = 'gnu'; // add new element (not Unix)

print $animals[1]; // prints nothing, still throws an E_NOTICE error

print $animals[6]; // prints 'gnu', this is where 'gnu' ended up

count($animals); // returns 6

 // assign ''

$animals[2] = ''; // zero out value

print $animals[2]; // prints ''

count($animals); // returns 6, count does not decrease

To compact the array into a densely filled numeric array, use array_values():

$animals = array_values($animals);

Alternatively, array_splice() automatically reindexes arrays to avoid leaving holes:

 // create a "numeric" array

$animals = array('ant', 'bee', 'cat', 'dog', 'elk', 'fox');

array_splice($animals, 2, 2);

print_r($animals);

Array

(

 [0] => ant

 [1] => bee

 [2] => elk

 [3] => fox

)

This is useful if you’re using the array as a queue and want to remove items from the

queue while still allowing random access. To safely remove the first or last element from

an array, use array_shift() and array_pop(), respectively.

4.5 Deleting Elements from an Array | 103

However, if you find yourself often running into problems because of holes in arrays,

you may not be “thinking PHP.” Look at the ways to iterate through the array in Recipe 4.4

that don’t involve using a for loop.

See Also

Recipe 4.4 for iteration techniques; documentation on unset(), array_splice(), and

array_values().

4.6 Changing Array Size

Problem

You want to modify the size of an array, either by making it larger or smaller than its

current size.

Solution

Use array_pad() to make an array grow:

 // start at three

$array = array('apple', 'banana', 'coconut');

 // grow to five

$array = array_pad($array, 5, '');

Now, count($array) is 5, and the last two elements, $array[3] and $array[4], contain

the empty string.

To reduce an array, you can use array_splice():

 // no assignment to $array

array_splice($array, 2);

This removes all but the first two elements from $array.

Discussion

Arrays aren’t a predeclared size in PHP, so you can resize them on the fly.

To pad an array, use array_pad(). The first argument is the array to be padded. The

next argument is the size and direction you want to pad. To pad to the right, use a positive

integer; to pad to the left, use a negative one. The third argument is the value to be

assigned to the newly created entries. The function returns a modified array and doesn’t

alter the original.

Here are some examples:

104 | Chapter 4: Arrays

 // make a four-element array with 'dates' to the right

$array = array('apple', 'banana', 'coconut');

$array = array_pad($array, 4, 'dates');

print_r($array);

Array

(

 [0] => apple

 [1] => banana

 [2] => coconut

 [3] => dates

)

 // make a six-element array with 'zucchinis' to the left

$array = array_pad($array, -6, 'zucchini');

print_r($array);

Array

(

[0] => zucchini

[1] => zucchini

[2] => apple

[3] => banana

[4] => coconut

[5] => dates

)

Be careful: array_pad($array, 4, 'dates') makes sure an $array is at least four

elements long; it doesn’t add four new elements. In this case, if $array was already four

elements or larger, array_pad() would return an unaltered $array.

Also, if you declare a value for a fourth element, $array[4]:

$array = array('apple', 'banana', 'coconut');

$array[4] = 'dates';

print_r($array);

you end up with a four-element array with indexes 0, 1, 2, and 4:

Array

(

[0] => apple

[1] => banana

[2] => coconut

[4] => dates

)

PHP essentially turns this into an associative array that happens to have integer keys.

The array_splice() function, unlike array_pad(), has the side effect of modifying the

original array. It returns the spliced-out array. That’s why you don’t assign the return

value to $array. However, like array_pad(), you can splice from either the right or left.

So calling array_splice() with a value of -2 chops off the last two elements from the

end:

4.6 Changing Array Size | 105

 // make a four-element array

$array = array('apple', 'banana', 'coconut', 'dates');

 // shrink to three elements

array_splice($array, 3);

 // remove last element, equivalent to array_pop()

array_splice($array, -1);

 // only remaining fruits are apple and banana

print_r($array);

See Also

Documentation on array_pad() and array_splice().

4.7 Appending One Array to Another

Problem

You want to combine two arrays into one.

Solution

Use array_merge():

$garden = array_merge($fruits, $vegetables);

Discussion

The array_merge() function works with both predefined arrays and arrays defined in

place using array():

$p_languages = array('Perl', 'PHP');

$p_languages = array_merge($p_languages, array('Python'));

print_r($p_languages);

Array

(

[0] => Perl

[1] => PHP

[2] => Python

)

Accordingly, merged arrays can be either preexisting arrays, as with $p_languages, or

anonymous arrays, as with array('Python').

You can’t use array_push(), because PHP won’t automatically flatten out the array into

a series of independent variables, and you’ll end up with a nested array. Thus:

106 | Chapter 4: Arrays

array_push($p_languages, array('Python'));

print_r($p_languages);

Array

(

[0] => Perl

[1] => PHP

[2] => Array

(

[0] => Python

)

)

Merging arrays with only numerical keys causes the arrays to get renumbered, so values

aren’t lost. Merging arrays with string keys causes the second array to overwrite the value

of any duplicated keys. Arrays with both types of keys exhibit both types of behavior.

For example:

$lc = array('a', 'b' => 'b'); // lowercase letters as values

$uc = array('A', 'b' => 'B'); // uppercase letters as values

$ac = array_merge($lc, $uc); // all-cases?

print_r($ac);

Array

(

[0] => a

[b] => B

[1] => A

)

The uppercase A has been renumbered from index 0 to index 1, to avoid a collision,

and merged onto the end. The uppercase B has overwritten the lowercase b and replaced

it in the original place within the array.

The + operator can also merge arrays. For any identically named keys found in both

arrays, the value from the left will be used. It doesn’t do any reordering to prevent

collisions. Using the previous example:

print_r($uc + $lc);

print_r($lc + $uc);

Array

(

[0] => A

[b] => B

)

Array

(

[0] => a

[b] => b

)

Because a and A both have a key of 0, and b and B both have a key of b, you end up with

a total of only two elements in the merged arrays.

4.7 Appending One Array to Another | 107

In the first case, $a + $b becomes just $b, and in the other, $b + $a becomes $a.

However, if you had two distinctly keyed arrays, this wouldn’t be a problem, and the

new array would be the union of the two arrays.

See Also

Documentation on array_merge().

4.8 Turning an Array into a String

Problem

You have an array, and you want to convert it into a nicely formatted string.

Solution

Use join():

 // make a comma delimited list

$string = join(',', $array);

Or loop yourself:

$string = '';

foreach ($array as $key => $value) {

$string .= ",$value";

}

$string = substr($string, 1); // remove leading ","

Discussion

If you can use join(), do; it’s faster than any PHP-based loop. However, join() isn’t

very flexible. First, it places a delimiter only between elements, not around them. To

wrap elements inside HTML bold tags and separate them with commas, do this:

$left = '';

$right = '';

$html = $left . join("$right,$left", $html) . $right;

Second, join() doesn’t allow you to discriminate against values. If you want to include

a subset of entries, you need to loop yourself:

$string = '';

foreach ($fields as $key => $value) {

 // don't include password

108 | Chapter 4: Arrays

 if ('password' != $key) {

$string .= ",$value";

}

}

$string = substr($string, 1); // remove leading ","

Notice that a separator is always added to each value and then stripped off outside the

loop. Although it’s somewhat wasteful to add something that will be subtracted later, it’s

far cleaner and efficient (in most cases) than attempting to embed logic inside of the

loop. To wit:

$string = '';

foreach ($fields as $key => $value) {

 // don't include password

if ('password' != $value) {

if (! empty($string)) { $string .= ','; }

$string .= "$value";

}

}

Now you have to check $string every time you append a value. That’s worse than the

simple substr() call. Also, prepend the delimiter (in this case a comma) instead of

appending it because it’s faster to shorten a string from the front than the rear.

See Also

Recipe 4.9 for printing an array with commas; documentation on join() and substr().

4.9 Printing an Array with Commas

Problem

You want to print out an array with commas separating the elements and with an and

before the last element if there are more than two elements in the array.

Solution

Use the array_to_comma_string() function shown in Example 4-1, which returns the

correct string.

 Example 4-1. array_to_comma_string()

function array_to_comma_string($array) {

switch (count($array)) {

case 0:

return '';

case 1:

4.9 Printing an Array with Commas | 109

 return reset($array);

case 2:

return join(' and ', $array);

default:

$last = array_pop($array);

return join(', ', $array) . ", and $last";

}

}

Discussion

If you have a list of items to print, it’s useful to print them in a grammatically correct

fashion. It looks awkward to display text like this:

$thundercats = array('Lion-O', 'Panthro', 'Tygra', 'Cheetara', 'Snarf');

print 'ThunderCat good guys include ' . join(', ', $thundercats) . '.';

This implementation of this function isn’t completely straightforward because we want

array_to_comma_string() to work with all arrays, not just numeric ones beginning at

0. If restricted only to that subset, for an array of size one, you return $array[0]. But if

the array doesn’t begin at 0, $array[0] is empty. So you can use the fact that reset(),

which resets an array’s internal pointer, also returns the value of the first array element.

For similar reasons, you call array_pop() to grab the end element, instead of assuming

it’s located at $array[count($array)-1]. This allows you to use join() on $array.

Also note that the code for case 2 actually works correctly for case 1, too. And the default

code works (though inefficiently) for case 2; however, the transitive property doesn’t

apply, so you can’t use the default code on elements of size 1.

See Also

Recipe 4.8 for turning an array into a string; documentation on join(), array_pop(),

and reset().

4.10 Checking if a Key Is in an Array

Problem

You want to know if an array contains a certain key.

Solution

Use array_key_exists() to check for a key no matter what the associated value is:

110 | Chapter 4: Arrays

if (array_key_exists('key', $array)) {

 /* there is a value for $array['key'] */

}

Use isset() to find a key whose associated value is anything but null:

if (isset($array['key'])) { /* there is a non-null value for 'key' in $array */ }

Discussion

The array_key_exists() function completely ignores array values—it just reports

whether there is an element in the array with a particular key. isset(), however, behaves

the same way on array keys as it does with other variables. A null value causes is

set() to return false. See the Introduction to Chapter 5 for more information about

the truth value of variables.

See Also

Documentation on isset() and on array_key_exists().

4.11 Checking if an Element Is in an Array

Problem

You want to know if an array contains a certain value.

Solution

Use in_array():

if (in_array($value, $array)) {

 // an element has $value as its value in array $array

}

Discussion

Use in_array() to check if an element of an array holds a value:

$book_collection = array('Emma', 'Pride and Prejudice', 'Northhanger Abbey');

$book = 'Sense and Sensibility';

if (in_array($book, $book_collection)) {

echo 'Own it.';

} else {

echo 'Need it.';

}

4.11 Checking if an Element Is in an Array | 111

The default behavior of in_array() is to compare items using the == operator. To use

the strict equality check, ===, pass true as the third parameter to in_array():

$array = array(1, '2', 'three');

in_array(0, $array); // true!

in_array(0, $array, true); // false

in_array(1, $array); // true

in_array(1, $array, true); // true

in_array(2, $array); // true

in_array(2, $array, true); // false

The first check, in_array(0, $array), evaluates to true because to compare the num‐

ber 0 against the string three, PHP casts three to an integer. Because three isn’t a

numeric string, as is 2, it becomes 0. Therefore, in_array() thinks there’s a match.

Consequently, when comparing numbers against data that may contain strings, it’s safest

to use a strict comparison.

If you find yourself calling in_array() multiple times on the same array, it may be better

to use an associative array, with the original array elements as the keys in the new as‐

sociative array. Looking up entries using in_array() takes linear time; with an asso‐

ciative array, it takes constant time.

If you can’t create the associative array directly but need to convert from a traditional

one with integer keys, use array_flip() to swap the keys and values of an array:

$book_collection = array('Emma',

'Pride and Prejudice',

'Northhanger Abbey');

 // convert from numeric array to associative array

$book_collection = array_flip($book_collection);

$book = 'Sense and Sensibility';

if (isset($book_collection[$book])) {

echo 'Own it.';

} else {

echo 'Need it.';

}

Note that doing this condenses multiple keys with the same value into one element in

the flipped array.

See Also

Recipe 4.12 for determining the position of a value in an array; documentation on

in_array() and array_flip().

112 | Chapter 4: Arrays

4.12 Finding the Position of a Value in an Array

Problem

You want to know if a value is in an array. If the value is in the array, you want to know

its key.

Solution

Use array_search(). It returns the key of the found value. If the value is not in the

array, it returns false:

$position = array_search($value, $array);

if ($position !== false) {

 // the element in position $position has $value as its value in array $array

}

Discussion

Use in_array() to find if an array contains a value; use array_search() to discover

where that value is located. However, because array_search() gracefully handles

searches in which the value isn’t found, it’s better to use array_search() instead of

in_array(). The speed difference is minute, and the extra information is potentially

useful:

$favorite_foods = array(1 => 'artichokes', 'bread', 'cauliflower',

'deviled eggs');

$food = 'cauliflower';

$position = array_search($food, $favorite_foods);

if ($position !== false) {

echo "My #$position favorite food is $food";

} else {

echo "Blech! I hate $food!";

}

Use the !== check against false because if your string is found in the array at position

0, the if evaluates to a logical false, which isn’t what is meant or wanted.

If a value is in the array multiple times, array_search() is only guaranteed to return

one of the instances, not the first instance.

See Also

Recipe 4.11 for checking whether an element is in an array; documentation on ar

ray_search(); for more sophisticated searching of arrays using regular expressions, see preg_replace(), which you can find at the PHP website and in Chapter 23.

4.12 Finding the Position of a Value in an Array | 113

4.13 Finding Elements That Pass a Certain Test

Problem

You want to locate entries in an array that meet certain requirements.

Solution

Use a foreach loop:

$movies = array(/*...*/);

foreach ($movies as $movie) {

if ($movie['box_office_gross'] < 5000000) { $flops[] = $movie; }

}

Or array_filter():

$movies = array(/* ... */);

$flops = array_filter($movies, function ($movie) {

return ($movie['box_office_gross'] < 5000000) ? 1 : 0;

});

Discussion

The foreach loops are simple: you iterate through the data and append elements to the

return array that match your criteria.

If you want only the first such element, exit the loop using break:

$movies = array(/*...*/);

foreach ($movies as $movie) {

if ($movie['box_office_gross'] > 200000000) { $blockbuster = $movie; break; }

}

You can also return directly from a function:

function blockbuster($movies) {

foreach ($movies as $movie) {

if ($movie['box_office_gross'] > 200000000) { return $movie; }

}

}

With array_filter(), however, you first create an anonymous function that returns

true for values you want to keep and false for values you don’t. Using array_fil

ter(), you then instruct PHP to process the array as you do in the foreach.

It’s impossible to bail out early from array_filter(), so foreach provides more flex‐

ibility and is simpler to understand. Also, it’s one of the few cases in which the built-in

PHP function doesn’t clearly outperform user-level code.

114 | Chapter 4: Arrays

See Also

Documentation on array_filter() and anonymous functions.

4.14 Finding the Largest or Smallest Valued Element in an

Array

Problem

You have an array of elements, and you want to find the largest or smallest valued

element. For example, you want to find the appropriate scale when creating a histogram.

Solution

To find the largest element, use max():

$largest = max($array);

To find the smallest element, use min():

$smallest = min($array);

Discussion

Normally, max() returns the larger of two elements, but if you pass it an array, it searches

the entire array instead. Unfortunately, there’s no way to find the index of the largest

element using max(). To do that, you must sort the array in reverse order to put the

largest element in position 0:

arsort($array);

Now the value of the largest element is $array[0].

If you don’t want to disturb the order of the original array, make a copy and sort the

copy:

$copy = $array;

arsort($copy);

The same concept applies to min() but uses asort() instead of arsort().

Both max() and min() issue a warning if you provide them with an empty array.

See Also

Recipe 4.16 for sorting an array; documentation on max(), min(), arsort(), and

asort().

4.14 Finding the Largest or Smallest Valued Element in an Array | 115

4.15 Reversing an Array

Problem

You want to reverse the order of the elements in an array.

Solution

Use array_reverse():

$array = array('Zero', 'One', 'Two');

$reversed = array_reverse($array);

Discussion

The array_reverse() function reverses the elements in an array. However, it’s often

possible to avoid this operation. If you wish to reverse an array you’ve just sorted, modify

the sort to do the inverse. If you want to reverse a list you’re about to loop through and

process, just invert the loop. Instead of:

for ($i = 0, $size = count($array); $i < $size; $i++) {

 // ...

}

do the following:

for ($i = count($array) - 1; $i >=0 ; $i--) {

 // ...

}

However, as always, use a for loop only on a tightly packed array.

Another alternative would be, if possible, to invert the order in which elements are

placed into the array. For instance, if you’re populating an array from a series of rows

returned from a database, you should be able to modify the query to ORDER DESC. See

your database manual for the exact syntax for your database.

See Also

Documentation on array_reverse().

4.16 Sorting an Array

Problem

You want to sort an array in a specific way.

116 | Chapter 4: Arrays

Solution

To sort an array using the traditional definition of sort, use sort():

$states = array('Delaware', 'Pennsylvania', 'New Jersey');

sort($states);

To sort numerically, pass SORT_NUMERIC as the second argument to sort():

$scores = array(1, 10, 2, 20);

sort($scores, SORT_NUMERIC);

This resorts the numbers in ascending order (1, 2, 10, 20) instead of lexicographical

order (1, 10, 2, 20).

Discussion

The sort() function doesn’t preserve the key/value association between elements; in‐

stead, entries are reindexed starting at 0 and going upward.

To preserve the key/value links, use asort(). The asort() function is normally used

for associative arrays, but it can also be useful when the indexes of the entries are mean‐

ingful:

$states = array(1 => 'Delaware', 'Pennsylvania', 'New Jersey');

asort($states);

while (list($rank, $state) = each($states)) {

print "$state was the #$rank state to join the United States\n";

}

Use natsort() to sort the array using a natural sorting algorithm. Under natural sorting,

you can mix strings and numbers inside your elements and still get the right answer:

$tests = array('test1.php', 'test10.php', 'test11.php', 'test2.php');

natsort($tests);

The elements are now ordered 'test1.php', 'test2.php', 'test10.php', and

'test11.php'. With natural sorting, the number 10 comes after the number 2; the

opposite occurs under traditional sorting. For case-insensitive natural sorting, use nat

casesort().

To sort the array in reverse order, use rsort() or arsort(), which is like rsort() but

also preserves keys. There is no natrsort() or natcasersort(). You can also pass

SORT_NUMERIC into these functions.

4.16 Sorting an Array | 117

See Also

Recipe 4.17 for sorting with a custom comparison function and Recipe 4.18 for sorting multiple arrays; documentation on sort(), asort(), natsort(), natcasesort(),

rsort(), and arsort().

4.17 Sorting an Array by a Computable Field

Problem

You want to define your own sorting routine.

Solution

Use usort() in combination with a custom comparison function:

$tests = array('test1.php', 'test10.php', 'test11.php', 'test2.php');

 // sort in reverse natural order

usort($tests, function ($a, $b) {

return strnatcmp($b, $a);

});

Discussion

The comparison function must return a value greater than 0 if $a > $b, 0 if $a == $b,

and a value less than 0 if $a < $b. To sort in reverse, do the opposite. The function in

the Solution, strnatcmp(), obeys those rules.

To reverse the sort, instead of multiplying the return value of strnatcmp($a, $b) by

-1, switch the order of the arguments to strnatcmp($b, $a).

The comparison function doesn’t need to be a wrapper for an existing sort or an anony‐

mous function. For instance, the date_sort() function, shown in Example 4-2, shows

how to sort dates.

 Example 4-2. date_sort()

 // expects dates in the form of "MM/DD/YYYY"

function date_sort($a, $b) {

list($a_month, $a_day, $a_year) = explode('/', $a);

list($b_month, $b_day, $b_year) = explode('/', $b);

if ($a_year > $b_year) return 1;

if ($a_year < $b_year) return -1;

if ($a_month > $b_month) return 1;

if ($a_month < $b_month) return -1;

118 | Chapter 4: Arrays

 if ($a_day > $b_day) return 1;

if ($a_day < $b_day) return -1;

return 0;

}

$dates = array('12/14/2000', '08/10/2001', '08/07/1999');

usort($dates, 'date_sort');

While sorting, usort() frequently recomputes the comparison function’s return values

each time it’s needed to compare two elements, which slows the sort. To avoid unnec‐

essary work, you can cache the comparison values, as shown in array_sort() in

Example 4-3.

 Example 4-3. array_sort()

function array_sort($array, $map_func, $sort_func = '') {

$mapped = array_map($map_func, $array); // cache $map_func() values

if ('' === $sort_func) {

asort($mapped); // asort() is faster then usort()

} else {

uasort($mapped, $sort_func); // need to preserve keys

}

while (list($key) = each($mapped)) {

$sorted[] = $array[$key]; // use sorted keys

}

return $sorted;

}

To avoid unnecessary work, array_sort() uses a temporary array, $mapped, to cache

the return values. It then sorts $mapped, using either the default sort order or a user-

specified sorting routine. Importantly, it uses a sort that preserves the key/value rela‐

tionship. By default, it uses asort() because asort() is faster than uasort(). (Slowness

in uasort() is the whole reason for array_sort() after all.) Finally, it creates a sorted

array, $sorted, using the sorted keys in $mapped to index the values in the original array.

For small arrays or simple sort functions, usort() is faster, but as the number of com‐

putations grows, array_sort() surpasses usort(). The following example sorts ele‐

ments by their string lengths, a relatively quick custom sort:

function u_length($a, $b) {

$a = strlen($a);

$b = strlen($b);

if ($a == $b) return 0;

if ($a > $b) return 1;

return -1;

4.17 Sorting an Array by a Computable Field | 119

}

function map_length($a) {

return strlen($a);

}

$tests = array('one', 'two', 'three', 'four', 'five',

'six', 'seven', 'eight', 'nine', 'ten');

 // faster for < 5 elements using u_length()

usort($tests, 'u_length');

 // faster for >= 5 elements using map_length()

$tests = array_sort($tests, 'map_length');

Here, array_sort() is faster than usort() once the array reaches five elements.

See Also

Recipe 4.16 for basic sorting and Recipe 4.18 for sorting multiple arrays; documentation

on usort(), asort(), array_map(), and anonymous functions.

4.18 Sorting Multiple Arrays

Problem

You want to sort multiple arrays or an array with multiple dimensions.

Solution

Use array_multisort():

To sort multiple arrays simultaneously, pass multiple arrays to array_multisort():

$colors = array('Red', 'White', 'Blue');

$cities = array('Boston', 'New York', 'Chicago');

array_multisort($colors, $cities);

print_r($colors);

print_r($cities);

Array

(

[0] => Blue

[1] => Red

[2] => White

)

Array

(

[0] => Chicago

[1] => Boston

120 | Chapter 4: Arrays

 [2] => New York

)

To sort multiple dimensions within a single array, pass the specific array elements:

$stuff = array('colors' => array('Red', 'White', 'Blue'),

'cities' => array('Boston', 'New York', 'Chicago'));

array_multisort($stuff['colors'], $stuff['cities']);

print_r($stuff);

Array

(

[colors] => Array

(

[0] => Blue

[1] => Red

[2] => White

)

[cities] => Array

(

[0] => Chicago

[1] => Boston

[2] => New York

)

)

To modify the sort type, as in sort(), pass in SORT_REGULAR, SORT_NUMERIC, or

SORT_STRING after the array. To modify the sort order, unlike in sort(), pass in SORT_ASC

or SORT_DESC after the array. You can also pass in both a sort type and a sort order after

the array.

Discussion

The array_multisort() function can sort several arrays at once or a multidimensional

array by one or more dimensions. The arrays are treated as columns of a table to be

sorted by rows. The first array is the main one to sort by; all the items in the other arrays

are reordered based on the sorted order of the first array. If items in the first array

compare as equal, the sort order is determined by the second array, and so on.

The default sorting values are SORT_REGULAR and SORT_ASC, and they’re reset after each

array, so there’s no reason to pass either of these two values, except for clarity:

$numbers = array(0, 1, 2, 3);

$letters = array('a', 'b', 'c', 'd');

array_multisort($numbers, SORT_NUMERIC, SORT_DESC,

$letters, SORT_STRING , SORT_DESC);

This example reverses the arrays.

4.18 Sorting Multiple Arrays | 121

See Also

Recipe 4.16 for simple sorting and Recipe 4.17 for sorting with a custom function; documentation on array_multisort().

4.19 Sorting an Array Using a Method Instead of a

Function

Problem

You want to define a custom sorting routine to order an array. However, instead of using

a function, you want to use an object method.

Solution

Pass in an array holding a class name and method in place of the function name:

usort($access_times, array('dates', 'compare'));

Discussion

As with a custom sort function, the object method needs to take two input arguments

and return 1, 0, or −1, depending on whether the first parameter is larger than, equal

to, or less than the second:

class sort {

 // reverse-order string comparison

static function strrcmp($a, $b) {

return strcmp($b, $a);

}

}

usort($words, array('sort', 'strrcmp'));

It must also be declared as static. Alternatively, you can use an instantiated object:

class Dates {

public function compare($a, $b) { /* compare here */ }

}

$dates = new Dates;

usort($access_times, array($dates, 'compare'));

See Also

Chapter 7 for more on classes and objects; Recipe 4.17 for more on custom sorting of arrays.

122 | Chapter 4: Arrays

4.20 Randomizing an Array

Problem

You want to scramble the elements of an array in a random order.

Solution

Use shuffle():

shuffle($array);

Discussion

It’s surprisingly tricky to properly shuffle an array. In fact, up until PHP 4.3, PHP’s

shuffle() routine wasn’t a truly random shuffle. It would mix elements around, but

certain combinations were more likely than others.

Therefore, you should use PHP’s shuffle() function whenever possible.

See Also

Documentation on shuffle().

4.21 Removing Duplicate Elements from an Array

Problem

You want to eliminate duplicates from an array.

Solution

If the array is already complete, use array_unique(), which returns a new array that

contains no duplicate values:

$unique = array_unique($array);

If you create the array while processing results, here is a technique for numerical arrays:

foreach ($_GET['fruits'] as $fruit) {

if (!in_array($fruit, $array)) { $array[] = $fruit; }

}

Here’s one for associative arrays:

foreach ($_GET['fruits'] as $fruit) {

$array[$fruit] = $fruit;

}

4.20 Randomizing an Array | 123

Discussion

Once processing is completed, array_unique() is the best way to eliminate duplicates.

But if you’re inside a loop, you can eliminate the duplicate entries from appearing by

checking if they’re already in the array.

An even faster method than using in_array() is to create a hybrid array in which the

key and the value for each element are the same. This eliminates the linear check of

in_array() but still allows you to take advantage of the array family of functions that

operate over the values of an array instead of the keys.

In fact, it’s faster to use the associative array method and then call array_values() on

the result (or, for that matter, array_keys(), but array_values() is slightly faster) than

to create a numeric array directly with the overhead of in_array().

See Also

Documentation on array_unique().

4.22 Applying a Function to Each Element in an Array

Problem

You want to apply a function or method to each element in an array. This allows you to

transform the input data for the entire set all at once.

Solution

Use array_walk():

$names = array('firstname' => "Baba",

'lastname' => "O'Riley");

array_walk($names, function (&$value, $key) {

$value = htmlentities($value, ENT_QUOTES);

});

foreach ($names as $name) {

print "$name\n";

}

Baba

O'Riley

For nested data, use array_walk_recursive():

$names = array('firstnames' => array("Baba", "Bill"),

'lastnames' => array("O'Riley", "O'Reilly"));

124 | Chapter 4: Arrays

array_walk_recursive($names, function (&$value, $key) {

$value = htmlentities($value, ENT_QUOTES);

});

foreach ($names as $nametypes) {

foreach ($nametypes as $name) {

print "$name\n";

}

}

Baba

Bill

O'Riley

O'Reilly

Discussion

It’s frequently useful to loop through all the elements of an array. One option is to

foreach through the data. However, an alternative choice is the array_walk() function.

This function takes an array and a callback function, which is the function that processes

the elements of the array. The callback function takes two parameters: a value and a key.

It can also take an optional third parameter, which is any additional data you wish to

expose within the callback.

Here’s an example that ensures all the data in the $names array is properly HTML en‐

coded. The anonymous callback function takes the array values, passes them to htmlen

tities() to encode the key HTML entities, and assigns the result back to $value:

$names = array('firstname' => "Baba",

'lastname' => "O'Riley");

array_walk($names, function (&$value, $key) {

$value = htmlentities($value, ENT_QUOTES);

});

foreach ($names as $name) {

print "$name\n";

}

Baba

O'Riley

Because array_walk operates in-place instead of returning a modified copy of the array,

you must pass in values by reference when you want to modify the elements. In those

cases, as in this example, there is an & before the parameter name. However, this is only

necessary when you wish to alter the array.

When you have a series of nested arrays, use the array_walk_recursive() function:

$names = array('firstnames' => array("Baba", "Bill"),

'lastnames' => array("O'Riley", "O'Reilly"));

4.22 Applying a Function to Each Element in an Array | 125

array_walk_recursive($names, function (&$value, $key) {

$value = htmlentities($value, ENT_QUOTES);

});

foreach ($names as $nametypes) {

foreach ($nametypes as $name) {

print "$name\n";

}

}

Baba

Bill

O'Riley

O'Reilly

The array_walk_recursive() function only passes nonarray elements to the callback,

so you don’t need to modify a callback when switching from array_walk().

See Also

Documentation on array_walk(), array_walk_recursive(), htmlentities(), and

anonymous functions.

4.23 Finding the Union, Intersection, or Difference of Two

Arrays

Problem

You have a pair of arrays, and you want to find their union (all the elements), intersection

(elements in both, not just one), or difference (in one but not both).

Solution

To compute the union:

$union = array_unique(array_merge($a, $b));

To compute the intersection:

$intersection = array_intersect($a, $b);

To find the simple difference:

$difference = array_diff($a, $b);

And for the symmetric difference:

$difference = array_merge(array_diff($a, $b), array_diff($b, $a));

126 | Chapter 4: Arrays

Discussion

Many necessary components for these calculations are built into PHP; it’s just a matter

of combining them in the proper sequence.

To find the union, you merge the two arrays to create one giant array with all of the

values. But array_merge() allows duplicate values when merging two numeric arrays,

so you call array_unique() to filter them out. This can leave gaps between entries

because array_unique() doesn’t compact the array. It isn’t a problem, however, because

foreach and each() handle sparsely filled arrays without a hitch.

The function to calculate the intersection is simply named array_intersection() and

requires no additional work on your part.

The array_diff() function returns an array containing all the unique elements in $old

that aren’t in $new. This is known as the simple difference:

$old = array('To', 'be', 'or', 'not', 'to', 'be');

$new = array('To', 'be', 'or', 'whatever');

$difference = array_diff($old, $new);

print_r($difference);

The resulting array, $difference, contains 'not' and 'to' because array_diff() is

case sensitive. It doesn’t contain 'whatever' because it doesn’t appear in $old.

To get a reverse difference, or in other words, to find the unique elements in $new that

are lacking in $old, flip the arguments:

$old = array('To', 'be', 'or', 'not', 'to', 'be');

$new = array('To', 'be', 'or', 'whatever');

$reverse_diff = array_diff($new, $old);

print_r($reverse_diff);

The $reverse_diff array contains only 'whatever'.

If you want to apply a function or other filter to array_diff(), roll your own diffing

algorithm:

 // implement case-insensitive diffing; diff -i

$seen = array();

foreach ($new as $n) {

$seen[strtolower($n)]++;

}

foreach ($old as $o) {

$o = strtolower($o);

if (!$seen[$o]) { $diff[$o] = $o; }

}

4.23 Finding the Union, Intersection, or Difference of Two Arrays | 127

The first foreach builds an associative array lookup table. You then loop through $old

and, if you can’t find an entry in your lookup, add the element to $diff.

It can be a little faster to combine array_diff() with array_map():

$diff = array_diff(array_map('strtolower', $old), array_map('strtolower', $new));

The symmetric difference is what’s in $a but not $b, and what’s in $b but not $a:

$difference = array_merge(array_diff($a, $b), array_diff($b, $a));

Once stated, the algorithm is straightforward. You call array_diff() twice and find the

two differences. Then you merge them together into one array. There’s no need to call

array_unique() because you’ve intentionally constructed these arrays to have nothing

in common.

See Also

Documentation on array_unique(), array_intersect(), array_diff(), ar

ray_merge(), and array_map().

4.24 Iterating Efficiently over Large or Expensive Datasets

Problem

You want to iterate through a list of items, but the entire list takes up a lot of memory

or is very slow to generate.

Solution

Use a generator:

function FileLineGenerator($file) {

if (!$fh = fopen($file, 'r')) {

return;

}

while (false !== ($line = fgets($fh))) {

yield $line;

}

fclose($fh);

}

$file = FileLineGenerator('log.txt');

foreach ($file as $line) {

if (preg_match('/^rasmus: /', $line)) { print $line; }

}

128 | Chapter 4: Arrays

Discussion

Generators provide a simple way to efficiently loop over items without the overhead

and expense of loading all the data into an array. They are available in PHP 5.5.

A generator is a function that returns an iterable object. As you loop through the object,

PHP repeatedly calls the generator to get the next value, which is returned by the gen‐

erator function using the yield keyword.

Unlike normal functions where you start fresh every time, PHP preserves the current

function state between calls to a generator. This allows you to keep any necessary in‐

formation to provide the next value.

If there’s no more data, exit the function without a return or with an empty return

statement. (Trying to return data from a generator is illegal.)

A perfect use of a generator is processing all the lines in a file. The simplest way is to

use the file() function. This open the file, loads each line into an element of an array,

and closes it. However, then you store the entire file in memory.

$file = file('log.txt');

foreach ($file as $line) {

if (preg_match('/^rasmus: /', $line)) { print $line; }

}

Another option is to use the standard file reading functions, but then your code for

reading from the file and acting on each line gets intertwined. This doesn’t make for

reusable or easy-to-read code:

function print_matching_lines($file, $regex) {

if (!$fh = fopen('log.txt','r')) {

return;

}

while(false !== ($line = fgets($fh))) {

if (preg_match($regex, $line)) { print $line; }

}

fclose($fh);

}

print_matching_lines('log.txt', '/^rasmus: /');

However, if you wrap the code to process the file into a generator, you get the best of

both options—a general function to efficiently iterate through lines of a file and then

clean syntax as if all the data is stored in an array:

function FileLineGenerator($file) {

if (!$fh = fopen($file, 'r')) {

return;

}

while (false !== ($line = fgets($fh))) {

4.24 Iterating Efficiently over Large or Expensive Datasets | 129

 yield $line;

}

fclose($fh);

}

$file = FileLineGenerator('log.txt');

foreach ($file as $line) {

if (preg_match('/^rasmus: /', $line)) { print $line; }

}

In a generator, control passes back and forth between the loop and the function via the

yield statement. The first time the generator is called, control begins at the top of the

function and pauses when it reaches a yield statement, returning the value.

In this example, the FileLineGenerator() generator function loops through lines of a

file. After the file is opened, fgets() is called in a loop. As long as there are more lines,

the loop yields $line back to the iterator. At the end of the file, the loop terminates, the

file is closed, and the function terminates. Because nothing is yielded back, the

foreach() exits.

Now, FileLineGenerator() can be used any time you want to loop through a file. The

previous example prints lines beginning with rasmus: . The following one prints a

random line from the file:

$line_number = 0;

foreach (FileLineGenerator('sayings.txt') as $line) {

$line_number++;

if (mt_rand(0, $line_number - 1) == 0) {

$selected = $line;

}

}

print $selected . " \n";

Despite a completely different use case, FileLineGenerator() is reusable without

modifications. In this example, the generator is invoked from within the foreach loop

instead of storing it in a variable.

You cannot rewind a generator. They only iterate forward.

See Also

Recipe 4.4 for iteration techniques and Chapter 24 for reading from files; documentation

on generators.

130 | Chapter 4: Arrays

4.25 Accessing an Object Using Array Syntax

Problem

You have an object, but you want to be able to read and write data to it as an array. This

allows you to combine the benefits from an object-oriented design with the familiar

interface of an array.

Solution

Implement SPL’s ArrayAccess interface:

class FakeArray implements ArrayAccess {

private $elements;

public function __construct() {

$this->elements = array();

}

public function offsetExists($offset) {

return isset($this->elements[$offset]);

}

public function offsetGet($offset) {

return $this->elements[$offset];

}

public function offsetSet($offset, $value) {

return $this->elements[$offset] = $value;

}

public function offsetUnset($offset) {

unset($this->elements[$offset]);

}

}

$array = new FakeArray;

 // What's Opera, Doc?

$array['animal'] = 'wabbit';

 // Be very quiet I'm hunting wabbits

if (isset($array['animal']) &&

 // Wabbit tracks!!!

$array['animal'] == 'wabbit') {

 // Kill the wabbit, kill the wabbit, kill the wabbit

unset($array['animal']);

 // Yo ho to oh! Yo ho to oh! Yo ho...

4.25 Accessing an Object Using Array Syntax | 131

}

 // What have I done?? I've killed the wabbit....

 // Poor little bunny, poor little wabbit...

if (!isset($array['animal'])) {

print "Well, what did you expect in an opera? A happy ending? \n";

}

Discussion

The ArrayAccess interface allows you to manipulate data in an object using the same

set of conventions you use for arrays. This allows you to leverage the benefits of an

object-oriented design, such as using a class hierarchy or implementing additional

methods on the object, but still allow people to interact with the object using a familiar

interface. Alternatively, it allows you create an “array” that stores its data in an external

location, such as shared memory or a database.

An implementation of ArrayAccess requires four methods: offsetExists(), which

indicates whether an element is defined; offsetGet(), which returns an element’s value;

offsetSet(), which sets an element to a new value; and offsetUnset(), which removes

an element and its value.

This example stores the data locally in an object property:

class FakeArray implements ArrayAccess {

private $elements;

public function __construct() {

$this->elements = array();

}

public function offsetExists($offset) {

return isset($this->elements[$offset]);

}

public function offsetGet($offset) {

return $this->elements[$offset];

}

public function offsetSet($offset, $value) {

return $this->elements[$offset] = $value;

}

public function offsetUnset($offset) {

unset($this->elements[$offset]);

}

}

132 | Chapter 4: Arrays

The object constructor initializes the $elements property to a new array. This provides

you with a place to store the keys and values of your array. That property is defined as

private, so people can only access the data through one of the accessor methods defined

as part of the interface.

The next four methods implement everything you need to manipulate an array. Because

offsetExists() checks if an array element is set, the method returns the value of

isset($this->elements[$offset]).

The offsetGet() and offsetSet() methods interact with the $elements property as

you would normally use those features with an array.

Last, the offsetUnset() method simply calls unset() on the element. Unlike the other

three methods, it does not return the value from its operation. That’s because unset()

is a statement, not a function, and doesn’t return a value.

Now you can instantiate an instance of FakeArray and manipulate it like an array:

$array = new FakeArray;

 // What's Opera, Doc?

$array['animal'] = 'wabbit';

 // Be very quiet I'm hunting wabbits

if (isset($array['animal']) &&

 // Wabbit tracks!!!

$array['animal'] == 'wabbit') {

 // Kill the wabbit, kill the wabbit, kill the wabbit

unset($array['animal']);

 // Yo ho to oh! Yo ho to oh! Yo ho...

}

 // What have I done?? I've killed the wabbit....

 // Poor little bunny, poor little wabbit...

if (!isset($array['animal'])) {

print "Well, what did you expect in an opera? A happy ending? \n";

}

Each operation calls one of your methods: assigning a value to $array['animal']

triggers offsetSet(), checking isset($array['animal']) invokes offsetExists(),

offsetGet() comes into play when you do the comparison $array['animal'] ==

'wabbit', and offsetUnset() is called for unset($array['animal']).

As you can see, after all this, the wabbit is dead.

See Also

More on objects in Chapter 7; the ArrayAccess reference page; and What’s Opera, Doc?

4.25 Accessing an Object Using Array Syntax | 133

CHAPTER 5

Variables

5.0 Introduction

Along with conditional logic, variables are the core of what makes computer programs

powerful and flexible. If you think of a variable as a bucket with a name that holds a

value, PHP lets you have plain old buckets, buckets that contain the name of other

buckets, buckets with numbers or strings in them, buckets holding arrays of other

buckets, buckets full of objects, and just about any other variation on that analogy you

can think of.

A variable is either set or unset. A variable with any value assigned to it, true or

false, empty or nonempty, is set. The function isset() returns true when passed a

variable that’s set. To turn a variable that’s set into one that’s unset, call unset() on the

variable or assign null to the variable. Scalars, arrays, and objects can all be passed to

unset(). You can also pass unset() multiple variables to unset them all:

unset($vegetables);

unset($fruits[12]);

unset($earth, $moon, $stars);

If a variable is present in the query string of a URL, even if it has no value assigned to

it, it is set in the appropriate superglobal array. Thus:

http://www.example.com/set.php?chimps=&monkeys=12

sets $_GET['monkeys'] to 12 and $_GET['chimps'] to the empty string.

All unset variables are also empty. Set variables may be empty or nonempty. Empty

variables have values that evaluate to false as a boolean. These are listed in Table 5-1.

135

 Table 5-1. Values that evaluate to false

Type

Value

integer 0

double 0.0

string

“” (empty string)

string

“0”

boolean false

array

array() (empty array)

null

NULL

object

An object with no properties, only prior to PHP 5

Everything else not listed in Table 5-1 is nonempty. This includes the string "00", and the string " ", containing just a space character.

In 5.5, empty() accepts arbitrary expressions.

Variables evaluate to either true or false. The values in Table 5-1 are the complete set of what’s false in PHP. Every other value is true. The language construct isset() tells

you whether a variable is set. The language construct empty() tells you whether a value

is empty or not. In versions of PHP prior to 5.5 empty() only accepts variables as ar‐

guments. In PHP 5.5, you can pass an arbitrary expression to empty().

Constants and return values from functions can be false, but before PHP 5.5, they can’t

be empty. For example, Example 5-1 shows a valid use of empty() (in any PHP version)

because $first_name is a variable.

 Example 5-1. Correctly checking if a variable is empty

if (empty($first_name)) { .. }

On the other hand, the code in Example 5-2 returns parse errors before PHP 5.5 because 0 (a constant) and the return value from get_first_name() can’t be empty.

 Example 5-2. Incorrectly checking if a constant is empty before PHP 5.5

if (empty(0)) { .. }

if (empty(get_first_name())) { .. }

136 | Chapter 5: Variables

5.1 Avoiding == Versus = Confusion

Problem

You don’t want to accidentally assign values when comparing a variable and a constant.

Solution

Use:

if (12 == $dwarves) { ... }

instead of:

if ($dwarves == 12) { ... }

Putting the constant on the left triggers a parse error with the assignment operator. In

other words, PHP complains when you write:

if (12 = $dwarves) { ... }

but:

if ($dwarves = 12) { ... }

silently executes, assigning 12 to the variable $dwarves, and then executing the code

inside the block. ($dwarves = 12 evaluates to 12, which is true.)

Discussion

Putting a constant on the left side of a comparison coerces the comparison to the type

of the constant. This causes problems when you are comparing an integer with a variable

that could be an integer or a string. 0 == $dwarves is true when $dwarves is 0, but it’s

also true when $dwarves is sleepy. Because an integer (0) is on the left side of the

comparison, PHP converts what’s on the right (the string sleepy) to an integer (0) before

comparing. To avoid this, use the identity operator, 0 === $dwarves, instead.

See Also

Documentation for = and for www.php.net/operators.comparison[==] and www.php.net/operators.comparison[===].

5.1 Avoiding == Versus = Confusion | 137

5.2 Establishing a Default Value

Problem

You want to assign a default value to a variable that doesn’t already have a value. It often

happens that you want a hardcoded default value for a variable that can be overridden

from form input or through an environment variable.

Solution

Use isset() to assign a default to a variable that may already have a value:

if (! isset($cars)) {

$cars = $default_cars;

}

Use the ternary (a ? b : c) operator to give a new variable a (possibly default) value:

$cars = isset($_GET['cars']) ? $_GET['cars'] : $default_cars;

Discussion

Using isset() is essential when assigning default values. Without it, the nondefault

value can’t be 0 or anything else that evaluates to false. Consider this assignment:

$cars = isset($_GET['cars']) ? $_GET['cars'] : $default_cars;

If $_GET['cars'] is 0, $cars is set to $default_cars even though 0 may be a valid value

for $cars.

An alternative syntax for checking arrays is the array_key_exists() function:

$cars = array_key_exists('cars', $_GET) ? $_GET['cars'] : $default_cars;

The one difference between isset() and array_key_exists() is that when a key exists

but its value is null, then array_key_exists() returns true, whereas isset() returns

false:

$vehicles = array('cars' => null);

 // array_key_exists() returns TRUE because the key is present.

$ake_result = array_key_exists('cars', $vehicles);

 // isset() returns values because the key's value is NULL

$isset_result = isset($vehicles['cars']);

Use an array of defaults to set multiple default values easily. The keys in the defaults

array are variable names, and the values in the array are the defaults for each variable:

$defaults = array('emperors' => array('Rudolf II','Caligula'),

'vegetable' => 'celery',

'acres' => 15);

138 | Chapter 5: Variables

foreach ($defaults as $k => $v) {

if (! isset($GLOBALS[$k])) { $GLOBALS[$k] = $v; }

}

Because the variables are set in the global namespace, the previous code doesn’t work

for setting default variables private within a function. To do that, use variable variables:

foreach ($defaults as $k => $v) {

if (! isset($$k)) { $$k = $v; }

}

In this example, the first time through the loop, $k is emperors, so $$k is $emperors.

See Also

Documentation on isset(), array_key_exists() and variable variables.

5.3 Exchanging Values Without Using Temporary Variables

Problem

You want to exchange the values in two variables without using additional variables for

storage.

Solution

To swap $a and $b:

$a = 'Alice';

$b = 'Bob';

list($a,$b) = array($b,$a);

 // now $a is Bob and $b is Alice

Discussion

PHP’s list() language construct lets you assign values from an array to individual

variables. Its counterpart on the right side of the expression, array(), lets you construct

arrays from individual values. Assigning the array that array() returns to the variables

in the list() lets you juggle the order of those values. This works with more than two

values, as well:

$yesterday = 'pleasure';

$today = 'sorrow';

$tomorrow = 'celebrate';

list($yesterday,$today,$tomorrow) = array($today,$tomorrow,$yesterday);

 // now $yesterday is 'sorrow', $today is 'celebrate'

 // and $tomorrow is 'pleasure'

5.3 Exchanging Values Without Using Temporary Variables | 139

This method isn’t faster than using temporary variables, so you should use it for clarity, but not speed.

See Also

Documentation on list() and array().

5.4 Creating a Dynamic Variable Name

Problem

You want to construct a variable’s name dynamically. For example, you want to use

variable names that match the field names from a database query.

Solution

Use PHP’s variable variable syntax by prepending a $ to a variable whose value is the

variable name you want:

$animal = 'turtles';

$turtles = 103;

print $$animal;

This prints:

103

Discussion

Placing two dollar signs before a variable name causes PHP to dereference the right

variable name to get a value. It then uses that value as the name of your real variable.

The preceding example prints 103 because $animal = turtles, so $$animal is $tur

tles, which equals 103.

Using curly braces, you can construct more complicated expressions that indicate vari‐

able names:

$stooges = array('Moe','Larry','Curly');

$stooge_moe = 'Moses Horwitz';

$stooge_larry = 'Louis Feinberg';

$stooge_curly = 'Jerome Horwitz';

foreach ($stooges as $s) {

print "$s's real name was ${'stooge_'.strtolower($s)}. \n";

}

PHP evaluates the expression between the curly braces and uses it as a variable name.

That expression can even have function calls in it, such as strtolower().

140 | Chapter 5: Variables

Variable variables are also useful when iterating through similarly named variables. Say you are querying a database table that has fields named title_1, title_2, etc. If you

want to check if a title matches any of those values, the easiest way is to loop through

them like this:

for ($i = 1; $i <= $n; $i++) {

$t = "title_$i";

if ($title == $$t) { /* match */ }

}

Of course, it would be more straightforward to store these values in an array, but if you

are maintaining old code that uses this technique (and you can’t change it), variable

variables are helpful.

The curly brace syntax is also necessary in resolving ambiguity about array elements.

The variable variable $$donkeys[12] could have two meanings. The first is take what’s

 in the 12th element of the $donkeys array and use that as a variable name. Write this as:

${$donkeys[12]}. The second is use what’s in the scalar $donkeys as an array name

 and look in the 12th element of that array. Write this as: ${$donkeys}[12].

You are not limited by two dollar signs. You can use three, or more, but in practice it’s

rare to see greater than two levels of indirection.

See Also

Documentation on variable variables.

5.5 Persisting a Local Variable’s Value Across Function

Invocations

Problem

You want a local variable to retain its value between invocations of a function.

Solution

Declare the variable as static:

function track_times_called() {

static $i = 0;

$i++;

return $i;

}

5.5 Persisting a Local Variable’s Value Across Function Invocations | 141

Discussion

Inside a function, declaring a variable static causes its value to be remembered by the

function. So, if there are subsequent calls to the function, you can access the value of

the saved variable. The check_the_count() function shown in Example 5-3 uses stat

ic variables to keep track of the strikes and balls for a baseball batter.

 Example 5-3. check_the_count()

function check_the_count($pitch) {

static $strikes = 0;

static $balls = 0;

switch ($pitch) {

case 'foul':

if (2 == $strikes) break; // nothing happens if 2 strikes

 // otherwise, act like a strike

case 'strike':

$strikes++;

break;

case 'ball':

$balls++;

break;

}

if (3 == $strikes) {

$strikes = $balls = 0;

return 'strike out';

}

if (4 == $balls) {

$strikes = $balls = 0;

return 'walk';

}

return 'at bat';

}

$pitches = array('strike', 'ball', 'ball', 'strike', 'foul','strike');

$what_happened = array();

foreach ($pitches as $pitch) {

$what_happened[] = check_the_count($pitch);

}

 // Display the results

var_dump($what_happened);

Example 5-3 prints:

array(6) {

 [0]=>

 string(6) "at bat"

 [1]=>

 string(6) "at bat"

142 | Chapter 5: Variables

 [2]=>

 string(6) "at bat"

 [3]=>

 string(6) "at bat"

 [4]=>

 string(6) "at bat"

 [5]=>

 string(10) "strike out"

}

In check_the_count(), the logic of what happens to the batter depending on the pitch

count is in the switch statement inside the function. You can instead return the number

of strikes and balls, but this requires you to place the checks for striking out, walking,

and staying at the plate in multiple places in the code.

Though static variables retain their values between function calls, they do so only

during one invocation of a script. A static variable accessed in one request doesn’t

keep its value for the next request to the same page.

See Also

Documentation on static variables.

5.6 Sharing Variables Between Processes

Problem

You want a way to share information between processes that provides fast access to the

shared data.

Solution

Use the data store functionality of the APC extension, as shown in Example 5-4.

 Example 5-4. Using APC’s data store

 // retrieve the old value

$population = apc_fetch('population');

 // manipulate the data

$population += ($births + $immigrants - $deaths - $emigrants);

 // write the new value back

apc_store('population', $population);

If you don’t have APC available, use one of the two bundled shared memory extensions,

shmop or System V shared memory.

With shmop, you create a block and read and write to and from it, as shown in

Example 5-5.

5.6 Sharing Variables Between Processes | 143

 Example 5-5. Using the shmop shared memory functions

 // create key

$shmop_key = ftok(__FILE__, 'p');

 // create 16384 byte shared memory block

$shmop_id = shmop_open($shmop_key, "c", 0600, 16384);

 // retrieve the entire shared memory segment

$population = shmop_read($shmop_id, 0, 0);

 // manipulate the data

$population += ($births + $immigrants - $deaths - $emigrants);

 // store the value back in the shared memory segment

$shmop_bytes_written = shmop_write($shmop_id, $population, 0);

 // check that it fit

if ($shmop_bytes_written != strlen($population)) {

echo "Can't write all of: $population\n";

}

 // close the handle

shmop_close($shmop_id);

With System V shared memory, you store the data in a shared memory segment, and

guarantee exclusive access to the shared memory with a semaphore, as shown in

Example 5-6.

 Example 5-6. Using the System V shared memory functions

$semaphore_id = 100;

$segment_id = 200;

 // get a handle to the semaphore associated with the shared memory

 // segment we want

$sem = sem_get($semaphore_id,1,0600);

 // ensure exclusive access to the semaphore

sem_acquire($sem) or die("Can't acquire semaphore");

 // get a handle to our shared memory segment

$shm = shm_attach($segment_id,16384,0600);

 // Each value stored in the segment is identified by an integer

 // ID

$var_id = 3476;

 // retrieve a value from the shared memory segment

if (shm_has_var($shm, $var_id)) {

$population = shm_get_var($shm,$var_id);

}

 // Or initialize it if it hasn't been set yet

else {

$population = 0;

}

 // manipulate the value

$population += ($births + $immigrants - $deaths - $emigrants);

 // store the value back in the shared memory segment

shm_put_var($shm,$var_id,$population);

 // release the handle to the shared memory segment

shm_detach($shm);

 // release the semaphore so other processes can acquire it

sem_release($sem);

144 | Chapter 5: Variables

Discussion

If you have the APC extension available, its data store is an extremely convenient way

to share information between separate PHP processes across different requests. The

apc_store() function takes a key and a value and stores the value associated with the

specified key. You can also supply an optional time to live (TTL) as a third argument to

apc_store() to limit the number of seconds the value is stored in the cache.

Once you’ve stored something, retrieve it by passing apc_fetch() the key. Because

apc_fetch() returns the value stored, or false on failure, it can be difficult to distin‐

guish between a successful call that returned a false value and a failed call. To help with

this apc_fetch() supports a second by-reference argument which is set to true or false

indicating whether the call succeeded, as follows:

 // Shucks, you failed the test!

apc_store('passed the test?', false);

 // $results is false, because the stored value was false

 // $success is true, because the call to apc_fetch() succeeded

$results = apc_fetch('passed the test?', $success);

In addition to store and fetch, APC also functions for more complicated data manipu‐

lation. The apc_inc() and apc_dec() functions atomically increment and decrement

a stored number. This makes them very useful for speedy counters. You can also im‐

plement some lightweight locking by using the apc_add() function, which only inserts

a variable into the data store if nothing already exists at that key. Example 5-7 shows how to do that.

 Example 5-7. Using apc_add() to implement locking

function update_recent_users($current_user) {

$recent_users = apc_fetch('recent-users', $success);

if ($success) {

if (! in_array($current_user, $recent_users)) {

array_unshift($recent_users, $current_user);

}

}

else {

$recent_users = array($current_user);

}

$recent_users = array_slice($recent_users, 0, 10);

apc_store('recent-users', $recent_users);

}

$tries = 3;

$done = false;

while ((! $done) && ($tries-- > 0)) {

if (apc_add('my-lock', true, 5)) {

update_recent_users($current_user);

5.6 Sharing Variables Between Processes | 145

 apc_delete('my-lock');

$done = true;

}

}

In Example 5-7, the call to apc_add('my-lock', true, 5) means “Insert a true value

at key my-lock only if it’s not already there, and expire it automatically after five seconds.”

So if this succeeds, any subsequent request that attempts the same thing (in the next five

seconds) will fail until the apc_delete('my-lock') call in the first request removes the

entry from the data store. The update_recent_users() call inside the loop, as an ex‐

ample, maintains an array of the 10 most recent users. The loop will try three times to

obtain the lock and then quit.

If you don’t have APC available, you can use a shared memory extension to accomplish

similar in-memory data sharing, albeit with a little more work.

A shared memory segment is a slice of your machine’s RAM that different processes

(such as the multiple web server processes that handle requests) can access. The shmop

and System V shared memory extensions solve the similar problem of allowing you to

save information between requests in a fast and efficient manner, but they take slightly

different approaches and have slightly different interfaces as a result.

The shmop functions have an interface similar to the familiar file manipulation. You

can open a segment, read in data, write to it, and close it. Like a file, there’s no built-in

segmentation of the data, it’s all just a series of consecutive characters.

In Example 5-5, you first create the shared memory block. Unlike a file, you must predeclare the maximum size. In this example, it’s 16,384 bytes:

 // create key

$shmop_key = ftok(__FILE__, 'p');

 // create 16384 byte shared memory block

$shmop_id = shmop_open($shmop_key, "c", 0600, 16384);

Just as you distinguish files by using filenames, shmop segments are differentiated by

keys. Unlike filenames, these keys aren’t strings but integers, so they’re not easy to re‐

member. Therefore, it’s best to use the ftok() function to convert a human-friendly

name, in this case the filename in the form of __FILE__, to a format suitable for

shmop_open(). The ftok() function also takes a one-character project identifier. This

helps you avoid collisions in case you accidently reuse the same string. Here it’s p, for

PHP.

Once you have a key, pass it to shmop_create(), along with the flag you want, the file

permissions (in octal), and the block size. See Table 5-2 for a list of suitable flags.

These permissions work just like file permissions, so 0600 means that the user that

created the block can read it and write to it. In this context, user doesn’t just mean the

process that created the semaphore, but any process with the same user ID. Permissions

146 | Chapter 5: Variables

of 0600 should be appropriate for most uses, in which web server processes run as the

same user.

 Table 5-2. shmop_open() flags

Flag Description

a

Opens for read-only access.

c

 Creates a new segment. If it already exists, opens it for read and write access.

w

Opens for read and write access.

n

Creates a new segment, but fails if one already exists. Useful to avoid race conditions.

Once you have a handle, you can read from the segment using shmop_read() and ma‐

nipulate the data:

 // retrieve the entire shared memory segment

$population = shmop_read($shmop_id, 0, 0);

 // manipulate the data

$population += ($births + $immigrants - $deaths - $emigrants);

This code reads in the entire segment. To read in a shorter amount, adjust the second

and third parameters. The second parameter is the start, and the third is the length. As

a shortcut, you can set the length to 0 to read to the end of the segment.

Once you have the adjusted data, store it back with shmop_write() and release the

handle with shmop_close():

 // store the value back in the shared memory segment

$shmop_bytes_written = shmop_write($shmop_id, $population, 0);

 // check that it fit

if ($shmop_bytes_written != strlen($population)) {

echo "Can't write all of: $population\n";

}

 // close the handle

shmop_close($shmop_id);

Because shared memory segments are of a fixed length, if you’re not careful, you can

try to write more data than you have room. Check to see if this happened by comparing

the value returned from shmop_write() with the string length of your data. They should

be the same. If shmop_write() returned a smaller value, then it was only able to fit that

many bytes in the segment before running out of space.

In constrast to shmop, the System V shared memory functions behave similarly to an

array. You access slices of the segment by specifying a key, such as population, and

manipulate them directly. Depending on what you’re storing, this direct access can be

more convenient.

However, the interface is more complex as a result, and System V shared memory also

requires you to do manage locking in the form of semaphore.

5.6 Sharing Variables Between Processes | 147

A semaphore makes sure that the different processes don’t step on each other’s toes when they access the shared memory segment. Before a process can use the segment, it needs

to get control of the semaphore. When it’s done with the segment, it releases the

semaphore for another process to grab.

To get control of a semaphore, use sem_get() to find the semaphore’s ID. The first

argument to sem_get() is an integer semaphore key. You can make the key any integer

you want, as long as all programs that need to access this particular semaphore use the

same key. If a semaphore with the specified key doesn’t already exist, it’s created; the

maximum number of processes that can access the semaphore is set to the second ar‐

gument of sem_get() (in this case, 1); and the semaphore’s permissions are set to

sem_get()’s third argument (0600). Permissions here behave like they do with files and

shmop. For example:

$semaphore_id = 100;

$segment_id = 200;

 // get a handle to the semaphore associated with the shared memory

 // segment we want

$sem = sem_get($semaphore_id,1,0600);

 // ensure exclusive access to the semaphore

sem_acquire($sem) or die("Can't acquire semaphore");

sem_get() returns an identifier that points to the underlying system semaphore. Use

this ID to gain control of the semaphore with sem_acquire(). This function waits until

the semaphore can be acquired (perhaps waiting until other processes release the

semaphore) and then returns true. It returns false on error. Errors include invalid

permissions or not enough memory to create the semaphore. Once the semaphore is

acquired, you can read from the shared memory segment:

 // get a handle to our shared memory segment

$shm = shm_attach($segment_id,16384,0600);

 // each value stored in the segment is identified by an integer

 // ID

$var_id = 3476;

 // retrieve a value from the shared memory segment

if (shm_has_var($shm, $var_id)) {

$population = shm_get_var($shm,$var_id);

}

 // or initialize it if it hasn't been set yet

else {

$population = 0;

}

 // manipulate the value

$population += ($births + $immigrants - $deaths - $emigrants);

First, establish a link to the particular shared memory segment with shm_attach(). As

with sem_get(), the first argument to shm_attach() is an integer key. This time, how‐

ever, it identifies the desired segment, not the semaphore. If the segment with the speci‐

fied key doesn’t exist, the other arguments create it. The second argument (16384) is the

148 | Chapter 5: Variables

size in bytes of the segment, and the last argument (0600) is the permissions on the

segment. shm_attach(200,16384,0600) creates a 16K shared memory segment that

can be read from and written to only by the user who created it. The function returns

the identifier you need to read from and write to the shared memory segment.

After attaching to the segment, pull variables out of it with shm_get_var($shm,

$var_id). This looks in the shared memory segment identified by $shm and retrieves

the value of the variable with integer key $var_id. You can store any type of variable in

shared memory. Once the variable is retrieved, it can be operated on like other variables.

shm_put_var($shm, $var_id ,$population) puts the value of $population back into

the shared memory segment at variable $var_id.

You’re now done with the shared memory statement. Detach from it with shm_de

tach() and release the semaphore with sem_release() so another process can use it:

 // release the handle to the shared memory segment

shm_detach($shm);

 // release the semaphore so other processes can acquire it

sem_release($sem);

Shared memory’s chief advantage is that it’s fast. But because it’s stored in RAM, it can’t

hold too much data, and it doesn’t persist when a machine is rebooted (unless you take

special steps to write the information in shared memory to disk before shutdown and

then load it into memory again at startup).

You cannot use System V shared memory under Windows, but the shmop functions

work fine.

See Also

Documentation on apc; shmop; and System V shared memory and semaphore functions.

5.7 Encapsulating Complex Data Types in a String

Problem

You want a string representation of an array or object for storage in a file or database.

This string should be easily reconstitutable into the original array or object.

Solution

Use serialize() to encode variables and their values into a textual form:

$pantry = array('sugar' => '2 lbs.','butter' => '3 sticks');

$fp = fopen('/tmp/pantry','w') or die ("Can't open pantry");

5.7 Encapsulating Complex Data Types in a String | 149

fputs($fp,serialize($pantry));

fclose($fp);

To re-create the variables, use unserialize():

 // $new_pantry will be the array:

 // array('sugar' => '2 lbs.','butter' => '3 sticks'

$new_pantry = unserialize(file_get_contents('/tmp/pantry'));

For easier interoperability with other languages (at a slight performance cost), use

json_encode() to serialize data:

$pantry = array('sugar' => '2 lbs.','butter' => '3 sticks');

$fp = fopen('/tmp/pantry.json','w') or die ("Can't open pantry");

fputs($fp,json_encode($pantry));

fclose($fp);

And use json_decode() to re-create the variables:

 // $new_pantry will be the array:

 // array('sugar' => '2 lbs.','butter' => '3 sticks')

$new_pantry = json_decode(file_get_contents('/tmp/pantry.json'), TRUE);

Discussion

The PHP serialized string that is reconstituted into $pantry looks like:

a:2:{s:5:"sugar";s:6:"2 lbs.";s:6:"butter";s:8:"3 sticks";}

The JSON-encoded version looks like:

{"sugar":"2 lbs.","butter":"3 sticks"}

The extra business in the serialized string that’s not in the JSON string encodes the types

and lengths of the values. This makes it uglier to look at but a little faster to decode. If

you’re just shuttling data among PHP applications, native serialization is great. If you

need to work with other languages, use JSON instead.

Both native serialization and JSON store enough information to bring back all the values

in the array, but the variable name itself isn’t stored in either serialized representation.

JSON can’t distinguish between objects and associative arrays in its serialization format,

so you have to choose which you want when you call json_decode(). A second argu‐

ment of true, as in the previous example, produces associative arrays. Without that

argument, the same JSON would be decoded into an object of class stdClass with two

properties: sugar and butter.

When passing serialized data from page to page in a URL, call urlencode() on the data

to make sure URL metacharacters are escaped in it:

$shopping_cart = array('Poppy Seed Bagel' => 2,

'Plain Bagel' => 1,

'Lox' => 4);

150 | Chapter 5: Variables

print '<a href="next.php?cart='.urlencode(serialize($shopping_cart)).

'">Next';

Serialized data going into a database always needs to be escaped as well. Recipe 10.9

explains how to safely escape values for insertion into a database.

When you unserialize an object, PHP automatically invokes its __wakeUp() method.

This allows the object to reestablish any state that’s not preserved across serialization,

such as database connection. This can alter your environment, so be sure you know

what you’re unserializing. See Recipe 7.19 for more details.

See Also

Documentation on serialize(), unserialize(), json_encode(), and json_de

code(). Recipe 10.9 discusses safely inserting values into a database and Recipe 7.19

discusses the interaction of objects and serialization.

5.8 Dumping Variable Contents as Strings

Problem

You want to inspect the values stored in a variable. It may be a complicated nested array

or object, so you can’t just print it out or loop through it.

Solution

Use var_dump(), print_r(), or var_export(), depending on exactly what you need.

The var_dump() and print_r() functions provide different human-readable represen‐

tations of variables.

The print_r() function is a little more concise:

$info = array('name' => 'frank', 12.6, array(3, 4));

print_r($info);

prints:

Array

(

 [name] => frank

 [0] => 12.6

 [1] => Array

 (

 [0] => 3

 [1] => 4

)

)

5.8 Dumping Variable Contents as Strings | 151

While this:

$info = array('name' => 'frank', 12.6, array(3, 4));

var_dump($info);

prints:

array(3) {

 ["name"]=>

 string(5) "frank"

 [0]=>

 float(12.6)

 [1]=>

 array(2) {

 [0]=>

 int(3)

 [1]=>

 int(4)

 }

}

The var_export() function produces valid PHP code that, when executed, defines the

exported variable:

$info = array('name' => 'frank', 12.6, array(3, 4));

var_export($info);

prints:

array (

 'name' => 'frank',

 0 => 12.6,

 1 =>

 array (

 0 => 3,

 1 => 4,

),

)

Discussion

The three functions mentioned in the Solution differ in how they handle recursion in

references. Because these functions recursively work their way through variables, if you

have references within a variable pointing back to the variable itself, you would end up

with an infinite loop unless these functions bailed out.

When var_dump() or print_r() has seen a variable once, it prints *RECURSION* instead

of printing information about the variable again and continues iterating through the

rest of the information it has to print. The var_export() function does a similar thing,

but it prints null instead of *RECURSION* to ensure its output is executable PHP code.

152 | Chapter 5: Variables

Consider the arrays $user_1 and $user_2, which reference each other through their

friend elements:

$user_1 = array('name' => 'Max Bialystock',

'username' => 'max');

$user_2 = array('name' => 'Leo Bloom',

'username' => 'leo');

 // Max and Leo are friends

$user_2['friend'] = &$user_1;

$user_1['friend'] = &$user_2;

 // Max and Leo have jobs

$user_1['job'] = 'Swindler';

$user_2['job'] = 'Accountant';

The output of print_r($user_2) is:

Array

(

[name] => Leo Bloom

[username] => leo

[friend] => Array

(

[name] => Max Bialystock

[username] => max

[friend] => Array

(

[name] => Leo Bloom

[username] => leo

[friend] => Array

RECURSION

[job] => Accountant

)

[job] => Swindler

)

[job] => Accountant

)

When print_r() sees the reference to $user_1 the second time, it prints *RECUR

SION* instead of descending into the array. It then continues on its way, printing the

remaining elements of $user_1 and $user_2. The var_dump() function behaves simi‐

larly:

array(4) {

["name"]=>

string(9) "Leo Bloom"

["username"]=>

string(3) "leo"

5.8 Dumping Variable Contents as Strings | 153

 ["friend"]=>

& array(4) {

["name"]=>

string(14) "Max Bialystock"

["username"]=>

string(3) "max"

["friend"]=>

& array(4) {

["name"]=>

string(9) "Leo Bloom"

["username"]=>

string(3) "leo"

["friend"]=>

RECURSION

["job"]=>

string(10) "Accountant"

}

["job"]=>

string(8) "Swindler"

}

["job"]=>

string(10) "Accountant"

}

As does var_export(), but with null instead of *RECURSION*:

array (

'name' => 'Leo Bloom',

'username' => 'leo',

'friend' =>

array (

'name' => 'Max Bialystock',

'username' => 'max',

'friend' =>

array (

'name' => 'Leo Bloom',

'username' => 'leo',

'friend' => NULL,

'job' => 'Accountant',

),

'job' => 'Swindler',

),

'job' => 'Accountant',

)

The print_r() and var_export() functions accept a second argument which, if set to

true tells the functions to return the string representation of the variable rather than

printing it. To capture the output from var_dump(), however, you need to use output

buffering:

ob_start();

var_dump($user);

154 | Chapter 5: Variables

$dump = ob_get_contents();

ob_end_clean();

This puts the results of var_dump($user) in $dump.

See Also

Output buffering is discussed in Recipe 8.13; documentation on print_r(),

var_dump(), and var_export().

5.8 Dumping Variable Contents as Strings | 155

CHAPTER 6

Functions

6.0 Introduction

Functions help you create organized and reusable code. They allow you to abstract out

details so your code becomes more flexible and more readable. Without functions, it is

impossible to write easily maintainable programs because you’re constantly updating

identical blocks of code in multiple places and in multiple files.

With a function you pass a number of arguments in and get a value back:

function add($a, $b) {

return $a + $b;

}

$total = add(2, 2);

 // $total is 4

Declare a function using the function keyword, followed by the name of the function

and any parameters in parentheses. To invoke a function, simply use the function name,

specifying argument values for any parameters to the function. If the function returns

a value, you can assign the result of the function to a variable, as shown in the preceding

example.

You don’t need to predeclare a function before you call it. PHP parses the entire file

before it begins executing, so you can intermix function declarations and invocations.

You can’t, however, redefine a function in PHP. If PHP encounters a function with a

name identical to one it’s already found, it throws a fatal error and dies.

Sometimes, the standard procedure of passing in a fixed number of arguments and

getting one value back doesn’t quite fit a particular situation in your code. Maybe you

don’t know ahead of time exactly how many parameters your function needs to accept.

Or you do know your parameters, but they’re almost always the same values, so it’s

157

tedious to continue to repass them. Or you want to return more than one value from

your function.

This chapter helps you use PHP to solve these types of problems. We begin by detailing

different ways to pass arguments to a function. Recipe 6.1 through Recipe 6.6 cover passing arguments by value, reference, and as named parameters; assigning default parameter values; and functions with a variable number of parameters.

The next four recipes are all about returning values from a function. Recipe 6.7 describes returning by reference; Recipe 6.8 covers returning more than one variable; Recipe 6.9

describes how to skip selected return values; and Recipe 6.10 talks about the best way to return and check for failure from a function. The final three recipes show how to call

variable functions, deal with variable scoping problems, and dynamically create a func‐

tion. If you want a variable to maintain its value between function invocations, see

Recipe 5.5.

6.1 Accessing Function Parameters

Problem

You want to access the values passed to a function.

Solution

Use the names from the function prototype:

function commercial_sponsorship($letter, $number) {

print "This episode of Sesame Street is brought to you by ";

print "the letter $letter and number $number. \n";

}

commercial_sponsorship('G', 3);

$another_letter = 'X';

$another_number = 15;

commercial_sponsorship($another_letter, $another_number);

Discussion

Inside the function, it doesn’t matter whether the values are passed in as strings, num‐

bers, arrays, or another kind of variable. You can treat them all the same and refer to

them using the names from the prototype.

Unless otherwise specified, all non-object values being passed into and out of a function

are passed by value, not by reference. (By default, objects are passed by reference.) This

means PHP makes a copy of the value and provides you with that copy to access and

158 | Chapter 6: Functions

manipulate. Therefore, any changes you make to your copy don’t alter the original value.

For example:

function add_one($number) {

$number++;

}

$number = 1;

add_one($number);

print $number;

prints:

1

If the variable had been passed by reference, the value of $number in the global scope

would have been 2.

In many languages, passing variables by reference has the additional benefit of being

significantly faster than passing them by value. Although passing by reference is faster

in PHP, the speed difference is marginal. For that reason, we suggest passing variables

by reference only when actually necessary and never as a performance-enhancing trick.

See Also

Recipe 6.3 to pass values by reference and Recipe 6.7 to return values by reference.

6.2 Setting Default Values for Function Parameters

Problem

You want a parameter to have a default value if the function’s caller doesn’t pass it. For

example, a function to wrap text in an HTML tag might have a parameter for the tag

name, which defaults to strong if none is given.

Solution

Assign the default value to the parameters inside the function prototype:

function wrap_in_html_tag($text, $tag = 'strong') {

return "<$tag>$text</$tag>";

}

Discussion

The example in the Solution sets the default tag value to strong. For example:

print wrap_in_html_tag("Hey, a mountain lion!");

6.2 Setting Default Values for Function Parameters | 159

prints:

Hey, a mountain lion!

This example:

print wrap_in_html_tag("Look over there!", "em");

prints:

Look over there!

There are two important things to remember when assigning default values. First, all

parameters with default values must appear after parameters without defaults. Other‐

wise, PHP can’t tell which parameters are omitted and should take the default value and

which arguments are overriding the default. So wrap_in_html_tag() can’t be defined

as:

function wrap_in_html_tag($tag = 'strong', $text)

If you do this and pass wrap_in_html_tag() only a single argument, PHP assigns the

value to $tag and issues a warning complaining of a missing second argument.

Second, the assigned value must be a constant, such as a string or a number. It can’t be

a variable. Again, using wrap_in_html_tag(), such as our example, you can’t do this:

$my_favorite_html_tag = 'blink';

function wrap_in_html_tag($text, $tag = $my_favorite_html_tag) {

return "<$tag>$text</$tag>";

}

If you want to assign a default of nothing, one solution is to assign the empty string to

your parameter:

function wrap_in_html_tag($text, $tag = '') {

if (empty($tag)) { return $text; }

return "<$tag>$text</$tag>";

}

This function returns the original string, if no value is passed in for the $tag. If a non-

empty tag is passed in, it returns the string wrapped inside of tags.

Depending on circumstances, another option for the $tag default value is either 0 or

NULL. In wrap_in_html_tag(), you don’t want to allow an empty-valued tag. However,

in some cases, the empty string can be an acceptable option. As the following code

shows, you can use a default message if no argument is provided but an empty message

if the empty string is passed:

function log_db_error($message = NULL) {

if (is_null($message)) {

$message = "Couldn't connect to DB";

}

160 | Chapter 6: Functions

 error_log("[DB] [$message]");

}

See Also

Recipe 6.6 on creating functions that take a variable number of arguments.

6.3 Passing Values by Reference

Problem

You want to pass a variable to a function and have it retain any changes made to its value

inside the function.

Solution

To instruct a function to accept an argument passed by reference instead of value, pre‐

pend an & to the parameter name in the function prototype:

function wrap_in_html_tag(&$text, $tag = 'strong') {

$text = "<$tag>$text</$tag>";

}

Now there’s no need to return the string because the original is modified in place.

Discussion

Passing a variable to a function by reference allows you to avoid the work of returning

the variable and assigning the return value to the original variable. It is also useful when

you want a function to return a boolean success value of true or false, but you still

want to modify argument values with the function.

You can’t switch between passing a parameter by value or reference; it’s either one or

the other. In other words, there’s no way to tell PHP to optionally treat the variable as

a reference or as a value.

Also, if a parameter is declared to accept a value by reference, you can’t pass a constant

string (or number, etc.), or PHP will die with a fatal error.

See Also

Recipe 6.7 on returning values by reference.

6.3 Passing Values by Reference | 161

6.4 Using Named Parameters

Problem

You want to specify your arguments to a function by name, instead of simply their

position in the function invocation.

Solution

PHP doesn’t have language-level named parameter support like some other languages

do. However, you can emulate it by having a function use one parameter and making

that parameter an associative array:

function image($img) {

$tag = '<img src="' . $img['src'] . '" ';

$tag .= 'alt="' . (isset($img['alt']) ? $img['alt'] : '') .'"/>';

return $tag;

}

 // $image1 is ''

$image1 = image(array('src' => 'cow.png', 'alt' => 'cows say moo'));

 // $image2 is ''

$image2 = image(array('src' => 'pig.jpeg'));

Discussion

Though using named parameters makes the code inside your functions more complex,

it ensures the calling code is easier to read. Because a function lives in one place but is

called in many, this makes for more understandable code.

Because you’ve abstracted function parameters into an associative array, PHP can’t warn

you if you accidentally misspell a parameter’s name. You need to be more careful because

the parser won’t catch these types of mistakes. Also, you can’t take advantage of PHP’s

ability to assign a default value for a parameter. Luckily, you can work around this deficit

with some simple code at the top of the function:

function image($img) {

if (! isset($img['src'])) { $img['src'] = 'cow.png'; }

if (! isset($img['alt'])) { $img['alt'] = 'milk factory'; }

if (! isset($img['height'])) { $img['height'] = 100; }

if (! isset($img['width'])) { $img['width'] = 50; }

 /* ... */

}

Using the isset() function, check to see if a value for each parameter is set; if not, assign

a default value.

Alternatively, you can use array_merge() to handle this:

162 | Chapter 6: Functions

function image($img) {

$defaults = array('src' => 'cow.png',

'alt' => 'milk factory',

'height' => 100,

'width' => 50

);

$img = array_merge($defaults, $img);

 /* ... */

}

If the same key exists in the arrays passed to array_merge(), then it uses the value in

the later array. In the preceding example, that means that any values in $img override

values in $defaults. But if a key is missing from $img, the value from $defaults is

used.

See Also

Recipe 6.6 on creating functions that accept a variable number of arguments.

6.5 Enforcing Types of Function Arguments

Problem

You want to ensure argument values have certain types.

Solution

Use type hints on the arguments when you define your function. A type hint goes before

the parameter name in a function declaration:

function drink_juice(Liquid $drink) {

 /* ... */

}

function enumerate_some_stuff(array $values) {

 /* ... */

}

Discussion

A type hint can be a class name, an interface name, the keyword array (since PHP 5.1)

or the keyword callable (since PHP 5.4). If, at runtime, a value is passed for a type-

hinted parameter that does not satisfy the type hint, PHP triggers an E_RECOVERA

BLE_ERROR error.

If you give a type-hinted parameter a default value of null, either the null value or a

value of the proper type is allowed. In the following code, the must_be_an_array()

6.5 Enforcing Types of Function Arguments | 163

function requires an array-typed parameter. Anything else will trigger an E_RECOVERA

BLE_ERROR error. The array_or_null_is_ok() function, however, is more forgiving. If

you provide a parameter, it must be an array or null. If you omit the parameter, the

$fruits local variable in the function will be equal to null:

function must_be_an_array(array $fruits) {

foreach ($fruits as $fruit) {

print "$fruit\n";

}

}

function array_or_null_is_ok(array $fruits = null) {

if (is_array($fruits)) {

foreach ($fruits as $fruit) {

print "$fruit\n";

}

}

}

See Also

Documentation on type hints.

6.6 Creating Functions That Take a Variable Number of

Arguments

Problem

You want to define a function that takes a variable number of arguments.

Solution

Pass the function a single array-typed argument and put your variable arguments inside

the array:

 // find the "average" of a group of numbers

function mean($numbers) {

 // initialize to avoid warnings

$sum = 0;

 // the number of elements in the array

$size = count($numbers);

 // iterate through the array and add up the numbers

for ($i = 0; $i < $size; $i++) {

$sum += $numbers[$i];

}

164 | Chapter 6: Functions

 // divide by the amount of numbers

$average = $sum / $size;

 // return average

return $average;

}

 // $mean is 96.25

$mean = mean(array(96, 93, 98, 98));

Discussion

There are two good solutions, depending on your coding style and preferences. The

more traditional PHP method is the one described in the Solution. We prefer this

method because using arrays in PHP is a frequent activity; therefore, all programmers

are familiar with arrays and their behavior.

So although this method creates some additional overhead, bundling variables is com‐

monplace. It’s done in Recipe 6.4 to create named parameters and in Recipe 6.8 to return more than one value from a function. Also, inside the function, the syntax to access and

manipulate the array involves basic commands such as $array[$i] and count($array).

However, this can seem clunky, so PHP provides an alternative and allows you direct

access to the argument list, as shown in Example 6-1.

 Example 6-1. Accessing function parameters without using the argument list

 // find the "average" of a group of numbers

function mean() {

 // initialize to avoid warnings

$sum = 0;

 // the arguments passed to the function

$size = func_num_args();

 // iterate through the arguments and add up the numbers

for ($i = 0; $i < $size; $i++) {

$sum += func_get_arg($i);

}

 // divide by the amount of numbers

$average = $sum / $size;

 // return average

return $average;

}

 // $mean is 96.25

$mean = mean(96, 93, 98, 98);

6.6 Creating Functions That Take a Variable Number of Arguments | 165

This example uses a set of functions that return data based on the arguments passed to

the function they are called from. First, func_num_args() returns an integer with the

number of arguments passed into its invoking function—in this case, mean(). From

there, you can then call func_get_arg() to find the specific argument value for each

position.

When you call mean(96, 93, 98, 98), func_num_args() returns 4. The first argument

is in position 0, so you iterate from 0 to 3, not 1 to 4. That’s what happens inside the for

loop where $i goes from 0 to less than $size. As you can see, this is the same logic used

in the Solution in which an array was passed. If you’re worried about the potential

overhead from using func_get_arg() inside a loop, don’t be. This version is actually

faster than the array-passing method.

There is a third version of this function that uses func_get_args() to return an array

containing all the values passed to the function. It ends up looking like a hybrid between

the previous two functions, as shown in Example 6-2.

 Example 6-2. Accessing function parameters without using the argument list

 // find the "average" of a group of numbers

function mean() {

 // initialize to avoid warnings

$sum = 0;

 // the arguments passed to the function

$size = func_num_args();

 // iterate through the arguments and add up the numbers

foreach (func_get_args() as $arg) {

$sum += $arg;

}

 // divide by the amount of numbers

$average = $sum / $size;

 // return average

return $average;

}

 // $mean is 96.25

$mean = mean(96, 93, 98, 98);

Here you have the dual advantages of not needing to place the numbers inside a tem‐

porary array when passing them into mean(), but inside the function you can continue

to treat them as if you did.

166 | Chapter 6: Functions

See Also

Recipe 6.8 on returning multiple values from a function; documentation on

func_num_args(), func_get_arg(), and func_get_args().

6.7 Returning Values by Reference

Problem

You want to return a value by reference, not by value. This allows you to avoid making

a duplicate copy of a variable.

Solution

The syntax for returning a variable by reference is similar to passing it by reference.

However, instead of placing an & before the parameter, place it before the name of the

function:

function &array_find_value($needle, &$haystack) {

foreach ($haystack as $key => $value) {

if ($needle == $value) {

return $haystack[$key];

}

}

}

Also, you must use the =& assignment operator instead of plain = when invoking the

function:

$band =& array_find_value('The Doors', $artists);

Discussion

Returning a reference from a function allows you to directly operate on the return value

and have those changes directly reflected in the original variable.

The following code searches through an array looking for the first element that matches

a value. It returns the first matching value. For instance, you need to search through a

list of famous people from Minnesota looking for Prince, so you can update his name:

function &array_find_value($needle, &$haystack) {

foreach ($haystack as $key => $value) {

if ($needle == $value) {

return $haystack[$key];

}

}

}

$minnesota = array('Bob Dylan', 'F. Scott Fitzgerald',

6.7 Returning Values by Reference | 167

 'Prince', 'Charles Schultz');

$prince =& array_find_value('Prince', $minnesota);

$prince = 'O(+>'; // The ASCII version of Prince's unpronounceable symbol

print_r($minnesota);

This prints:

Array

(

 [0] => Bob Dylan

 [1] => F. Scott Fitzgerald

 [2] => O(+>

 [3] => Charles Schultz

)

Without the ability to return values by reference, you would need to return the array

key and then rereference the original array:

function array_find_value($needle, &$haystack) {

foreach ($haystack as $key => $value) {

if ($needle == $value) {

return $key;

}

}

}

$minnesota = array('Bob Dylan', 'F. Scott Fitzgerald',

'Prince', 'Charles Schultz');

$prince = array_find_value('Prince', $minnesota);

 // The ASCII version of Prince's unpronounceable symbol

$minnesota[$prince] = 'O(+>';

When returning a reference from a function, you must return a reference to a variable,

not a string. For example, this is not legal:

function &array_find_value($needle, &$haystack) {

foreach ($haystack as $key => $value) {

if ($needle == $value) {

$match = $haystack[$key];

}

}

return "$match is found in position $key";

}

That’s because "$match is found in position $key" is a string, and it doesn’t make

logical sense to return a reference to nonvariables. This causes PHP to emit an E_NOTICE.

168 | Chapter 6: Functions

Unlike passing values into functions, in which an argument is either passed by value or

by reference, you can optionally choose not to assign a reference and just take the re‐

turned value. Just use = instead of =&, and PHP assigns the value instead of the reference.

See Also

Recipe 6.3 on passing values by reference.

6.8 Returning More Than One Value

Problem

You want to return more than one value from a function.

Solution

Return an array and use list() to separate elements:

function array_stats($values) {

$min = min($values);

$max = max($values);

$mean = array_sum($values) / count($values);

return array($min, $max, $mean);

}

$values = array(1,3,5,9,13,1442);

list($min, $max, $mean) = array_stats($values);

Discussion

From a performance perspective, this isn’t a great idea. There is a bit of overhead because

PHP is forced to first create an array and then dispose of it. That’s what is happening in

this example:

function time_parts($time) {

return explode(':', $time);

}

list($hour, $minute, $second) = time_parts('12:34:56');

You pass in a time string as you might see on a digital clock and call explode() to break

it apart as array elements. When time_parts() returns, use list() to take each element

and store it in a scalar variable. Although this is a little inefficient, the other possible

solutions are worse because they can lead to confusing code.

6.8 Returning More Than One Value | 169

One alternative is to pass the values in by reference. However, this is somewhat clumsy

and can be nonintuitive because it doesn’t always make logical sense to pass the necessary

variables into the function. For instance:

function time_parts($time, &$hour, &$minute, &$second) {

list($hour, $minute, $second) = explode(':', $time);

}

time_parts('12:34:56', $hour, $minute, $second);

Without knowledge of the function prototype, there’s no way to look at this and know

$hour, $minute, and $second are, in essence, the return values of time_parts().

You can also use global variables, but this clutters the global namespace and also makes

it difficult to easily see which variables are being silently modified in the function. For

example:

function time_parts($time) {

global $hour, $minute, $second;

list($hour, $minute, $second) = explode(':', $time);

}

time_parts('12:34:56');

Again, here it’s clear because the function is directly above the call, but if the function

is in a different file or written by another person, it’d be more mysterious and thus open

to creating a subtle bug.

Our advice is that if you modify a value inside a function, return that value and assign

it to a variable unless you have a very good reason not to, such as significant performance

issues. It’s cleaner and easier to understand and maintain.

See Also

Recipe 6.3 on passing values by reference and Recipe 6.12 for information on variable scoping.

6.9 Skipping Selected Return Values

Problem

A function returns multiple values, but you only care about some of them.

Solution

Omit variables inside of list():

 // Only care about minutes

function time_parts($time) {

170 | Chapter 6: Functions

 return explode(':', $time);

}

list(, $minute,) = time_parts('12:34:56');

Discussion

Even though it looks like there’s a mistake in the code, the code in the Solution is valid

PHP. To reduce confusion, don’t use this feature frequently; but if a function returns

many values, and you only want one or two of them, it can come in handy. One example

of this case is if you read in fields using fgetcsv(), which returns an array holding the

fields from the line. In that case, you can use the following:

while ($fields = fgetcsv($fh, 4096)) {

print $fields[2] . " \n"; // the third field

}

If it’s a user-defined function and not built-in, you could also make the returning array

have string keys, because it’s hard to remember, for example, that array element 2 is

associated with 'rank':

while ($fields = read_fields($filename)) {

$rank = $fields['rank']; // the third field is now called rank

print "$rank\n";

}

However, here’s the most efficient method:

while (list(,,$rank,,) = fgetcsv($fh, 4096)) {

print "$rank\n"; // directly assign $rank

}

Be careful you don’t miscount the amount of commas; you’ll end up with a bug.

See Also

Recipe 1.12 for more on reading files using fgetcsv().

6.10 Returning Failure

Problem

You want to indicate failure from a function.

Solution

Return false:

function lookup($name) {

if (empty($name)) { return false; }

6.10 Returning Failure | 171

 /* ... */

}

$name = 'alice';

if (false !== lookup($name)) {

 /* act upon lookup */

} else {

 /* log an error */

}

Discussion

In PHP, nontrue values aren’t standardized and can easily cause errors. As a result, your

functions should return the defined false keyword because this works best when

checking a logical value.

Other possibilities are '' or 0. However, while all three evaluate to nontrue inside an

if, there’s actually a difference among them. Also, sometimes a return value of 0 is a

meaningful result, but you still want to be able to also return failure.

For example, strpos() returns the location of the first substring within a string. If the

substring isn’t found, strpos() returns false. If it is found, it returns an integer with

the position. Therefore, to find a substring position, you might write:

if (strpos($string, $substring)) { /* found it! */ }

However, if $substring is found at the exact start of $string, the value returned is 0.

Unfortunately, inside the if, this evaluates to false, so the conditional is not executed.

Here’s the correct way to handle the return value of strpos():

if (false !== strpos($string, $substring)) { /* found it! */ }

See Also

The introduction to Chapter 5 for more on the truth values of variables; documentation

on strpos() and empty().

6.11 Calling Variable Functions

Problem

You want to call different functions depending on a variable’s value.

Solution

Use call_user_func():

172 | Chapter 6: Functions

function get_file($filename) { return file_get_contents($filename); }

$function = 'get_file';

$filename = 'graphic.png';

 // calls get_file('graphic.png')

call_user_func($function, $filename);

Use call_user_func_array() when your functions accept differing argument counts:

function get_file($filename) { return file_get_contents($filename); }

function put_file($filename, $d) {

return file_put_contents($filename, $d); }

if ($action == 'get') {

$function = 'get_file';

$args = array('graphic.png');

} elseif ($action == 'put') {

$function = 'put_file';

$args = array('graphic.png', $graphic);

}

 // calls get_file('graphic.png')

 // calls put_file('graphic.png', $graphic)

call_user_func_array($function, $args);

Discussion

The call_user_func() and call_user_func_array() functions are a little different

from your standard PHP functions. Their first argument isn’t a string to print, or a

number to add, but the name of a function that’s executed. The concept of passing a

function name that the language invokes is known as a callback, or a callback function.

The call_user_func_array() function comes in quite handy when you’re invoking a

callback inside a function that can accept a variable number of arguments. In these cases,

instead of embedding the logic inside your function, you can grab all the arguments

directly using func_get_args():

 // logging function that accepts printf-style formatting

 // it prints a time stamp, the string, and a new line

function logf() {

$date = date(DATE_RSS);

$args = func_get_args();

return print "$date: " . call_user_func_array('sprintf', $args) . " \n";

}

logf('%s','http://developer.ebay.com','eBay Developer Program');

The logf() function has the same interface as the printf family: the first argument is

a formatting specifier and the remaining arguments are data that’s interpolated into the

6.11 Calling Variable Functions | 173

string based on the formatting codes. Because there could be any number of arguments

following the formatting code, you cannot use call_user_func().

Instead, you grab all the arguments in an array using func_get_args() and pass that

array to sprintf using call_user_func_array().

In this particular example, you can also use vsprintf(), which is a version of sprintf()

that, like call_user_func_array(), accepts an array of arguments:

 // logging function that accepts printf-style formatting

 // it prints a time stamp, the string, and a new line

function logf() {

$date = date(DATE_RSS);

$args = func_get_args();

$format = array_shift($args);

return print "$date: " . vsprintf($format, $args) . " \n";

}

If you have more than two possibilities to call, use an associative array of function names:

$dispatch = array(

'add' => 'do_add',

'commit' => 'do_commit',

'checkout' => 'do_checkout',

'update' => 'do_update'

);

$cmd = (isset($_REQUEST['command']) ? $_REQUEST['command'] : '');

if (array_key_exists($cmd, $dispatch)) {

$function = $dispatch[$cmd];

call_user_func($function); // call function

} else {

error_log("Unknown command $cmd");

}

This code takes the command name from a request and executes that function. Note

the check to see that the command is in a list of acceptable commands. This prevents

your code from calling whatever function was passed in from a request, such as phpin

fo(). This makes your code more secure and allows you to easily log errors.

Another advantage is that you can map multiple commands to the same function, so

you can have a long and a short name:

$dispatch = array(

'add' => 'do_add',

'commit' => 'do_commit', 'ci' => 'do_commit',

'checkout' => 'do_checkout', 'co' => 'do_checkout',

'update' => 'do_update', 'up' => 'do_update'

);

174 | Chapter 6: Functions

See Also

Documentation on array_key_exists(), call_user_func(), call_user_func_ar

ray(), and isset().

6.12 Accessing a Global Variable Inside a Function

Problem

You need to access a global variable inside a function.

Solution

Bring the global variable into local scope with the global keyword:

function eat_fruit($fruit) {

global $chew_count;

for ($i = $chew_count; $i > 0; $i--) {

 /* ... */

}

}

Or reference it directly in $GLOBALS:

function eat_fruit($fruit) {

for ($i = $GLOBALS['chew_count']; $i > 0; $i--) {

 /* ... */

}

}

Discussion

If you use a number of global variables inside a function, the global keyword may make

the syntax of the function easier to understand, especially if the global variables are

interpolated in strings.

You can use the global keyword to bring multiple global variables into local scope by

specifying the variables as a comma-separated list:

global $age,$gender,shoe_size;

You can also specify the names of global variables using variable variables:

$which_var = 'age';

global $$which_var; // refers to the global variable $age

However, if you call unset() on a variable brought into local scope using the global

keyword, the variable is unset only within the function. To unset the variable in the

global scope, you must call unset() on the element of the $GLOBALS array:

6.12 Accessing a Global Variable Inside a Function | 175

$food = 'pizza';

$drink = 'beer';

function party() {

global $food, $drink;

unset($food); // eat pizza

unset($GLOBALS['drink']); // drink beer

}

print "$food: $drink\n";

party();

print "$food: $drink\n";

This prints:

pizza: beer

pizza:

You can see that $food stayed the same, while $drink was unset. Declaring a variable

global inside a function is similar to assigning a reference of the global variable to the

local one:

$food = $GLOBALS['food'];

See Also

Documentation on variable scope and variable references.

6.13 Creating Dynamic Functions

Problem

You want to create and define a function as your program is running.

Solution

Use the closure syntax to define a function and store it in a variable:

$increment = 7;

$add = function($i, $j) use ($increment) { return $i + $j + $increment; };

$sum = $add(1, 2);

$sum is now 10. If you are using a version of PHP earlier than 5.3.0, use create_func

tion() instead:

$increment = 7;

$add = create_function('$i,$j', 'return $i+$j + ' . $increment. ';');

176 | Chapter 6: Functions

$sum = $add(1, 2);

Discussion

The closure syntax is much more pleasant than using create_function(). With cre

ate_function, the argument list and function body are written as literal strings. This

means PHP can’t parse their syntax until runtime and you have to pay attention to single

quoting and double quoting and variable interpolation rules.

With the closure syntax, PHP can do the same compile-time checking of your anony‐

mous function as it does on the rest of your code. You use the same syntax you’d use

elsewhere for writing a function, with one exception: a use() declaration after the ar‐

gument list can enumerate variables from the scope in which the closure is defined that

should be available inside the closure. In the preceding example, the use($incre

ment) means that, inside the closure, $increment has the value (7) that it does in the

scope in which the closure is defined.

A frequent use for anonymous functions is to create custom sorting functions for

usort() or array_walk():

$files = array('ziggy.txt', '10steps.doc', '11pants.org', "frank.mov");

 // sort files in reverse natural order

usort($files, function($a, $b) { return strnatcmp($b, $a); });

 // Now $files is

 // array('ziggy.txt', 'frank.mov','11pants.org','10steps.doc')

See Also

Recipe 4.17 for information on usort(); documentation on create_function() and

on usort().

6.13 Creating Dynamic Functions | 177

CHAPTER 7

Classes and Objects

7.0 Introduction

Early versions of PHP were strictly procedural: you could define functions, but not

objects. PHP 3 introduced an extremely rudimentary form of objects, written as a late-

night hack. Back in 1997, nobody expected the explosion in the number of PHP pro‐

grammers, or that people would write large-scale programs in PHP. Therefore, these

limitations weren’t considered a problem.

Over the years, PHP gained additional object-oriented (OO) features; however, the

development team never redesigned the core OO code to gracefully handle objects and

classes. As a result, although PHP 4 improved overall performance, writing complex

OO programs with it was still difficult, if not nearly impossible.

PHP 5 fixed these problems by using Zend Engine 2 (ZE2). ZE2 enables PHP to include

more advanced object-oriented features, while still providing a high degree of backward

compatibility to the millions of PHP scripts already written. Later versions of PHP 5

further enhanced PHP’s OO toolkit. Today, it’s capable of allowing developers to write

fully featured OO applications.

If you don’t have experience with object-oriented programming, then you’re in for a bit

of a surprise. Although some features allow you to do things more easily, many features

actually restrict what you can do.

Even though it seems counterintuitive, these limitations actually help you quickly write

safe code because they promote code reuse and data encapsulation. These key OO pro‐

gramming techniques are explained throughout the chapter. But first, here’s an intro‐

duction to object-oriented programming, its vocabulary, and its concepts.

A class is a package containing two things: data and methods to access and modify that

data. The data portion consists of variables; they’re known as properties. The other part

of a class is a set of functions that can use its properties—they’re called methods.

179

When you define a class, you don’t define an object that can be accessed and manipu‐

lated. Instead, you define a template for an object. From this blueprint, you create

malleable objects through a process known as instantiation. A program can have mul‐

tiple objects of the same class, just as a person can have more than one book or many

pieces of fruit.

Classes also live in a defined hierarchy. Each class down the line is more specialized than

the one above it. These specialized classes are called child classes, and the class they’re

modifying is called the parent class. For example, a parent class could be a building.

Buildings can be further divided into residential and commercial. Residential buildings

can be further subdivided into houses and apartment buildings, and so forth. The top-

most parent class is also called the base class.

Both houses and apartment buildings have the same set of properties as all residential

buildings, just as residential and commercial buildings share some things in common.

When classes are used to express these parent-child relationships, the child class inherits

the properties and methods defined in the parent class. This allows you to reuse the

code from the parent class and requires you to write code only to adapt the new child

to its specialized circumstances. This is called inheritance and is one of the major ad‐

vantages of classes over functions. The process of defining a child class from a parent

is known as subclassing or extending.

Classes in PHP are easy to define and create:

class guest_book {

public $comments;

public $last_visitor;

function update($comment, $visitor) {

...

}

}

The class keyword defines a class, just as function defines a function. Properties are

declared using the public keyword. Method declaration is identical to function defi‐

nition.

The new keyword instantiates an object:

$gb = new guest_book;

Object instantiation is covered in more detail in Recipe 7.1.

Inside a class, you can optionally declare properties using public. There’s no require‐

ment to do so, but it is a useful way to reveal all the variables of the class. Because PHP

doesn’t force you to predeclare all your variables, it’s possible to create one inside a class

without PHP throwing an error or otherwise letting you know. This can cause the list

180 | Chapter 7: Classes and Objects

of variables at the top of a class definition to be misleading, because it’s not the same as the list of variables actually in the class.

Besides declaring a property, you can also assign it a value:

public $last_visitor = 'Donnan';

The right-hand side of this construct can only be a constant value:

public $last_visitor = 'Donnan'; // okay

public $last_visitor = 9; // okay

public $last_visitor = array('Jesse'); // okay

public $last_visitor = pick_visitor(); // bad

public $last_visitor = 'Chris' . '9'; // bad

If you try to assign something else, PHP dies with a parse error.

To assign a nonconstant value to a variable, do it from a method inside the class:

class guest_book {

public $last_visitor;

public function update($comment, $visitor) {

if (! empty($comment)) {

array_unshift($this->comments, $comment);

$this->last_visitor = $visitor;

}

}

}

If the visitor left a comment, you add it to the beginning of the array of comments and

set that person as the latest visitor to the guest book. The variable $this is a special

variable that refers to the current object. So to access the $last_visitor property of an

object from inside that object, refer to $this->last_visitor.

To assign nonconstant values to variables upon instantiation, assign them in the class

constructor. The class constructor is a method automatically called when a new object

is created, and it is named __construct(), as shown:

class guest_book {

public $comments;

public $last_visitor;

public function __construct($user) {

$dbh = mysqli_connect('localhost', 'username', 'password', 'sites');

$user = mysqli_real_escape_string($dbh, $user);

$sql = "SELECT comments, last_visitor FROM guest_books WHERE user='$user'";

$r = mysqli_query($dbh, $sql);

if ($obj = mysqli_fetch_object($dbh, $r)) {

$this->comments = $obj->comments;

$this->last_visitor = $obj->last_visitor;

}

7.0 Introduction | 181

 }

}

$gb = new guest_book('stewart');

Constructors are covered in Recipe 7.2.

Be careful not to mistakenly type $this->$size. This is legal, but it’s not the same as

$this->size. Instead, it accesses the property of the object whose name is the value

stored in the $size variable. More often than not, $size is undefined, so $this->

$size appears empty. For more on variable property names, see Recipe 5.4.

As of PHP 5.4, you can call a method or access a property directly upon object instan‐

tiation:

$last_visitor = (new guest_book('stewart'))->last_visitor;

$last_visitor = (new guest_book('stewart'))->getLastVisitor();

Besides using -> to access a method or member variable, you can also use ::. This syntax

accesses static methods in a class. These methods are identical for every instance of a

class, because they can’t rely on instance-specific data. There’s no $this in a static

method. For example:

class convert {

 // convert from Celsius to Fahrenheit

public static function c2f($degrees) {

return (1.8 * $degrees) + 32;

}

}

$f = convert::c2f(100); // 212

To implement inheritance by extending an existing class, use the extends keyword:

class xhtml extends xml {

 // ...

}

Child classes inherit parent methods and can optionally choose to implement their own

specific versions. For example:

class DB {

public $result;

function getResult() {

return $this->result;

}

function query($sql) {

error_log("query() must be overridden by a database-specific child");

return false;

}

182 | Chapter 7: Classes and Objects

}

class MySQL extends DB {

function query($sql) {

$this->result = mysql_query($sql);

}

}

The MySQL class inherits the getResult() method unchanged from the parent DB class,

but has its own MySQL-specific query() method. Preface the method name with par

ent:: to explicitly call a parent method:

function escape($sql) {

$safe_sql = mysql_real_escape_string($sql); // escape special characters

$safe_sql = parent::escape($safe_sql); // parent method adds '' around $sql

return $safe_sql;

}

Recipe 7.14 covers accessing overridden methods.

7.1 Instantiating Objects

Problem

You want to create a new instance of an object.

Solution

Define the class, then use new to create an instance of the class:

class user {

function load_info($username) {

 // load profile from database

}

}

$user = new user;

$user->load_info($_GET['username']);

Discussion

You can instantiate multiple instances of the same object:

$adam = new user;

$adam->load_info('adam');

$dave = new user;

$dave->load_info('adam');

7.1 Instantiating Objects | 183

These are two independent objects that happen to have identical information. They’re

like identical twins; they may start off the same, but they go on to live separate lives.

See Also

Recipe 7.10 for more on copying and cloning objects; documentation on classes and

objects.

7.2 Defining Object Constructors

Problem

You want to define a method that is called when an object is instantiated. For example,

you want to automatically load information from a database into an object upon cre‐

ation.

Solution

Define a method named __construct():

class user {

function __construct($username, $password) {

 // ...

}

}

Discussion

The method named __construct() (that’s two underscores before the word con

struct) acts as a constructor:

class user {

public $username;

function __construct($username, $password) {

if ($this->validate_user($username, $password)) {

$this->username = $username;

}

}

}

$user = new user('Grif', 'Mistoffelees'); // using built-in constructor

For backward compatibilty with PHP 4, if PHP 5 does not find a method named __con

struct(), but does find one with the same name as the class (the PHP 4 constructor

naming convention), it will use that method as the class constructor.

184 | Chapter 7: Classes and Objects

Having a standard name for all constructors makes it easier to call your parent’s con‐

structor (because you don’t need to know the name of the parent class) and also doesn’t

require you to modify the constructor if you rename your class.

See Also

Recipe 7.14 for more on calling parent constructors; documentation on object con‐

structors.

7.3 Defining Object Destructors

Problem

You want to define a method that is called when an object is destroyed. For example,

you want to automatically save information from a database into an object when it’s

deleted.

Solution

Objects are automatically destroyed when a script terminates. To force the destruction

of an object, use unset():

$car = new car; // buy new car

 // ...

unset($car); // car wreck

To make PHP call a method when an object is eliminated, define a method named

__destruct():

class car {

function __destruct() {

 // head to car dealer

}

}

Discussion

It’s not normally necessary to manually clean up objects, but if you have a large loop,

unset() can help keep memory usage from spiraling out of control.

PHP supports object destructors. Destructors are like constructors, except that they’re

called when the object is deleted. Even if you don’t delete the object yourself using

unset(), PHP still calls the destructor when it determines that the object is no longer

used. This may be when the script ends, but it can be much earlier.

You use a destructor to clean up after an object. For instance, the Database destructor

would disconnect from the database and free up the connection. Unlike constructors,

7.3 Defining Object Destructors | 185

you cannot pass information to a destructor, because you’re never sure when it’s going

to be run.

Therefore, if your destructor needs any instance-specific information, store it as a

property:

 // Destructor

class Database {

function __destruct() {

db_close($this->handle); // close the database connection

}

}

Destructors are executed before PHP terminates the request and finishes sending data.

Therefore, you can print from them, write to a database, or even ping a remote server.

You cannot, however, assume that PHP will destroy objects in any particular order.

Therefore, you should not reference another object in your destructor, because PHP

may have already destroyed it. Doing so will not cause a crash, but it will cause your

code to behave in an unpredictable (and buggy) manner.

See Also

Documentation on unset().

7.4 Implementing Access Control

Problem

You want to assign a visibility to methods and properties so they can only be accessed

within classes that have a specific relationship to the object.

Solution

Use the public, protected, and private keywords:

class Person {

public $name; // accessible anywhere

protected $age; // accessible within the class and child classes

private $salary; // accessible only within this specific class

public function __construct() {

 // ...

}

protected function set_age() {

 // ...

}

186 | Chapter 7: Classes and Objects

 private function set_salary() {

 // ...

}

}

Discussion

PHP allows you to enforce where you can access methods and properties. There are

three levels of visibility:

• public

• protected

• private

Making a method or property public means anyone can call or edit it.1

You can also label a method or property as protected, which restricts access to only the

current class and any child classes that extend that class.

The final visibility is private, which is the most restrictive. Properties and methods

that are private can only be accessed within that specific class.

If you’re unfamiliar with this concept, access control can seem like an odd thing. How‐

ever, when you use access control, you can actually create more robust code because it

promotes data encapsulation, a key tenet of OO programming.

Inevitably, whenever you write code, there’s some part—the way you store the data, what

parameters the functions take, how the database is organized—that doesn’t work as well

as it should. It’s too slow, too awkward, or doesn’t allow you to add new features, so you

clean it up.

Fixing code is a good thing, unless you accidently break other parts of your system in

the process. When a program is designed with a high degree of encapsulation, the un‐

derlying data structures and database tables are not accessed directly. Instead, you define

a set of functions and route all your requests through these functions.

For example, you have a database table that stores names and email addresses. A pro‐

gram with poor encapsulation directly accesses the table whenever it needs to fetch a

person’s email address:

$name = 'Rasmus Lerdorf';

$sqlite = new PDO('sqlite:/usr/local/users.db');

$rows = $db->query("SELECT email FROM users WHERE name LIKE '$name'");

1. Prior to PHP 5, all methods and properties were public.

7.4 Implementing Access Control | 187

$row = $rows->fetch();

$email = $row['email'];

A better encapsulated program uses a function instead:

function getEmail($name) {

$sqlite = new PDO("sqlite:/usr/local/users.db");

$rows = $db->query("SELECT email FROM users WHERE name LIKE '$name'");

$row = $rows->fetch();

$email = $row['email'];

return $email;

}

$email = getEmail('Rasmus Lerdorf');

Using getEmail() has many benefits, including reducing the amount of code you need

to write to fetch an email address. However, it also lets you safely alter your database

schema because you only need to change the single query in getEmail() instead of

searching through every line of every file, looking for places where you SELECT data

from the users table. Or you can switch from one database to another with relative ease.

It’s hard to write a well-encapsulated program using functions, because the only way to

signal to people “Don’t touch this!” is through comments and programming conven‐

tions.

Objects allow you to wall off implementation internals from outside access. This pre‐

vents people from relying on code that may change and forces them to use your functions

to reach the data. Functions of this type are known as accessors, because they allow access

to otherwise protected information. When redesigning code, if you update the accessors

to work as before, none of the code will break.

Marking something as protected or private signals that it may change in the future,

so people shouldn’t access it or they’ll violate encapsulation.

This is more than a social convention. PHP actually prevents people from calling a

private method or reading a private property outside of the class. Therefore, from an

external perspective, these methods and properties might as well not exist because there’s

no way to access them.

In object-oriented programming, there is an implicit contract between the author and

the users of the class. The users agree not to worry about the implementation details.

The author agrees that as long as a person uses public methods they’ll always work, even

if the author redesigns the class.

Both protected and private provide protection against usage outside of the class.

Therefore, the decision to choose one visibility versus the other really comes down to

a judgment call—do you expect someone will need to invoke that method in a child

class?

188 | Chapter 7: Classes and Objects

If you (or your team) are the only people using that class, choosing private over

protected allows you to be conservative and not overexpose access unnecessarily. It’s

easy to open up the visibility later on, if needed. If you’re planning on distributing this

code as a package, then biasing toward protected helps enable others to extend on your

work without needing to modify your master library.

7.5 Preventing Changes to Classes and Methods

Problem

You want to prevent another developer from redefining specific methods within a child

class, or even from subclassing the entire class itself.

Solution

Label the particular methods or class as final:

final public function connect($server, $username, $password) {

 // Method definition here

}

and:

final class MySQL {

 // Class definition here

}

Discussion

Inheritance is normally a good thing, but it can make sense to restrict it.

The best reason to declare a method final is that a real danger could arise if someone

overrides it; for example, data corruption, a race condition, or a potential crash or

deadlock from forgetting (or forgetting to release) a lock or a semaphore.

Make a method final by placing the final keyword at the beginning of the method

declaration:

final public function connect($server, $username, $password) {

 // Method definition here

}

This prevents someone from subclassing the class and creating a different connect()

method.

To prevent subclassing of an entire class, don’t mark each method final. Instead, make

a final class:

7.5 Preventing Changes to Classes and Methods | 189

final class MySQL {

 // Class definition here

}

A final class cannot be subclassed. This differs from a class in which every method is

final because that class can be extended and provided with additional methods, even

if you cannot alter any of the preexisting methods.

7.6 Defining Object Stringification

Problem

You want to control how PHP displays an object when you print it.

Solution

Implement a __toString() method:

class Person {

 // Rest of class here

public function __toString() {

return "$this->name <$this->email>";

}

}

Discussion

PHP provides objects with a way to control how they are converted to strings. This

allows you to print an object in a friendly way without resorting to lots of additional

code.

PHP calls an object’s __toString() method when you echo or print the object by itself.

For example:

class Person {

protected $name;

protected $email;

public function setName($name) {

$this->name = $name;

}

public function setEmail($email) {

$this->email = $email;

}

public function __toString() {

return "$this->name <$this->email>";

190 | Chapter 7: Classes and Objects

 }

}

You can write:

$rasmus = new Person;

$rasmus->setName('Rasmus Lerdorf');

$rasmus->setEmail('rasmus@php.net');

print $rasmus;

Rasmus Lerdorf <rasmus@php.net>

This causes PHP to invoke the __toString() method behind the scenes and return the

stringified version of the object.

Your method must return a string; otherwise, PHP will issue an error. Though this seems

obvious, you can sometimes get tripped up by PHP’s auto-casting features, which do

not apply here.

For example, it’s easy to treat the string '9' and the integer 9 identically, because PHP

generally switches seamlessly between the two depending on context, almost always to

the correct result.

However, in this case, you cannot return integers from __toString(). If you suspect

you may be in a position to return a nonstring value from this method, consider ex‐

plicitly casting the results, as shown:

class TextInput {

 // Rest of class here

public function __toString() {

return (string) $this->label;

}

}

By casting $this->label to a string, you don’t need to worry if someone decided to

label that text input with a number.

The __toString() feature has a number of limitations prior to PHP 5.2. Therefore, if

you’re using __toString() heavily in your code, it’s best to use PHP 5.2 or greater.

7.7 Requiring Multiple Classes to Behave Similarly

Problem

You want multiple classes to use the same methods, but it doesn’t make sense for all the

classes to inherit from a common parent class.

7.7 Requiring Multiple Classes to Behave Similarly | 191

Solution

Define an interface and declare that your class will implement that interface:

interface NameInterface {

public function getName();

public function setName($name);

}

class Book implements NameInterface {

private $name;

public function getName() {

return $this->name;

}

public function setName($name) {

return $this->name = $name;

}

}

The NameInterface interface defines two methods necessary to name an object. Because

books are nameable, the Book class says it implements the NameInterface interface, and

then defines the two methods in the class body.

When you want to include the code that implements the interface, define a trait and

declare that your classes will use that trait:

trait NameTrait {

private $name;

public function getName() {

return $this->name;

}

public function setName($name) {

return $this->name = $name;

}

}

class Book {

use NameTrait;

}

class Child {

use NameTrait;

}

The NameTrait trait defines and implements two methods necessary to name an object.

Because books are nameable, the Book class says it will use the NameTrait trait, and then

you can call the two methods in the class body.

192 | Chapter 7: Classes and Objects

Discussion

In object-oriented programming, objects must work together. Therefore, you should be

able to require a class (or more than one class) to implement methods that are necessary

for the class to interact properly in your system.

For instance, an e-commerce application needs to know a certain set of information

about every item up for sale. These items may be represented as different classes: Book,

CD, DVD, etc. However, at the very minimum you need to know that every item in your

catalog has a name, regardless of its type. (You probably also want them to have a price

and maybe even an ID, while you’re at it.)

The mechanism for forcing classes to support the same set of methods is called an

 interface. Defining an interface is similar to defining a class:

interface NameInterface {

public function getName();

public function setName($name);

}

Instead of using the keyword class, an interface uses the keyword interface. Inside

the interface, define your method prototypes, but don’t provide an implementation.

This creates an interface named NameInterface. Any class that has the NameInter

face must implement the two methods listed in the interface: getName() and setName().

When a class supports all the methods in the interface, it’s said to implement the inter‐

face. You agree to implement an interface in your class definition:

class Book implements NameInterface {

private $name;

public function getName() {

return $this->name;

}

public function setName($name) {

return $this->name = $name;

}

}

Failing to implement all the methods listed in an interface, or implementing them with

a different prototype, causes PHP to emit a fatal error.

A class can agree to implement as many interfaces as you want. For instance, you may

want to have a ListenInterface interface that specifies how you can retrieve an audio

clip for an item. In this case, the CD and DVD classes would also implement ListenIn

terface, whereas the Book class wouldn’t. (Unless, of course, it is an audio book.)

7.7 Requiring Multiple Classes to Behave Similarly | 193

When you use interfaces, it’s important to declare your classes before you instantiate

objects. Otherwise, when a class implements interfaces, PHP can sometimes become

confused. To avoid breaking existing applications, this requirement is not enforced, but

it’s best not to rely on this behavior.

To check if a class implements a specific interface, use class_implements(), as shown:

class Book implements NameInterface {

 // .. Code here

}

$interfaces = class_implements('Book');

if (isset($interfaces['NameInterface'])) {

 // Book implements NameInterface

}

You can also use the Reflection classes:

class Book implements NameInterface {

 // .. Code here

}

$rc = new ReflectionClass('Book');

if ($rc->implementsInterface('NameInterface')) {

print "Book implements NameInterface\n";

}

When you want to share code across two classes, use a trait:

trait NameTrait {

private $name;

public function getName() {

return $this->name;

}

public function setName($name) {

return $this->name = $name;

}

}

class Book {

use NameTrait;

}

$book = new Book;

$book->setName('PHP Cookbook');

print $book->getName();

You can use interfaces and traits together. This is actually a best-practice design:

class Book implements NameInterface {

use NameTrait;

}

194 | Chapter 7: Classes and Objects

Interfaces allow you to establish clear contracts with explicit promises about how your

objects behave. Traits allow you to reuse code across objects that don’t have an “is a”

inheritance relationship; they are just a programmatic way to avoid copy and pasting

code in multiple places.

Interfaces combined with traits give you the best of both. The interface provides the

contract across a wide set of classes, and the trait lets you fulfill it. Then, a specific class

can choose to use the trait, or implement the interface on its own. For example, you

could impose a contraint that each Book must have a unique name or that the name

should be stored in a database. In these cases, the NameTrait wouldn’t serve your needs.

You can have a class implement multiple interfaces or traits by separating them with a

comma:

class Book implements NameInterface, SizeInterface {

use NameTrait, SizeTrait;

}

See Also

Recipe 7.20 for more on the Reflection classes; documentation on class_imple

ments(), interfaces, and traits.

7.8 Creating Abstract Base Classes

Problem

You want to create an abstract class, or, in other words, one that is not directly instan‐

tiable, but acts as a common base for children classes.

Solution

Label the class as abstract:

abstract class Database {

 // ...

}

Do this by placing the abstract keyword before the class definition.

You must also define at least one abstract method in your class. Do this by placing the

abstract keyword in front of the method definition:

abstract class Database {

abstract public function connect();

abstract public function query();

abstract public function fetch();

7.8 Creating Abstract Base Classes | 195

 abstract public function close();

}

Discussion

Abstract classes are best used when you have a series of objects that are related using

the is a relationship. Therefore, it makes logical sense to have them descend from a

common parent. However, whereas the children are tangible, the parent is abstract.

Take, for example, a Database class. A database is a real object, so it makes sense to have

a Database class. However, although Oracle, MySQL, Postgres, MSSQL, and hundreds

of other databases exist, you cannot download and install a generic database. You must

choose a specific database.

PHP provides a way for you to create a class that cannot be instantiated. This class is

known as an abstract class. For example, see the Database class:

abstract class Database {

abstract public function connect($server, $username, $password, $database);

abstract public function query($sql);

abstract public function fetch();

abstract public function close();

}

Mark a class as abstract by placing the abstract keyword before class.

Abstract classes must contain at least one method that is also marked abstract. These

methods are called abstract methods. Database contains four abstract methods: con

nect(), query(), fetch(), and close(). These four methods are the basic set of func‐

tionality necessary to use a database.

If a class contains an abstract method, the class must also be declared abstract. However,

abstract classes can contain nonabstract methods (even though there are no regular

methods in Database).

Abstract methods, like methods listed in an interface, are not implemented inside the

abstract class. Instead, abstract methods are implemented in a child class that extends

the abstract parent. For instance, you could use a MySQL class:

class MySQL extends Database {

protected $dbh;

protected $query;

public function connect($server, $username, $password, $database) {

$this->dbh = mysqli_connect($server, $username,

$password, $database);

}

public function query($sql) {

$this->query = mysqli_query($this->dbh, $sql);

196 | Chapter 7: Classes and Objects

 }

public function fetch() {

return mysqli_fetch_row($this->dbh, $this->query);

}

public function close() {

mysqli_close($this->dbh);

}

}

When implementing abstract methods, you must keep the same method prototypes. In

this example, for instance, query() takes one argument, $sql.

If a subclass fails to implement all the abstract methods in the parent class, then it itself

is abstract and another class must come along and further subclass the child. You might

do this if you want to create two MySQL classes: one that fetches information as objects

and another that returns arrays.

There are two requirements for abstract methods:

• Abstract methods cannot be defined private, because they need to be inherited.

• Abstract methods cannot be defined final, because they need to be overridden.

Abstract classes and interfaces are similar concepts, but are not identical. For one, you

can implement multiple interfaces, but extend only one abstract class. Additionally, in

an interface you can only define method prototypes—you cannot implement them. An

abstract class, in comparison, needs only one abstract method to be abstract, and can

have many nonabstract methods and even properties.

You should also use abstract classes when the “is a” rule applies. For example, because

you can say “MySQL is a Database,” it makes sense for Database to be an abstract class.

In constrast, you cannot say, “Book is a NameInterface” or “Book is a Name,” so Name

Interface should be an interface.

7.9 Assigning Object References

Problem

You want to link two objects, so when you update one, you also update the other.

Solution

Use = to assign one object to another by reference:

$adam = new user;

$dave = $adam;

7.9 Assigning Object References | 197

Discussion

When you do an object assignment using =, you don’t create a new copy of an object,

but a reference to the first. So, modifying one alters the other.

This is different from how PHP treats other types of variables, where it does a copy-by-

value:

$adam = new user;

$adam->load_info('adam');

$dave = $adam;

Now $dave and $adam are two names for the exact same object.

See Also

Recipe 7.10 for more on cloning objects; documentation on references.

7.10 Cloning Objects

Problem

You want to copy an object.

Solution

Copy objects by reference using =:

$rasmus = $zeev;

Copy objects by value using clone:

$rasmus = clone $zeev;

Discussion

PHP copies objects by reference instead of value. When you assign an existing object

to a new variable, that new variable is just another name for the existing object. Accessing

the object by the old or new name produces the same results.

To create an independent instance of a value with the same contents, otherwise known

as copying by value, use the clone keyword. Otherwise, the second object is simply a

reference to the first.

This cloning process copies every property in the first object to the second. This includes

properties holding objects, so the cloned object may end up sharing object references

with the original.

198 | Chapter 7: Classes and Objects

This is frequently not the desired behavior. For example, consider the aggregated version of Person that holds an Address object:

class Address {

protected $city;

protected $country;

public function setCity($city) { $this->city = $city; }

public function getCity() { return $this->city; }

public function setCountry($country) { $this->country = $country; }

public function getCountry() { return $this-> country;}

}

class Person {

protected $name;

protected $address;

public function __construct() { $this->address = new Address; }

public function setName($name) { $this->name = $name; }

public function getName() { return $this->name; }

public function __call($method, $arguments) {

if (method_exists($this->address, $method)) {

return call_user_func_array(array($this->address, $method), $arguments);

}

}

}

An aggregated class is one that embeds another class inside in a way that makes it easy

to access both the original and embedded classes. The key point to remember is that the

$address property holds an Address object.

With this class, this example shows what happens when you clone an object:

$rasmus = new Person;

$rasmus->setName('Rasmus Lerdorf');

$rasmus->setCity('Sunnyvale');

$zeev = clone $rasmus;

$zeev->setName('Zeev Suraski');

$zeev->setCity('Tel Aviv');

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . '.';

print $zeev->getName() . ' lives in ' . $zeev->getCity() . '.';

Rasmus Lerdorf lives in Tel Aviv.

Zeev Suraski lives in Tel Aviv.

Interesting. Calling setName() worked correctly because the $name property is a string,

so it’s copied by value. However, because $address is an object, it’s copied by reference,

so getCity() doesn’t produce the correct results, and you end up relocating Rasmus to

Tel Aviv.

7.10 Cloning Objects | 199

This type of object cloning is known as a shallow clone or a shallow copy. In contrast, a deep clone occurs when all objects involved are cloned.

Control how PHP clones an object by implementing a __clone() method in your class.

When this method exists, PHP allows __clone() to override its default behavior, as

shown:

class Person {

 // ... everything from before

public function __clone() {

$this->address = clone $this->address;

}

}

Inside of __clone(), you’re automatically presented with a shallow copy of the variable,

stored in $this, the object that PHP provides when __clone() does not exist.

Because PHP has already copied all the properties, you only need to overwrite the ones

you dislike. Here, $name is okay, but $address needs to be explicitly cloned.

Now the clone behaves correctly:

$rasmus = new Person;

$rasmus->setName('Rasmus Lerdorf');

$rasmus->setCity('Sunnyvale');

$zeev = clone $rasmus;

$zeev->setName('Zeev Suraski');

$zeev->setCity('Tel Aviv');

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . '.';

print $zeev->getName() . ' lives in ' . $zeev->getCity() . '.';

Rasmus Lerdorf lives in Sunnyvale.

Zeev Suraski lives in Tel Aviv.

Using the clone operator on objects stored in properties causes PHP to check whether

any of those objects contain a __clone() method. If one exists, PHP calls it. This repeats

for any objects that are nested even further.

This process correctly clones the entire object and demonstrates why it’s called a deep

copy.

See Also

Recipe 7.9 for more on assigning objects by reference.

200 | Chapter 7: Classes and Objects

7.11 Overriding Property Accesses

Problem

You want handler functions to execute whenever you read and write object properties.

This lets you write generalized code to handle property access in your class.

Solution

Use the magic methods __get() and __set() to intercept property requests.

To improve this abstraction, also implement __isset() and __unset() methods to

make the class behave correctly when you check a property using isset() or delete it

using unset().

Discussion

Property overloading allows you to seamlessly obscure from the user the actual location

of your object’s properties and the data structure you use to store them.

For example, the Person class stores variables in an array, $__data. (The name of the

variable doesn’t need begin with two underscores, that’s just to indicate to you that it’s

used by a magic method.)

class Person {

private $__data = array();

public function __get($property) {

if (isset($this->__data[$property])) {

return $this->__data[$property];

} else {

return false;

}

}

public function __set($property, $value) {

$this->__data[$property] = $value;

}

}

Use it like this:

$johnwood = new Person;

$johnwood->email = 'jonathan@wopr.mil'; // sets $user->__data['email']

print $johnwood->email; // reads $user->__data['email']

jonathan@wopr.mil

When you set data, __set() rewrites the element inside of $__data. Likewise, use

__get() to trap the call and return the correct array element.

7.11 Overriding Property Accesses | 201

Using these methods and an array as the alternate variable storage source makes it less

painful to implement object encapsulation. Instead of writing a pair of accessor methods

for every class property, you use __get() and __set().

With __get() and __set(), you can use what appear to be public properties, such as

$johnwood->name, without violating encapsulation. This is because the programmer

isn’t reading from and writing to those properties directly, but is instead being routed

through accessor methods.

The __get() method takes the property name as its single parameter. Within the meth‐

od, you check to see whether that property has a value inside $__data. If it does, the

method returns that value; otherwise, it returns false.

When you read $johnwood->name, you actually call __get('name')

and it’s returning $__data['name'], but for all external purposes

that’s irrelevant.

The __set() method takes two arguments: the property name and the new value.

Otherwise, the logic inside the method is similar to __get().

Besides reducing the number of methods in your classes, these magical methods also

make it easy to implement a centralized set of input and output validation.

Here’s how to also enforce exactly what properties are legal and illegal for a given class:

class Person {

 // list person and email as valid properties

protected $__data = array('person' => false, 'email' => false);

public function __get($property) {

if (isset($this->__data[$property])) {

return $this->__data[$property];

} else {

return false;

}

}

 // enforce the restriction of only setting

 // predefined properties

public function __set($property, $value) {

if (isset($this->__data[$property])) {

return $this->__data[$property] = $value;

} else {

return false;

}

}

}

202 | Chapter 7: Classes and Objects

In this updated version of the code, you explicitly list the object’s valid property names when you define the $__data property. Then, inside __set(), you use isset() to confirm that all property writes are going to allowable names.

Preventing rogue reads and writes is why the visibility of the $__data property isn’t

public, but protected. Otherwise, someone could do this:

$person = new Person;

$person->__data['fake_property'] = 'fake_data';

because the magical accessors aren’t used for existing properties.

Pay attention to this important implementation detail. In particular, if you’re expecting

people to extend the class, they could introduce a property that conflicts with a property

you’re expecting to handle using __get() and __set(). For that reason, the property in

the earlier example is called $__data with two leading underscores.

You should consider prefixing all your “actual” properties in classes where you use

magical accessors to prevent collisions between properties that should be handled using

normal methods and ones that should be routed through __get() and __set().

There are three downsides to using __get() and __set(). First, these methods only

catch missing properties. If you define a property for your class, __get() and __set()

are not invoked by PHP when that property is accessed.

This is the case even if the property you’re trying to access isn’t visible in the current

scope (for instance, when you’re reading a property that exists in the class but isn’t

accessible to you, because it’s declared private). Doing this causes PHP to emit a fatal

error:

PHP Fatal error: Cannot access private property...

Second, these methods completely destroy any notion of property inheritance. If a par‐

ent object has a __get() method and you implement your own version of __get() in

the child, your object won’t function correctly because the parent’s __get() method is

never called.

You can work around this by calling parent::__get(), but it is something you need to

explicitly manage instead of “getting for free” as part of OO design.

The illusion is incomplete because it doesn’t extend to the isset() and unset() meth‐

ods. For instance, if you try to check if an overloaded property isset(), you will not

get an accurate answer, as PHP doesn’t know to invoke __get().

You can fix this by implementing your own version of these methods in the class, called

__isset() and __unset():

class Person {

 // list person and email as valid properties

7.11 Overriding Property Accesses | 203

 protected $data = array('person' => false, 'email' => false); public function __get($property) {

if (isset($this->data[$property])) {

return $this->data[$property];

} else {

return null;

}

}

 // enforce the restriction of only setting

 // pre-defined properties

public function __set($property, $value) {

if (isset($this->data[$property])) {

$this->data[$property] = $value;

}

}

public function __isset($property) {

return isset($this->data[$property]);

}

public function __unset($property) {

if (isset($this->data[$property])) {

unset($this->data[$property]);

}

}

}

The __isset() method checks inside the $data element and returns true or false

depending on the status of the property you’re checking.

Likewise, __unset() passes back the value of unset() applied to the real property, or

false if it’s not set.

Implementing these two methods isn’t required when using __get() and __set(), but

it’s best to do so because it’s hard to predict how you may use object properties. Failing

to code these methods will lead to confusion when someone (perhaps even yourself)

doesn’t know (or forgets) that this class is using magic accessor methods.

Other reasons to consider not using magical accessors are:

• They’re relatively slow. They’re both slower than direct property access and explic‐

itly writing accessor methods for all your properties.

• They make it impossible for the Reflection classes and tools such as phpDocu‐

mentor to automatically document your code.

• You cannot use them with static properties.

204 | Chapter 7: Classes and Objects

See Also

Documentation on overloaded methods.

7.12 Calling Methods on an Object Returned by Another

Method

Problem

You need to call a method on an object returned by another method.

Solution

Call the second method directly from the first:

$orange = $fruit->get('citrus')->peel();

Discussion

PHP is smart enough to first call $fruit->get('citrus') and then invoke the peel()

method on what’s returned.

You can design your classes to facilitate chaining calls repeatedly as if you’re writing a

sentence. This is known as a fluent interface. For example:

$tweet = new Tweet;

$tweet->from('@rasmus')

->withStatus('PHP 6 released! #php')

->send();

By stringing together a set of method calls, you build up the Tweet one segment at a

time, then send it to the world.

The key is to return $this within every chainable method. That preserves the current

context for each subsequent method. Because people can pick and choose which meth‐

ods to call (and the order they call them), you need one method that always goes last.

In this case, it’s send(). That’s where the logic lives to assemble all the various pieces

together and execute what you want done.

This code doesn’t actually send a tweet (as the Twitter API requires OAuth), but is a

good illustration of the design practices:

class Tweet {

protected $data;

public function from($from) {

$data['from'] = $from;

return $this;

}

7.12 Calling Methods on an Object Returned by Another Method | 205

 public function withStatus($status) {

$data['status'] = $status;

return $this;

}

public function inReplyToId($id) {

$data['id'] = $id;

return $this;

}

public function send() {

 // Generate Twitter API request using info in $data

 // POST https://api.twitter.com/1.1/statuses/update.json

 // with http_build_query($data)

return $id;

}

}

$tweet = new Tweet;

$id = $tweet->from('@rasmus')

->withStatus('PHP 6 released! #php')

->send();

$reply = new Tweet;

$id2 = $reply->withStatus('I <3 Unicode!')

->from('@a')

->inReplyToId($id)

->send();

Fluent interfaces can be very elegant, but it’s important not to overuse them. They’re

best when tied to domains with a well-defined language, such as SQL or sending mes‐

sages. This example uses a Tweet, but email or SMS would also work.

See Also

A description of fluent interfaces on Wikipedia and documentation on the Twitter API.

7.13 Aggregating Objects

Problem

You want to compose two or more objects together so that they appear to behave as a

single object.

206 | Chapter 7: Classes and Objects

Solution

Aggregate the objects together and use the __call() and __callStatic() magic meth‐

ods to intercept method invocations and route them accordingly:

class Address {

protected $city;

public function setCity($city) {

$this->city = $city;

}

public function getCity() {

return $this->city;

}

}

class Person {

protected $name;

protected $address;

public function __construct() {

$this->address = new Address;

}

public function setName($name) {

$this->name = $name;

}

public function getName() {

return $this->name;

}

public function __call($method, $arguments) {

if (method_exists($this->address, $method)) {

return call_user_func_array(

array($this->address, $method), $arguments);

}

}

}

$rasmus = new Person;

$rasmus->setName('Rasmus Lerdorf');

$rasmus->setCity('Sunnyvale');

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . '.';

An instance of the Address object is created during the construction of every Person.

When you invoke methods not defined in Person, the __call() method catches them

and, when applicable, dispatches them using call_user_func_array().

Use __callStatic() when you need to route static methods.

7.13 Aggregating Objects | 207

Discussion

In this recipe, you cannot say a Person “is an” Address or vice versa. Therefore, it doesn’t

make sense for one class to extend the other.

However, it makes sense for them to be separate classes so that they provide maximum

flexibility and reuse, as well as reduced duplicated code. So you check if another rule—

the “has a” rule—applies. Because a Person “has an” Address, it makes sense to aggregate

the classes together.

With aggregation, one object acts as a container for one or more additional objects. This

is another way of solving the problem of multiple inheritance because you can easily

piece together an object out of smaller components.

For example, a Person object can contain an Address object. Clearly, People have ad‐

dresses. However, addresses aren’t unique to people; they also belong to businesses and

other entities. Therefore, instead of hardcoding address information inside of Person,

it makes sense to create a separate Address class that can be used by multiple classes.

Here’s how this works in practice:

class Address {

protected $city;

public function setCity($city) {

$this->city = $city;

}

public function getCity() {

return $this->city;

}

}

class Person {

protected $name;

protected $address;

public function __construct() {

$this->address = new Address;

}

public function setName($name) {

$this->name = $name;

}

public function getName() {

return $this->name;

}

public function __call($method, $arguments) {

if (method_exists($this->address, $method)) {

208 | Chapter 7: Classes and Objects

 return call_user_func_array(

array($this->address, $method), $arguments);

}

}

}

The Address class stores a city and has two accessor methods to manipulate the data,

setCity() and getCity().

Person has setName() and getName(), similar to Address, but it also has two other

methods: __construct() and __call().

Its constructor instantiates an Address object and stores it in a protected $address

property. This allows methods inside Person to access $address, but prevents others

from talking directly to the class.

Ideally, when you call a method that exists in Address, PHP would automatically execute

it. This does not occur, because Person does not extend Address. You must write code

to glue these calls to the appropriate methods yourself.

Wrapper methods are one option. For example:

class Person {

public function setCity($city) {

$this->address->setCity($city);

}

}

This setCity() method passes along its data to the setCity() method stored in $ad

dress. This is simple, but it is also tedious because you must write a wrapper for every

method.

Using __call() lets you automate this process by centralizing these methods into a

single place:

class Person {

public function __call($method, $arguments) {

if (method_exists($this->address, $method)) {

return call_user_func_array(

array($this->address, $method), $arguments);

}

}

}

The __call() method captures any calls to undefined methods in a class. It is invoked

with two arguments: the name of the method and an array holding the parameters

passed to the method. The first argument lets you see which method was called, so you

can determine whether it’s appropriate to dispatch it to $address.

7.13 Aggregating Objects | 209

Here, you want to pass along the method if it’s a valid method of the Address class.

Check this using method_exists(), providing the object as the first parameter and the

method name as the second.

If the function returns true, you know this method is valid, so you can call it. Unfortu‐

nately, you’re still left with the burden of unwrapping the arguments out of the $argu

ments array. That can be painful.

The seldom used and oddly named call_user_func_array() function solves this

problem. This function lets you call a user function and pass along arguments in an

array. Its first parameter is your function name, and the second is the array of arguments.

In this case, however, you want to call an object method instead of a function. There’s

a special syntax to cover this situation. Instead of passing the function name, you pass

an array with two elements. The first element is the object, and the other is the method

name.

This causes call_user_func_array() to invoke the method on your object. You must

then return the result of call_user_func_array() back to the original caller, or your

return values will be silently discarded.

Here’s an example of Person that calls both a method defined in Person and one from

Address:

$rasmus = new Person;

$rasmus->setName('Rasmus Lerdorf');

$rasmus->setCity('Sunnyvale');

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . '.';

Even though setCity() and getCity() aren’t methods of Person, you have aggregated

them into that class.

You can aggregate additional objects into a single class, and also be more selective as to

which methods you expose to the outside user. This requires some basic filtering based

on the method name.

See Also

Documentation on magic methods.

7.14 Accessing Overridden Methods

Problem

You want to access a method in the parent class that’s been overridden in the child.

210 | Chapter 7: Classes and Objects

Solution

Prefix parent to the method name:

class shape {

function draw() {

 // write to screen

}

}

class circle extends shape {

function draw($origin, $radius) {

 // validate data

if ($radius > 0) {

parent::draw();

return true;

}

return false;

}

}

Discussion

When you override a parent method by defining one in the child, the parent method

isn’t called unless you explicitly reference it.

In the Solution, we override the draw() method in the child class, circle, because we

want to accept circle-specific parameters and validate the data. However, in this case,

we still want to perform the generic shape::draw() action, which does the actual draw‐

ing, so we call parent::draw() inside our method if $radius is greater than 0.

Only code inside the class can use parent::. Calling parent::draw() from outside the

class gets you a parse error. For example, if circle::draw() checked only the radius,

but you also wanted to call shape::draw(), this wouldn’t work:2

$circle = new circle;

if ($circle->draw($origin, $radius)) {

$circle->parent::draw();

}

This also applies to object constructors, so it’s quite common to see the following:

class circle {

function __construct($x, $y, $r) {

 // call shape's constructor first

parent::__construct();

 // now do circle-specific stuff

2. In fact, it fails with the error unexpected T_PAAMAYIM_NEKUDOTAYIM, which is Hebrew for “double-colon.”

7.14 Accessing Overridden Methods | 211

 }

}

See Also

Recipe 7.2 for more on object constructors; documentation on class parents and on

get_parent_class().

7.15 Creating Methods Dynamically

Problem

You want to dynamically provide methods without explicitly defining them.

Use the __call() and __callStatic() magic methods to intercept method invocations

and route them accordingly.

This technique is best used when you’re providing an object relational map (ORM) or

creating a proxy class. For instance, you want to expose findBy() methods that translate

to database queries or RESTful APIs.

For example, you have users of your application and want to let people retrieve them

using a varied set search terms: ID, email address, telephone number. You could create

one method per term: findById(), findByEmail(), findByPhone(). However, the un‐

derlying code is largely identical, so you can put that in one place.

Here’s where __callStatic() comes in:

class Users {

static function find($args) {

 // here's where the real logic lives

 // for example a database query:

 // SELECT user FROM users WHERE $args['field'] = $args['value']

}

static function __callStatic($method, $args) {

if (preg_match('/^findBy(.+)$/', $method, $matches)) {

return static::find(array('field' => $matches[1],

'value' => $args[0]));

}

}

}

$user = User::findById(123);

$user = User::findByEmail('rasmus@php.net');

When you invoke findById(), PHP passes this request to __callStatic(). Inside, the

regular expression looks for any requests beginning with findBy and extracts the re‐

212 | Chapter 7: Classes and Objects

maining characters. That value and the first argument to the function are then bundled

up and passed to Users::find(), where the “real” logic lives.

See Also

Documentation on overloaded methods; Recipe 7.18 for more on calling static methods.

7.16 Using Method Polymorphism

Problem

You want to execute different code depending on the number and type of arguments

passed to a method.

Solution

PHP doesn’t support method polymorphism as a built-in feature. However, you can

emulate it using various type-checking functions. The following combine() function

uses is_numeric(), is_string(), is_array(), and is_bool():

 // combine() adds numbers, concatenates strings, merges arrays,

 // and ANDs bitwise and boolean arguments

function combine($a, $b) {

if (is_int($a) && is_int($b)) {

return $a + $b;

}

if (is_float($a) && is_float($b)) {

return $a + $b;

}

if (is_string($a) && is_string($b)) {

return "ab";

}

if (is_array($a) && is_array($b)) {

return array_merge($a, $b);

}

if (is_bool($a) && is_bool($b)) {

return $a & $b;

}

return false;

}

7.16 Using Method Polymorphism | 213

Discussion

Because PHP doesn’t allow you to declare a variable’s type in a method prototype, it

can’t conditionally execute a different method based on the method’s signature, as Java

and C++ can. You can, instead, make one function and use a switch statement to man‐

ually re-create this feature.

For example, PHP lets you edit images using GD. It can be handy in an image class to

be able to pass in either the location of the image (remote or local) or the handle PHP

has assigned to an existing image stream. This Image class that does just that:

class Image {

protected $handle;

function ImageCreate($image) {

if (is_string($image)) {

 // simple file type guessing

 // grab file suffix

$info = pathinfo($image);

$extension = strtolower($info['extension']);

switch ($extension) {

case 'jpg':

case 'jpeg':

$this->handle = ImageCreateFromJPEG($image);

break;

case 'png':

$this->handle = ImageCreateFromPNG($image);

break;

default:

die('Images must be JPEGs or PNGs.');

}

} elseif (is_resource($image)) {

$this->handle = $image;

} else {

die('Variables must be strings or resources.');

}

}

}

In this case, any string passed in is treated as the location of a file, so use pathinfo() to

grab the file extension. Once you know the extension, try to guess which ImageCreate

From() function accurately opens the image and create a handle.

If it’s not a string, you’re dealing directly with a GD stream, which is a type of re

source. Because there’s no conversion necessary, assign the stream directly to $han

dle. Of course, if you’re using this class in a production environment, you’d be more

robust in your error handling.

214 | Chapter 7: Classes and Objects

Method polymorphism also encompasses methods with differing numbers of argu‐

ments. The code to find the number of arguments inside a method is identical to how

you process variable argument functions using func_num_args(). This is discussed in

Recipe 6.6.

See Also

Recipe 6.6 for variable argument functions; documentation on is_string(), is_re

source(), and pathinfo().

7.17 Defining Class Constants

Problem

You want to define constants on a per-class basis, not on a global basis.

Solution

Define them like class properties, but use the const label instead:

class Math {

const pi = 3.14159; // universal

const e = 2.71828; // constants

}

$area = math::pi * $radius * $radius;

Discussion

PHP reuses its concept of global constants and applies them to classes. Essentially, these

are final properties.

Declare them using the const label:

class Math {

const pi = 3.14159; // universal

const e = 2.71828; // constants

}

$area = math::pi * $radius * $radius;

Like static properties, you can access constants without first instantiating a new instance

of your class, and they’re accessed using the double colon (::) notation. Prefix the word

self:: to the constant name to use it inside of a class.

Unlike properties, constants do not have a dollar sign ($) before them:

class Circle {

const pi = 3.14159;

7.17 Defining Class Constants | 215

 protected $radius;

public function __construct($radius) {

$this->radius = $radius;

}

public function circumference() {

return 2 * self::pi * $this->radius;

}

}

$c = new circle(1);

print $c->circumference();

This example creates a circle with a radius of 1 and then calls the circumference method

to calculate its circumference:

define('pi', 10); // global pi constant

class Circle {

const pi = 3.14159; // class pi constant

protected $radius;

public function __construct($radius) {

$this->radius = $radius;

}

public function circumference() {

return 2 * pi * $this->radius;

}

}

$c = new circle(1);

print $c->circumference();

Oops! PHP has used the value of 10 instead of 3.14159, so the new answer is 20 instead

of 6.28318.

Although it’s unlikely that you will accidentally redefine π (you’ll probably use the built-

in M_PI constant anyway), this can still slip you up.

You cannot assign the value of an expression to a constant, nor can they use information

passed into your script:

 // invalid

class permissions {

const read = 1 << 2;

const write = 1 << 1;

const execute = 1 << 0;

}

 // invalid and insecure

216 | Chapter 7: Classes and Objects

class database {

const debug = $_REQUEST['debug'];

}

Neither the constants in permissions nor the debug constant in database are acceptable

because they are not fixed. Even the first example, 1 << 2, where PHP does not need

to read in external data, is not allowed.

Because you need to access constants using an explicit name, either self:: or the name

of the class, you cannot dynamically calculate the class name during runtime. It must

be declared beforehand. For example:

class Constants {

const pi = 3.14159;

 // rest of class here

}

$class = 'Constants';

print $class::pi;

This produces a parse error, even though this type of construct is legal for nonconstant

expressions, such as $class->pi.

See Also

Documentation on class constants.

7.18 Defining Static Properties and Methods

Problem

You want to define methods in an object, and be able to access them without instantiating

a object.

Solution

Declare the method as static:

class Format {

public static function number($number, $decimals = 2,

$decimal = '.', $thousands = ',') {

return number_format($number, $decimals, $decimal, $thousands);

}

}

print Format::number(1234.567);

1,234.57

7.18 Defining Static Properties and Methods | 217

Discussion

Occasionally, you want to define a collection of methods in an object, but you want to

be able to invoke those methods without instantiating a object. In PHP, declaring a

method static lets you call it directly:

class Format {

public static function number($number, $decimals = 2,

$decimal = '.', $thousands = ',') {

return number_format($number, $decimals, $decimal, $thousands);

}

}

print Format::number(1234.567);

1,234.57

Because static methods don’t require an object instance, use the class name instead of

the object. Don’t place a dollar sign ($) before the class name.

Static methods aren’t referenced with an arrow (->), but with double colons (::)—this

signals to PHP that the method is static. So in the example, the number() method of the

Format class is accessed using Format::number().

Number formatting doesn’t depend on any other object properties or methods. There‐

fore, it makes sense to declare this method static. This way, for example, inside your

shopping cart application, you can format the price of items in a pretty manner with

just one line of code and still use an object instead of a global function.

Within the class where the static method is defined, refer to it using self:

class Format {

public static function number($number, $decimals = 2,

$decimal = '.', $thousands = ',') {

return number_format($number, $decimals, $decimal, $thousands);

}

public static function integer($number) {

return self::number($number, 0);

}

}

print Format::number(1234.567) . " \n";

print Format::integer(1234.567) . " \n";

1,234.57

1,235

Here the integer() method references another method defined in Format, number().

So, it uses self::number().

218 | Chapter 7: Classes and Objects

Static methods do not operate on a specific instance of the class where they’re defined.

PHP does not “construct” a temporary object for you to use while you’re inside the

method. Therefore, you cannot refer to $this inside a static method, because there’s no

$this on which to operate. Calling a static method is just like calling a regular function.

There’s a potential complication from using self::. It doesn’t follow the same inheri‐

tance rules as nonstatic methods. In this case, self:: always attaches the reference to

the class it’s defined in, regardless whether it’s invoked from that class or from a child.

Use static:: to change this behavior, such as in this ORM example:

class Model {

protected static function validateArgs($args) {

throw new Exception("You need to override this in a subclass!");

}

public static function find($args) {

static::validateArgs($args);

$class = get_called_class();

 // now you can do a database query, such as:

 // SELECT * FROM $class WHERE ...

}

}

class Bicycle extends Model {

protected static function validateArgs($args) {

return true;

}

}

Bicycle::find(['owner' => 'peewee']);

With self::, PHP binds to Model::validateArgs(), which doesn’t allow for model-

specific validation. However, with static::, PHP will defer until it knows which class

the method is actually called from. This is known as late static binding.

Inside of find(), to generate your SQL, you need the name of the calling class. You

cannot use the Reflection classes and the __CLASS__ constant because they return

Model, so use get_called_class() to pull this at runtime.

PHP also has a feature known as static properties. Every instance of a class shares these

properties in common. Thus, static properties act as class-namespaced global variables.

One reason for using a static property is to share a database connection among multiple

Database objects. For efficiency, you shouldn’t create a new connection to your database

every time you instantiate Database. Instead, negotiate a connection the first time and

reuse that connection in each additional instance, as shown:

class Database {

private static $dbh = NULL;

7.18 Defining Static Properties and Methods | 219

 public function __construct($server, $username, $password) {

if (self::$dbh == NULL) {

self::$dbh = db_connect($server, $username, $password);

} else {

 // reuse existing connection

}

}

}

$db = new Database('db.example.com', 'web', 'jsd6w@2d');

 // Do a bunch of queries

$db2 = new Database('db.example.com', 'web', 'jsd6w@2d');

 // Do some additional queries

Static properties, like static methods, use the double colon notation. To refer to a static

property inside of a class, use the special prefix of self. self is to static properties and

methods as $this is to instantiated properties and methods.

The constructor uses self::$dbh to access the static connection property. When $db

is instantiated, dbh is still set to NULL, so the constructor calls db_connect() to negotiate

a new connection with the database.

This does not occur when you create $db2, because dbh has been set to the database

handle.

See Also

Documentation on the static keyword.

7.19 Controlling Object Serialization

Problem

You want to control how an object behaves when you serialize() and unserial

ize() it. This is useful when you need to establish and close connections to remote

resources, such as databases, files, and web services.

Solution

Define the magical methods __sleep() and __wakeUp():

class LogFile {

protected $filename;

protected $handle;

public function __construct($filename) {

220 | Chapter 7: Classes and Objects

 $this->filename = $filename;

$this->open();

}

private function open() {

$this->handle = fopen($this->filename, 'a');

}

public function __destruct($filename) {

fclose($this->handle);

}

 // called when object is serialized

 // should return an array of object properties to serialize

public function __sleep() {

return array('filename');

}

 // called when object is unserialized

public function __wakeUp() {

$this->open();

}

}

Discussion

When you serialize an object in PHP, it preserves all your object properties. However,

this does not include connections or handles that you hold to outside resources, such

as databases, files, and web services.

These must be reestablished when you unserialize the object, or the object will not

behave correctly. You can do this explicitly within your code, but it’s better to abstract

this away and let PHP handle everything behind the scenes.

Do this through the __sleep() and __wakeUp() magic methods. When you call seri

alize() on a object, PHP invokes __sleep(); when you unserialize() it, it calls

__wakeUp().

The LogFile class in the Solution has five simple methods. The constructor takes a

filename and saves it for future access. The open() method opens this file and stores

the file handle, which is closed in the object’s destructor.

The __sleep() method returns an array of properties to store during object serializa‐

tion. Because file handles aren’t preserved across serializations, it only returns ar

ray('filename') because that’s all you need to store.

That’s why when the object is reserialized, you need to reopen the file. This is handled

inside of __wakeUp(), which calls the same open() method used by the constructor.

Because you cannot pass arguments to __wakeUp(), it needs to get the filename from

7.19 Controlling Object Serialization | 221

somewhere else. Fortunately, it’s able to access object properties, which is why the filename is saved there.

It’s important to realize that the same instance can be serialized multiple times in a single

request, or even continue to be used after it’s serialized. Therefore, you shouldn’t do

anything in __sleep() that could prevent either of these two actions. The __sleep()

method should only be used to exclude properties that shouldn’t be serialized because

they take up too much disk space, or are calculated based on other data and should be

recalculated or otherwise made fresh during object unserialization.

That’s why the call to fclose() appears in the destructor and not in __sleep().

See Also

Documentation on magic methods; the unserialize() function and the serial

ize() function.

7.20 Introspecting Objects

Problem

You want to inspect an object to see what methods and properties it has, which lets you

write code that works on any generic object, regardless of type.

Solution

Use the Reflection classes to probe an object for information.

For a quick overview of the class, call Reflection::export():

 // learn about cars

Reflection::export(new ReflectionClass('car'));

Or probe for specific data:

$car = new ReflectionClass('car');

if ($car->hasMethod('retractTop')) {

 // car is a convertible

}

Discussion

It’s rare to have an object and be unable to examine the actual code to see how it’s

described. Still, with the Reflection classes, you can programmatically extract infor‐

mation about both object-oriented features, such as classes, methods, and properties,

and non-OO features, such as functions and extensions.

222 | Chapter 7: Classes and Objects

This is useful for projects you want to apply to a whole range of different classes, such as creating automated class documentation, generic object debuggers, and state savers,

like serialize().

To help show how the Reflection classes work, Example 7-1 contains an example

Person class that uses many of PHP’s OO features.

 Example 7-1. Person class

class Person {

public $name;

protected $spouse;

private $password;

public function __construct($name) {

$this->name = $name

}

public function getName() {

return $name;

}

protected function setSpouse(Person $spouse) {

if (!isset($this->spouse)) {

$this->spouse = $spouse;

}

}

private function setPassword($password) {

$this->password = $password;

}

}

For a quick overview of the class, call Reflection::export():

Reflection::export(new ReflectionClass('Person'));

Class [<user> class Person] {

 @@ /www/reflection.php 3-25

 - Constants [0] {

 }

 - Static properties [0] {

 }

 - Static methods [0] {

 }

 - Properties [3] {

 Property [<default> public $name]

 Property [<default> protected $spouse]

 Property [<default> private $password]

7.20 Introspecting Objects | 223

 }

 - Methods [4] {

 Method [<user> <ctor> public method _ _construct] {

 @@ /www/reflection.php 8 - 10

 - Parameters [1] {

 Parameter #0 [$name]

 }

 }

 Method [<user> public method getName] {

 @@ /www/reflection.php 12 - 14

 }

 Method [<user> protected method setSpouse] {

 @@ /www/reflection.php 16 - 20

 - Parameters [1] {

 Parameter #0 [Person or NULL $spouse]

 }

 }

 Method [<user> private method setPassword] {

 @@ /www/reflection.php 22 - 24

 - Parameters [1] {

 Parameter #0 [$password]

 }

 }

 }

}

The Reflection::export() static method takes an instance of the ReflectionClass

class and returns a copious amount of information. As you can see, it details the number

of constants, static properties, static methods, properties, and methods in the class. Each

item is broken down into component parts. For instance, all the entries contain visibility

identifiers (private, protected, or public), and methods have a list of their parameters

underneath their definition.

Reflection::export() not only reports the file where everything is defined, but even

gives the line numbers! This lets you extract code from a file and place it in your doc‐

umentation.

Example 7-2 shows a short command-line script that searches for the filename and

starting line number of a method or function.

 Example 7-2. Using reflection to locate function and method definitions

if ($argc < 2) {

print "$argv[0]: function/method, classes1.php [, ... classesN.php]\n";

224 | Chapter 7: Classes and Objects

 exit;

}

 // Grab the function name

$function = $argv[1];

 // Include the files

foreach (array_slice($argv, 2) as $filename) {

include_once $filename;

}

try {

if (strpos($function, '::')) {

 // It's a method

list ($class, $method) = explode('::', $function);

$reflect = new ReflectionMethod($class, $method);

} else {

 // It's a function

$reflect = new ReflectionFunction($function);

}

$file = $reflect->getFileName();

$line = $reflect->getStartLine();

printf ("%s | %s | %d\n", "$function()", $file, $line);

} catch (ReflectionException $e) {

printf ("%s not found. \n", "$function()");

}

Pass the function or method name as the first argument, and the include files as the

remaining arguments. These files are then included, so make sure they don’t print out

anything.

The next step is to determine whether the first argument is a method or a function.

Because methods are in the form class::method, you can use strpos() to tell them

apart.

If it’s a method, use explode() to separate the class from the method, passing both to

ReflectionMethod. If it’s a function, you can directly instantiate a ReflectionFunc

tion without any difficulty.

Because ReflectionMethod extends ReflectionFunction, you can then call both get

FileName() and getStartLine() of either class. This gathers the information that you

need to print out, which is done via printf().

When you try to instantiate a ReflectionMethod or ReflectionFunction with the

name of an undefined method, these classes throw a ReflectionException. Here, it’s

caught and an error message is displayed.

7.20 Introspecting Objects | 225

A more complex script that prints out the same type of information for all user-defined

methods and functions appears in Recipe 7.24.

If you just need a quick view at an object instance, and don’t want to fiddle with the

Reflection classes, use either var_dump(), var_export(), or print_r() to print the

object’s values. Each of these three functions prints out information in a slightly different

way; var_export() can optionally return the information, instead of displaying it.

See Also

Recipe 5.8 for more on printing variables; documentation on reflection, var_dump(),

var_export(), and print_r().

7.21 Checking If an Object Is an Instance of a Specific Class

Problem

You want to check if an object is an instance of a specific class.

Solution

To check that a value passed as a function argument is an instance of a specific class,

specify the class name in your function prototype:

public function add(Person $person) {

 // add $person to address book

}

}

In other contexts, use the instanceof operator:

$media = get_something_from_catalog();

if ($media instanceof Book) {

 // do bookish things

} else if ($media instanceof DVD) {

 // watch the movie

}

Discussion

One way of enforcing controls on your objects is by using type hints. A type hint is a

way to tell PHP that an object passed to a function or method must be of a certain class.

To do this, specify a class name in your function and method prototypes. You can also

require that an argument is an array, by using the keyword array. This only works for

classes and arrays, though, not for any other variable types. You cannot, for example,

specify strings or integers.

226 | Chapter 7: Classes and Objects

For example, to require the first argument to your AddressBook class’s add() method

to be of type Person:

class AddressBook {

public function add(Person $person) {

 // add $person to address book

}

}

Then, if you call add() but pass a string, you get a fatal error:

$book = new AddressBook;

$person = 'Rasmus Lerdorf';

$book->add($person);

PHP Fatal error: Argument 1 must be an object of class Person in...

Placing a type hint of Person in the first argument of your function declaration is

equivalent to adding the following PHP code to the function:

public function add($person) {

if (!($person instanceof Person)) {

die("Argument 1 must be an instance of Person");

}

}

The instanceof operator checks whether an object is an instance of a particular class.

This code makes sure $person is a Person.

The instanceof operator also returns true with classes that are subclasses of the one

you’re comparing against. For instance:

class Person { /* ... */ }

class Kid extends Person { /* ... */ }

$kid = new Kid;

if ($kid instanceof Person) {

print "Kids are people, to. \n";

}

Kids are people, too.

Last, you can use instanceof to see if a class has implemented a specific interface:

interface Nameable {

public function getName();

public function setName($name);

}

7.21 Checking If an Object Is an Instance of a Specific Class | 227

class Book implements Nameable {

private $name;

public function getName() {

return $this->name;

}

public function setName($name) {

return $this->name = $name;

}

}

$book = new Book;

if ($book instanceof Book) {

print "You can name a Book. \n";

}

You can name a Book

Type hinting has the side benefit of integrating API documentation directly into the

class itself. If you see that a class constructor takes an Event type, you know exactly what

to provide the method. Additionally, you know that the code and the “documentation”

must always be in sync, because it’s baked directly into the class definition.

You can also use type hinting in interface definitions, which lets you further specify all

your interface details.

However, type hinting does come at the cost of less flexibility. There’s no way to allow

a parameter to accept more than one type of object, so this places some restrictions on

how you design your object hierarchy.

Also, the penalty for violating a type hint is quite drastic—the script aborts with a fatal

error. In a web context, you may want to have more control over how errors are handled

and recover more gracefully from this kind of mistake. Implementing your own form

of type checking inside of methods lets you print out an error page if you choose.

Last, unlike some languages, you cannot use type hinting for return values, so there’s

no way to mandate that a particular function always returns an object of a particular

type.

See Also

Documentation on type hints and instanceof.

228 | Chapter 7: Classes and Objects

7.22 Autoloading Class Files upon Object Instantiation

Problem

You don’t want to include all your class definitions within every page. Instead, you want

to dynamically load only the ones necessary in that page.

Solution

Use the __autoload() magic method:

function __autoload($class_name) {

include "$class_name.php";

}

$person = new Person;

Discussion

When you normally attempt to instantiate a class that’s not defined, PHP dies with a

fatal error because it can’t locate what you’re looking for. Therefore, it’s typical to load

in all the potential classes for a page, regardless of whether they’re actually invoked.

This has the side effect of increasing processing time, because PHP must parse every

class, even the unused ones. One solution is to load missing code on the fly using the

__autoload() method, which is invoked when you instantiate undefined classes.

For example, here’s how you include all the classes used by your script:

function __autoload($class_name) {

include "$class_name.php";

}

$person = new Person;

The __autoload() function receives the class name as its single parameter. This example

appends a .php extension to that name and tries to include a file based on

$class_name. So when you instantiate a new Person, it looks for Person.php in your

include_path.

When __autoload() fails to successfully load a class definition for the object you’re

trying to instantiate, PHP fails with a fatal error, just as it does when it can’t find a class

definition without autoload.

If you adopt the PSR-0 naming convention, use the code at GitHub.

Then you can do the following:

7.22 Autoloading Class Files upon Object Instantiation | 229

use Mysite\Person;

$person = new Person;

If the class isn’t defined, Person gets passed to __autoload(). The function pulls in the

file based on the namespace and classname.

Though using __autoload() slightly increases processing time during the addition of

a class, it is called only once per class. Multiple instances of the same class does not result

in multiple calls to __autoload().

Before deploying __autoload(), be sure to benchmark that the overhead of opening,

reading, and closing the multiple files necessary isn’t actually more of a performance

penalty than the additional parsing time of the unused classes.

In particular if you’re using an opcode cache, such as OPcache, using __autoload() and

include_once can hurt performance. For best results, you should include all your files

at the top of the script and make sure you don’t reinclude a file twice.

See Also

Recipe Recipe 27.3 for more on PSR-0; documentation on autoloading.

7.23 Instantiating an Object Dynamically

Problem

You want to instantiate an object, but you don’t know the name of the class until your

code is executed. For example, you want to localize your site by creating an object be‐

longing to a specific language. However, until the page is requested, you don’t know

which language to select.

Solution

Use a variable for your class name:

$language = $_REQUEST['language'];

$valid_langs = array('en_US' => 'US English',

'en_UK' => 'British English',

'es_US' => 'US Spanish',

'fr_CA' => 'Canadian French');

if (isset($valid_langs[$language]) && class_exists($language)) {

$lang = new $language;

}

230 | Chapter 7: Classes and Objects

Discussion

Sometimes you may not know the class name you want to instantiate at runtime, but

you know part of it. However, although this is legal PHP:

$class_name = 'Net_Ping';

$class = new $class_name; // new Net_Ping

This is not:

$partial_class_name = 'Ping';

$class = new "Net_$partial_class_name"; // new Net_Ping

This, however, is okay:

$partial_class_name = 'Ping';

$class_prefix = 'Net_';

$class_name = "$class_prefix$partial_class_name";

$class = new $class_name; // new Net_Ping

So you can’t instantiate an object when its class name is defined using variable concat‐

enation in the same step. However, because you can use simple variable names, the

solution is to preconcatenate the class name.

See Also

Documentation on class_exists().

7.24 Program: whereis

Although tools such as phpDocumentor provide quite detailed information about an

entire series of classes, it can be useful to get a quick dump that lists all the functions

and methods defined in a list of files.

The program in Example 7-3 loops through a list of files, includes them, and then uses the Reflection classes to gather information about them. Once the master list is compiled, the functions and methods are sorted alphabetically and printed out.

 Example 7-3. whereis

if ($argc < 2) {

print "$argv[0]: classes1.php [, ...]\n";

exit;

}

 // Include the files

foreach (array_slice($argv, 1) as $filename) {

include_once $filename;

}

7.24 Program: whereis | 231

 // Get all the method and function information

 // Start with the classes

$methods = array();

foreach (get_declared_classes() as $class) {

$r = new ReflectionClass($class);

 // Eliminate built-in classes

if ($r->isUserDefined()) {

foreach ($r->getMethods() as $method) {

 // Eliminate inherited methods

if ($method->getDeclaringClass()->getName() == $class) {

$signature = "$class::" . $method->getName();

$methods[$signature] = $method;

}

}

}

}

 // Then add the functions

$functions = array();

$defined_functions = get_defined_functions();

foreach ($defined_functions['user'] as $function) {

$functions[$function] = new ReflectionFunction($function);

}

 // Sort methods alphabetically by class

function sort_methods($a, $b) {

list ($a_class, $a_method) = explode('::', $a);

list ($b_class, $b_method) = explode('::', $b);

if ($cmp = strcasecmp($a_class, $b_class)) {

return $cmp;

}

return strcasecmp($a_method, $b_method);

}

uksort($methods, 'sort_methods');

 // Sort functions alphabetically

 // This is less complicated, but don't forget to

 // remove the method sorting function from the list

unset($functions['sort_methods']);

 // Sort 'em

ksort($functions);

 // Print out information

foreach (array_merge($functions, $methods) as $name => $reflect) {

$file = $reflect->getFileName();

$line = $reflect->getStartLine();

printf ("%-25s | %-40s | %6d\n", "$name()", $file, $line);

}

232 | Chapter 7: Classes and Objects

This code uses both the Reflection classes and also a couple of PHP functions, get_de

clared_classes() and get_declared_functions(), that aren’t part of the Reflection

classes, but help with introspection.

It’s important to filter out any built-in PHP classes and functions; otherwise, the report

will be less about your code and more about your PHP installation. This is handled in

two different ways. Because get_declared_classes() doesn’t distinguish between user

and internal classes, the code calls ReflectionClass::isUserDefined() to check. The

get_defined_function() call, on the other hand, actually computes this for you,

putting the information in the user array element.

Because it’s easier to scan the output of a sorted list, the script sorts the arrays of methods

and functions. Because multiple classes can have the same method, you need to use a

user-defined sorting method, sort_methods(), which first compares two methods by

their class names and then by their method names.

Once the data is sorted, it’s a relatively easy task to loop though the merged arrays, gather

up the filename and starting line numbers, and print out a report.

Here are the results of running the PEAR HTTP class through the script:

HTTP::Date() | /usr/lib/php/HTTP.php | 38

HTTP::head() | /usr/lib/php/HTTP.php | 144

HTTP::negotiateLanguage() | /usr/lib/php/HTTP.php | 77

HTTP::redirect() | /usr/lib/php/HTTP.php | 186

7.24 Program: whereis | 233

CHAPTER 8

Web Fundamentals

8.0 Introduction

Web programming is probably why you’re reading this book. It’s why the first version

of PHP was written and what continues to make it so popular today. With PHP, it’s easy

to write dynamic web programs that do almost anything. Other chapters cover various

PHP capabilities, such as web services, regular expressions, database access, and file

I/O. These capabilities are all part of web programming, but this chapter focuses on key

web-specific concepts and organizational topics that will make your web programming

stronger.

HTTP requests aren’t “stateful”; each request isn’t connected to a previous one. A cookie,

however, can link different requests by the same user. This makes it easier to build

features such as shopping carts or to keep track of a user’s search history. Recipes 8.1,

8.2, and 8.3 show how to set, read, and delete cookies. A cookie is a small text string

that the server instructs the browser to send along with requests the browser makes.

Other good ways to pass data are through query strings and the body of the request.

Recipe 8.4 shows the details of constructing a URL that includes a query string, including proper encoding of special characters and handling of HTML entities. Similarly,

Recipe 8.5 provides information on reading the data submitted in the body of a request when it’s not form data, so PHP cannot automatically parse it into $_POST.

The next recipes demonstrate how to use authentication, which lets you protect your

web pages with passwords. PHP’s special features for dealing with HTTP Basic authen‐

tication are explained in Recipe 8.6. It’s often a better idea to roll your own authentication method using cookies, as shown in Recipe 8.7.

Cookies and Authentication are two specific HTTP headers. Learn how to read any

HTTP header in Recipe 8.8 and write one in Recipe 8.9.

235

Setting the HTTP status code is covered in Recipe 8.10. Recipe 8.11 shows how to redirect users to a different web page than the one they requested.

The three following recipes deal with output control. Recipe 8.12 shows how to force

output to be sent to the browser. Recipe 8.13 explains the output buffering functions.

Output buffers enable you to capture output that would otherwise be printed or delay

output until an entire page is processed. Automatic compression of output is shown in

Recipe 8.14.

The next two recipes show how to interact with external variables: environment vari‐

ables and PHP configuration settings. Recipe 8.15 and Recipe 8.16 discuss environment variables. If Apache is your web server, you can use the techniques in Recipe 8.17 to communicate with other Apache modules from within your PHP programs.

Identifying mobile browsers, so you can choose to provide alternative versions of your

site, is shown in Recipe 8.18.

This chapter also includes three programs that demonstrate some of the concepts in the

recipes. Recipe 8.19 validates user accounts by sending an email message with a cus‐

tomized link to each new user. If the user doesn’t visit the link within a week of receiving

the message, the account is deleted. Recipe 8.20 is a small example of a wiki system that makes any page on your website editable from within the web browser. Recipe 8.21

shows how to parse the HTTP Range header to return specified portions of a file. This

allows a client to resume an interrupted download exactly where they got cut off.

8.1 Setting Cookies

Problem

You want to set a cookie so that your website can recognize subsequent requests from

the same web browser.

Solution

Call setcookie() with a cookie name and value:

setcookie('flavor','chocolate chip');

Discussion

Cookies are sent with the HTTP headers, so if you’re not using output buffering, set

cookie() must be called before any output is generated.

Pass additional arguments to setcookie() to control cookie behavior. The third argu‐

ment to setcookie() is an expiration time, expressed as an epoch timestamp. For ex‐

ample, this cookie expires at noon GMT on December 3, 2014:

236 | Chapter 8: Web Fundamentals

setcookie('flavor','chocolate chip',1417608000);

If the third argument to setcookie() is missing (or empty), the cookie expires when

the browser is closed. Also, many systems can’t handle a cookie expiration time greater

than 2147483647, because that’s the largest epoch timestamp that fits in a 32-bit integer,

as discussed in the introduction to Chapter 3.

The fourth argument to setcookie() is a path. The cookie is sent back to the server

only when pages whose path begin with the specified string are requested. For example,

a cookie sent back only to pages whose path begins with /products/:

setcookie('flavor','chocolate chip',0,'/products/');

The page that’s setting the cookie doesn’t have to have a URL whose path component

begins with /products/, but the cookie is sent back only to pages that do.

The fifth argument to setcookie() is a domain. The cookie is sent back to the server

only when pages whose hostname ends with the specified domain are requested. Here

the first cookie is sent back to all hosts in the example.com domain, but the second

cookie is sent only with requests to the host jeannie.example.com:

setcookie('flavor','chocolate chip',0,'','.example.com');

setcookie('flavor','chocolate chip',0,'','jeannie.example.com');

If the first cookie’s domain was just example.com instead of .example.com, it would be

sent only to the single host example.com (and not www.example.com or jeannie.exam‐

 ple.com). If a domain is not specified when setcookie() is called, the browser sends

back the cookie only with requests to the same hostname as the request in which the

cookie was set.

The last optional argument to setcookie() is a flag that, if set to true, instructs the

browser only to send the cookie over an SSL connection. This can be useful if the cookie

contains sensitive information, but remember that the data in the cookie is stored as

unencrypted plain text on the user’s computer.

Different browsers handle cookies in slightly different ways, especially with regard to

how strictly they match path and domain strings and how they determine priority be‐

tween different cookies of the same name. The setcookie() page of the online manual

has helpful clarifications of these differences.

See Also

Recipe 8.2 shows how to read cookie values; Recipe 8.3 shows how to delete cookies;

Recipe 8.13 explains output buffering; documentation on setcookie(); an expanded

cookie specification is detailed in RFC 2965.

8.1 Setting Cookies | 237

8.2 Reading Cookie Values

Problem

You want to read the value of a cookie that you’ve previously set.

Solution

Look in the $_COOKIE superglobal array:

if (isset($_COOKIE['flavor'])) {

print "You ate a {$_COOKIE['flavor']} cookie.";

}

Discussion

A cookie’s value isn’t available in $_COOKIE during the request in which the cookie is set.

In other words, calling the setcookie() function doesn’t alter the value of $_COOKIE.

On subsequent requests, however, each cookie sent back to the server is stored in

$_COOKIE.

When a browser sends a cookie back to the server, it sends only the value. You can’t

access the cookie’s domain, path, expiration time, or secure status through $_COOKIE

because the browser doesn’t send that to the server.

To print the names and values of all cookies sent in a particular request, loop through

the $_COOKIE array:

foreach ($_COOKIE as $cookie_name => $cookie_value) {

print "$cookie_name = $cookie_value
";

}

See Also

Recipe 8.1 shows how to set cookies; Recipe 8.3 shows how to delete cookies.

8.3 Deleting Cookies

Problem

You want to delete a cookie so a browser doesn’t send it back to the server. For example,

you’re using cookies to track whether a user is logged in to your website, and a user logs

out.

238 | Chapter 8: Web Fundamentals

Solution

Call setcookie() with no value for the cookie and an expiration time in the past:

setcookie('flavor','',1);

Discussion

It’s a good idea to make the expiration time a long time in the past, in case your server

and the user’s computer have unsynchronized clocks. For example, if your server thinks

it’s 3:06 P.M. and a user’s computer thinks it’s 3:02 P.M., a cookie with an expiration time

of 3:05 P.M. isn’t deleted by that user’s computer even though the time is in the past for

the server.

The call to setcookie() to delete a cookie has to have the same arguments (except for

value and time) that the call to setcookie() that set the cookie did, so include the path,

domain, and secure flag if necessary.

See Also

Recipe 8.1 shows how to set cookies; Recipe 8.2 shows how to read cookie values; documentation on setcookie().

8.4 Building a Query String

Problem

You need to construct a link that includes name/value pairs in a query string.

Solution

Use the http_build_query() function:

$vars = array('name' => 'Oscar the Grouch',

'color' => 'green',

'favorite_punctuation' => '#');

$query_string = http_build_query($vars);

$url = '/muppet/select.php?' . $query_string;

Discussion

The URL built in the Solution is:

/muppet/select.php?name=Oscar+the+Grouch&color=green&favorite_punctuation=%23

Because only some characters are valid in URLs and query strings, the function has

encoded the data into the proper format. For example, this query string has spaces as

8.4 Building a Query String | 239

+. Special characters, such as #, are hex encoded as %23 because the ASCII value of # is 35, which is 23 in hexadecimal.

Although the encoding that http_build_query() does prevents any special characters

in the variable names or values from disrupting the constructed URL, you may have

problems if your variable names begin with the names of HTML entities. Consider this

partial URL for retrieving information about a stereo system:

/stereo.php?speakers=12&cdplayer=52&=10

The HTML entity for ampersand (&) is & so a browser may interpret that URL as:

/stereo.php?speakers=12&cdplayer=52&=10

To prevent embedded entities from corrupting your URLs, you have three choices. The

first is to choose variable names that can’t be confused with entities, such as _amp instead

of amp. The second is to convert characters with HTML entity equivalents to those

entities before printing out the URL. Use htmlentities():

$url = '/muppet/select.php?' . htmlentities($query_string);

The resulting URL is:

/muppet/select.php?name=Oscar+the+Grouch&color=green&favorite_punctuation=%23

Your third choice is to change the argument separator from & to & by setting the

configuration directive arg_separator.input to &. Then, http_build_query()

joins the different name/value pairs with &:

ini_set('arg_separator.input', '&');

See Also

Documentation on http_build_query() and htmlentities().

8.5 Reading the POST Request Body

Problem

You want direct access to the body of a request, not just the parsed data that PHP puts

in $_POST for you. For example, you want to handle an XML document that’s been posted

as part of a web services request.

Solution

Read from the php://input stream:

$body = file_get_contents('php://input');

240 | Chapter 8: Web Fundamentals

Discussion

The superglobal array $_POST is designed for accessing submitted HTML form variables,

but it doesn’t cut it when you need raw, uncut access to the whole request body. That’s

where the php://input stream comes in. Read the entire thing with file_get_con

tents(), or if you’re expecting a large request body, read it in chunks with fread().

If the configuration directive always_populate_raw_post_data is on, then raw post

data is also put into the global variable $HTTP_RAW_POST_DATA. But to write maximally

portable code, you should use php://input instead—that works even when always_pop

ulate_raw_post_data is turned off.

See Also

Documentation on php://input and on always_populate_raw_post_data; ways to

read files are discussed in Chapter 24.

8.6 Using HTTP Basic or Digest Authentication

Problem

You want to use PHP to protect parts of your website with passwords. Instead of storing

the passwords in an external file and letting the web server handle the authentication,

you want the password verification logic to be in a PHP program.

Solution

The $_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'] superglobal vari‐

ables contain the username and password supplied by the user, if any. To deny access to

a page, send a WWW-Authenticate header identifying the authentication realm as part

of a response with HTTP status code 401:

http_response_code(401);

header('WWW-Authenticate: Basic realm="My Website"');

echo "You need to enter a valid username and password.";

exit();

Discussion

When a browser sees a 401 header, it pops up a dialog box for a username and password.

Those authentication credentials (the username and password), if accepted by the serv‐

er, are associated with the realm in the WWW-Authenticate header. Code that checks

authentication credentials needs to be executed before any output is sent to the browser,

because it might send headers. For example, you can use a function such as vali

date(), shown in Example 8-1.

8.6 Using HTTP Basic or Digest Authentication | 241

 Example 8-1. validate()

function validate($user, $pass) {

 /* replace with appropriate username and password checking,

 such as checking a database */

$users = array('david' => 'fadj&32',

'adam' => '8HEj838');

if (isset($users[$user]) && ($users[$user] === $pass)) {

return true;

} else {

return false;

}

}

Example 8-2 shows how to use validate().

 Example 8-2. Using a validation function

if (! validate($_SERVER['PHP_AUTH_USER'], $_SERVER['PHP_AUTH_PW'])) {

http_response_code(401);

header('WWW-Authenticate: Basic realm="My Website"');

echo "You need to enter a valid username and password.";

exit;

}

Replace the contents of the validate() function with appropriate logic to determine if

a user entered the correct password. You can also change the realm string from My

 Website and the message that gets printed if a user hits Cancel in her browser’s authen‐

tication box from You need to enter a valid username and password.

PHP supports Digest authentication in addition to Basic authentication. With Basic

authentication, usernames and passwords are sent in the clear on the network, just

minimally obscured by Base64 encoding. With Digest authentication, however, the

password itself is never sent from the browser to the server. Instead, only a hash of the

password with some other values is sent. This reduces the possibility that the network

traffic could be captured and replayed by an attacker. The increased security provided

by Digest authentication means that the code to implement is more complicated than

just a simple password comparison. Example 8-3 provides functions that compute digest authentication as specified in RFC 2617.

 Example 8-3. Using Digest authentication

 /* replace with appropriate username and password checking,

 such as checking a database */

$users = array('david' => 'fadj&32',

'adam' => '8HEj838');

$realm = 'My website';

$username = validate_digest($realm, $users);

242 | Chapter 8: Web Fundamentals

 // Execution never reaches this point if invalid auth data is provided

print "Hello, " . htmlentities($username);

function validate_digest($realm, $users) {

 // Fail if no digest has been provided by the client

if (! isset($_SERVER['PHP_AUTH_DIGEST'])) {

send_digest($realm);

}

 // Fail if digest can't be parsed

$username = parse_digest($_SERVER['PHP_AUTH_DIGEST'], $realm, $users);

if ($username === false) {

send_digest($realm);

}

 // Valid username was specified in the digest

return $username;

}

function send_digest($realm) {

http_response_code(401);

$nonce = md5(uniqid());

$opaque = md5($realm);

header("WWW-Authenticate: Digest realm=\" $realm\" qop=\" auth\" ".

"nonce=\" $nonce\" opaque=\" $opaque\" ");

echo "You need to enter a valid username and password.";

exit;

}

function parse_digest($digest, $realm, $users) {

 // We need to find the following values in the digest header:

 // username, uri, qop, cnonce, nc, and response

$digest_info = array();

foreach (array('username','uri','nonce','cnonce','response') as $part) {

 // Delimiter can either be ' or " or nothing (for qop and nc)

if (preg_match('/'.$part.'=([\'"]?)(.*?)\1/', $digest, $match)) {

 // The part was found, save it for calculation

$digest_info[$part] = $match[2];

} else {

 // If the part is missing, the digest can't be validated;

return false;

}

}

 // Make sure the right qop has been provided

if (preg_match('/qop=auth(,|$)/', $digest)) {

$digest_info['qop'] = 'auth';

} else {

return false;

}

 // Make sure a valid nonce count has been provided

if (preg_match('/nc=([0-9a-f]{8})(,|$)/', $digest, $match)) {

$digest_info['nc'] = $match[1];

} else {

8.6 Using HTTP Basic or Digest Authentication | 243

 return false;

}

 // Now that all the necessary values have been slurped out of the

 // digest header, do the algorithmic computations necessary to

 // make sure that the right information was provided.

 //

 // These calculations are described in sections 3.2.2, 3.2.2.1,

 // and 3.2.2.2 of RFC 2617.

 // Algorithm is MD5

$A1 = $digest_info['username'] . ':' . $realm . ':' .

$users[$digest_info['username']];

 // qop is 'auth'

$A2 = $_SERVER['REQUEST_METHOD'] . ':' . $digest_info['uri'];

$request_digest = md5(implode(':', array(md5($A1), $digest_info['nonce'],

$digest_info['nc'],

$digest_info['cnonce'], $digest_info['qop'], md5($A2))));

 // Did what was sent match what we computed?

if ($request_digest != $digest_info['response']) {

return false;

}

 // Everything's OK, return the username

return $digest_info['username'];

}

Neither HTTP Basic nor Digest authentication can be used if you’re running PHP as a

CGI program. If you can’t run PHP as a server module, you can use cookie authenti‐

cation, discussed in Recipe 8.7.

Another issue with HTTP authentication is that it provides no simple way for a user to

log out, other than to exit his browser. The PHP online manual has a few suggestions

for log out methods that work with varying degrees of success with different server and

browser combinations.

There is a straightforward way, however, to force a user to log out after a fixed time

interval: include a time calculation in the realm string. Browsers use the same username

and password combination every time they’re asked for credentials in the same realm.

By changing the realm name, the browser is forced to ask the user for new credentials.

Example 8-4 uses Basic authentication and forces a logout every night at midnight.

 Example 8-4. Forcing logout with Basic authentication

if (! validate($_SERVER['PHP_AUTH_USER'],$_SERVER['PHP_AUTH_PW'])) {

$realm = 'My Website for '.date('Y-m-d');

http_response_code(401);

header('WWW-Authenticate: Basic realm="'.$realm.'"');

echo "You need to enter a valid username and password.";

exit;

}

244 | Chapter 8: Web Fundamentals

You can also have a user-specific timeout without changing the realm name by storing

the time that a user logs in or accesses a protected page. The validate_date() function

in Example 8-5 stores login time in a database and forces a logout if it’s been more than 15 minutes since the user last requested a protected page.

 Example 8-5. validate_date()

function validate_date($user,$pass) {

$db = new PDO('sqlite:/databases/users');

 // Prepare and execute

$st = $db->prepare('SELECT password, last_access

FROM users WHERE user LIKE ?');

$st->execute(array($user));

if ($ob = $st->fetchObject()) {

if ($ob->password == $pass) {

$now = time();

if (($now - $ob->last_access) > (15 * 60)) {

return false;

} else {

 // update the last access time

$st2 = $db->prepare('UPDATE users SET last_access = "now"

- WHERE user LIKE ?');

$st2->execute(array($user));

return true;

}

}

}

return false;

}

See Also

Recipe 8.7; the HTTP authentication section of the PHP online manual.

8.7 Using Cookie Authentication

Problem

You want more control over the user login procedure, such as presenting your own login

form.

Solution

Store authentication status in a cookie or as part of a session. When a user logs in

successfully, put her username (or another unique value) in a cookie. Also include a

8.7 Using Cookie Authentication | 245

hash of the username and a secret word so a user can’t just make up an authentication

cookie with a username in it:

$secret_word = 'if i ate spinach';

if (validate($_POST['username'],$_POST['password'])) {

setcookie('login',

$_POST['username'].','.md5($_POST['username'].$secret_word));

}

Discussion

When using cookie authentication, you have to display your own login form, such as

the form in Example 8-6.

 Example 8-6. Sample cookie authentication login form

<form method="POST" action="login.php">

Username: <input type="text" name="username">

Password: <input type="password" name="password">

<input type="submit" value="Log In">

</form>

You can use the same validate() function from Example 8-1 to verify the username

and password. The only difference is that you pass it $_POST['username'] and

$_POST['password'] as the credentials instead of $_SERVER['PHP_AUTH_USER'] and

$_SERVER['PHP_AUTH_PW']. If the password checks out, send back a cookie that contains

a username and a hash of the username, and a secret word. The hash prevents a user

from faking a login just by sending a cookie with a username in it.

Once the user has logged in, a page just needs to verify that a valid login cookie was sent

in order to do special things for that logged-in user. Example 8-7 shows one way to do this.

 Example 8-7. Verifying a login cookie

unset($username);

if (isset($_COOKIE['login'])) {

list($c_username, $cookie_hash) = split(',', $_COOKIE['login']);

if (md5($c_username.$secret_word) == $cookie_hash) {

$username = $c_username;

} else {

print "You have sent a bad cookie.";

}

}

if (isset($username)) {

print "Welcome, $username.";

} else {

print "Welcome, anonymous user.";

}

246 | Chapter 8: Web Fundamentals

If you use the built-in session support, you can add the username and hash to the session and avoid sending a separate cookie. When someone logs in, set an additional variable

in the session instead of sending a cookie, as shown in Example 8-8.

 Example 8-8. Storing login info in a session

if (validate($_POST['username'],$_POST['password'])) {

$_SESSION['login'] =

$_POST['username'].','.md5($_POST['username'].$secret_word);

}

The verification code, shown in Example 8-9, is almost the same; it just uses $_SES

SION instead of $_COOKIE.

 Example 8-9. Verifying session info

unset($username);

if (isset($_SESSION['login'])) {

list($c_username,$cookie_hash) = explode(',',$_SESSION['login']);

if (md5($c_username.$secret_word) == $cookie_hash) {

$username = $c_username;

} else {

print "You have tampered with your session.";

}

}

Using cookie or session authentication instead of HTTP Basic authentication makes it

much easier for users to log out: you just delete their login cookie or remove the login

variable from their session. Another advantage of storing authentication information

in a session is that you can link users’ browsing activities while logged in to their brows‐

ing activities before they log in or after they log out. With HTTP Basic authentication,

you have no way of tying the requests with a username to the requests that the same

user made before they supplied a username. Looking for requests from the same IP

address is error prone, especially if the user is behind a firewall or proxy server. If you

are using sessions, you can modify the login procedure to log the connection between

session ID and username using code such as that in Example 8-10.

 Example 8-10. Connecting logged-out and logged-in usage

if (validate($_POST['username'], $_POST['password'])) {

$_SESSION['login'] =

$_POST['username'].','.md5($_POST['username'].$secret_word);

error_log('Session id '.session_id().' log in as '.$_POST['username']);

}

Example 8-10 writes a message to the error log, but it could just as easily record the

information in a database that you could use in your analysis of site usage and traffic.

One danger of using session IDs is that sessions are hijackable. If Alice guesses Bob’s

session ID, she can masquerade as Bob to the web server. The session module has two

8.7 Using Cookie Authentication | 247

optional configuration directives that help you make session IDs harder to guess. The

session.entropy_file directive contains a path to a device or file that generates ran‐

domness, such as /dev/random or /dev/urandom. The session.entropy_length di‐

rective holds the number of bytes to be read from the entropy file when creating session

IDs.

No matter how hard session IDs are to guess, they can also be stolen if they are sent in

clear text between your server and a user’s browser. HTTP Basic authentication also has

this problem. Use SSL to guard against network sniffing, as described in Recipe 18.13.

See Also

Recipe 8.6; Recipe 20.9 discusses logging errors; Recipe 18.9 discusses verifying data with hashes; documentation on setcookie() and on md5().

8.8 Reading an HTTP Header

Problem

You want to read an HTTP request header.

Solution

For a single header, look in the $_SERVER superglobal array:

 // User-Agent Header

echo $_SERVER['HTTP_USER_AGENT'];

For all headers, call getallheaders():

$headers = getallheaders();

echo $headers['User-Agent'];

Discussion

HTTP headers allow the browser (or any application) to pass supplementary informa‐

tion about the request. For example, Content-Type to describe the body (Did you send

a web form or JSON?), Accept-Language for a list of preferred languages (Do you want

that in Canadian English or Canadian French?), and User-Agent (What’s the name and

description of the browser?).

Sometimes your web server will automatically process these headers and act accordingly,

particularly when it comes to low-level details about the request, such as serving data

from a cache or (de-)compressing the data. Other times PHP will parse specific headers,

as in Recipes 8.2 and 8.6.

248 | Chapter 8: Web Fundamentals

But there are times when you want to read a specific header within your code. One

example is parsing the ETag header to see if the version the client has is the same as the

one that’d be sent back.

In these cases, reference the $_SERVER superglobal array. PHP namespaces HTTP re‐

quest headers by prefixing HTTP_ before the header name. It also uppercases all header

names to make them easy to find. (This is legal because header names are case-

insensitive.)

So, the ETag header, if sent, will be at $_SERVER['HTTP_ETAG']. If the field munging is

aesthetically displeasing, you can also find it at getallheaders()['Etag'].

See Also

Recipe 8.9 for writing HTTP headers.

8.9 Writing an HTTP Header

Problem

You want to write an HTTP header.

Solution

Call the header() function:

 // Tell 'em its a PNG

header('Content-Type: image/png');

Discussion

Your web server and PHP often take care of setting all the necessary headers with the

proper values to serve your script. For example, when you return an HTML page, the

Content-Length or Transfer-Encoding header is automatically set to let the browser

know how to determine the size of the response.

The header() function lets you explicitly set these values when there’s no way for the

server to compute them or you want to modify the default behavior.

For instance, many web servers are configured to send a Content-Type header of text/

html for all pages processed by PHP. To also use PHP to create a JSON file, one option

is changing the Content-Type from within your script itself:

header('Content-Type: application/json');

If you set the same header multiple times, only the final value is sent. Change this by

passing true as the second value to the function:

8.9 Writing an HTTP Header | 249

header('WWW-Authenticate: Basic realm="http://server.example.com/"');

header('WWW-Authenticate: OAuth realm="http://server.example.com/"', true);

When you support multiple ways for someone to authenticate himself, it’s okay to return

multiple WWW-Authenticate headers. In this case, someone can either use HTTP Basic

authentication or OAuth.

See Also

Documentation on header(); Recipe 8.8 for reading HTTP headers.

8.10 Sending a Specific HTTP Status Code

Problem

You want to explicitly set the HTTP status code. For example, you want to indicate that

the user is unauthorized to view the page or the page is not found.

Solution

Use http_response_code() to set the response:

http_response_code(401);

Discussion

Your web server returns HTTP status code 200 (OK) for most pages processed by PHP.

But there are a wide range of status codes, or response codes, that you may need to use.

A few popular codes get recipes of their own. When you’re redirecting to a different

page, you need to send a 302 (Found) status code. This is covered in Recipe 8.11. When a person is not allowed to view a page, you send a 401 (Unauthorized). See Recipe 8.6

and Recipe 8.7 for more on that topic.

But there’s always 304 (Not Modified) for conditional GETs, when you should only

return content if it’s changed since the last request. This can be used when someone is

polling your site and you want to tell them there’s nothing new to retrieve.

Or, the infamous 404 (Not Found), when a page isn’t there. Normally, this is handled

by your web server. But if you want to support dynamic URLs, where there aren’t any

physical files stored on disk, but you process the URL and respond to it based on in‐

formation in a database, then you need to handle this yourself when someone tries to

fetch an invalid URL.

One great example is WordPress, which responds to URLs based on categories or dates

(e.g., /category/php/ or /2014/11/03/). In these cases, whenever someone adds a cat‐

egory or a post on a new date, WordPress can be configured to automatically respond

250 | Chapter 8: Web Fundamentals

to requests at URLs that match that pattern, even though there aren’t actually files at

that location.

With http_response_code(), you provide the status code number and PHP takes care

of setting the proper Status Line. For some status codes, including 204 (No Content),

the HTTP specification states you must not provide a message body. In these cases, it’s

best to send exit() to immediately end the script. This prevents content from being

accidentally added later on:

http_response_code(204);

exit();

If you’re stuck on PHP 5.3, use header(), and pass in the status code as the third pa‐

rameter:

header('HTTP/1.0 204 No Content', true, 204);

See Also

The HTTP 1.1 specification’s description of status codes.

8.11 Redirecting to a Different Location

Problem

You want to automatically send a user to a new URL. For example, after successfully

saving form data, you want to redirect a user to a page that confirms that the data has

been saved.

Solution

Before any output is printed, use header() to send a Location header with the new

URL, and then call exit() so that nothing else is printed:

header('Location: http://www.example.com/confirm.html');

exit();

Discussion

To pass variables to the new page, include them in the query string of the URL, as in

Example 8-11.

 Example 8-11. Redirecting with query string variables

header('Location: http://www.example.com/?monkey=turtle');

exit();

8.11 Redirecting to a Different Location | 251

Redirect URLs must include the protocol and hostname. They cannot be just a path‐

name. Example 8-12 shows a good Location header and a bad one.

 Example 8-12. Good and bad Location headers

 // Good Redirect

header('Location: http://www.example.com/catalog/food/pemmican.php');

 // Bad Redirect

header('Location: /catalog/food/pemmican.php');

The URL that you are redirecting a user to is retrieved with GET. You can’t redirect

someone to retrieve a URL via POST. With JavaScript, however, you can simulate a re‐

direct via POST by generating a form that gets submitted (via POST) automatically. When

a (JavaScript-enabled) browser receives the page in Example 8-13, it will immediately POST the form that is included.

 Example 8-13. Redirecting via a posted form

<html>

<body onload="document.getElementById('redirectForm').submit()">

<form id='redirectForm' method='POST' action='/done.html'>

<input type='hidden' name='status' value='complete'/>

<input type='hidden' name='id' value='0u812'/>

<input type='submit' value='Please Click Here To Continue'/>

</form>

</body>

</html>

The form in Example 8-13 has an id of redirectForm, so the code in the <body/>

element’s onload attribute submits the form. The onload action does not execute if the

browser has JavaScript disabled. In that situation, the user sees a Please Click Here To

 Continue button.

See Also

Documentation on header().

8.12 Flushing Output to the Browser

Problem

You want to force output to be sent to the browser. For example, before doing a slow

database query, you want to give the user a status update.

252 | Chapter 8: Web Fundamentals

Solution

Use flush():

print 'Finding identical snowflakes...';

flush();

$sth = $dbh->query(

'SELECT shape,COUNT(*) AS c FROM snowflakes GROUP BY shape HAVING c > 1');

Discussion

The flush() function sends all output that PHP has internally buffered to the web

server, but the web server may have internal buffering of its own that delays when the

data reaches the browser. Additionally, some browsers don’t display data immediately

upon receiving it, and some versions of Internet Explorer don’t display a page until it

has received at least 256 bytes. To force IE to display content, print blank spaces at the

beginning of the page, as shown in Example 8-14.

 Example 8-14. Forcing IE to display content immediately

print str_repeat(' ',300);

print 'Finding identical snowflakes...';

flush();

$sth = $dbh->query(

'SELECT shape,COUNT(*) AS c FROM snowflakes GROUP BY shape HAVING c > 1');

See Also

Recipe 24.13; documentation on flush().

8.13 Buffering Output to the Browser

Problem

You want to start generating output before you’re finished sending headers or cookies.

Solution

Call ob_start() at the top of your page and ob_end_flush() at the bottom. You can

then intermix commands that generate output and commands that send headers. The

output won’t be sent until ob_end_flush() is called:

<?php ob_start(); ?>

I haven't decided if I want to send a cookie yet.

<?php setcookie('heron','great blue'); ?>

8.13 Buffering Output to the Browser | 253

Yes, sending that cookie was the right decision.

<?php

ob_end_flush();

Discussion

You can pass ob_start() the name of a callback function to process the output buffer

with that function. This is useful for postprocessing all the content in a page, such as

hiding email addresses from address-harvesting robots. For example:

<?php

function mangle_email($s) {

return preg_replace('/([^@\s]+)@([-a-z0-9]+\.)+[a-z]{2,}/is',

'<$1@...>',

$s);

}

ob_start('mangle_email');

?>

I would not like spam sent to ronald@example.com!

<?php

ob_end_flush();

The mangle_email() function transforms the output to:

I would not like spam sent to <ronald@...>!

The output_buffering configuration directive turns output buffering on for all pages:

output_buffering = On

Similarly, output_handler sets an output buffer processing callback to be used on all

pages:

output_handler=mangle_email

Setting an output_handler automatically sets output_buffering to on.

See Also

Documentation on ob_start(), ob_end_flush(), and output buffering.

254 | Chapter 8: Web Fundamentals

8.14 Compressing Web Output

Problem

You want to send compressed content to browsers that support automatic decompres‐

sion.

Solution

Add this setting to your php.ini file:

zlib.output_compression=1

Discussion

Browsers tell the server that they can accept compressed responses with the Accept-

Encoding header. If a browser sends Accept-Encoding: gzip or Accept-Encoding:

deflate, and PHP is built with the zlib extension, the zlib.output_compression con‐

figuration directive tells PHP to compress the output with the appropriate algorithm

before sending it back to the browser. The browser uncompresses the data before dis‐

playing it.

You can adjust the compression level with the zlib.output_compression_level con‐

figuration directive:

; minimal compression

zlib.output_compression_level=1

; maximal compression

zlib.output_compression_level=9

At higher compression levels, less data needs to be sent from the server to the browser,

but more server CPU time must be used to compress the data.

See Also

Documentation on the zlib extension.

8.15 Reading Environment Variables

Problem

You want to get the value of an environment variable.

8.14 Compressing Web Output | 255

Solution

Use getenv():

$path = getenv('PATH');

Discussion

Environment variables are named values associated with a process. For instance, in

Unix, the value of getenv('HOME') returns the home directory of a user:

print getenv('HOME'); // user's home directory

PHP automatically loads environment variables into $_ENV by default. However, php.ini-

 development and php.ini-production disables this because of speed considerations.

If you frequently access many environment variables, enable the $_ENV array by adding

E to the variables_order configuration directive. Then you can read values from the

$_ENV superglobal array. For instance:

$name = $_ENV['USER'];

The getenv() function isn’t available if you’re running PHP as an ISAPI module.

See Also

Recipe 8.16 on setting environment variables; documentation on getenv(); information

on environment variables in PHP.

8.16 Setting Environment Variables

Problem

You want to set an environment variable in a script or in your server configuration.

Setting environment variables in your server configuration on a host-by-host basis al‐

lows you to configure virtual hosts differently.

Solution

To set an environment variable in a script, use putenv():

putenv('ORACLE_SID=ORACLE'); // configure oci extension

To set an environment variable in your Apache httpd.conf file, use SetEnv:

SetEnv DATABASE_PASSWORD password

Variables set in httpd.conf show up in the PHP superglobal array $_SERVER, not via

getenv() or $_ENV.

256 | Chapter 8: Web Fundamentals

Discussion

An advantage of setting variables in httpd.conf is that you can set more restrictive read

permissions on it than on your PHP scripts. Because PHP files need to be readable by

the web server process, this generally allows other users on the system to view them. By

storing passwords in httpd.conf, you can avoid placing a password in a publicly available

file. Also, if you have multiple hostnames that map to the same document root, you can

configure your scripts to behave differently based on the hostnames.

For example, you could have members.example.com and guests.example.com. The mem‐

bers version requires authentication and allows users additional access. The guests ver‐

sion provides a restricted set of options, but without authentication. Example 8-15

shows how this could work.

 Example 8-15. Adjusting behavior based on an environment variable

$version = (isset($_SERVER['SITE_VERSION']) ? $_SERVER['SITE_VERSION'] : 'guest');

 // redirect to http://guest.example.com, if user fails to sign in correctly

if ('members' == $version) {

if (!authenticate_user($_POST['username'], $_POST['password'])) {

header('Location: http://guest.example.com/');

exit;

}

}

include_once "${version}_header"; // load custom header

See Also

Recipe 8.15 on getting the values of environment variables; documentation on pu

tenv(); information on setting environment variables in Apache.

8.17 Communicating Within Apache

Problem

You want to communicate from PHP to other parts of the Apache request process. This

includes setting variables in the access_log.

Solution

Use apache_note():

 // get value

$session = apache_note('session');

 // set value

apache_note('session', $session);

8.17 Communicating Within Apache | 257

Discussion

When Apache processes a request from a client, it goes through a series of steps; PHP

plays only one part in the entire chain. Apache also remaps URLs, authenticates users,

logs requests, and more. While processing a request, each handler has access to a set of

key/value pairs called the notes table. The apache_note() function provides access to

the notes table to retrieve information set by handlers earlier on in the process and leave

information for handlers later on.

For example, if you use the session module to track users and preserve variables across

requests, you can integrate this with your logfile analysis so you can determine the

average number of page views per user. Use apache_note() in combination with the

logging module to write the session ID directly to the access_log for each request. First,

add the session ID to the notes table with the code in Example 8-16.

 Example 8-16. Adding the session ID to the notes table

 // retrieve the session ID and add it to Apache's notes table

apache_note('session_id', session_id());

See Also

Documentation on apache_note(); information on logging in Apache.

8.18 Redirecting Mobile Browsers to a Mobile Optimized

Site

Problem

You want to send mobile or tablet browsers to an alternative site or alternative content

that is optimized for their device.

Solution

Use the object returned by get_browser() to determine if it’s a mobile browser:

if ($browser->ismobilebrowser) {

 // print mobile layout

} else {

 // print desktop layout

}

Discussion

The get_browser() function examines the environment variable (set by the web server)

and compares it to browsers listed in an external browser capability file. Due to licensing

258 | Chapter 8: Web Fundamentals

issues, PHP isn’t distributed with a browser capability file. One source for a browser

capability file is Browscap. Download the php_browscap.ini file from that site (not the standard version).

Once you download a browser capability file, you need to tell PHP where to find it by

setting the browscap configuration directive to the pathname of the file. If you use PHP

as a CGI, set the directive in the php.ini file:

browscap=/usr/local/lib/php_browscap.ini

After you identify the device as mobile, you can then redirect the request to a specific

mobile optimized site or render a mobile optimized page:

header('Location: http://m.example.com/');

As a lighter-weight alternative to get_browser(), parse the $_SERV

ER['HTTP_USER_AGENT'] yourself.

See Also

Documentation on get_browser(). Read about redirecting requests in Recipe 8.11 and reading HTTP headers in Recipe 8.8.

8.19 Program: Website Account (De)activator

When users sign up for your website, it’s helpful to know that they’ve provided you with

a correct email address. To validate the email address they provide, send an email to the

address they supply when they sign up. If they don’t visit a special URL included in the

email after a few days, deactivate their account.

This system has three parts. The first is the notify-user.php program that sends an email

to a new user and asks that user to visit a verification URL, shown in Example 8-18. The

second, shown in Example 8-19, is the verify-user.php page that handles the verification URL and marks users as valid. The third is the delete-user.php program that deactivates

accounts of users who don’t visit the verification URL after a certain amount of time.

This program is shown in Example 8-20.

Example 8-17 contains the SQL to create the table in which the user information is

stored.

 Example 8-17. SQL for user verification table

CREATE TABLE users (

email VARCHAR(255) NOT NULL,

created_on DATETIME NOT NULL,

verify_string VARCHAR(16) NOT NULL,

verified TINYINT UNSIGNED

);

8.19 Program: Website Account (De)activator | 259

What’s in Example 8-17 is the minimum amount of information necessary for user verification. You probably want to store more information than this about your users.

When creating a user’s account, save information to the users table, and send the user

an email telling him how to verify his account. The code in Example 8-18 assumes that the user’s email address is stored in the variable $email.

 Example 8-18. notify-user.php

 // Connect to the database

$db = new PDO('sqlite:users.db');

$email = 'david';

 // Generate verify_string

$verify_string = '';

for ($i = 0; $i < 16; $i++) {

$verify_string .= chr(mt_rand(32,126));

}

 // Insert user into database

 // This uses an SQLite-specific datetime() function

$sth = $db->prepare("INSERT INTO users " .

"(email, created_on, verify_string, verified) " .

"VALUES (?, datetime('now'), ?, 0)");

$sth->execute(array($email, $verify_string));

$verify_string = urlencode($verify_string);

$safe_email = urlencode($email);

$verify_url = "http://www.example.com/verify-user.php";

$mail_body=<<<_MAIL_

To $email:

Please click on the following link to verify your account creation:

$verify_url?email=$safe_email&verify_string=$verify_string

If you do not verify your account in the next seven days, it will be

deleted.

MAIL;

mail($email,"User Verification",$mail_body);

The verification page that users are directed to when they follow the link in the email

message updates the users table if the proper information has been provided, as shown

in Example 8-19.

260 | Chapter 8: Web Fundamentals

 Example 8-19. verify-user.php

 // Connect to the database

$db = new PDO('sqlite:users.db');

$sth = $db->prepare('UPDATE users SET verified = 1 WHERE email = ? '.

' AND verify_string = ? AND verified = 0');

$res = $sth->execute(array($_GET['email'], $_GET['verify_string']));

var_dump($res, $sth->rowCount());

if (! $res) {

print "Please try again later due to a database error.";

} else {

if ($sth->rowCount() == 1) {

print "Thank you, your account is verified.";

} else {

print "Sorry, you could not be verified.";

}

}

The user’s verification status is updated only if the email address and verify string pro‐

vided match a row in the database that has not already been verified. The last step is the

short program that deletes unverified users after the appropriate interval, as shown in

Example 8-20.

 Example 8-20. delete-user.php

 // Connect to the database

$db = new PDO('sqlite:users.db');

$window = '-7 days';

$sth = $db->prepare("DELETE FROM users WHERE verified = 0 AND ".

"created_on < datetime('now',?)");

$res = $sth->execute(array($window));

if ($res) {

print "Deactivated " . $sth->rowCount() . " users. \n";

} else {

print "Can't delete users. \n";

}

Run the program in Example 8-20 once a day to scrub the users table of users that

haven’t been verified. If you want to change how long users have to verify themselves,

adjust the value of $window, and update the text of the email message sent to users to

reflect the new value.

8.19 Program: Website Account (De)activator | 261

8.20 Program: Tiny Wiki

The program in Example 8-21 puts together various concepts discussed in this chapter

and implements a complete wiki system—a website whose pages are all user-editable.

It follows a structure common among simple PHP programs of its type. The first part

of the code defines various configuration settings. Then comes an if/else section that

decides what to do (display a page, save page edits, etc.) based on the values of submitted

form or URL variables. The remainder of the program consists of the functions invoked

from that if/else section—functions to print the page header and footer, load saved

page contents, and display a page-editing form.

The Tiny Wiki relies on an external library, PHP Markdown by Michel Fortin, to handle translating from the handy and compact Markdown syntax to HTML.

 Example 8-21. Tiny Wiki

<?php

 // Install PSR-0-compatible class autoloader

spl_autoload_register(function($class){

require preg_replace('{\\\\|_(?!.*\\\\)}', DIRECTORY_SEPARATOR,

trim($class, '\\')).'.php';

});

 // Use Markdown for Wiki-like text markup

 // Located at http://michelf.ca/projects/php-markdown/

use \Michelf\Markdown;

 // The directory where the Wiki pages will be stored

 // Make sure the web server user can write to it

define('PAGEDIR', dirname(__FILE__) . '/pages');

 // Get page name, or use default

$page = isset($_GET['page']) ? $_GET['page'] : 'Home';

 // Figure out what to do: display an edit form, save an

 // edit form, or display a page

 // Display an edit form that's been asked for

if (isset($_GET['edit'])) {

pageHeader($page);

edit($page);

pageFooter($page, false);

}

 // Save a submitted edit form

else if (isset($_POST['edit'])) {

file_put_contents(pageToFile($_POST['page']), $_POST['contents']);

 // Redirect to the regular view of the just-edited page

header('Location: http://'.$_SERVER['HTTP_HOST'] . $_SERVER['SCRIPT_NAME'] .

'?page='.urlencode($_POST['page']));

exit();

262 | Chapter 8: Web Fundamentals

}

 // Display a page

else {

pageHeader($page);

 // If the page exists, display it and the footer with an "Edit" link

if (is_readable(pageToFile($page))) {

 // Get the contents of the page from the file it's saved in

$text = file_get_contents(pageToFile($page));

 // Convert Markdown syntax (using Markdown library loaded above)

$text = Markdown::defaultTransform($text);

 // Make bare [links] link to other wiki pages

$text = wikiLinks($text);

 // Display the page

echo $text;

 // Display the footer

pageFooter($page, true);

}

 // If the page doesn't exist, display an edit form

 // and the footer without an "Edit" link

else {

edit($page, true);

pageFooter($page, false);

}

}

 // The page header -- pretty simple, just the title and the usual HTML

 // pleasantries

function pageheader($page) { ?>

<html>

<head>

<title>Wiki: <?php echo htmlentities($page) ?></title>

</head>

<body>

<h1><?php echo htmlentities($page) ?></h1>

<hr/>

<?php

}

 // The page footer -- a "last modified" timestamp, an optional

 // "Edit" link, and a link back to the front page of the Wiki

function pageFooter($page, $displayEditLink) {

$timestamp = @filemtime(pageToFile($page));

if ($timestamp) {

$lastModified = strftime('%c', $timestamp);

} else {

$lastModified = 'Never';

}

if ($displayEditLink) {

$editLink = ' - Edit';

} else {

$editLink = '';

}

8.20 Program: Tiny Wiki | 263

?>

<hr/>

Last Modified: <?php echo $lastModified ?>

<?php echo $editLink ?> - <a href="<?php echo $_SERVER['SCRIPT_NAME'] ?>">Home

</body>

</html>

<?php

}

 // Display an edit form. If the page already exists, include its current

 // contents in the form

function edit($page, $isNew = false) {

if ($isNew) {

$contents = '';

?>

<p>This page doesn't exist yet. To create it, enter its contents below

and click the Save button.</p>

<?php } else {

$contents = file_get_contents(pageToFile($page));

}

?>

<form method='post' action='<?php echo htmlentities($_SERVER['SCRIPT_NAME']) ?>'>

<input type='hidden' name='edit' value='true'/>

<input type='hidden' name='page' value='<?php echo htmlentities($page) ?>'/>

<textarea name='contents' rows='20' cols='60'>

<?php echo htmlentities($contents) ?></textarea>

<input type='submit' value='Save'/>

</form>

<?php

}

 // Convert a submitted page to a filename. Using md5() prevents naughty

 // characters in $page from causing security problems

function pageToFile($page) {

return PAGEDIR.'/'.md5($page);

}

 // Turn text such as [something] in a page into an HTML link to the

 // Wiki page "something"

function wikiLinks($page) {

if (preg_match_all('/\[([^\]]+?)\]/', $page, $matches, PREG_SET_ORDER)) {

foreach ($matches as $match) {

$page = str_replace($match[0], '<a href="'.$_SERVER['SCRIPT_NAME'].

'?page='.urlencode($match[1]).'">'.htmlentities($match[1]).'', $page);

}

}

return $page;

}

264 | Chapter 8: Web Fundamentals

See Also

Information on installing and using packages, including information on PSR-0, at

Recipe 27.3.

8.21 Program: HTTP Range

The program in Example 8-22 implements the HTTP Range feature, which allows cli‐

ents to request one or more sections of a file. This is most frequently used to download

the remaining portion of a file that was interrupted. For example, only fetching the

remaining part of a movie that the viewer stopped watching.

Normally, your web server can handle this for you. It will parse the header, load in the

selected portions of the file, and serve them back to the browser (along with the nec‐

essary HTTP).

However, if you sell multimedia, such as podcasts or music, you don’t want to expose

those files directly. Otherwise, anyone who got the URL could download the files. In‐

stead, you want to make sure only people who purchased the file are able to read it. And,

for that, you can’t use the web server by itself, but need PHP.

Recipe 17.11 shows how to restrict a file from direct access. But that recipe only works for sending an entire file. This program expands upon that simpler example to enable

sending only the sections of the file requested by the web browser.

At first glance, this doesn’t sound difficult. However, the HTTP 1.1 specification has a

number of features that layer on complexity, such as multiple ranges (with a different

syntax for these replies), offsets from the end of the file (e.g., “only the last 1000 bytes”),

and specific status codes and headers for invalid requests.

Beyond showing how to translate a specification into code, this program demonstrates

how to read and send HTTP status codes and headers. It also integrates a number of

other recipes, including Recipe 1.6.

 Example 8-22. HTTP Range

 // Add your authenication here, optionally.

 // The file

$file = __DIR__ . '/numbers.txt';

$content_type = 'text/plain';

 // Check that it's readable and get the file size

if (($filelength = filesize($file)) === false) {

error_log("Problem reading filesize of $file.");

}

 // Parse header to determine info needed to send response

if (isset($_SERVER['HTTP_RANGE'])) {

8.21 Program: HTTP Range | 265

 // Delimiters are case insensitive

if (!preg_match('/bytes=\d*-\d*(,\d*-\d*)*$/i', $_SERVER['HTTP_RANGE'])) {

error_log("Client requested invalid Range.");

send_error($filelength);

exit;

}

 /*

 Spec: "When a client requests multiple byte-ranges in one request, the

 server SHOULD return them in the order that they appeared in the

 request."

 */

$ranges = explode(',',

substr($_SERVER['HTTP_RANGE'], 6)); // everything after bytes=

$offsets = array();

 // Extract and validate each offset

 // Only keep the ones that pass

foreach ($ranges as $range) {

$offset = parse_offset($range, $filelength);

if ($offset !== false) {

$offsets[] = $offset;

}

}

 /*

 Depending on the number of valid ranges requested, you must return

 the response in a different format

 */

switch (count($offsets)) {

case 0:

 // No valid ranges

error_log("Client requested no valid ranges.");

send_error($filelength);

exit;

break;

case 1:

 // One valid range, send standard reply

http_response_code(206); // Partial Content

list($start, $end) = $offsets[0];

header("Content-Range: bytes $start-$end/$filelength");

header("Content-Type: $content_type");

 // Set variables to allow code reuse across this case and the next one

 // Note: 0-0 is 1 byte long, because we're inclusive

$content_length = $end - $start + 1;

$boundaries = array(0 => '', 1 => '');

break;

default:

 // Multiple valid ranges, send multipart reply

http_response_code(206); // Partial Content

$boundary = str_rand(32); // String to separate each part

266 | Chapter 8: Web Fundamentals

 /*

 Need to compute Content-Length of entire response,

 but loading the entire response into a string could use a lot of memory,

 so calculate value using the offsets.

 Take this opportunity to also calculate the boundaries.

 */

$boundaries = array();

$content_length = 0;

foreach ($offsets as $offset) {

list($start, $end) = $offset;

 // Used to split each section

$boundary_header =

" \r\n" .

"--$boundary\r\n" .

"Content-Type: $content_type\r\n" .

"Content-Range: bytes $start-$end/$filelength\r\n" .

" \r\n";

$content_length += strlen($boundary_header) + ($end - $start + 1);

$boundaries[] = $boundary_header;

}

 // Add the closing boundary

$boundary_header = " \r\n--$boundary--";

$content_length += strlen($boundary_header);

$boundaries[] = $boundary_header;

 // Chop off extra \r\n in first boundary

$boundaries[0] = substr($boundaries[0], 2);

$content_length -= 2;

 // Change to the special multipart Content-Type

$content_type = "multipart/byteranges; boundary=$boundary";

}

} else {

 // Send the entire file

 // Set variables as if this was extracted from Range header

$start = 0;

$end = $filelength - 1;

$offset = array($start, $end);

$offsets = array($offset);

$content_length = $filelength;

$boundaries = array(0 => '', 1 => '');

}

 // Tell us what we're getting

header("Content-Type: $content_type");

8.21 Program: HTTP Range | 267

header("Content-Length: $content_length");

 // Give it to us

$handle = fopen($file, 'r');

if ($handle) {

$offsets_count = count($offsets);

 // Print each boundary delimiter and the appropriate part of the file

for ($i = 0; $i < $offsets_count; $i++) {

print $boundaries[$i];

list($start, $end) = $offsets[$i];

send_range($handle, $start, $end);

}

 // Closing boundary

print $boundaries[$i];

fclose($handle);

}

 // Move the proper place in the file

 // And print out the requested piece in chunks

function send_range($handle, $start, $end) {

$line_length = 4096; // magic number

if (fseek($handle, $start) === -1) {

error_log("Error: fseek() fail.");

}

$left_to_read = $end - $start + 1;

do {

$length = min($line_length, $left_to_read);

if (($buffer = fread($handle, $length)) !== false) {

print $buffer;

} else {

error_log("Error: fread() fail.");

}

} while ($left_to_read -= $length);

}

 // Send the failure header

function send_error($filelength) {

http_response_code(416);

header("Content-Range: bytes */$filelength"); // Required in 416.

}

 // Convert an offset to the start and end locations in the file

 // Or return false if it's invalid

function parse_offset($range, $filelength) {

 /*

 Spec: "The first-byte-pos value in a byte-range-spec gives the

 byte-offset of the first byte in a range."

 Spec: "The last-byte-pos value gives the byte-offset of the last byte in the

 range; that is, the byte positions specified are inclusive."

268 | Chapter 8: Web Fundamentals

 */

list($start, $end) = explode('-', $range);

 /*

 Spec: "A suffix-byte-range-spec is used to specify the suffix of the

 entity-body, of a length given by the suffix-length value."

 */

if ($start === '') {

if ($end === '' || $end === 0) {

 // Asked for range of "-" or "-0"

return false;

} else {

 /*

 Spec: "If the entity is shorter than the specified suffix-length,

 the entire entity-body is used."

 Spec: "Byte offsets start at zero."

 */

$start = max(0, $filelength - $end);

$end = $filelength - 1;

}

} else {

 /*

 Spec: "If the last-byte-pos value is absent, or if the value is greater

 than or equal to the current length of the entity-body, last-byte-pos

 is taken to be equal to one less than the current length of the entity

 body in bytes."

 */

if ($end === '' || $end > $filelength - 1) {

$end = $filelength - 1;

}

 /*

 Spec: "If the last-byte-pos value is present, it MUST be greater than

 or equal to the first-byte-pos in that byte-range-spec, or the

 byte-range-spec is syntactically invalid."

 This also catches cases where start > filelength

 */

if ($start > $end) {

return false;

}

}

return array($start, $end);

}

 // Generate a random string to delimit sections within the response

function str_rand($length = 32,

$characters = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ') {

if (!is_int($length) || $length < 0) {

return false;

}

8.21 Program: HTTP Range | 269

 $characters_length = strlen($characters) - 1;

$string = '';

for ($i = $length; $i > 0; $i--) {

$string .= $characters[mt_rand(0, $characters_length)];

}

return $string;

}

For simplicity, the demonstration file, numbers.txt, looks like:

01234567890123456789

Here’s how it behaves, making requests from the command-line curl program to the

built-in PHP webserver. This dumps a verbose version of the HTTP exchange.

The entire file, without any Range header:

$ curl -v http://localhost:8000/range.php

* About to connect() to localhost port 8000 (#0)

* Trying ::1...

* connected

* Connected to localhost (::1) port 8000 (#0)

> GET /range.php HTTP/1.1

> User-Agent: curl/7.24.0

> Host: localhost:8000

> Accept: */*

>

[Sun Aug 18 14:33:36 2013] ::1:59812 [200]: /range.php

< HTTP/1.1 200 OK

< Host: localhost:8000

< Connection: close

< X-Powered-By: PHP/5.4.9

< Content-Type: text/plain

< Content-Length: 10

<

* Closing connection #0

0123456789

Only the first 5 bytes:

$ curl -v -H 'Range: bytes=0-4' http://localhost:8000/range.php

* About to connect() to localhost port 8000 (#0)

* Trying ::1...

* connected

* Connected to localhost (::1) port 8000 (#0)

> GET /range.php HTTP/1.1

> User-Agent: curl/7.24.0

> Host: localhost:8000

> Accept: */*

> Range: bytes=0-4

>

[Sun Aug 18 14:30:52 2013] ::1:59798 [206]: /range.php

270 | Chapter 8: Web Fundamentals

< HTTP/1.1 206 Partial Content

< Host: localhost:8000

< Connection: close

< X-Powered-By: PHP/5.4.9

< Content-Range: bytes 0-4/10

< Content-Type: text/plain

< Content-Length: 5

<

* Closing connection #0

01234

See how the status code is now 206 instead of 200, and there is a Content-Range HTTP

header telling you what bytes were returned.

Or the last 5 bytes:

$ curl -v -H 'Range: bytes=-5' http://localhost:8000/range.php

* About to connect() to localhost port 8000 (#0)

* Trying ::1...

* connected

* Connected to localhost (::1) port 8000 (#0)

> GET /range.php HTTP/1.1

> User-Agent: curl/7.24.0

> Host: localhost:8000

> Accept: */*

> Range: bytes=-5

>

[Sun Aug 18 14:30:33 2013] ::1:59796 [206]: /range.php

< HTTP/1.1 206 Partial Content

< Host: localhost:8000

< Connection: close

< X-Powered-By: PHP/5.4.9

< Content-Range: bytes 5-9/10

< Content-Type: text/plain

< Content-Length: 5

<

* Closing connection #0

56789

The first 5 and the last 5 bytes:

$ curl -v -H 'Range: bytes=0-4,-5' http://localhost:8000/range.php

* About to connect() to localhost port 8000 (#0)

* Trying ::1...

* connected

* Connected to localhost (::1) port 8000 (#0)

> GET /range.php HTTP/1.1

> User-Agent: curl/7.24.0

> Host: localhost:8000

> Accept: */*

> Range: bytes=0-4,-5

>

[Sun Aug 18 14:30:12 2013] ::1:59794 [206]: /range.php

8.21 Program: HTTP Range | 271

< HTTP/1.1 206 Partial Content

< Host: localhost:8000

< Connection: close

< X-Powered-By: PHP/5.4.9

< Content-Type: multipart/byteranges; boundary=ALLIeNOkvwgKk0ib91ZNph5qi8fHo2ai

< Content-Length: 236

<

--ALLIeNOkvwgKk0ib91ZNph5qi8fHo2ai

Content-Type: text/plain

Content-Range: bytes 0-4/10

01234

--ALLIeNOkvwgKk0ib91ZNph5qi8fHo2ai

Content-Type: text/plain

Content-Range: bytes 5-9/10

56789

* Closing connection #0

--ALLIeNOkvwgKk0ib91ZNph5qi8fHo2ai--

The Content-Type is switched from text/plain to multipart/byteranges; bound

ary=ALLIeNOkvwgKk0ib91ZNph5qi8fHo2ai. The “real” Content headers have moved

within each section.

Because this is the entire file, it’s also valid to serve it up as if you requested this without

any Range header.

An invalid request, because bytes 20–24 do not exist:

$ curl -v -H 'Range: bytes=20-24' http://localhost:8000/range.php

* About to connect() to localhost port 8000 (#0)

* Trying ::1...

* connected

* Connected to localhost (::1) port 8000 (#0)

> GET /range.php HTTP/1.1

> User-Agent: curl/7.24.0

> Host: localhost:8000

> Accept: */*

> Range: bytes=20-24

>

[Sun Aug 18 14:32:17 2013] Client requested no valid ranges.

[Sun Aug 18 14:32:17 2013] ::1:59806 [416]: /range.php

< HTTP/1.1 416 Requested Range Not Satisfiable

< Host: localhost:8000

< Connection: close

< X-Powered-By: PHP/5.4.9

< Content-Range: bytes */10

< Content-type: text/html

<

* Closing connection #0

272 | Chapter 8: Web Fundamentals

This returns a third status code, 416, along with a helpful header to let us know the legal set of values to request: Content-Range: bytes */10.

Finally, a legal and illegal value:

$ curl -v -H 'Range: bytes=0-4,20-24' http://localhost:8000/range.php

* About to connect() to localhost port 8000 (#0)

* Trying ::1...

* connected

* Connected to localhost (::1) port 8000 (#0)

> GET /range.php HTTP/1.1

> User-Agent: curl/7.24.0

> Host: localhost:8000

> Accept: */*

> Range: bytes=0-4,20-24

>

[Sun Aug 18 14:31:27 2013] ::1:59801 [206]: /range.php

< HTTP/1.1 206 Partial Content

< Host: localhost:8000

< Connection: close

< X-Powered-By: PHP/5.4.9

< Content-Range: bytes 0-4/10

< Content-Type: text/plain

< Content-Length: 5

<

* Closing connection #0

01234

Because there’s at least one valid range, the illegal ones are ignored and the response is

the same as only asking for the first 5 bytes.

8.21 Program: HTTP Range | 273

CHAPTER 9

Forms

9.0 Introduction

The genius of PHP is its seamless integration of form variables into your programs. It

makes web programming smooth and simple, speeding the cycle from web form to PHP

code to HTML output.

With that convenience, however, comes the responsibility to make sure that the user-

provided information that flows so easily into your program contains appropriate con‐

tent. External input can never be trusted, so it’s imperative always to validate all incoming

data. Recipes 9.2 through 9.9 show how to validate common kinds of information as well as providing general guidelines on arbitrary form validation you might need to do.

Recipe 9.10 discusses escaping HTML entities to allow the safe display of user-entered data. Recipe 9.11 covers how to process files uploaded by a user.

HTTP is a ’stateless’ protocol—it has no built-in mechanism that helps you to save

information from one page so you can access it in other pages. Recipes 9.12, 9.13, and

9.14 all show ways to work around the fundamental problem of figuring out which user

is making which requests to your web server.

Whenever PHP processes a page, it checks for URL and form variables, uploaded files,

applicable cookies, and web server and environment variables. These are then directly

accessible in the following arrays: $_GET, $_POST, $_FILES, $_COOKIE, $_SERVER, and

$_ENV. They hold, respectively, all variables set in the query string, in the body of a post

request, by uploaded files, by cookies, by the web server, and by the environment in

which the web server is running. There’s also $_REQUEST, which is one giant array that

contains the values from the other six arrays.

When placing elements inside of $_REQUEST, if two arrays both have a key with the same

name, PHP breaks the tie by relying on the variables_order configuration directive.

By default, variables_order is EGPCS (or GPCS, if you’re using the php.ini-

275

 recommended configuration file). So PHP first adds environment variables to $_RE

QUEST and then adds query string, post, cookie, and web server variables to the array,

in this order. For instance, since C comes after P in the default order, a cookie named

username overwrites a posted variable named username. Note that the GPCS value from

 php.ini-recommended means that the $_ENV array doesn’t get populated with environ‐

ment variables.

While $_REQUEST can be convenient, it’s usually a better idea to look in the more detailed

array directly. That way, you know exactly what you’re getting and don’t have to be

concerned that a change in variables_order affects the behavior of your program.

All of these arrays are auto-global. That means global inside of a function or class—

they’re always in scope.

Versions of PHP prior to 5.4.0 had a configuration directive named register_glob

als. If this was set to on, all these variables are also available as variables in the global

namespace. So $_GET['password'] is also just $password. While convenient, this in‐

troduces major security problems because malicious users can easily set variables from

the outside and overwrite trusted internal variables. If you’re using an older version of

PHP, make sure this is set to off in your configuration.

Example 9-1 is a basic form. The form asks the user to enter his first name. When the form is submitted the information is sent to hello.php.

 Example 9-1. Basic HTML form

<form action="hello.php" method="post">

<p>What is your first name?</p>

<input type="text" name="first_name" />

<input type="submit" value="Say Hello" />

</form>

The name of the text input element inside the form is first_name. Also, the method of

the form is post. This means that when the form is submitted, $_POST['first_name']

will hold whatever string the user typed in. (It could also be empty, of course, if he didn’t

type anything.)

Example 9-2 shows the contents of hello.php, which will display information from the form.

 Example 9-2. Basic PHP form processing

echo 'Hello, ' . $_POST['first_name'] . '!';

If you type Twinkle into the form in Example 9-1, Example 9-2 prints: Hello, Twinkle!

276 | Chapter 9: Forms

Example 9-2 is so basic that it omits two important steps that should be in all PHP form-processing applications: data validation (to make sure what’s typed into the form is

acceptable to your program), and output escaping (to make sure that malicious users

can’t use your website to attack others). Recipes Recipe 9.2 through Recipe 9.9 discuss data validation and Recipe 9.10 discusses output escaping.

9.1 Processing Form Input

Problem

You want to use the same HTML page to emit a form and then process the data entered

into it. In other words, you’re trying to avoid a proliferation of pages that each handle

different steps in a transaction.

Solution

Use the $_SERVER['REQUEST_METHOD'] variable to determine whether the request was

submitted with the get or post method. If the get method was used, print the form. If

the post method was used, process the form. Example 9-3 combines the form from

Example 9-1 and the code from Example 9-2 into one program, deciding what to do

based on $_SERVER['REQUEST_METHOD'].

 Example 9-3. Deciding what to do based on request method

<?php if ($_SERVER['REQUEST_METHOD'] == 'GET') { ?>

<form action="<?php echo htmlentities($_SERVER['SCRIPT_NAME']) ?>" method="post"> What is your first name?

<input type="text" name="first_name" />

<input type="submit" value="Say Hello" />

</form>

<?php } else {

echo 'Hello, ' . $_POST['first_name'] . '!';

}

Discussion

Forms can be easier to maintain when all parts live in the same file (or are referenced

by the same file) and context dictates which sections to display. The get method (what

your browser uses when you just type in a URL or click on a link) means ‘Hey, server,

give me something you’ve got.’ The post method (what your browser uses when you

submit a form whose method attribute is set to post) means ‘Hey, server, here’s some

data that changes something.’ So the characteristic response to a get request is the HTML

form, and the response to the post request is the results of processing that form. In

Example 9-3, the ‘processing’ is extremely simple—just printing a greeting. In more

9.1 Processing Form Input | 277

typical applications, the processing is more complicated—saving information to a da‐

tabase or sending an email message.

Note that although the XHTML specification requires that the method attribute of a

<form/> element be lowercase (get or post), the HTTP specification requires that a

web browser use all uppercase (GET or POST) when sending the request method to the

server. The value in $_SERVER['REQUEST_METHOD'] is whatever the browser sends, so

in practice it will always be uppercase.

One other technique also makes pages easier to maintain: don’t hardcode the path to

your page directly into the form action. This makes it impossible to rename or relocate

your page without also editing it. Instead, use the $_SERVER['SCRIPT_NAME'] variable

as the form action. This is set up by PHP on each request to contain the filename (relative

to the document root) of the current script.

If you’re using a web application framework, it has its own conventions on how you mix

displaying a form and processing the results. While we don’t focus on any specific

framework in this book, having a separation between the presentation part of your

application (showing things to users) and the “business logic” part of your application

(doing stuff with the data users give you) is a good idea to keep your code maintainable

and easy to understand. If your form is anything more complicated than Example 9-3

you can benefit from splitting out the display logic into a template. There are lots of

swell template languages but to keep things simple in this book we use PHP itself as the

template language.

Reworked this way, Example 9-3 becomes three files: one that displays the form on a

get request, one that processes the results on a post request and one that decides what

to do.

Here’s the form display code:

<form action="<?= htmlentities($_SERVER['SCRIPT_NAME']) ?>" method="post"> What is your first name?

<input type="text" name="first_name" />

<input type="submit" value="Say Hello" />

</form>

Here’s the form processing logic:

Hello, <?= $_POST['first_name'] ?> !

And here’s the logic that decides what to do:

if ($_SERVER['REQUEST_METHOD'] == 'GET') {

include __DIR__ . '/getpost-get.php';

}

else {

include __DIR__ . '/getpost-post.php';

}

278 | Chapter 9: Forms

The deciding-what-to-do logic assumes that the form display code is saved as getpost-get.php, that the form processing code is saved as getpost-post.php and that all three files are in the same directory. The __DIR__ constant tells the program to look in the same

directory as the executing code for the files being included.

We’ll use this strategy of breaking things out into separate files in other recipes in this

chapter, too.

See Also

Recipe 9.12 for handling multipage forms.

9.2 Validating Form Input: Required Fields

Problem

You want to make sure a value has been supplied for a form element. For example, you

want to make sure a text box hasn’t been left blank.

Solution

Use filter_has_var() to see if the element exists in the appropriate input array, as in

Example 9-4.

 Example 9-4. Testing a required field

if (! filter_has_var(INPUT_POST, 'flavor')) {

print 'You must enter your favorite ice cream flavor.';

}

Discussion

The filter_has_var() function examines input as received by PHP before any possible

modification by your code. Consistent use of the various filter functions, explained in

this chapter, ensure you treat user input with the proper validation and sanitization.

The first argument to filter_has_var() tells it where to look. INPUT_POST examines

POST data in the request body. The other possible values are INPUT_GET (query string

variables), INPUT_COOKIE (cookies), INPUT_SERVER (server information that ends up in

$_SERVER), and INPUT_ENV (environment variables).

Different types of form elements cause different types of behavior in GET and POST

data when left empty. Blank text boxes, text areas, and file-upload boxes result in ele‐

ments whose value is a zero-length string. Unchecked checkboxes and radio buttons

don’t produce any elements in GET or POST data. Browsers generally force a selection

in a drop-down menu that only allows one choice, but drop-down menus that allow

9.2 Validating Form Input: Required Fields | 279

multiple choices and have no choices selected act like checkboxes—they don’t produce

any elements in GET or POST data.

What’s worse, requests don’t have to come from web browsers. Your PHP program may

receive a request from another program, a curious hacker constructing requests by

hand, or a malicious attacker building requests in an attempt to find holes in your

system. To make your code as robust as possible, always check that a particular element

exists in the appropriate set of input data before applying other validation strategies to

the element. Additionally, if the validation strategy assumes that the element is an array

of values (as in Example 9-14), ensure that the value really is an array by using the FILTER_REQUIRE_ARRAY filter flag.

Example 9-5 uses filter_has_var(), filter_input(), and strlen() for maximally

strict form validation.

 Example 9-5. Strict form validation

 // Making sure $_POST['flavor'] exists before checking its length

if (! (filter_has_var(INPUT_POST, 'flavor') &&

(strlen(filter_input(INPUT_POST, 'flavor')) > 0))) {

print 'You must enter your favorite ice cream flavor.';

}

 // $_POST['color'] is optional, but if it's supplied, it must be

 // more than 5 characters after being sanitized

if (filter_has_var(INPUT_POST, 'color') &&

(strlen(filter_input(INPUT_POST, 'color', FILTER_SANITIZE_STRING)) <= 5)) {

print 'Color must be more than 5 characters.';

}

 // Making sure $_POST['choices'] exists and is an array

if (! (filter_has_var(INPUT_POST, 'choices') &&

filter_input(INPUT_POST, 'choices', FILTER_DEFAULT,

FILTER_REQUIRE_ARRAY))) {

print 'You must select some choices.';

}

Calling filter_input() with only two arguments applies the default filter, which does

not modify any of the input data. In Example 9-5, nothing is done to transform any

submitted flavor value. The FILTER_SANITIZE_STRING filter, used against a submitted

color, strips HTML tags, removes binary non-ASCII characters, and encodes amper‐

sands. The FILTER_DEFAULT filter, applied to choices, is a way of explicitly specifying

the default filter. This is useful in the last part of Example 9-5 because, as a filter flag, FILTER_REQUIRE_ARRAY needs to be in the fourth argument to filter_input().

In a moment of weakness, you may be tempted to use empty() instead of strlen() to

test if a value has been entered in a text box. Succumbing to such weakness leads to

problems since the one character string 0 is false according to the rules of PHP’s

280 | Chapter 9: Forms

boolean calculations. This could lead to broken form validation if, for example, someone types 0 into a text box named children , causing $_POST['children'] to contain

0.Then empty($_POST['children']) is true—which, from a form validation perspec‐

tive, is wrong.

See Also

Documentation on filter_has_var(), filter_input(), a list of sanitization filters, a

list of filter flags; Recipe 9.5 for information about validating drop-down menus,

Recipe 9.6 for information about validating radio buttons, and Recipe 9.7 for information about validating checkboxes.

9.3 Validating Form Input: Numbers

Problem

You want to make sure a number is entered in a form input box. For example, you don’t

want someone to be able to say that her age is old enough or tangerine, but instead want values such as 13 or 56.

Solution

If you’re looking for an integer, use the FILTER_VALIDATE_INT filter, as shown in

Example 9-6.

 Example 9-6. Validating a number with FILTER_VALIDATE_INT

$age = filter_input(INPUT_POST, 'age', FILTER_VALIDATE_INT);

if ($age === false) {

print "Submitted age is invalid.";

}

If you’re looking for a decimal number, use the FILTER_VALIDATE_FLOAT filter, as shown

in Example 9-7.

 Example 9-7. Validating a number with FILTER_VALIDATE_FLOAT

$price = filter_input(INPUT_POST, 'price', FILTER_VALIDATE_FLOAT);

if ($price === false) {

print "Submitted price is invalid.";

}

9.3 Validating Form Input: Numbers | 281

Discussion

The FILTER_VALIDATE_INT and FILTER_VALIDATE_FLOAT filters cause filter_input() to

return a number of the specified type (int or float) if the input string represents an

appropriate number for the filter, or false otherwise.

There are a few filter flags that affect these number filters. The FILTER_FLAG_ALLOW_OC

TAL flag tells FILTER_VALIDATE_INT to accept octal notation. That is, a submitted string

of 017 will cause the integer 15 to be returned. Similarly, the flag FILTER_FLAG_AL

LOW_HEX allows a submitted string of 0x2f to be returned as the integer 47.

The FILTER_FLAG_ALLOW_THOUSAND modifies the behavior of the FILTER_VALI

DATE_FLOAT filter by allowing commas as a thousands separator. Without it, 5,252 will

be considered invalid. With it, 5,252 correctly validates as the float 5252.

If you’re a fan of regular expressions, those can be useful in certain validation situations.

Example 9-8 shows regular expressions that validate an integer and a decimal number.

 Example 9-8. Validating numbers with regular expressions

 // The pattern matches an optional—sign and then

 // at least one digit

if (! preg_match('/^-?\d+$/',$_POST['rating'])) {

print 'Your rating must be an integer.';

}

 // The pattern matches an optional—sign and then

 // optional digits to go before a decimal point

 // an optional decimal point

 // and then at least one digit

if (! preg_match('/^-?\d*\.?\d+$/',$_POST['temperature'])) {

print 'Your temperature must be a number.';

}

It is a common refrain among performance-tuning purists that regular expressions

should be avoided because they are comparatively slow. In this case, however, with such

simple regular expressions, they are about equally efficient as the filter functions. If

you’re more comfortable with regular expressions, or you’re using them in other vali‐

dation contexts as well, they can be a handy choice. The regular expression also allows

you to consider valid numbers, such as 782364.238723123, that cannot be stored as a

PHP float without losing precision. This can be useful with data such as a longitude or

latitude that you plan to store as a string.

See Also

Recipe 9.2 for information on validating required fields; a list of validation filters; a list

of filter flags.

282 | Chapter 9: Forms

9.4 Validating Form Input: Email Addresses

Problem

You want to know whether an email address a user has provided is valid.

Solution

Use the FILTER_VALIDATE_EMAIL filter, as show in Example 9-9. It tells you whether an email address is valid according to the rules in RFC 5321 (mostly).

 Example 9-9. Validating an email address

$email = filter_input(INPUT_POST, 'email', FILTER_VALIDATE_EMAIL);

if ($email === false) {

print "Submitted email address is invalid.";

}

Discussion

RFC 5321 consolidates a number of email-related RFCs and defines the standards for

a valid email address. The FILTER_VALIDATE_EMAIL filter uses a regular expression based

on those rules, although it explicitly does not support comments or folding whitespace.

The filter only checks that a particular address is syntactically correct. This is useful for

preventing a user from accidentally telling you that her email address is bingolov

er2261@example instead of bingolover2261@example.com. What it doesn’t tell you,

however, is what happens if you send a message to that address. Furthermore, it doesn’t

let you know that the person providing the email address is in control of the address.

For those sorts of validations, you need to send a confirmation message to the address.

The confirmation message can ask the user to take some affirmative task (reply to the

message, click on a link) to indicate they’re the same person that entered the address on

the form. Or, the confirmation message can tell the user what to do if she’s not the same

person that entered the address on the form — such as to click on a link in the messsage

to indicate the wrong address was entered. Recipe 8.19 demonstrates a system that sends an email message containing a link that the recipient must click on to confirm that she

provided the address.

See Also

RFC 5321

9.4 Validating Form Input: Email Addresses | 283

9.5 Validating Form Input: Drop-Down Menus

Problem

You want to make sure that a valid choice was selected from a drop-down menu gen‐

erated by the HTML <select/> element.

Solution

Use an array of values to generate the menu. Then validate the input by checking that

the value is in the array. Example 9-10 uses in_array() to do the validation.

 Example 9-10. Validating a drop-down menu with in_array()

 // Generating the menu

$choices = array('Eggs','Toast','Coffee');

echo "<select name='food'> \n";

foreach ($choices as $choice) {

echo "<option>$choice</option> \n";

}

echo "</select>";

 // Then, later, validating the menu

if (! in_array($_POST['food'], $choices)) {

echo "You must select a valid choice.";

}

The menu that Example 9-10 generates is:

<select name='food' >

<option> Eggs</option>

<option> Toast</option>

<option> Coffee</option>

</select>

<select name='food'>

<option>Eggs</option>

<option>Toast</option>

<option>Coffee</option>

</select>

To work with a menu that sets value attributes on each <option/> element, use ar

ray_key_exists() to validate the input, as shown in Example 9-11.

 Example 9-11. Validating a drop-down menu with array_key_exists()

 // Generating the menu

$choices = array('eggs' => 'Eggs Benedict',

'toast' => 'Buttered Toast with Jam',

'coffee' => 'Piping Hot Coffee');

echo "<select name='food'> \n";

foreach ($choices as $key => $choice) {

284 | Chapter 9: Forms

 echo "<option value='$key'>$choice</option> \n";

}

echo "</select>";

 // Then, later, validating the menu

if (! array_key_exists($_POST['food'], $choices)) {

echo "You must select a valid choice.";

}

The menu that Example 9-11 generates is:

<select name='food' >

<option value='eggs' > Eggs Benedict</option>

<option value='toast' > Buttered Toast with Jam</option>

<option value='coffee' > Piping Hot Coffee</option>

</select>

Discussion

The methods in Examples 9-10 and 9-11 differ in the kinds of menus that they generate.

Example 9-10 has a $choices array with automatic numeric keys and outputs <option/> elements. Example 9-11 has a $choices array with explicit keys and outputs <option/> elements with value attributes drawn from those keys.

In either case, the validation strategy is the same: make sure that the value submitted

for the form element is one of the allowed choices. For requests submitted by well-

behaved browsers, this validation rule never fails—web browsers generally don’t let you

make up your choice for a drop-down menu. Remember, though, that there’s nothing

requiring that requests to your PHP program come from a well-behaved web browser.

They could come from a buggy browser or from a bored 11-year-old with a copy of the

HTTP specification in one hand and a command-line telnet client in the other. Because

you always need to be mindful of malicious, hand-crafted HTTP requests, it’s important

to validate input even in circumstances where most users will never encounter an error.

See Also

Documentation on in_array() and on array_key_exists().

9.6 Validating Form Input: Radio Buttons

Problem

You want to make sure a valid radio button is selected from a group of radio buttons.

9.6 Validating Form Input: Radio Buttons | 285

Solution

Use an array of values to generate the menu. Then validate the input by checking that

the submitted value is in the array. Example 9-12 uses array_key_exists() to do the

validation.

 Example 9-12. Validating a radio button

 // Generating the radio buttons

$choices = array('eggs' => 'Eggs Benedict',

'toast' => 'Buttered Toast with Jam',

'coffee' => 'Piping Hot Coffee');

foreach ($choices as $key => $choice) {

echo "<input type='radio' name='food' value='$key'/> $choice \n";

}

 // Then, later, validating the radio button submission

if (! array_key_exists($_POST['food'], $choices)) {

echo "You must select a valid choice.";

}

Discussion

The radio button validation in Example 9-12 is very similar to the drop-down menu

validation in Example 9-11. They both follow the same pattern—define the data that

describes the choices, generate the appropriate HTML, and then use the defined data

to ensure that a valid value was submitted. The difference is in what HTML is generated.

One difference between drop-down menus and radio buttons is how defaults are han‐

dled. When the HTML doesn’t explicitly specify a default choice for a drop-down menu,

the first choice in the menu is used. However, when the HTML doesn’t explicitly specify

a default choice for a set of radio buttons, no choice is used as a default.

To ensure that one of a set of radio buttons is chosen in a well-behaved web browser,

give the default choice a checked="checked" attribute. In the following code, toast is

the default:

 // Defaults

$defaults['food'] = 'toast';

 // Generating the radio buttons

$choices = array('eggs' => 'Eggs Benedict',

'toast' => 'Buttered Toast with Jam',

'coffee' => 'Piping Hot Coffee');

foreach ($choices as $key => $choice) {

echo "<input type='radio' name='food' value='$key'";

if ($key == $defaults['food']) {

echo ' checked="checked"';

}

echo "/> $choice \n";

286 | Chapter 9: Forms

}

 // Then, later, validating the radio button submission

if (! array_key_exists($_POST['food'], $choices)) {

echo "You must select a valid choice.";

}

In addition, to guard against missing values in hand-crafted malicious requests, use

filter_has_var() to ensure that something was submitted for the radio button, as

described in Recipe 9.2.

See Also

Recipe 9.2 for information on validating required fields; documentation on ar

ray_key_exists().

9.7 Validating Form Input: Checkboxes

Problem

You want to make sure only valid checkboxes are checked.

Solution

For a single checkbox, ensure that if a value is supplied, it’s the correct one. If a value

isn’t supplied for the checkbox, then the box wasn’t checked. Example 9-13 figures out whether a checkbox was checked, unchecked, or had an invalid value submitted.

 Example 9-13. Validating a single checkbox

 // Generating the checkbox

$value = 'yes';

echo "<input type='checkbox' name='subscribe' value='yes'/> Subscribe?";

 // Then, later, validating the checkbox

if (filter_has_var(INPUT_POST, 'subscribe')) {

 // A value was submitted and it's the right one

if ($_POST['subscribe'] == $value) {

$subscribed = true;

} else {

 // A value was submitted and it's the wrong one

$subscribed = false;

print 'Invalid checkbox value submitted.';

}

} else {

 // No value was submitted

$subscribed = false;

}

9.7 Validating Form Input: Checkboxes | 287

if ($subscribed) {

print 'You are subscribed.';

} else {

print 'You are not subscribed';

}

For a group of checkboxes, use an array of values to generate the checkboxes. Then, use

array_intersect() to ensure that the set of submitted values is contained within the

set of acceptable values, as shown in Example 9-14.

 Example 9-14. Validating a group of checkboxes

 // Generating the checkboxes

$choices = array('eggs' => 'Eggs Benedict',

'toast' => 'Buttered Toast with Jam',

'coffee' => 'Piping Hot Coffee');

foreach ($choices as $key => $choice) {

echo "<input type='checkbox' name='food[]' value='$key'/> $choice \n";

}

 // Then, later, validating the radio button submission

if (array_intersect($_POST['food'], array_keys($choices)) != $_POST['food']) {

echo "You must select only valid choices.";

}

Discussion

For PHP to handle multiple checkbox values properly, the checkboxes’ name attribute

must end with [], as described in Recipe 9.17. Those multiple values are formatted in $_POST as an array. Since the checkbox name in Example 9-14 is food[],

$_POST['food'] holds the array of values from the checked boxes.

The array_intersect() function finds all of the elements in $_POST['food'] that are

also in array_keys($choices). That is, it filters the submitted choices

($_POST['food']), only allowing through values that are acceptable—keys in the

$choices array. If all of the values in $_POST['food'] are acceptable, then the result of

array_intersect($_POST['food'], array_keys($choices)) is an unmodified copy

of $_POST['food']. So if the result isn’t equal to $_POST['food'], something invalid

was submitted.

Checkboxes have the same issues with default values as do radio buttons. So just as with

radio buttons, use the rules in Recipe 9.2 to determine that something was submitted

for the checkbox before proceeding with further validation.

288 | Chapter 9: Forms

See Also

Recipe 9.2 for information about validating required fields; documentation on ar

ray_intersect().

9.8 Validating Form Input: Dates and Times

Problem

You want to make sure that a date or time a user entered is valid. For example, you want

to ensure that a user hasn’t attempted to schedule an event for the 45th of August or

provided a credit card that has already expired.

Solution

If your form provides month, day, and year as separate elements, plug those values into

checkdate(), as in Example 9-15. This tells you whether or not the month, day, and

year are valid.

 Example 9-15. Checking a particular date

if (! checkdate($_POST['month'], $_POST['day'], $_POST['year'])) {

print "The date you entered doesn't exist!";

}

To check that a date is before or after a particular value, convert the user-supplied values

to a timestamp, compute the timestamp for the threshhold date, and compare the two.

Example 9-16 checks that the supplied credit card expiration month and year are suf‐

ficiently in the future.

 Example 9-16. Checking credit card expiration

 // The beginning of the month in which the credit card expires

$expires = mktime(0, 0, 0, $_POST['month'], 1, $_POST['year']);

 // The beginning of the previous month

$lastMonth = strtotime('last month', $expires);

if (time() > $lastMonth) {

print "Sorry, that credit card expires too soon.";

}

Discussion

The checkdate() function is handy because it knows about leap year and how many

days are in each month, saving you from tedious comparisons of each component of

the date. For range validations—making sure a date or time is before, after, or between

other dates or times—it’s easiest to work with epoch timestamps.

9.8 Validating Form Input: Dates and Times | 289

See Also

Chapter 3 discusses the finer points of date and time handling.

9.9 Validating Form Input: Credit Cards

Problem

You want to make sure a user hasn’t entered a bogus credit card number.

Solution

The is_valid_credit_card() function in Example 9-17 tells you whether a provided

credit card number is syntactically valid.

 Example 9-17. Validating a credit card number

function is_valid_credit_card($s) {

 // Remove non-digits and reverse

$s = strrev(preg_replace('/[^\d]/','',$s));

 // compute checksum

$sum = 0;

for ($i = 0, $j = strlen($s); $i < $j; $i++) {

 // Use even digits as-is

if (($i % 2) == 0) {

$val = $s[$i];

} else {

 // Double odd digits and subtract 9 if greater than 9

$val = $s[$i] * 2;

if ($val > 9) { $val -= 9; }

}

$sum += $val;

}

 // Number is valid if sum is a multiple of ten

return (($sum % 10) == 0);

}

if (! is_valid_credit_card($_POST['credit_card'])) {

print 'Sorry, that card number is invalid.';

}

Discussion

Credit cards use the Luhn algorithm to prevent against accidental error. This algorithm,

which the is_valid_credit_card() function in Example 9-17 uses, does some ma‐

nipulations on the individual digits of the card number to tell whether the number is

acceptable.

290 | Chapter 9: Forms

Validating a credit card is a bit like validating an email address. Syntactic validation—

making sure the provided value is a sequence of characters that matches a standard—

is relatively easy. Semantic validation, however, is trickier. The credit card number 4111

1111 1111 1111 sails through the function in Example 9-17 but isn’t valid. It’s a well-known test number that looks like a Visa card number. (And, as such, is handy for using

in books when one needs an example.)

Just as strong email address validation requires external verification (usually by sending

a message to the address with a confirmation link in it), credit card validation requires

external validation by submitting the credit card number to a payment processor along

with associated account info (cardholder name and address) and making sure you get

back an approval.

Syntactic validation is good protection against inadvertent user typos but, obviously, is

not all you need to do when checking credit card numbers.

See Also

Recipe 9.4 for information about validating email addresses; for information about the

Luhn algorithm.

9.10 Preventing Cross-Site Scripting

Problem

You want to securely display user-entered data on an HTML page. For example, you

want to allow users to add comments to a blog post without worrying that HTML or

JavaScript in a comment will cause problems.

Solution

Pass user input through htmlentities() before displaying it, as in Example 9-18.

 Example 9-18. Escaping HTML

print 'The comment was: ';

print htmlentities($_POST['comment']);

Discussion

PHP has a pair of functions to escape HTML entities. The most basic is htmlspecial

chars(), which escapes four characters: < > " and &. Depending on optional parameters,

it can also translate ' instead of or in addition to ". For more complex encoding, use

htmlentities(); it expands on htmlspecialchars() to encode any character that has

an HTML entity. Example 9-19 shows htmlspecialchars() in action.

9.10 Preventing Cross-Site Scripting | 291

 Example 9-19. Escaping HTML entities

$html = "Stew's favorite movie. \n";

print htmlspecialchars($html); // double-quotes

print htmlspecialchars($html, ENT_QUOTES); // single- and double-quotes

print htmlspecialchars($html, ENT_NOQUOTES); // neither

Example 9-19 prints:

 Stew's favorite movie.

 Stew's favorite movie.

 Stew's favorite movie.

By default, both htmlentities() and htmlspecialchars() use the UTF-8 character

set (as of PHP 5.4.0. Before that, the default was ISO-8859-1). To use a different character

set, pass the character set as a third argument. For example, to use BIG5, call htmlenti

ties($string, ENT_QUOTES, "BIG5").

See Also

Recipes 18.4 and 19.12; documentation on htmlentities() and htmlspecialchars().

9.11 Processing Uploaded Files

Problem

You want to process a file uploaded by a user. For example, you’re building a photo-

sharing website and you want to store user-supplied photos.

Solution

Use the $_FILES array to get information about uploaded files. Example 9-20 saves an

uploaded file to the /tmp directory on the web server.

 Example 9-20. Uploading a file

<?php if ($_SERVER['REQUEST_METHOD'] == 'GET') { ?>

<form method="post" action="<?php echo htmlentities($_SERVER['SCRIPT_NAME']) ?>"

enctype="multipart/form-data">

<input type="file" name="document"/>

<input type="submit" value="Send File"/>

</form>

<?php } else {

if (isset($_FILES['document']) &&

($_FILES['document']['error'] == UPLOAD_ERR_OK)) {

$newPath = '/tmp/' . basename($_FILES['document']['name']);

if (move_uploaded_file($_FILES['document']['tmp_name'], $newPath)) {

print "File saved in $newPath";

} else {

292 | Chapter 9: Forms

 print "Couldn't move file to $newPath";

}

} else {

print "No valid file uploaded.";

}

}

Discussion

Uploaded files appear in the $_FILES superglobal array. For each file element in the

form, an array is created in $_FILES whose key is the file element’s name. For example,

the form in Example 9-20 has a file element named document, so $_FILES['docu

ment'] contains the information about the uploaded file. Each of these per-file arrays

has five elements:

 name The name of the uploaded file. This is supplied by the browser so it could be a full

pathname or just a filename.

 type The MIME type of the file, as supplied by the browser.

 size The size of the file in bytes, as calculated by the server.

 tmp_name

The location in which the file is temporarily stored on the server.

 error An error code describing what (if anything) went wrong with the file upload.

The possible values of the error element are:

 UPLOAD_ERR_OK (0)

Upload succeeded (no error).

 UPLOAD_ERR_INI_SIZE (1)

The size of the uploaded file is bigger than the value of the upload_max_filesize

configuration directive.

 UPLOAD_ERR_FORM_SIZE (2)

The size of the uploaded file is bigger than the value of the form’s MAX_FILE_SIZE

element.

 UPLOAD_ERR_PARTIAL (3)

Only part of the file was uploaded.

 UPLOAD_ERR_NO_FILE (4)

There was no file uploaded.

9.11 Processing Uploaded Files | 293

 UPLOAD_ERR_NO_TMP_DIR (6)

The upload failed because there was no temporary directory to store the file.

 UPLOAD_ERR_CANT_WRITE (7)

PHP couldn’t write the file to disk.

 UPLOAD_ERR_EXTENSION (8)

Upload stopped by a PHP extension.

The is_uploaded_file() function confirms that the file you’re about to process is a

legitimate file resulting from a user upload. Always check the tmp_name value before

processing it as any other file. This ensures that a malicious user can’t trick your code

into processing a system file as an upload.

You can also move the file to a permanent location; use move_uploaded_file(), as in

Example 9-20. It also does a check to make sure that the file being moved is really an uploaded file. Note that the value stored in tmp_name is the complete path to the file,

not just the base name. Use basename() to chop off the leading directories if needed.

Be sure to check that PHP has permission to read and write to both the directory in

which temporary files are saved (set by the upload_tmp_dir configuration directive)

and the location to which you’re trying to copy the file. PHP is often running under a

special username such as nobody or apache, instead of your personal username.

Processing files can be a subtle task because not all browsers submit the same informa‐

tion. It’s important to do it correctly, however, or you open yourself up to security prob‐

lems. You are, after all, allowing strangers to upload any file they choose to your machine;

malicious people may see this as an opportunity to crack into or crash the computer.

As a result, PHP has a number of features that allow you to place restrictions on uploaded

files, including the ability to completely turn off file uploads altogether. So if you’re

experiencing difficulty processing uploaded files, check that your file isn’t being rejected

because it seems to pose a security risk.

To do such a check, first make sure file_uploads is set to On inside your configuration

file. Next, make sure your file size isn’t larger than upload_max_filesize; this defaults

to 2 MB, which stops someone from trying to crash the machine by filling up the hard

drive with a giant file. Additionally, there’s a post_max_size directive, which controls

the maximum size of all the post data allowed in a single request; its initial setting is

8 MB.

From the perspective of browser differences and user error, if you don’t see what you

expect in $_FILES, make sure you add enctype="multipart/form-data" to the form’s

opening tag. PHP needs this to process the file information properly.

Also, if no file is selected for uploading, PHP sets tmp_name to the empty string. To be

sure a file was uploaded and isn’t empty (although blank files may be what you want,

294 | Chapter 9: Forms

depending on the circumstances), you need to make sure tmp_name is set and size is

greater than 0. Last, not all browsers necessarily send the same MIME type for a file;

what they send depends on their knowledge of different file types.

See Also

Documentation on handling file uploads and on basename().

9.12 Working with Multipage Forms

Problem

You want to use a form that displays more than one page and preserves data from one

page to the next. For example, your form is for a survey that has too many questions to

put them all on one page.

Solution

Use session tracking to store form information for each stage as well as a variable to

keep track of what stage to display. Example 9-21 displays the four files for a two page-form and showing the collected results.

 Example 9-21. Making a multipage form

The “deciding what to do” logic (stage.php):

 // Turn on sessions

session_start();

 // Figure out what stage to use

if (($_SERVER['REQUEST_METHOD'] == 'GET') || (! isset($_POST['stage']))) {

$stage = 1;

} else {

$stage = (int) $_POST['stage'];

}

 // Make sure stage isn't too big or too small

$stage = max($stage, 1);

$stage = min($stage, 3);

 // Save any submitted data

if ($stage > 1) {

foreach ($_POST as $key => $value) {

$_SESSION[$key] = $value;

}

}

include __DIR__ . "/stage-$stage.php";

9.12 Working with Multipage Forms | 295

The first page of the form (stage-1.php):

<form action='<?= htmlentities($_SERVER['SCRIPT_NAME']) ?>' method='post'>

Name: <input type='text' name='name'/>

Age: <input type='text' name='age'/>

<input type='hidden' name='stage' value='<?= $stage + 1 ?>'/>

<input type='submit' value='Next'/>

</form>

The second page of the form (stage-2.php):

<form action='<?= htmlentities($_SERVER['SCRIPT_NAME']) ?>' method='post'>

Favorite Color: <input type='text' name='color'/>

Favorite Food: <input type='text' name='food'/>

<input type='hidden' name='stage' value='<?= $stage + 1 ?>'/>

<input type='submit' value='Done'/>

The displaying-results page (stage-3.php):

Hello <?= htmlentities($_SESSION['name']) ?>.

You are <?= htmlentities($_SESSION['age']) ?> years old.

Your favorite color is <?= htmlentities($_SESSION['color']) ?>

and your favorite food is <?= htmlentities($_SESSION['food']) ?>.

Discussion

At the beginning of each stage in Example 9-21, all the submitted form variables are

copied into $_SESSION. This makes them available on subsequent requests, including

the code that runs in stage 3, which displays everything that’s been saved.

PHP’s sessions are perfect for this kind of task since all of the data in a session is stored

on the server. This keeps each request small—no need to resubmit stuff that’s been

entered on a previous stage—and reduces the validation overhead. You only have to

validate each piece of submitted data when it’s submitted.

See Also

Recipe 11.1 for information about session handling.

9.13 Redisplaying Forms with Inline Error Messages

Problem

When there’s a problem with data entered in a form, you want to print out error messages

alongside the problem fields, instead of a generic error message at the top of the form.

296 | Chapter 9: Forms

You also want to preserve the values the user entered in the form, so they don’t have to redo the entire thing.

Solution

As you validate, keep track of form errors in an array keyed by element name. Then,

when it’s time to display the form, print the appropriate error message next to each

element. To preserve user input, use the appropriate HTML idiom: a value attribute

(with entity encoding) for most <input/> elements, a checked='checked' attribute for

radio buttons and checkboxes, and a selected='selected' attribute on <option/>

elements in drop-down menus. Example 9-22 displays and validates a form with a text

box, a checkbox, and a drop-down menu.

 Example 9-22. Redisplaying a form with error messages and preserved input

The main logic and validation function:

 // Set up some options for the drop-down menu

$flavors = array('Vanilla','Chocolate','Rhinoceros');

 // Set up empty defaults when nothing is chosen.

$defaults = array('name' => '',

'age' => '',

'flavor' => array());

foreach ($flavors as $flavor) {

$defaults['flavor'][$flavor] = '';

}

if ($_SERVER['REQUEST_METHOD'] == 'GET') {

$errors = array();

include __DIR__ . '/show-form.php';

} else {

 // The request is a POST, so validate the form

$errors = validate_form();

if (count($errors)) {

 // If there were errors, redisplay the form with the errors,

 // preserving defaults

if (isset($_POST['name'])) { $defaults['name'] = $_POST['name']; }

if (isset($_POST['age'])) { $defaults['age'] = "checked='checked'"; }

foreach ($flavors as $flavor) {

if (isset($_POST['flavor']) && ($_POST['flavor'] == $flavor)) {

$defaults['flavor'][$flavor] = "selected='selected'";

}

}

include __DIR__ . '/show-form.php';

} else {

 // The form data was valid, so congratulate the user. In "real life"

 // perhaps here you'd redirect somewhere else or include another

 // file to display

print 'The form is submitted!';

}

9.13 Redisplaying Forms with Inline Error Messages | 297

}

function validate_form() {

global $flavors;

 // Start out with no errors

$errors = array();

 // name is required and must be at least 3 characters

if (! (isset($_POST['name']) && (strlen($_POST['name']) > 3))) {

$errors['name'] = 'Enter a name of at least 3 letters';

}

if (isset($_POST['age']) && ($_POST['age'] != '1')) {

$errors['age'] = 'Invalid age checkbox value.';

}

 // flavor is optional but if submitted must be in $flavors

if (isset($_POST['flavor']) && (! in_array($_POST['flavor'], $flavors))) {

$errors['flavor'] = 'Choose a valid flavor.';

}

return $errors;

}

The form (show-form.php):

<form action='<?= htmlentities($_SERVER['SCRIPT_NAME']) ?>' method='post'>

<dl>

<dt>Your Name:</dt>

<?php if (isset($errors['name'])) { ?>

<dd class="error"><?= htmlentities($errors['name']) ?></dd>

<?php } ?>

<dd><input type='text' name='name'

value='<?= htmlentities($defaults['name']) ?>'/></dd>

<dt>Are you over 18 years old?</dt>

<?php if (isset($errors['age'])) { ?>

<dd class="error"><?= htmlentities($errors['age']) ?></dd>

<?php } ?>

<dd><input type='checkbox' name='age' value='1'

<?= $defaults['age'] ?>/> Yes</dd>

<dt>Your favorite ice cream flavor:</dt>

<?php if (isset($errors['flavor'])) { ?>

<dd class="error"><?= htmlentities($errors['flavor']) ?></dd>

<?php } ?>

<dd><select name='flavor'>

<?php foreach ($flavors as $flavor) { ?>

<option <?= isset($defaults['flavor'][$flavor]) ?

$defaults['flavor'][$flavor] :

"" ?>><?= htmlentities($flavor) ?></option>

<?php } ?>

</select></dd>

</dl>

<input type='submit' value='Send Info'/>

</form>

298 | Chapter 9: Forms

Discussion

When a form is submitted with invalid data, it’s more pleasant for the user if the form

is redisplayed with error messages in appropriate places rather than a generic the form

 is invalid message at the top of the form. The validate_form() function in

Example 9-22 builds up an array of error messages that the form display code uses to

print the messages in the right places.

Extending Example 9-22 is a matter of expanding the checks in validate_form() to

handle the appropriate validation needs of your form and including the correct HTML

generation in show-form.php so that the form includes the input elements you want.

See Also

Recipes 9.2 to 9.9 for various form validation strategies.

9.14 Guarding Against Multiple Submissions of the Same

Form

Problem

You want to prevent a user from submitting the same form more than once.

Solution

Include a hidden field in the form with a unique value. When validating the form, check

if a form has already been submitted with that value. If it has, reject the submission. If

it hasn’t, process the form and record the value for later use. Additionally, use JavaScript

to disable the form Submit button once the form has been submitted.

Example 9-23 uses the uniqid() and md5() functions to insert a unique ID field in a

form. It also sets the form’s onsubmit handler to a small bit of JavaScript that disables

the Submit button once the form’s been submitted.

 Example 9-23. Insert a unique ID into a form

<form method="post" action="<?php echo $_SERVER['SCRIPT_NAME'] ?>"

onsubmit="document.getElementById('submit-button').disabled = true;">

<!-- insert all the normal form elements you need -->

<input type='hidden' name='token' value='<?= md5(uniqid()) ?>'/>

<input type='submit' value='Save Data' id='submit-button'/>

</form>

Example 9-24 checks the submitted token against saved data in an SQLite database to

see if the form has already been submitted.

9.14 Guarding Against Multiple Submissions of the Same Form | 299

 Example 9-24. Checking a form for resubmission

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

$db = new PDO('sqlite:/tmp/formjs.db');

$db->beginTransaction();

$sth = $db->prepare('SELECT * FROM forms WHERE token = ?');

$sth->execute(array($_POST['token']));

if (count($sth->fetchAll())) {

print "This form has already been submitted!";

$db->rollBack();

} else {

 /* Validation code for the rest of the form goes here --

 * validate everything before inserting the token */

$sth = $db->prepare('INSERT INTO forms (token) VALUES (?)');

$sth->execute(array($_POST['token']));

$db->commit();

print "The form is submitted successfully.";

}

}

Discussion

For a variety of reasons, users often resubmit a form. Usually it’s a slip-of-the-mouse:

double-clicking the Submit button. They may hit their web browser’s Back button to

edit or recheck information, but then they rehit Submit instead of Forward. It can be

intentional: they’re trying to stuff the ballot box for an online survey or sweepstakes.

Our Solution prevents the non-malicious mistake and can slow down the malicious

user. It won’t, however, eliminate all fraudulent use: more complicated work is required

for that such as adding a CAPTCHA or other verification question to the form.

The Solution does prevent your database from being cluttered with too many copies of

the same record. By generating a token that’s placed in the form, you can uniquely

identify that specific instance of the form, even when cookies are disabled. The uniqid()

function generates an acceptable one-time token. The md5() function doesn’t add any

additional randomness to the token, but restricts the characters that could be in it. The

results of uniqid() can be a mix of different letters and other characters. The results of

md5() consist only of digits and the letters abcdef. For English-speaking users at least,

this ensures that the token doesn’t contain any naughty words.

It’s tempting to avoid generating a random token and instead use a number one greater

than the number of records already in your database table. There are (at least) two

problems with this method. First, it creates a race condition. What happens when a

second person starts the form before the first person has completed it? The second form

will then have the same token as the first, and conflicts will occur. This can be worked

around by creating a new blank record in the database when the form is requested, so

the second person will get a number one higher than the first. However, this can lead

to empty rows in the database if users opt not to complete the form.

300 | Chapter 9: Forms

The other reason not do this is because it makes it trivial to edit another record in the database by manually adjusting the ID to a different number. Depending on your security settings, a fake get or post submission allows the data to be altered without

difficulty. A random token, however, can’t be guessed merely by moving to a different

integer.

See Also

Recipe 18.9 for more details on verifying data with hashes; documentation on uniqid()

and on md5(). An easy to implement CAPTCHA is available from Google.

9.15 Preventing Global Variable Injection

Problem

You are using an old version of PHP and want to access form input variables without

allowing malicious users to set arbitrary global variables in your program.

Solution

The easiest solution is to use PHP version 5.4.0 or later. Starting with that version, the

register_globals configuration directive—the source of this global variable injection

problem—is removed.

If you’re using an earlier version of PHP, disable the register_globals configuration

directive and access variables only from the $_GET, $_POST, and $_COOKIE arrays to make

sure you know exactly where your variables are coming from.

To do this, make sure register_globals = Off appears in your php.ini file. If you do

not have permission to write to your php.ini file and it has register_globals turned

on, then you need to have a serious conversation with your system administrator or find

a new hosting provider that is not relying on incorrect settings which are more than a

decade old. If you are using PHP with Apache and Apache is configured to use per-

directory .htaccess files, you can turn register_globals by adding php_flag reg

ister_globals off to your .htaccess file.

Discussion

When register_globals is set to on, external variables, including those from forms

and cookies, are imported directly into the global namespace. This is a great conve‐

nience, but it can also open up some security holes if you’re not very diligent about

checking your variables and where they’re defined. Why? Because there may be a vari‐

able you use internally that isn’t supposed to be accessible from the outside but has its

value rewritten without your knowledge.

9.15 Preventing Global Variable Injection | 301

Example 9-25 contains a simple example: imagine you have a page in which a user enters a username and password. If they are validated, you return her user identification number and use that numerical identifier to look up and print out her personal information.

 Example 9-25. Insecure register_globals code

$username = $dbh->quote($_GET['username']);

$password = $dbh->quote($_GET['password']);

$sth = $dbh->query("SELECT id FROM users WHERE username = $username AND

password = $password");

if (1 == $sth->numRows()) {

$row = $sth->fetchRow(DB_FETCHMODE_OBJECT);

$id = $row->id;

} else {

"Print bad username and password";

}

if (! empty($id)) {

$sth = $dbh->query("SELECT * FROM profile WHERE id = $id");

}

Normally, $id is set only by your program and is a result of a verified database lookup.

However, if someone alters the query string, and passes in a value for $id, you’ll have

problems. With register_globals enabled, your script could still execute the second

database query and return results even after a bad username and password lookup.

Without register_globals, $id remains unset because only $_REQUEST['id'] and

$_GET['id'] are set.

Of course, there are other ways to solve this problem, even when using register_glob

als. You can restructure your code not to allow such a loophole. One way to do this is

in Example 9-26.

 Example 9-26. Avoiding register_globals problems

$sth = $dbh->query("SELECT id FROM users WHERE username = $username AND

password = $password");

if (1 == $sth->numRows()) {

$row = $sth->fetchRow(DB_FETCHMODE_OBJECT);

$id = $row->id;

if (! empty($id)) {

$sth = $dbh->query("SELECT * FROM profile WHERE id = $id");

}

} else {

"Print bad username and password";

}

302 | Chapter 9: Forms

In Example 9-26 $id has a value only when it’s been explicitly set from a database call.

Sometimes, however, it is difficult to do this because of how your program is laid out.

Another solution is to manually unset() or initialize all variables at the top of your

script. This removes the bad $id value before it gets a chance to affect your code. How‐

ever, because PHP doesn’t require variable initialization, it’s possible to forget to do this

in one place; a bug can then slip in without a warning from PHP.

For all of these reasons, it’s best to just turn register_globals off.

See Also

Documentation on register_globals.

9.16 Handling Remote Variables with Periods in Their

Names

Problem

You want to process a variable with a period in its name, but when a form is submitted,

you can’t find the variable in $_GET or $_POST.

Solution

Replace the period in the variable’s name with an underscore. For example, if you have

a form input element named hot.dog, you access it inside PHP as the variable

$_GET['hot_dog'] or $_POST['hot_dog'].

Discussion

During PHP’s pimply adolescence when register_globals was on by default, a form

variable named hot.dog couldn’t become $hot.dog—periods aren’t allowed in variable

names. To work around that, the . was changed to _. While $_GET['hot.dog'] and

$_POST['hot.dog'] don’t have this problem, the translation still happens for legacy and

consistency reasons, no matter your register_globals setting.

You usually run into this translation when there’s an element of type image in a form

that’s used to submit the form. For example, a form element such as <input type="im

age" name="locations" src="locations.gif" />, when clicked, submits the form.

The x and y coordinates of the click are submitted as locations.x and locations.y.

So in PHP, to find where a user clicked, you need to check $_POST['locations_x'] and

$_POST['locations_y'].

9.16 Handling Remote Variables with Periods in Their Names | 303

See Also

Documentation on variables from outside PHP.

9.17 Using Form Elements with Multiple Options

Problem

You have form elements that let a user select multiple choices, such as a drop-down

menu or a group of checkboxes, but PHP sees only one of the submitted values.

Solution

End the form element’s name with a pair of square brackets ([]). Example 9-27 shows

a properly named group of checkboxes.

 Example 9-27. Naming a checkbox group

<input type="checkbox" name="boroughs[]" value="bronx"> The Bronx

<input type="checkbox" name="boroughs[]" value="brooklyn"> Brooklyn

<input type="checkbox" name="boroughs[]" value="manhattan"> Manhattan

<input type="checkbox" name="boroughs[]" value="queens"> Queens

<input type="checkbox" name="boroughs[]" value="statenisland"> Staten Island Then, treat the submitted data as an array inside of $_GET or $_POST, as in Example 9-28.

 Example 9-28. Handling a submitted checkbox group

print 'I love ' . join(' and ', $_POST['boroughs']) . '!';

Discussion

Putting [] at the end of the form element name tells PHP to treat the incoming data as

an array instead of a scalar. When PHP sees more than one submitted value assigned

to that variable, it keeps them all. If the first three boxes in Example 9-27 were checked, it’s as if you’d written the code in Example 9-29 at the top of your program.

 Example 9-29. Code equivalent of a multiple-value form element submission

$_POST['boroughs'][] = "bronx";

$_POST['boroughs'][] = "brooklyn";

$_POST['boroughs'][] = "manhattan";

A similar syntax also works with multidimensional arrays. For example, you can have

a checkbox such as <input type="checkbox" name="population[NY][NYC]" val

ue="8336697">. If checked, this form element sets $_POST['population']['NY']

['NYC'] to 8336697.

304 | Chapter 9: Forms

See Also

The introduction to Chapter 4 for more on arrays.

9.18 Creating Drop-Down Menus Based on the Current

Date

Problem

You want to create a series of drop-down menus that are based automatically on the

current date.

Solution

Create a DateTime object and then loop through the days you care about, modifying the

object with its modify() method.

Example 9-30 generates <option/> values for today and the six days that follow. In this case, ‘today’ is April 8, 2013.

 Example 9-30. Generating date-based drop-down menu options

$options = array();

$when = new DateTime();

 // print out one week's worth of days

for ($i = 0; $i < 7; ++$i) {

$options[$when->getTimestamp()] = $when->format("D, F j, Y");

$when->modify("+1 day");

}

foreach ($options as $value => $label) {

print "<option value='$value'>$label</option> \n";

}

When run on April 8, 2013, Example 9-30 prints:

<option value='1365450257'>Mon, April 8, 2013</option>

<option value='1365536657'>Tue, April 9, 2013</option>

<option value='1365623057'>Wed, April 10, 2013</option>

<option value='1365709457'>Thu, April 11, 2013</option>

<option value='1365795857'>Fri, April 12, 2013</option>

<option value='1365882257'>Sat, April 13, 2013</option>

<option value='1365968657'>Sun, April 14, 2013</option>

9.18 Creating Drop-Down Menus Based on the Current Date | 305

Discussion

In Example 9-30 we set the value for each date as its Unix timestamp representation

because we find this easier to handle inside our programs. Of course, you can use any

format you find most useful and appropriate.

Using DateTime#modify() and DateTime#format() frees you from any concerns about

time zone math. Whatever the appropriate summer time transitions are for the relevant

time zone will be handled properly.

See Also

Chapter 3, particularly Recipe 3.9; documentation on DateTime.

306 | Chapter 9: Forms

CHAPTER 10

Database Access

10.0 Introduction

Databases are central to many web applications. A database can hold almost any col‐

lection of information you may want to search and update, such as a user list, a product

catalog, or recent headlines. One reason why PHP is such a great web programming

language is its extensive database support. PHP can interact with just about any database

you can think of, some relational and some not. It also has ODBC support, so even if

your favorite database isn’t in the list, as long as it supports ODBC, you can use it with

PHP.

DBM databases, discussed in Recipe 10.1, are simple, robust, and efficient flat files but limit the structure of your data to key/value pairs. If your data can be organized as a

mapping of keys to values, DBM databases are a great choice.

PHP really shines, though, when paired with an SQL database. This combination is used

for most of the recipes in this chapter. SQL databases can be complicated, but they are

extremely powerful. To use PHP with a particular SQL database, PHP must be explicitly

told to include support for that database when it is compiled. If PHP is built to support

dynamic module loading, the database support can also be built as a dynamic module.

The SQL database examples in this chapter use PHP 5’s PDO database access layer. With

PDO, you use the same PHP functions no matter what database engine you’re talking

to. Although the syntax of the SQL may differ from database to database, the PHP code

remains similar. In this regard, PDO offers data access abstraction, not total database

abstraction. There are other libraries that attempt to solve the total database abstraction

problem—they hide the implementation details of different databases such as date han‐

dling and column types behind a layer of code. Although this sort of abstraction can

save you some work if you’re writing software that is intended to be used with lots of

different types of databases, it can cause other problems. When you write SQL focused

307

on a particular type of database, you can take advantage of that database’s features for maximum performance.

PHP 5 comes bundled with SQLite, a powerful database that doesn’t require a separate

server. It’s a great choice when you have a moderate amount of traffic and don’t want to

deal with the hassles of running a database server. Recipe 10.2 discusses the ins and outs

of SQLite.

Many SQL examples in this chapter use a table of information about zodiac signs. The

table’s structure is shown in Example 10-1. The data in the table is shown in

Example 10-2.

 Example 10-1. Sample table structure

CREATE TABLE zodiac (

id INT UNSIGNED NOT NULL,

sign CHAR(11),

symbol CHAR(13),

planet CHAR(7),

element CHAR(5),

start_month TINYINT,

start_day TINYINT,

end_month TINYINT,

end_day TINYINT,

PRIMARY KEY(id)

);

 Example 10-2. Sample table data

INSERT INTO zodiac VALUES (1,'Aries','Ram','Mars','fire',3,21,4,19);

INSERT INTO zodiac VALUES (2,'Taurus','Bull','Venus','earth',4,20,5,20);

INSERT INTO zodiac VALUES (3,'Gemini','Twins','Mercury','air',5,21,6,21);

INSERT INTO zodiac VALUES (4,'Cancer','Crab','Moon','water',6,22,7,22);

INSERT INTO zodiac VALUES (5,'Leo','Lion','Sun','fire',7,23,8,22);

INSERT INTO zodiac VALUES (6,'Virgo','Virgin','Mercury','earth',8,23,9,22);

INSERT INTO zodiac VALUES (7,'Libra','Scales','Venus','air',9,23,10,23);

INSERT INTO zodiac VALUES (8,'Scorpio','Scorpion','Mars','water',10,24,11,21);

INSERT INTO zodiac VALUES (9,'Sagittarius','Archer','Jupiter','fire',11,22,12,↵

21);

INSERT INTO zodiac VALUES (10,'Capricorn','Goat','Saturn','earth',12,22,1,19);

INSERT INTO zodiac VALUES (11,'Aquarius','Water Carrier','Uranus','air',1,20,2,↵

18);

INSERT INTO zodiac VALUES (12,'Pisces','Fishes','Neptune','water',2,19,3,20);

Recipes 10.3 through 10.8 cover the basics of connecting to a database server, sending queries and getting the results back, as well as using queries that change the data in the

database. Because Recipe 10.3 discusses how to connect to a database, the code in the subsequent recipes omits those lines so they can focus on the specifics of queries and

result handling.

308 | Chapter 10: Database Access

Typical PHP programs capture information from HTML form fields and store that

information in the database. Some characters, such as the apostrophe and backslash,

have special meaning in SQL, so you have to be careful if your form data contains those

characters.

Versions of PHP prior to 5.4.0 have a feature called magic quotes that attempts to make

this easier. When the configuration setting magic_quotes_gpc is on, variables coming

from get requests, post requests, and cookies have single quotes, double quotes, back‐

slashes, and nulls escaped with a backslash. You can also turn on magic_quotes_run

time to automatically escape quotes, backslashes, and nulls from external sources such

as database queries or text files. For example, if magic_quotes_runtime is on and you

read a file into an array with file(), the special characters in that array are backslash-

escaped.

Unfortunately, magic quotes usually turns out to be more like annoying quotes. If you

want to use submitted form data in any other context than an SQL query (for example,

displaying it in a page), you need to undo the escaping so the page looks right. If you’re

using a version of PHP before 5.4.0, set the various magic quotes–related configuration

directives mentioned to off. The right way to handle proper escaping of user input for

database queries is discussed in Recipe 10.7, which explains PDO’s bound parameters support. Additionally, Recipe 10.9 discusses escaping special characters in queries in more detail. General debugging techniques you can use to handle errors resulting from

database queries are covered in Recipe 10.10.

The next set of recipes cover database tasks that are more involved than just simple

queries. Recipe 10.11 shows how to automatically generate unique ID values you can

use as record identifiers. Recipe 10.12 covers building queries at runtime from a list of fields. This makes it easier to manage INSERT and UPDATE queries with a lot of columns.

Recipe 10.13 demonstrates how to display links that let you page through a result set, displaying a few records on each page. To speed up your database access, you can cache

queries and their results, as explained in Recipe 10.14.

Recipe 10.15 shows techniques for managing access to a single database connection

from multiple places in a large program. Then, Recipe 10.16 ties together some of the topics discussed in the chapter in a complete program that stores a threaded message

board in a database.

In addition to SQL databases, PHP can work with a large number of so-called NoSQL

databases—data stores that offer different models of how you organize and query for

your information. There are too many NoSQL databases out there to cover them all

here, so we talk about one, Redis, in Recipe 10.17.

10.0 Introduction | 309

10.1 Using DBM Databases

Problem

You have data that can be easily represented as key/value pairs, want to store it safely,

and have very fast lookups based on those keys.

Solution

Use the DBA abstraction layer to access a DBM-style database, as shown in

Example 10-3.

 Example 10-3. Using a DBM database

$dbh = dba_open(__DIR__ . '/fish.db','c','db4') or die($php_errormsg);

 // retrieve and change values

if (dba_exists('flounder',$dbh)) {

$flounder_count = dba_fetch('flounder',$dbh);

$flounder_count++;

dba_replace('flounder',$flounder_count, $dbh);

print "Updated the flounder count.";

} else {

dba_insert('flounder',1, $dbh);

print "Started the flounder count.";

}

 // no more tilapia

dba_delete('tilapia',$dbh);

 // what fish do we have?

for ($key = dba_firstkey($dbh); $key !== false; $key = dba_nextkey($dbh)) {

$value = dba_fetch($key, $dbh);

print "$key: $value\n";

}

dba_close($dbh);

Discussion

PHP can support many DBM backends, such as GDBM, NDBM, QDBM, DB2, DB3,

DB4, DBM, and CDB. The DBA abstraction layer lets you use the same functions on

any DBM backend. All these backends store key/value pairs. You can iterate through all

the keys in a database, retrieve the value associated with a particular key, and find if a

particular key exists. Both the keys and the values are strings.

The program in Example 10-4 maintains a list of usernames and passwords in a DBM

database. The username is the first command-line argument, and the password is the

second argument. If the given username already exists in the database, the password is

310 | Chapter 10: Database Access

changed to the given password; otherwise, the user and password combination are

added to the database.

 Example 10-4. Tracking users and passwords with a DBM database

$user = $argv[1];

$password = $argv[2];

$data_file = '/tmp/users.db';

$dbh = dba_open($data_file,'c','db4') or die("Can't open db $data_file");

if (dba_exists($user,$dbh)) {

print "User $user exists. Changing password.";

} else {

print "Adding user $user.";

}

dba_replace($user,$password,$dbh) or die("Can't write to database $data_file");

dba_close($dbh);

The dba_open() function returns a handle to a DBM file (or false on error). It takes

three arguments. The first is the filename of the DBM file. The second argument is the

mode for opening the file. A mode of r opens an existing database for read-only access,

and w opens an existing database for read-write access. The c mode opens a database

for read-write access and creates the database if it doesn’t already exist. Last, n does the

same thing as c, but if the database already exists, n empties it. The third argument to

dba_open() is which DBM handler to use; this example uses db4.

To find what DBM handlers are compiled into your PHP installation, use the dba_han

dlers() function. It returns an array of the supported handlers.

To find if a key has been set in a DBM database, use dba_exists(). It takes two argu‐

ments: a string key and a DBM file handle. It looks for the key in the DBM file and

returns true if it finds the key (or false if it doesn’t). The dba_replace() function takes

three arguments: a string key, a string value, and a DBM file handle. It puts the key/

value pair into the DBM file. If an entry already exists with the given key, it overwrites

that entry with the new value.

To close a database, call dba_close(). A DBM file opened with dba_open() is auto‐

matically closed at the end of a request, but you need to call dba_close() explicitly to

close persistent connections created with dba_popen().

You can use dba_firstkey() and dba_nextkey() to iterate through all the keys in a

DBM file and dba_fetch() to retrieve the values associated with each key. The program

in Example 10-5 calculates the total length of all passwords in a DBM file.

10.1 Using DBM Databases | 311

 Example 10-5. Calculating password length with DBM

$data_file = '/tmp/users.db';

$total_length = 0;

$dbh = dba_open($data_file,'r','db4');

$dbh or die("Can't open database $data_file");

$k = dba_firstkey($dbh);

while ($k) {

$total_length += strlen(dba_fetch($k,$dbh));

$k = dba_nextkey($dbh);

}

print "Total length of all passwords is $total_length characters.";

dba_close($dbh);

The dba_firstkey() function initializes $k to the first key in the DBM file. Each time

through the while loop, dba_fetch() retrieves the value associated with key $k and

$total_length is incremented by the length of the value (calculated with strlen()).

With dba_nextkey(), $k is set to the next key in the file.

One way to store complex data in a DBM database is with serialize(). Example 10-6

stores structured user information in a DBM database by serializing the structure before

storing it and unserializing when retrieving it.

 Example 10-6. Storing structured data in a DBM database

$dbh = dba_open('users.db','c','db4') or die($php_errormsg);

 // read in and unserialize the data

$exists = dba_exists($_POST['username'], $dbh);

if ($exists) {

$serialized_data = dba_fetch($_POST['username'], $dbh) or die($php_errormsg);

$data = unserialize($serialized_data);

} else {

$data = array();

}

 // update values

if ($_POST['new_password']) {

$data['password'] = $_POST['new_password'];

}

$data['last_access'] = time();

 // write data back to file

if ($exists) {

dba_replace($_POST['username'],serialize($data), $dbh);

} else {

dba_insert($_POST['username'],serialize($data), $dbh);

}

312 | Chapter 10: Database Access

dba_close($dbh);

Though Example 10-6 can store multiple users’ data in the same file, you can’t search for, for example, a user’s last access time, without looping through each key in the file.

If you need to do those kinds of searches, put your data in an SQL database.

Using a DBM database is a step up from a plain-text file but it lacks most features of an

SQL database. Your data structure is limited to key/value pairs, and locking robustness

varies greatly depending on the DBM handler. Still, DBM handlers can be a good choice

for heavily accessed read-only data.

See Also

Recipe 5.7 discusses serializing data; documentation on the DBA functions; for more

information on the DB4 DBM handlers, see the Oracle website.

10.2 Using an SQLite Database

Problem

You want to use a relational database that doesn’t involve a separate server process.

Solution

Use SQLite. This robust, powerful database program is easy to use and doesn’t require

running a separate server. An SQLite database is just a file. Example 10-7 creates an SQLite database, populates it with a table if it doesn’t already exist, and then puts some

data into the table.

 Example 10-7. Creating an SQLite database

<programlisting>$db = new PDO('sqlite:/tmp/zodiac');

 // Create the table and insert the data atomically

$db->beginTransaction();

 // Try to find a table named 'zodiac'

$q = $db->query("SELECT name FROM sqlite_master WHERE type = 'table'" .

" AND name = 'zodiac'");

 // If the query didn't return a row, then create the table

 // and insert the data

if ($q->fetch() === false) {

$db->exec(<<<_SQL_

CREATE TABLE zodiac (

id INT UNSIGNED NOT NULL,

sign CHAR(11),

symbol CHAR(13),

planet CHAR(7),

10.2 Using an SQLite Database | 313

 element CHAR(5),

start_month TINYINT,

start_day TINYINT,

end_month TINYINT,

end_day TINYINT,

PRIMARY KEY(id)

)

SQL

);

 // The individual SQL statements

$sql=<<<_SQL_

INSERT INTO zodiac VALUES (1,'Aries','Ram','Mars','fire',3,21,4,19);

INSERT INTO zodiac VALUES (2,'Taurus','Bull','Venus','earth',4,20,5,20);

INSERT INTO zodiac VALUES (3,'Gemini','Twins','Mercury','air',5,21,6,21);

INSERT INTO zodiac VALUES (4,'Cancer','Crab','Moon','water',6,22,7,22);

INSERT INTO zodiac VALUES (5,'Leo','Lion','Sun','fire',7,23,8,22);

INSERT INTO zodiac VALUES (6,'Virgo','Virgin','Mercury','earth',8,23,9,22);

INSERT INTO zodiac VALUES (7,'Libra','Scales','Venus','air',9,23,10,23);

INSERT INTO zodiac VALUES (8,'Scorpio','Scorpion','Mars','water',10,24,11,21);

INSERT INTO zodiac VALUES (9,'Sagittarius','Archer','Jupiter','fire',11,22,12,<?pdf-cr?>21);

INSERT INTO zodiac VALUES (10,'Capricorn','Goat','Saturn','earth',12,22,1,19);

INSERT INTO zodiac VALUES (11,'Aquarius','Water Carrier','Uranus','air',1,20,2,<?pdf-cr?>18);

INSERT INTO zodiac VALUES (12,'Pisces','Fishes','Neptune','water',2,19,3,20);

SQL;

// Chop up each line of SQL and execute it

foreach (explode("\n",trim($sql)) as $q) {

$db->exec(trim($q));

}

$db->commit();

} else {

// Nothing happened, so end the transaction

$db->rollback();

}</programlisting>

Discussion

Because SQLite databases are just regular files, all the precautions and gotchas that apply

to file access in PHP apply to SQLite databases. The user that your PHP process is

running as must have permission to read from and write to the location where the SQLite

database is. It is an extremely good idea to make this location somewhere outside your

web server’s document root. If the database file can be read directly by the web server,

then a user who guesses its location can retrieve the entire thing, bypassing any restric‐

tions you’ve built into the queries in your PHP programs.

In PHP, the sqlite extension provides regular SQLite access as well as a PDO driver

for SQLite version 2. The pdo_sqlite extension provides a PDO driver for SQLite

version 3. If you’re starting from scratch, use the PDO driver for SQLite 3, because it’s

314 | Chapter 10: Database Access

faster and has more features. If you already have an SQLite 2 database, consider using

the PDO drivers to migrate to SQLite 3.

The sqlite_master table referenced in Example 10-7 is special system table that holds information about other tables—so it’s useful in determining whether a particular table

exists yet. Other databases have their own ways of providing this sort of system metadata.

See Also

Documentation on SQLite and on sqlite_master.

10.3 Connecting to an SQL Database

Problem

You want access to a SQL database to store or retrieve information. Without a database,

dynamic websites aren’t very dynamic.

Solution

Create a new PDO object with the appropriate connection string. Example 10-8 shows

PDO object creation for a few different kinds of databases.

 Example 10-8. Connecting with PDO

 // MySQL expects parameters in the string

$mysql = new PDO('mysql:host=db.example.com', $user, $password);

 // Separate multiple parameters with ;

$mysql = new PDO('mysql:host=db.example.com;port=31075', $user, $password);

$mysql = new PDO('mysql:host=db.example.com;port=31075;dbname=food', $user,

$password);

 // Connect to a local MySQL Server

$mysql = new PDO('mysql:unix_socket=/tmp/mysql.sock', $user, $password);

 // PostgreSQL also expects parameters in the string

$pgsql = new PDO('pgsql:host=db.example.com', $user, $password);

 // Separate multiple parameters with ' ' or ;

$pgsql = new PDO('pgsql:host=db.example.com port=31075', $user, $password);

$pgsql = new PDO('pgsql:host=db.example.com;port=31075;dbname=food', $user,

$password);

 // You can put the user and password in the DSN if you like.

$pgsql = new PDO("pgsql:host=db.example.com port=31075 dbname=food user=$user

password=$password");

 // Oracle

 // If a database name is defined in tnsnames.ora, just put that in the DSN

 // as the value of the dbname parameter

$oci = new PDO('oci:dbname=food', $user, $password);

 // Otherwise, specify an Instant Client URI

10.3 Connecting to an SQL Database | 315

$oci = new PDO('oci:dbname=//db.example.com:1521/food', $user, $password);

 // Sybase (If PDO is using Sybase's ct-lib library)

$sybase = new PDO('sybase:host=db.example.com;dbname=food', $user, $password);

 // Microsoft SQL Server (If PDO is using MS SQL Server libraries)

$mssql = new PDO('mssql:host=db.example.com;dbname=food', $user, $password);

 // DBLib (for FreeTDS)

$dblib = new PDO('dblib:host=db.example.com;dbname=food', $user, $password);

 // ODBC -- a predefined connection

$odbc = new PDO('odbc:food');

 // ODBC -- an ad-hoc connection. Provide whatever the underlying driver needs

$odbc = new PDO('odbc:Driver={Microsoft Access Driver

(*.mdb)};DBQ=C:\\data\\food.mdb;Uid=Chef');

 // SQLite just expects a filename -- no user or password

$sqlite = new PDO('sqlite:/usr/local/zodiac.db');

$sqlite = new PDO('sqlite:c:/data/zodiac.db');

 // SQLite can also handle in-memory, temporary databases

$sqlite = new PDO('sqlite::memory:');

 // SQLite v2 DSNs look similar to v3

$sqlite2 = new PDO('sqlite2:/usr/local/old-zodiac.db');

Discussion

If all goes well, the PDO constructor returns a new object that can be used for querying

the database. If there’s a problem, a PDOException is thrown.

As you can see from Example 10-8, the format of the DSN is highly dependent on which

kind of database you’re attempting to connect to. In general, though, the first argument

to the PDO constructor is a string that describes the location and name of the database

you want and the second and third arguments are the username and password to con‐

nect to the database with. Note that to use a particular PDO backend, PHP must be built

with support for that backend. Use the output from the PDO::getAvailableDriv

ers() method to determine what PDO backends your PHP setup has.

See Also

Recipe 10.4 for querying an SQL database; Recipe 10.6 for modifying an SQL database; documentation on PDO.

10.4 Querying an SQL Database

Problem

You want to retrieve some data from your database.

316 | Chapter 10: Database Access

Solution

Use PDO::query() to send the SQL query to the database, and then a foreach loop to

retrieve each row of the result, as shown in Example 10-9.

 Example 10-9. Sending a query to the database

$st = $db->query('SELECT symbol,planet FROM zodiac');

foreach ($st->fetchAll() as $row) {

print "{$row['symbol']} goes with {$row['planet']}
 \n";

}

Discussion

The query() method returns a PDOStatement object. Its fetchAll() method provides

a concise way to operate on each row returned from a query.

The fetch() method returns a row at a time, as shown in Example 10-10.

 Example 10-10. Fetching individual rows

$rows = $db->query('SELECT symbol,planet FROM zodiac ORDER BY planet');

$firstRow = $rows->fetch();

print "The first results are that {$firstRow['symbol']} goes with ↵

{$firstRow['planet']}";

Each call to fetch() returns the next row in the result set. When there are no more

rows available, fetch() returns false.

By default, fetch() returns an array containing each column in the result set row twice

—once with an index corresponding to the column name and once with a numerical

index. That means that the $firstRow variable in Example 10-10 has four elements:

$firstRow[0] is Archer, $firstRow[1] is Jupiter, $firstRow['symbol'] is Archer,

and $firstRow['planet'] is Jupiter.

To have fetch() return rows in a different format, pass a PDO::FETCH_* constant to

query() as a second argument. You can also pass one of the constants as the first argu‐

ment to fetch(). The allowable constants and what they make fetch() return are listed

in Table 10-1.

 Table 10-1. PDO::FETCH_* constants

Constant

Row format

PDO::FETCH_BOTH

Array with both numeric and string (column names) keys. The default format.

PDO::FETCH_NUM

Array with numeric keys.

PDO::FETCH_ASSOC Array with string (column names) keys.

PDO::FETCH_OBJ

Object of class stdClass with column names as property names.

10.4 Querying an SQL Database | 317

Constant

Row format

PDO::FETCH_LAZY

Object of class PDORow with column names as property names. The properties aren’t populated until

accessed, so this is a good choice if your result row has a lot of columns. Note that if you store the

returned object and fetch another row, the stored object is updated with values from the new row.

In addition to the choices in Table 10-1, there are other ways a row can be structured.

These other ways require more than just passing a constant to query() or fetch(),

however.

In combination with bindColumn(), the PDO::FETCH_BOUND fetch mode lets you set up

variables whose values get refreshed each time fetch() is called. Example 10-11 shows how this works.

 Example 10-11. Binding result columns

$row = $db->query('SELECT symbol,planet FROM zodiac',PDO::FETCH_BOUND);

 // Put the value of the 'symbol' column in $symbol

$row->bindColumn('symbol', $symbol);

 // Put the value of the second column ('planet') in $planet

$row->bindColumn(2, $planet);

while ($row->fetch()) {

print "$symbol goes with $planet.
 \n";

}

In Example 10-11, each time fetch() is called, $symbol and $planet are assigned new

values. Note that you can use either a column name or number with bindColumn().

Column numbers start at 1.

When used with query(), the PDO::FETCH_INTO and PDO::FETCH_CLASS constants put

result rows into specialized objects of particular classes. To use these modes, first create

a class that extends the built-in PDOStatement class. Example 10-12 extends PDOState

ment with a method that reports the average length of all the column values and then

sets up a query to use it.

 Example 10-12. Extending PDOStatement

class AvgStatement extends PDOStatement {

public function avg() {

$sum = 0;

$vars = get_object_vars($this);

 // Remove PDOStatement's built-in 'queryString' variable

unset($vars['queryString']);

foreach ($vars as $var => $value) {

$sum += strlen($value);

}

return $sum / count($vars);

}

}

$row = new AvgStatement;

$results = $db->query('SELECT symbol,planet FROM zodiac',PDO::FETCH_INTO, $row);

318 | Chapter 10: Database Access

 // Each time fetch() is called, $row is repopulated

while ($results->fetch()) {

print "$row->symbol belongs to $row->planet (Average: {$row->avg()})

\n";

}

In Example 10-12, the second and third arguments to query() tell PDO “each time you

fetch a new row, stuff the values into properties of the $row variable.” Then, inside the

while() loop, the properties of $row are available, as well as the newly defined avg()

method.

PDO::FETCH_INTO is useful when you want to keep data around in the same object, such

as whether you’re displaying an odd- or even-numbered row, throughout all the calls to

fetch(). But when you want a new object for each row, use PDO::FETCH_CLASS. Pass it

to query() like PDO::FETCH_INTO, but make the third argument to query() a class name,

not an object instance. The class name you provide with PDO::FETCH_CLASS must extend

PDOStatement.

See Also

Recipe 10.5 for other ways to retrieve data; Recipe 10.6 for modifying an SQL database;

Recipe 10.7 for repeating queries efficiently; documentation on PDO.

10.5 Retrieving Rows Without a Loop

Problem

You want a concise way to execute a query and retrieve the data it returns.

Solution

Use fetchAll() to get all the results from a query at once, as shown in Example 10-13.

 Example 10-13. Getting all results at once

$st = $db->query('SELECT planet, element FROM zodiac');

$results = $st->fetchAll();

foreach ($results as $i => $result) {

print "Planet $i is {$result['planet']}
 \n";

}

Discussion

The fetchAll() method is useful when you need to do something that depends on all

the rows a query returns, such as counting how many rows there are or handling rows

out of order. Like fetch(), fetchAll() defaults to representing each row as an array

10.5 Retrieving Rows Without a Loop | 319

with both numeric and string keys and accepts the various PDO::FETCH_* constants to

change that behavior.

fetchAll() also accepts a few other constants that affect the results it returns. To retrieve

just a single column from the results, pass PDO::FETCH_COLUMN and a second argument,

the index of the column you want. The first column is 0, not 1.

See Also

Recipe 10.4 for querying an SQL database and more information on fetch modes;

Recipe 10.6 for modifying an SQL database; Recipe 10.7 for repeating queries efficiently; documentation on PDO.

10.6 Modifying Data in an SQL Database

Problem

You want to add, remove, or change data in an SQL database.

Solution

Use PDO::exec() to send an INSERT, DELETE, or UPDATE command, as shown in

Example 10-14.

 Example 10-14. Using PDO::exec()

$db->exec("INSERT INTO family (id,name) VALUES (1,'Vito')");

$db->exec("DELETE FROM family WHERE name LIKE 'Fredo'");

$db->exec("UPDATE family SET is_naive = 1 WHERE name LIKE 'Kay'");

You can also prepare a query with PDO::prepare() and execute it with PDOState

ment::execute(), as shown in Example 10-15.

 Example 10-15. Preparing and executing a query

$st = $db->prepare('INSERT INTO family (id,name) VALUES (?,?)');

$st->execute(array(1,'Vito'));

$st = $db->prepare('DELETE FROM family WHERE name LIKE ?');

$st->execute(array('Fredo'));

$st = $db->prepare('UPDATE family SET is_naive = ? WHERE name LIKE ?');

$st->execute(array(1,'Kay'));

320 | Chapter 10: Database Access

Discussion

The exec() method sends to the database whatever it’s passed. For INSERT, UPDATE, and

DELETE queries, it returns the number of rows affected by the query.

The prepare() and execute() methods are especially useful for queries that you want

to execute multiple times. Once you’ve prepared a query, you can execute it with new

values without repreparing it. Example 10-16 reuses the same prepared query three

times.

 Example 10-16. Reusing a prepared statement

$st = $db->prepare('DELETE FROM family WHERE name LIKE ?');

$st->execute(array('Fredo'));

$st->execute(array('Sonny'));

$st->execute(array('Luca Brasi'));

See Also

Recipe 10.7 for information on repeating queries; documentation on PDO::exec(), on

PDO::prepare(), and on PDOStatement::execute().

10.7 Repeating Queries Efficiently

Problem

You want to run the same query multiple times, substituting in different values each

time.

Solution

Set up the query with PDO::prepare() and then run it by calling execute() on the

prepared statement that prepare() returns. The placeholders in the query passed to

prepare() are replaced with data by execute(), as shown in Example 10-17.

 Example 10-17. Running prepared statements

 // Prepare

$st = $db->prepare("SELECT sign FROM zodiac WHERE element LIKE ?");

 // Execute once

$st->execute(array('fire'));

while ($row = $st->fetch()) {

print $row[0] . "
 \n";

}

 // Execute again

$st->execute(array('water'));

while ($row = $st->fetch()) {

10.7 Repeating Queries Efficiently | 321

 print $row[0] . "
 \n";

}

Discussion

The values passed to execute() are called bound parameters—each value is associated

with (or “bound to”) a placeholder in the query. Two great things about bound param‐

eters are security and speed. With bound parameters, you don’t have to worry about

SQL injection attacks. PDO appropriately quotes and escapes each parameter so that

special characters are neutralized. Also, upon prepare(), many database backends do

some parsing and optimizing of the query, so each call to execute() is faster than calling

exec() or query() with a fully formed query in a string you’ve built yourself.

In Example 10-17, the first execute() runs the query SELECT sign FROM zodiac WHERE

element LIKE 'fire'. The second execute() runs SELECT sign FROM zodiac WHERE

element LIKE 'water'.

Each time, execute() substitutes the value in its second argument for the ? placeholder.

If there is more than one placeholder, put the arguments in the array in the order they

should appear in the query. Example 10-18 shows prepare() and execute() with two

placeholders.

 Example 10-18. Multiple placeholders

$st = $db->prepare(

"SELECT sign FROM zodiac WHERE element LIKE ? OR planet LIKE ?");

 // SELECT sign FROM zodiac WHERE element LIKE 'earth' OR planet LIKE 'Mars'

$st->execute(array('earth','Mars'));

In addition to the ? placeholder style, PDO also supports named placeholders. If you’ve

got a lot of placeholders in a query, this can make them easier to read. Instead of ?, put

a placeholder name (which has to begin with a colon) in the query, and then use those

placeholder names (without the colons) as keys in the parameter array you pass to

execute(). Example 10-19 shows named placeholders in action.

 Example 10-19. Using named placeholders

$st = $db->prepare(

"SELECT sign FROM zodiac WHERE element LIKE :element OR planet LIKE :planet");

 // SELECT sign FROM zodiac WHERE element LIKE 'earth' OR planet LIKE 'Mars'

$st->execute(array('planet' => 'Mars', 'element' => 'earth'));

$row = $st->fetch();

With named placeholders, your queries are easier to read and you can provide the values

to execute() in any order. Note, though, that each placeholder name can only appear

in a query once. If you want to provide the same value more than once in a query, use

322 | Chapter 10: Database Access

two different placeholder names and include the value twice in the array passed to

execute().

Aside from ? and named placeholders, prepare() offers a third way to stuff values into

queries: bindParam(). This method automatically associates what’s in a variable with a

particular placeholder. Example 10-20 shows how to use bindParam().

 Example 10-20. Using bindParam()

$pairs = array('Mars' => 'water',

'Moon' => 'water',

'Sun' => 'fire');

$st = $db->prepare(

"SELECT sign FROM zodiac WHERE element LIKE :element AND planet LIKE

:planet");

$st->bindParam(':element', $element);

$st->bindparam(':planet', $planet);

foreach ($pairs as $planet => $element) {

 // No need to pass anything to execute() --

 // the values come from $element and $planet

$st->execute();

var_dump($st->fetch());

}

In Example 10-20, there’s no need to pass any values to execute(). The two calls to

bindParam() tell PDO “whenever you execute $st, use whatever’s in the $element

variable for the :element placeholder and whatever’s in the $planet variable for

the :planet placeholder.” The values in those variables when you call bindParam() don’t

matter—it’s the values in those variables when execute() is called that counts. Because

the foreach statement puts array keys in $planet and array values in $element, the keys

and values from $pairs are substituted into the query.

If you use ? placeholders with prepare(), provide a placeholder position as the first

argument to bindParam() instead of a parameter name. Placeholder positions start at

1, not 0.

bindParam() takes its cue on how to deal with the provided value based on that value’s

PHP type. Force bindParam() to treat the value as a particular type by passing a type

constant as a third argument. The type constants that bindParam() understands are

listed in Table 10-2.

 Table 10-2. PDO::PARAM_* constants

Constant

Type

PDO::PARAM_NULL NULL

PDO::PARAM_BOOL boolean

PDO::PARAM_INT

integer

10.7 Repeating Queries Efficiently | 323

Constant

Type

PDO::PARAM_STR

string

PDO::PARAM_LOB

“large object”

The PDO::PARAM_LOB type is particularly handy because it treats the parameter as a

stream. It makes for an efficient way to stuff the contents of files (or anything that can

be represented by a stream, such as a remote URL) into a database table. Example 10-21

uses glob() to slurp the contents of all the files in a directory into a database table.

 Example 10-21. Putting file contents into a database with PDO::PARAM_LOB

$st = $db->prepare('INSERT INTO files (path,contents) VALUES (:path,:contents)');

$st->bindParam(':path',$path);

$st->bindParam(':contents',$fp,PDO::PARAM_LOB);

foreach (glob('/usr/local/*') as $path) {

 // Get a filehandle that PDO::PARAM_LOB can work with

$fp = fopen($path,'r');

$st->execute();

}

Using PDO::PARAM_LOB effectively depends on your underlying database. For example,

with Oracle your query must create an empty LOB handle and be inside a transaction.

The “Inserting an image into a database: Oracle” example of the PDO manpage shows the proper syntax to do this.

See Also

Check out the documentation on PDO::prepare(), on PDOStatement::execute(), on

PDOStatement::bindParam(), and on PDO::PARAM_LOB in the Large Objects section.

10.8 Finding the Number of Rows Returned by a Query

Problem

You want to know how many rows a SELECT query returned, or you want to know how

many rows an INSERT, UPDATE, or DELETE query changed.

Solution

If you’re issuing an INSERT, UPDATE, or DELETE with PDO::exec(), the return value from

exec() is the number of modified rows.

If you’re issuing an INSERT, UPDATE, or DELETE with PDO::prepare() and PDOState

ment::execute(), call PDOStatement::rowCount() to get the number of modified

rows, as shown in Example 10-22.

324 | Chapter 10: Database Access

 Example 10-22. Counting rows with rowCount()

$st = $db->prepare('DELETE FROM family WHERE name LIKE ?');

$st->execute(array('Fredo'));

print "Deleted rows: " . $st->rowCount();

$st->execute(array('Sonny'));

print "Deleted rows: " . $st->rowCount();

$st->execute(array('Luca Brasi'));

print "Deleted rows: " . $st->rowCount();

If you’re issuing a SELECT statement, the only foolproof way to find out how many rows

are returned is to retrieve them all with fetchAll() and then count how many rows

you have, as shown in Example 10-23.

 Example 10-23. Counting rows from a SELECT

$st = $db->query('SELECT symbol,planet FROM zodiac');

$all= $st->fetchAll(PDO::FETCH_COLUMN, 1);

print "Retrieved ". count($all) . " rows";

Discussion

Although some database backends provide information to PDO about the number of

rows retrieved by a SELECT, so that rowCount() can work in those circumstances, not

all do. So relying on that behavior isn’t a good idea.

However, retrieving everything in a large result set can be inefficient. As an alternative,

ask the database to calculate a result set size with the COUNT(*) function. Use the same

WHERE clause as you would otherwise, but ask SELECT to return COUNT(*) instead of a

list of fields.

See Also

Documentation on PDOStatement::rowCount and on PDO::exec().

10.9 Escaping Quotes

Problem

You need to make text or binary data safe for queries.

Solution

Write all your queries with placeholders so that prepare() and execute() can escape

strings for you. Recipe 10.7 details the different ways to use placeholders.

10.9 Escaping Quotes | 325

If you need to apply escaping yourself, use the PDO::quote() method. The rare cir‐

cumstance you might need to do this could be if you want to escape SQL wildcards

coming from user input, as shown in Example 10-24.

 Example 10-24. Manual quoting

$safe = $db->quote($_GET['searchTerm']);

$safe = strtr($safe, array('_' => '_', '%' => '\%'));

$st = $db->query("SELECT * FROM zodiac WHERE planet LIKE $safe");

Discussion

The PDO::quote() method makes sure that text or binary data is appropriately quoted,

but you may also need to quote the SQL wildcard characters % and _ to ensure that

SELECT statements using the LIKE operator return the right results. If $_GET['search

Term'] is set to Melm% and Example 10-24 doesn’t call strtr(), its query returns rows with planet set to Melmac, Melmacko, Melmacedonia, or anything else beginning with

Melm.

Because % is the SQL wildcard meaning match any number of characters (like * in shell

globbing) and _ is the SQL wildcard meaning match one character (like ? in shell glob‐

bing), those need to be backslash-escaped as well.

strtr() must be called after PDO::quote(). Otherwise, PDO::quote() would

backslash-escape the backslashes strtr() adds. With PDO::quote() first, Melm_ is

turned into Melm_, which is interpreted by the database to mean the string “M e l m

followed by a literal underscore character.” With PDO::quote() after strtr(), Melm_ is

turned into Melm_, which is interpreted by the database to mean the string “Melm

followed by a literal backslash character, followed by the underscore wildcard.” This is

the same thing that would happen if we escaped the SQL wildcards and then used the

resulting value as a bound parameter.

Quoting of placeholder values happens even if magic_quotes_gpc or

magic_quotes_runtime is turned on. Similarly, if you call PDO::quote() on a value when

magic quotes are active, the value gets quoted anyway. For maximum portability, remove

the magic quotes–supplied backslashes before you use a query with placeholders or call

PDO::quote(). Example 10-25 shows this check.

 Example 10-25. Checking for magic quotes

 // The behavior of magic_quotes_sybase can also affect things

if (get_magic_quotes_gpc() && (! ini_get('magic_quotes_sybase'))) {

$fruit = stripslashes($_GET['fruit']);

} else {

$fruit = $_GET['fruit'];

}

$st = $db->prepare('UPDATE orchard SET trees = trees - 1 WHERE fruit = ?');

$st->execute(array($fruit));

326 | Chapter 10: Database Access

If you have any control over your server, turn magic quotes off and

make your life a lot easier. However, if you’re trying to write maxi‐

mally portable code that could run in an environment you don’t con‐

trol, you need to look out for this problem.

See Also

Documentation on PDO::quote() and on magic quotes.

10.10 Logging Debugging Information and Errors

Problem

You want access to information to help you debug database problems. For example,

when a query fails, you want to see what error message the database returns.

Solution

Use PDO::errorCode() or PDOStatement::errorCode() after an operation to get an

error code if the operation failed. The corresponding errorInfo() method returns

more information about the error. Example 10-26 handles the error that results from

trying to access a nonexistent table.

 Example 10-26. Printing error information

$st = $db->prepare('SELECT * FROM imaginary_table');

if (! $st) {

$error = $db->errorInfo();

print "Problem ({$error[2]})";

}

Discussion

The errorCode() method returns a five-character error code. PDO uses the SQL 92

SQLSTATE error codes. By that standard, 00000 means “no error,” so a call to error

Code() that returns 00000 indicates success.

The errorInfo() method returns a three-element array. The first element contains the

five-character SQLSTATE code (the same thing that errorCode() returns). The second

element is a database backend-specific error code. The third element is a database

backend-specific error message.

Make sure to call errorCode() or errorInfo() on the same object on which you called

the method that you’re checking for an error. In Example 10-26, the prepare() method

is called on the PDO object, so errorInfo() is called on the PDO object. If you want to

10.10 Logging Debugging Information and Errors | 327

check whether a fetch() called on a PDOStatement object succeeded, call error

Code() or errorInfo() on the PDOStatement object.

One exception to this rule is when creating a new PDO object. If that fails, PDO throws

an exception. It does this because otherwise there’d be no object on which you could

call errorCode() or errorInfo(). The message in the exception details why the con‐

nection failed.

To have PDO throw exceptions every time it encounters an error, call setAttri

bute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) on your PDO object after it’s

created. This way, you can handle database problems uniformly instead of larding your

code with repeated calls to errorCode() and errorInfo(). Example 10-27 performs a

series of database operations wrapped inside a try/catch block.

 Example 10-27. Catching database exceptions

try {

$db = new PDO('sqlite:/tmp/zodiac.db');

 // Make all DB errors throw exceptions

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$st = $db->prepare('SELECT * FROM zodiac');

$st->execute();

while ($row = $st->fetch(PDO::FETCH_NUM)) {

print implode(',',$row). "
 \n";

}

} catch (Exception $e) {

print "Database Problem: " . $e->getMessage();

}

Handling PDO errors as exceptions is useful inside of transactions, too. If there’s a

problem with a query once the transaction’s started, just roll back the transaction when

handling the exception.

Similar to the exception error mode is the “warning” error mode. setAttri

bute(PDO::ATTR_ERRMODE, PDO::ERRMODE_WARNING) tells PDO to issue warnings

when a database error is encountered. If you prefer to work with regular PHP errors

instead of exceptions, this is the error mode for you. Set up a custom error handler with

set_error_handler() to handle E_WARNING level events and you can deal with your

database problems in the error handler.

Whatever the error mode, PDO throws an exception if the initial PDO object creation

fails. When using PDO, it’s an extremely good idea to set up a default exception handler

with set_exception_handler(). Without a default exception handler, an uncaught ex‐

ception causes the display of a complete stack trace if display_errors is on. If an ex‐

ception is thrown when connecting to the database, this stack trace may contain sensitive

information, including database connection credentials.

328 | Chapter 10: Database Access

See Also

Documentation on PDO::errorCode(), on PDO::errorInfo(), on PDOStatement::er

rorCode(), on PDOStatement::errorInfo(), on set_exception_handler(), and on

set_error_handler(). Page 619 of the SQL 92 standard contains the SQLSTATE error codes that PDO knows about is available, but some database backends may raise errors

other than the ones listed.

10.11 Creating Unique Identifiers

Problem

You want to assign unique IDs to users, articles, or other objects as you add them to

your database.

Solution

Use PHP’s uniqid() function to generate an identifier. To restrict the set of characters

in the identifier, pass it through md5(), which returns a string containing only numerals

and the letters a through f. Example 10-28 creates identifiers using both techniques.

 Example 10-28. Creating unique identifiers

$st = $db->prepare('INSERT INTO users (id, name) VALUES (?,?)');

$st->execute(array(uniqid(), 'Jacob'));

$st->execute(array(md5(uniqid()), 'Ruby'));

You can also use a database-specific method to have the database generate the ID. For

example, SQLite 3 and MySQL support AUTOINCREMENT columns that automatically

assign increasing integers to a column as rows are inserted.

Discussion

uniqid() uses the current time (in microseconds) and a random number to generate a

string that is extremely difficult to guess. md5() computes a hash of whatever you give

it. It doesn’t add any randomness to the identifier, but restricts the characters that appear

in it. The results of md5() don’t contain any punctuation, so you don’t have to worry

about escaping issues. Plus, you can’t spell any naughty words with just the first six letters

of the alphabet (in English, at least).

If you’d rather give your database the responsibility of generating the unique identifier,

use the appropriate syntax when creating a table. Example 10-29 shows how to create a table in SQLite with a column that gets an auto-incremented integer ID each time a new

row is inserted.

10.11 Creating Unique Identifiers | 329

 Example 10-29. Creating an auto-increment column with SQLite

 // the type INTEGER PRIMARY KEY AUTOINCREMENT tells SQLite

 // to assign ascending IDs

$db->exec(<<<_SQL_

CREATE TABLE users (

id INTEGER PRIMARY KEY AUTOINCREMENT,

name VARCHAR(255)

)

SQL

);

 // No need to insert a value for 'id' -- SQLite assigns it

$st = $db->prepare('INSERT INTO users (name) VALUES (?)');

 // These rows are assigned 'id' values

foreach (array('Jacob','Ruby') as $name) {

$st->execute(array($name));

}

Example 10-30 shows the same thing for MySQL.

 Example 10-30. Creating an auto-increment column with MySQL

 // the AUTO_INCREMENT tells MySQL to assign ascending IDs

 // that column must be the PRIMARY KEY

$db->exec(<<<_SQL_

CREATE TABLE users (

id INT NOT NULL AUTO_INCREMENT,

name VARCHAR(255),

PRIMARY KEY(id)

)

SQL

);

 // No need to insert a value for 'id' -- MySQL assigns it

$st = $db->prepare('INSERT INTO users (name) VALUES (?)');

 // These rows are assigned 'id' values

foreach (array('Jacob','Ruby') as $name) {

$st->execute(array($name));

}

When the database creates ID values automatically, the PDO::lastInsertId() method

retrieves them. Call lastInsertId() on your PDO object to get the auto-generated ID

of the last inserted row. Some database backends also let you pass a sequence name to

lastInsertId() to get the last value from the sequence. Some database backends don’t

support PDO::lastInsertId() at all. In that case, PDO::lastInsertId() causes an er‐

ror with SQLSTATE set to IM001.

330 | Chapter 10: Database Access

See Also

Documentation on uniqid(), on md5(), on PDO::lastInsertId(), on SQLite and AU

TOINCREMENT, and on MySQL and AUTO_INCREMENT.

10.12 Building Queries Programmatically

Problem

You want to construct an INSERT or UPDATE query from an array of field names. For

example, you want to insert a new user into your database. Instead of hardcoding each

field of user information (such as username, email address, postal address, birthdate,

etc.), you put the field names in an array and use the array to build the query. This is

easier to maintain, especially if you need to conditionally INSERT or UPDATE with the

same set of fields.

Solution

To construct an UPDATE query, build an array of field/value pairs and then implode()

together each element of that array, as shown in Example 10-31.

 Example 10-31. Building an UPDATE query

 // A list of field names

$fields = array('symbol','planet','element');

$update_fields = array();

$update_values = array();

foreach ($fields as $field) {

$update_fields[] = "$field = ?";

 // Assume the data is coming from a form

$update_values[] = $_POST[$field];

}

$st = $db->prepare("UPDATE zodiac SET " .

implode(',', $update_fields) .

'WHERE sign = ?');

 // Add 'sign' to the values array

$update_values[] = $_GET['sign'];

 // Execute the query

$st->execute($update_values);

For an INSERT query, do the same thing, although the SQL syntax is a little different, as

Example 10-32 demonstrates.

10.12 Building Queries Programmatically | 331

 Example 10-32. Building an INSERT query

 // A list of field names

$fields = array('symbol','planet','element');

$placeholders = array();

$values = array();

foreach ($fields as $field) {

 // One placeholder per field

$placeholders[] = '?';

 // Assume the data is coming from a form

$values[] = $_POST[$field];

}

$st = $db->prepare('INSERT INTO zodiac (' .

implode(',',$fields) .

') VALUES (' .

implode(',', $placeholders) .

')');

 // Execute the query

$st->execute($values);

Discussion

Placeholders make this sort of thing a breeze. Because they take care of escaping the

provided data, you can easily stuff user-submitted data into programatically generated

queries.

If you use sequence-generated integers as primary keys, you can combine the two query-

construction techniques into one function. That function determines whether a record

exists and then generates the correct query, including a new ID, as shown in the

build_query() function in Example 10-33.

 Example 10-33. build_query()

function build_query($db,$key_field,$fields,$table) {

$values = array();

if (! empty($_POST[$key_field])) {

$update_fields = array();

foreach ($fields as $field) {

$update_fields[] = "$field = ?";

 // Assume the data is coming from a form

$values[] = $_POST[$field];

}

 // Add the key field's value to the $values array

$values[] = $_POST[$key_field];

$st = $db->prepare("UPDATE $table SET " .

implode(',', $update_fields) .

"WHERE $key_field = ?");

} else {

 // Start values off with a unique ID

 // If your DB is set to generate this value, use NULL instead

$values[] = md5(uniqid());

332 | Chapter 10: Database Access

 $placeholders = array('?');

foreach ($fields as $field) {

 // One placeholder per field

$placeholders[] = '?';

 // Assume the data is coming from a form

$values[] = $_POST[$field];

}

$st = $db->prepare("INSERT INTO $table ($key_field," .

implode(',',$fields) . ') VALUES ('.

implode(',',$placeholders) .')');

}

$st->execute($values);

return $st;

}

Using this function, you can make a simple page to edit all the information in the zodiac

table, shown in Example 10-34.

 Example 10-34. A simple add/edit record page

 // The file where build_query() is defined

include __DIR__ . '/buildquery.php';

$db = new PDO('sqlite:/tmp/zodiac.db');

$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$fields = array('sign','symbol','planet','element',

'start_month','start_day','end_month','end_day');

$cmd = isset($_REQUEST['cmd']) ? $_REQUEST['cmd'] : 'show';

switch ($cmd) {

case 'edit':

try {

$st = $db->prepare('SELECT ' . implode(',',$fields) .

' FROM zodiac WHERE id = ?');

$st->execute(array($_GET['id']));

$row = $st->fetch(PDO::FETCH_ASSOC);

} catch (Exception $e) {

$row = array();

}

case 'add':

print '<form method="post" action="' .

htmlentities($_SERVER['PHP_SELF']) . '">';

print '<input type="hidden" name="cmd" value="save">';

print '<table>';

if ('edit' == $cmd) {

printf('<input type="hidden" name="id" value="%d">',

$_GET['id']);

}

foreach ($fields as $field) {

if ('edit' == $cmd) {

10.12 Building Queries Programmatically | 333

 $value = htmlentities($row[$field]);

} else {

$value = '';

}

printf('<tr><td>%s: </td><td><input type="text" name="%s" value="%s">', $field,$field,$value);

printf('</td></tr>');

}

print '<tr><td></td><td><input type="submit" value="Save"></td></tr>'; print '</table></form>';

break;

case 'save':

try {

$st = build_query($db,'id',$fields,'zodiac');

print 'Added info.';

} catch (Exception $e) {

print "Couldn't add info: " . htmlentities($e->getMessage());

}

print '<hr>';

case 'show':

default:

$self = htmlentities($_SERVER['PHP_SELF']);

print '';

foreach ($db->query('SELECT id,sign FROM zodiac') as $row) {

printf(' %s',

$self,$row['id'],htmlentities($row['sign']));

}

print '<hr> Add New';

print '';

break;

}

The switch statement controls what action the program takes based on the value of

$_REQUEST['cmd']. If $_REQUEST['cmd'] is add or edit, the program displays a form

with text boxes for each field in the $fields array, as shown in Figure 10-1. If $_RE

QUEST['cmd'] is edit, values for the row with the supplied $id are loaded from the

database and displayed as defaults. If $_REQUEST['cmd'] is save, the program uses

build_query() to generate an appropriate query to either INSERT or UPDATE the data

in the database. After saving (or if no $_REQUEST['cmd'] is specified), the program

displays a list of all zodiac signs, as shown in Figure 10-2.

334 | Chapter 10: Database Access

 Figure 10-1. Editing and adding a record

 Figure 10-2. Listing records

Whether build_query() builds an INSERT or UPDATE statement is based on the presence

of the request variable $_REQUEST['id'] (because id is passed in $key_field). If $_RE

QUEST['id'] is not empty, the function builds an UPDATE query to change the row with

that ID. If $_REQUEST['id'] is empty (or it hasn’t been set at all), the function generates

a new ID and uses that new ID in an INSERT query that adds a row to the table. To have

10.12 Building Queries Programmatically | 335

build_query() respect a database’s AUTOINCREMENT setting, start $values off with null

instead of md5(uniqid()).

See Also

Recipe 10.7 for information about placeholders, prepare(), and execute(); documen‐

tation on PDO::prepare() and on PDOStatement::execute().

10.13 Making Paginated Links for a Series of Records

Problem

You want to display a large dataset a page at a time and provide links that move through

the dataset.

Solution

Use database-appropriate syntax to grab just a section of all the rows that match your

query. Example 10-35 shows how this works with SQLite.

 Example 10-35. Paging with SQLite

 // Select 5 rows, starting after the first 3

foreach ($db->query('SELECT * FROM zodiac ' .

'ORDER BY sign LIMIT 5 ' .

'OFFSET 3') as $row) {

 // Do something with each row

}

The indexed_links() and print_link() functions in this recipe assist with printing

paging information. Example 10-36 shows them in action.

 Example 10-36. Displaying paginated results

$offset = isset($_GET['offset']) ? intval($_GET['offset']) : 1;

if (! $offset) { $offset = 1; }

$per_page = 5;

$total = $db->query('SELECT COUNT(*) FROM zodiac')->fetchColumn(0);

$limitedSQL = 'SELECT * FROM zodiac ORDER BY id ' .

"LIMIT $per_page OFFSET " . ($offset-1);

$lastRowNumber = $offset - 1;

foreach ($db->query($limitedSQL) as $row) {

$lastRowNumber++;

print "{$row['sign']}, {$row['symbol']} ({$row['id']})
 \n";

}

indexed_links($total,$offset,$per_page);

336 | Chapter 10: Database Access

print "
";

print "(Displaying $offset - $lastRowNumber of $total)";

Discussion

print_link() is shown in Example 10-37 and indexed_links() is shown in

Example 10-38.

 Example 10-37. print_link()

function print_link($inactive,$text,$offset='') {

if ($inactive) {

print "$text";

} else {

print "".

"<a href='" . htmlentities($_SERVER['PHP_SELF']) .

"?offset=$offset'>$text";

}

}

 Example 10-38. indexed_links()

function indexed_links($total,$offset,$per_page) {

$separator = ' | ';

 // print "<<Prev" link

print_link($offset == 1, '<< Prev', max(1, $offset - $per_page));

 // print all groupings except last one

for ($start = 1, $end = $per_page;

$end < $total;

$start += $per_page, $end += $per_page) {

print $separator;

print_link($offset == $start, "$start-$end", $start);

}

 /* print the last grouping -

 * at this point, $start points to the element at the beginning

 * of the last grouping

 */

 /* the text should only contain a range if there's more than

 * one element on the last page. For example, the last grouping

 * of 11 elements with 5 per page should just say "11", not "11-11"

 */

$end = ($total > $start) ? "-$total" : '';

print $separator;

print_link($offset == $start, "$start$end", $start);

 // print "Next>>" link

print $separator;

10.13 Making Paginated Links for a Series of Records | 337

print_link($offset == $start, 'Next >>',$offset + $per_page);

}

To use these functions, retrieve the correct subset of the data using appropriate PDO

functions and then print it out. Call indexed_links() to display the indexed links.

After connecting to the database, you need to make sure $offset has an appropriate

value. $offset is the beginning record in the result set that should be displayed. To start

at the beginning of the result set, $offset should be 1. The variable $per_page is set to

how many records to display on each page, and $total is the total number of records

in the entire result set. For this example, all the zodiac records are displayed, so $to

tal is set to the count of all the rows in the entire table.

The SQL query that retrieves information in the proper order is:

$limitedSQL = 'SELECT * FROM zodiac ORDER BY id ' .

"LIMIT $per_page OFFSET " . ($offset-1);

The LIMIT and OFFSET keywords are how you tell SQLite to return just a subset of all

matching rows.

The relevant rows are retrieved by $db->query($limitedSQL), and then information

is displayed from each row. After the rows, indexed_links() provides navigation links.

The output when $offset is not set (or is 1) is shown in Figure 10-3.

 Figure 10-3. Paginated results with indexed_links()

338 | Chapter 10: Database Access

In Figure 10-3, “6-10, ” “11-12,” and “Next >>” are links to the same page with adjusted $offset arguments. “<< Prev” and “1-5” are grayed out, because what they would link

to is what’s currently displayed.

See Also

A discussion of paging in the Solar framework and information on different database

paging syntaxes.

10.14 Caching Queries and Results

Problem

You don’t want to rerun potentially expensive database queries when the results haven’t

changed.

Solution

Use PEAR’s Cache_Lite package. It makes it simple to cache arbitrary data. In this case,

cache the results of a SELECT query and use the text of the query as a cache key.

Example 10-39 shows how to cache query results with Cache_Lite.

 Example 10-39. Caching query results

require_once 'Cache/Lite.php';

$opts = array(

 // Where to put the cached data

'cacheDir' => '/tmp/',

 // Let us store arrays in the cache

'automaticSerialization' => true,

 // How long stuff lives in the cache

'lifeTime' => 600 /* ten minutes */);

 // Create the cache

$cache = new Cache_Lite($opts);

 // Connect to the database

$db = new PDO('sqlite:/tmp/zodiac.db');

 // Define our query and its parameters

$sql = 'SELECT * FROM zodiac WHERE planet = ?';

$params = array($_GET['planet']);

 // Get the unique cache key

$key = cache_key($sql, $params);

 // Try to get results from the cache

10.14 Caching Queries and Results | 339

$results = $cache->get($key);

if ($results === false) {

 // No results found, so do the query and put the results in the cache

$st = $db->prepare($sql);

$st->execute($params);

$results = $st->fetchAll();

$cache->save($results);

}

 // Whether from the cache or not, $results has our data

foreach ($results as $result) {

print "$result[id]: $result[planet], $result[sign]
 \n";

}

function cache_key($sql, $params) {

return md5($sql .

implode('|',array_keys($params)) .

implode('|',$params));

}

Discussion

Cache_Lite is a generic, lightweight mechanism for caching arbitrary information. It

uses files to store the information it’s caching. The Cache_Lite constructor takes an

array of options that control its behavior. The two most important ones in

Example 10-39 are automaticSerialization, which makes it easier to store arrays in

the cache, and cacheDir, which defines where the cache files go. Make sure cacheDir

ends with a /.

The cache is just a mapping of keys to values. It’s up to us to make sure that we supply

a cache key that uniquely identifies the data we want to cache—in this case, the SQL

query and the parameters bound to it. The cache_key function computes an appropriate

key. After that, Example 10-39 just checks to see if the results are already in the cache.

If not, it executes the query against the database and stuffs the results in the cache for

next time.

Note that you can’t put a PDO or PDOStatement object in the cache—you have to fetch

results and then put the results in the cache.

By default, entries stay in the cache for one hour. You can adjust this by passing a different

value (in seconds) as the lifeTime option when creating a new Cache_Lite object. Pass

in null if you don’t want data to automatically expire.

The cache isn’t altered if you change the database with an INSERT, UPDATE, or DELETE

query. If there are cached SELECT statements that refer to data no longer in the database,

you need to explicitly remove everything from the cache with the Cache_Lite::clean()

340 | Chapter 10: Database Access

method. You can also remove an individual element from the cache by passing a cache

key to Cache_Lite::remove().

The cache_key() function in Example 10-39 is case sensitive. This means that if the

results of SELECT * FROM zodiac are in the cache, and you run the query SELECT *

from zodiac, the results aren’t found in the cache and the query is run again. Main‐

taining consistent capitalization, spacing, and field ordering when constructing your

SQL queries results in more efficient cache usage.

A benefit of PHP-layer solutions such as Cache_Lite is that they are database agnostic.

However, depending on the database you’re using you may be able to take advantage of

database-specific query caching mechanisms. These kinds of caches, because they are

more tightly integrated into the database, are able to be smarter about expiring cached

data when it has changed. For example, you can read about how to enable MySQL’s

query cache.

See Also

Documentation on Cache_Lite.

10.15 Accessing a Database Connection Anywhere in Your

Program

Problem

You’ve got a program with lots of functions and classes in it, and you want to maintain

a single database connection that’s easily accessible from anywhere in the program.

Solution

Use a static class method that creates the connection if it doesn’t exist and returns the

connection (see Example 10-40).

 Example 10-40. Creating a database connection in a static class method

class DBCxn {

 // What DSN to connect to?

public static $dsn = 'sqlite:c:/data/zodiac.db';

public static $user = null;

public static $pass = null;

public static $driverOpts = null;

 // Internal variable to hold the connection

private static $db;

 // No cloning or instantiating allowed

final private function __construct() { }

10.15 Accessing a Database Connection Anywhere in Your Program | 341

 final private function __clone() { }

public static function get() {

 // Connect if not already connected

if (is_null(self::$db)) {

self::$db = new PDO(self::$dsn, self::$user, self::$pass,

self::$driverOpts);

}

 // Return the connection

return self::$db;

}

}

Discussion

The DBCxn::get() method defined in Example 10-40 accomplishes two things: you can

call it from anywhere in your program without worrying about variable scope and it

prevents more than one connection from being created in a program.

To change what kind of connection DBCxn::get() provides, alter the $dsn, $user,

$pass, and $driverOpts properties of the class. If you need to manage multiple different

database connections during the same script execution, change $dsn and $db to an array

and have get() accept an argument identifying which connection to use. Example 10-41

shows a version of DBCxn that provides access to three different databases.

 Example 10-41. Handling connections to multiple databases

class DBCxn {

 // What DSNs to connect to?

public static $dsn =

array('zodiac' => 'sqlite:c:/data/zodiac.db',

'users' => array('mysql:host=db.example.com','monty','7f2iuh'),

'stats' => array('oci:statistics', 'statsuser','statspass'));

 // Internal variable to hold the connection

private static $db = array();

 // No cloning or instantiating allowed

final private function __construct() { }

final private function __clone() { }

public static function get($key) {

if (! isset(self::$dsn[$key])) {

throw new Exception("Unknown DSN: $key");

}

 // Connect if not already connected

if (! isset(self::$db[$key])) {

if (is_array(self::$dsn[$key])) {

$c = new ReflectionClass('PDO');

self::$db[$key] = $c->newInstanceArgs(self::$dsn[$key]);

342 | Chapter 10: Database Access

 } else {

self::$db[$key] = new PDO(self::$dsn[$key]);

}

}

 // Return the connection

return self::$db[$key];

}

}

In Example 10-41, you must pass a key to DBCxn::get() that identifies which entry in

$dsn to use. The code inside get() is a little more complicated, too, because it has to

handle variable numbers of arguments to the PDO constructor. Some databases, such

as SQLite, just need one argument. Others may provide two, three, or four arguments.

Example 10-41 uses the ReflectionClass::newInstanceArgs() method to concisely

call a constructor and provide arguments in an array.

See Also

Documentation on PDO::__construct() and on ReflectionClass::newInstan

ceArgs().

10.16 Program: Storing a Threaded Message Board

Storing and retrieving threaded messages requires extra care to display the threads in

the correct order. Finding the children of each message and building the tree of message

relationships can easily lead to a recursive web of queries. Users generally look at a list

of messages and read individual messages far more often then they post messages. With

a little extra processing when saving a new message to the database, the query that

retrieves a list of messages to display is simpler and much more efficient.

Store messages in a table structured like this:

CREATE TABLE message (

id INTEGER PRIMARY KEY AUTOINCREMENT,

posted_on DATETIME NOT NULL,

author CHAR(255),

subject CHAR(255),

body MEDIUMTEXT,

thread_id INT UNSIGNED NOT NULL,

parent_id INT UNSIGNED NOT NULL,

level INT UNSIGNED NOT NULL,

thread_pos INT UNSIGNED NOT NULL

);

The primary key, id, is a unique integer that identifies a particular message. The time

and date that a message is posted is stored in posted_on, and author, subject, and body

are (surprise!) a message’s author, subject, and body. The remaining four fields keep

track of the threading relationships between messages. The integer thread_id identifies

10.16 Program: Storing a Threaded Message Board | 343

each thread. All messages in a particular thread have the same thread_id. If a message

is a reply to another message, parent_id is the id of the replied-to message. level is

the position of the message in a thread. The first message in a thread has level 0. A reply

to that level message has level 1, and a reply to that level 1 message has level 2. Multiple

messages in a thread can have the same level and the same parent_id. For example,

if someone starts off a thread with a message about the merits of BeOS over CP/M, the

angry replies to that message from CP/M’s legions of fans all have level 1 and a par

ent_id equal to the id of the original message.

The last field, thread_pos, is what makes the easy display of messages possible. When

displayed, all messages in a thread are ordered by their thread_pos value.

Here are the rules for calculating thread_pos:

• The first message in a thread has thread_pos = 0.

• For a new message N, if there are no messages in the thread with the same parent

as N, N’s thread_pos is one greater than its parent’s thread_pos.

• For a new message N, if there are messages in the thread with the same parent as N,

N’s thread_pos is one greater than the biggest thread_pos of all the messages with

the same parent as N.

• After new message N’s thread_pos is determined, all messages in the same thread

with a thread_pos value greater than or equal to N’s have their thread_pos value

incremented by 1 (to make room for N).

The message board program, message.php, shown in Example 10-42 saves messages and properly calculates thread_pos. Sample output is shown in Figure 10-4.

344 | Chapter 10: Database Access

 Figure 10-4. A threaded message board

 Example 10-42. message.php

$board = new MessageBoard();

$board->go();

class MessageBoard {

protected $db;

protected $form_errors = array();

protected $inTransaction = false;

public function __construct() {

set_exception_handler(array($this,'logAndDie'));

$this->db = new PDO('sqlite:/tmp/message.db');

$this->db->setAttribute(PDO::ATTR_ERRMODE,PDO::ERRMODE_EXCEPTION);

}

public function go() {

 // The value of $_REQUEST['cmd'] tells us what to do

$cmd = isset($_REQUEST['cmd']) ? $_REQUEST['cmd'] : 'show';

switch ($cmd) {

case 'read': // read an individual message

$this->read();

break;

case 'post': // display the form to post a message

$this->post();

break;

case 'save': // save a posted message

10.16 Program: Storing a Threaded Message Board | 345

 if ($this->valid()) { // if the message is valid,

$this->save(); // then save it

$this->show(); // and display the message list

} else {

$this->post(); // otherwise, redisplay the posting form

}

break;

case 'show': // show a message list by default

default:

$this->show();

break;

}

}

 // save() saves the message to the database

protected function save() {

$parent_id = isset($_REQUEST['parent_id']) ?

intval($_REQUEST['parent_id']) : 0;

 // Make sure message doesn't change while we're working with it.

$this->db->beginTransaction();

$this->inTransaction = true;

 // is this message a reply?

if ($parent_id) {

 // get the thread, level, and thread_pos of the parent message

$st = $this->db->prepare("SELECT thread_id,level,thread_pos

FROM message WHERE id = ?");

$st->execute(array($parent_id));

$parent = $st->fetch();

 // a reply's level is one greater than its parent's

$level = $parent['level'] + 1;

 /* what's the biggest thread_pos in this thread among messages

 with the same parent? */

$st = $this->db->prepare('SELECT MAX(thread_pos) FROM message

WHERE thread_id = ? AND parent_id = ?');

$st->execute(array($parent['thread_id'], $parent_id));

$thread_pos = $st->fetchColumn(0);

 // are there existing replies to this parent?

if ($thread_pos) {

 // this thread_pos goes after the biggest existing one

$thread_pos++;

} else {

 // this is the first reply, so put it right after the parent

$thread_pos = $parent['thread_pos'] + 1;

}

 /* increment the thread_pos of all messages in the thread that

346 | Chapter 10: Database Access

 come after this one */

$st = $this->db->prepare('UPDATE message SET thread_pos = thread_pos

+ 1 WHERE thread_id = ? AND thread_pos >= ?');

$st->execute(array($parent['thread_id'], $thread_pos));

 // the new message should be saved with the parent's thread_id

$thread_id = $parent['thread_id'];

} else {

 // the message is not a reply, so it's the start of a new thread

$thread_id = $this->db->query('SELECT MAX(thread_id) + 1 FROM

message')->fetchColumn(0);

 // If there are no rows yet, make sure we start at 1 for thread_id

if (! $thread_id) {

$thread_id = 1;

}

$level = 0;

$thread_pos = 0;

}

 /* insert the message into the database. Using prepare() and execute()

 makes sure that all fields are properly quoted */

$st = $this->db->prepare("INSERT INTO message (id,thread_id,parent_id,

thread_pos,posted_on,level,author,subject,body)

VALUES (?,?,?,?,?,?,?,?,?)");

$st->execute(array(null,$thread_id,$parent_id,$thread_pos,

date('c'),$level,$_REQUEST['author'],

$_REQUEST['subject'],$_REQUEST['body']));

 // Commit all the operations

$this->db->commit();

$this->inTransaction = false;

}

 // show() displays a list of all messages

protected function show() {

print '<h2>Message List</h2><p>';

 /* order the messages by their thread (thread_id) and their position

 within the thread (thread_pos) */

$st = $this->db->query("SELECT id,author,subject,LENGTH(body)

AS body_length,posted_on,level FROM message

ORDER BY thread_id,thread_pos");

while ($row = $st->fetch()) {

 // indent messages with level > 0

print str_repeat(' ',4 * $row['level']);

 // print out information about the message with a link to read it

$when = date('Y-m-d H:i', strtotime($row['posted_on']));

print "<a href='" . htmlentities($_SERVER['PHP_SELF']) .

"?cmd=read&id={$row['id']}'>" .

htmlentities($row['subject']) . ' by ' .

htmlentities($row['author']) . ' @ ' .

10.16 Program: Storing a Threaded Message Board | 347

 htmlentities($when) .

" ({$row['body_length']} bytes)
";

}

 // provide a way to post a non-reply message

print "<hr/><a href='" .

htmlentities($_SERVER['PHP_SELF']) .

"?cmd=post'>Start a New Thread";

}

 // read() displays an individual message

public function read() {

 /* make sure the message id we're passed is an integer and really

 represents a message */

if (! isset($_REQUEST['id'])) {

throw new Exception('No message ID supplied');

}

$id = intval($_REQUEST['id']);

$st = $this->db->prepare("SELECT author,subject,body,posted_on

FROM message WHERE id = ?");

$st->execute(array($id));

$msg = $st->fetch();

if (! $msg) {

throw new Exception('Bad message ID');

}

 /* don't display user-entered HTML, but display newlines as

 HTML line breaks */

$body = nl2br(htmlentities($msg['body']));

 // display the message with links to reply and return to the message list

$self = htmlentities($_SERVER['PHP_SELF']);

$subject = htmlentities($msg['subject']);

$author = htmlentities($msg['author']);

print<<<_HTML_

<h2>$subject</h2>

<h3>by $author</h3>

<p>$body</p>

<hr/>

Reply

List Messages

HTML;

}

 // post() displays the form for posting a message

public function post() {

$safe = array();

foreach (array('author','subject','body') as $field) {

 // escape characters in default field values

if (isset($_POST[$field])) {

348 | Chapter 10: Database Access

 $safe[$field] = htmlentities($_POST[$field]);

} else {

$safe[$field] = '';

}

 // make the error messages display in red

if (isset($this->form_errors[$field])) {

$this->form_errors[$field] = '' .

$this->form_errors[$field] . '
';

} else {

$this->form_errors[$field] = '';

}

}

 // is this message a reply

if (isset($_REQUEST['parent_id']) &&

$parent_id = intval($_REQUEST['parent_id'])) {

 // send the parent_id along when the form is submitted

$parent_field =

sprintf('<input type="hidden" name="parent_id" value="%d" />',

$parent_id);

 // if no subject's been passed in, use the subject of the parent

if (! strlen($safe['subject'])) {

$st = $this->db->prepare('SELECT subject FROM message WHERE

id = ?');

$st->execute(array($parent_id));

$parent_subject = $st->fetchColumn(0);

 /* prefix 'Re: ' to the parent subject if it exists and

 doesn't already have a 'Re:' */

$safe['subject'] = htmlentities($parent_subject);

if ($parent_subject && (! preg_match('/^re:/i',$parent_subject))) {

$safe['subject'] = "Re: {$safe['subject']}";

}

}

} else {

$parent_field = '';

}

 // display the posting form, with errors and default values

$self = htmlentities($_SERVER['PHP_SELF']);

print<<<_HTML_

<form method="post" action="$self">

<table>

<tr>

<td>Your Name:</td>

<td>{$this->form_errors['author']}

<input type="text" name="author" value="{$safe['author']}" />

</td>

<tr>

10.16 Program: Storing a Threaded Message Board | 349

 <td>Subject:</td>

<td>{$this->form_errors['subject']}

<input type="text" name="subject" value="{$safe['subject']}" />

</td>

<tr>

<td>Message:</td>

<td>{$this->form_errors['body']}

<textarea rows="4" cols="30" wrap="physical"

name="body">{$safe['body']}</textarea>

</td>

<tr><td colspan="2"><input type="submit" value="Post Message" /></td></tr>

</table>

$parent_field

<input type="hidden" name="cmd" value="save" />

</form>

HTML;

}

 // validate() makes sure something is entered in each field

public function valid() {

$this->form_errors = array();

if (! (isset($_POST['author']) && strlen(trim($_POST['author'])))) {

$this->form_errors['author'] = 'Please enter your name.';

}

if (! (isset($_POST['subject']) && strlen(trim($_POST['subject'])))) {

$this->form_errors['subject'] = 'Please enter a message subject.';

}

if (! (isset($_POST['body']) && strlen(trim($_POST['body'])))) {

$this->form_errors['body'] = 'Please enter a message body.';

}

return (count($this->form_errors) == 0);

}

public function logAndDie(Exception $e) {

print 'ERROR: ' . htmlentities($e->getMessage());

if ($this->db && $this->db->inTransaction()) {

$this->db->rollback();

}

exit();

}

}

To properly handle concurrent usage, save() needs exclusive access to the msg table

between the time it starts calculating the thread_pos of the new message and when it

actually inserts the new message into the database. We’ve used PDO’s beginTransac

tion() and commit() methods to accomplish this. Note that logAndDie(), the exception

handler, rolls back the transaction when appropriate if an error occurred inside the

transaction. Although PDO always calls rollback() at the end of a script if a transaction

350 | Chapter 10: Database Access

was started, explicitly including the call inside logAndDie() makes clearer what’s hap‐

pening to someone reading the code.

The level field can be used when displaying messages to limit what you retrieve from

the database. If discussion threads become very deep, this can help prevent your pages

from growing too large. Example 10-43 shows how to display just the first message in

each thread and any replies to that first message.

 Example 10-43. Limiting thread depth

$st = $this->db->query(

"SELECT * FROM message WHERE level <= 1 ORDER BY thread_id,thread_pos");

while ($row = $st->fetch()) {

 // display each message

}

If you’re interested in having a discussion group on your website, you may want to use

one of the existing PHP message board packages. Two popular ones are FUDForum

and Vanilla Forums.

10.17 Using Redis

Problem

You want to use the Redis key-value store from your PHP program.

Solution

If you can install PECL extensions, install the redis extension and then use it as follows:

$redis = new Redis();

$redis->connect('127.0.0.1');

$redis->set('counter', 0);

$redis->incrBy('counter', 7);

$counter = $redis->get('counter');

print $counter;

If you can’t, use the Predis library:

require 'Predis/Autoloader.php';

Predis\Autoloader::register();

$redis = new Predis\Client(array('host' => '127.0.0.1'));

$redis->set('counter', 0);

$redis->incrBy('counter', 7);

$counter = $redis->get('counter');

print $counter;

10.17 Using Redis | 351

Discussion

Although the redis extension and Predis library differ in how they are installed and

how you connect to a server, they behave similarly in many respects. Each gives you an

object representing a connection to a Redis server (or a pool of Redis servers) and that

object has methods corresponding to the different operations you can send to the serv‐

er(s).

To install the redis extension, use the pecl command:

pecl install redis

To install Predis, use pear:

pear channel-discover pear.nrk.io

pear install nrk/Predis

If you are using the Composer package manager, install Predis with a dependency string

of "predis/predis".

See Also

The Redis server itself is available online. Check out the PECL page for the redis extension and its documentation. Documentation for the Predis library is on GitHub.

Get more information about Composer at the Composer website.

352 | Chapter 10: Database Access

CHAPTER 11

Sessions and Data Persistence

11.0 Introduction

As web applications have matured, the need for statefulness has become a common

requirement. Stateful web applications, meaning applications that keep track of a par‐

ticular visitor’s information as he travels throughout a site, are now so common that

they are taken for granted.

Given the prevalence of web applications that keep track of things for their visitors—

such as shopping carts, online banking, personalized home page portals, and social

networking community sites—it is hard to imagine the Internet we use every day

without stateful applications.

HTTP, the protocol that web servers and clients use to talk to each other, is a stateless

protocol by design. However, PHP gives you a convenient set of session management

functions that makes the challenge of implementing statefulness much easier. This

chapter focuses on several good practices to keep in mind while developing stateful

applications.

Sessions are focused on maintaining visitor-specific state between requests. Some ap‐

plications also require an equivalent type of lightweight storage of nonvisitor-specific

state for a period of time at the server-side level. This is known as data persistence.

Recipe 11.1 explains PHP’s session module, which lets you easily associate persistent data with a user as he moves through your site. Recipe 11.2 and Recipe 11.3 explore session hijacking and session fixation vulnerabilities and how to avoid them.

Session data is stored in flat files in the server’s /tmp directory by default. Recipe 11.4

and Recipe 11.5 explain how to store session data in alternate locations, such as

Memcached and a database, and discuss the pros and cons of these different approaches.

353

Recipe 11.6 demonstrates how to use shared memory for more than just session data

storage, and Recipe 11.7 illustrates techniques for longer-term storage of summary information that has been gleaned from logfiles.

11.1 Using Session Tracking

Problem

You want to maintain information about a user as she moves through your site.

Solution

Use the sessions module. The session_start() function initializes a session, and ac‐

cessing an element in the superglobal $_SESSION array tells PHP to keep track of the

corresponding variable:

session_start();

if (! isset($_SESSION['visits'])) {

$_SESSION['visits'] = 0;

}

$_SESSION['visits']++;

print 'You have visited here '.$_SESSION['visits'].' times.';

Discussion

The sessions module keeps track of users by issuing them cookies with randomly gen‐

erated session IDs.

By default, PHP stores session data in files in the /tmp directory on your server. Each

session is stored in its own file. To change the directory in which the files are saved, set

the session.save_path configuration directive to the new directory in php.ini or with

ini_set(). You can also call session_save_path() with the new directory to change

directories, but you need to do this before starting the session or accessing any session

variables.

To start a session automatically on each request, set session.auto_start to 1 in

 php.ini. With session.auto_start, there’s no need to call session_start(), so if you

have the ability to change your php.ini file, this is easiest.

With the session.use_trans_sid configuration directive turned on, if PHP detects

that a user doesn’t accept the session ID cookie, it automatically adds the session ID to

URLs and forms. For example, consider this code that prints a URL:

print 'Take the A Train';

If sessions are enabled, but a user doesn’t accept cookies, what’s sent to the browser is

something like:

354 | Chapter 11: Sessions and Data Persistence

↵

Take the A Train

In this example, the session name is PHPSESSID and the session ID name is

2eb89f3344520d11969a79aea6bd2fdd. PHP adds those to the URL so they are passed

along to the next page. Forms are modified to include a hidden element that passes the

session ID.

Due to a variety of security concerns relating to embedding session IDs in URLs, this

behavior is disabled by default. To enable transparent session IDs in URLs, you need to

turn on session.use_trans_sid in php.ini or through the use of ini_set('ses

sion.use_trans_sid', true) in your scripts before the session is started.

Although session.use_trans_sid is convenient, it can cause you some security-related

headaches. Because URLs have session IDs in them, distribution of such a URL lets

anybody who receives the URL act as the user to whom the session ID was given. A user

who copies a URL from his web browser and pastes it into an email message sent to

friends unwittingly allows all those friends (and anybody else to whom the message is

forwarded) to visit your site and impersonate him.

What’s worse, when a user clicks a link on your site that takes him to another site, the

user’s browser passes along the session ID–containing URL as the referring URL to the

external site. Even if the folks who run that external site don’t maliciously mine these

referrer URLs, referrer logs are often inadvertently exposed to search engines. Search

for “PHPSESSID referer” on your favorite search engine, and you’ll probably find some

referrer logs with PHP session IDs embedded in them.

Separately, redirects with the Location header aren’t automatically modified, so you

have to add a session ID to them yourself using the SID constant:

$redirect_url = 'http://www.example.com/airplane.php';

if (defined('SID') && (!isset($_COOKIE[session_name()]))) {

$redirect_url .= '?' . SID;

}

header("Location: $redirect_url");

The session_name() function returns the name of the cookie that stores the session ID,

so this code appends the SID constant to $redirect_url if the constant is defined, and

the session cookie isn’t set.

See Also

Documentation on session_start() and session_save_path(). The session module has a number of configuration directives that help you do things like manage how long

sessions can last and how they are cached. These options are detailed in the “Sessions”

section of the online manual.

11.1 Using Session Tracking | 355

11.2 Preventing Session Hijacking

Problem

You want make sure an attacker can’t access another user’s session.

Solution

Allow passing of session IDs via cookies only, and generate an additional session token

that is passed via URLs. Only requests that contain a valid session ID and a valid session

token may access the session:

ini_set('session.use_only_cookies', true);

session_start();

$salt = 'YourSpecialValueHere';

$tokenstr = strval(date('W')) . $salt;

$token = md5($tokenstr);

if (!isset($_REQUEST['token']) || $_REQUEST['token'] != $token) {

 // prompt for login

exit;

}

$_SESSION['token'] = $token;

output_add_rewrite_var('token', $token);

Discussion

This example creates an auto-shifting token by joining the current week number with

a salt string of your choice. With this technique, tokens will be valid for a reasonable

period of time without being fixed. The salt prevents someone from calculating their

own MD5 hash of a date far in the future and using it to extend a session. Without

knowing the particular salt you’ve chosen, someone can’t easily produce a valid token.

We then check for the token in the request, and if it’s not found, we prompt for a new

login. If it is found, it needs to be added to generated links. output_add_re

write_var() does this easily.

Note that this mechanism won’t defeat an attacker who can sniff all of the traffic between

a user and your server (for example, on an unencrypted WiFi network). Running your

site over SSL is the best way to prevent that kind of attack.

See Also

Recipes 18.1 and 11.3 for more information on regenerating IDs to prevent session fixation.

356 | Chapter 11: Sessions and Data Persistence

11.3 Preventing Session Fixation

Problem

You want to make sure that your application is not vulnerable to session fixation attacks,

in which an attacker forces a user to use a predetermined session ID.

Solution

Require the use of session cookies without session identifiers appended to URLs, and

generate a new session ID frequently:

ini_set('session.use_only_cookies', true);

session_start();

if (!isset($_SESSION['generated'])

|| $_SESSION['generated'] < (time() - 30)) {

session_regenerate_id();

$_SESSION['generated'] = time();

}

Discussion

In this example, we start by setting PHP’s session behavior to use cookies only. This

ensures PHP won’t pay attention to a session ID if an attacker has put one in a URL.

Once the session is started, we set a value that will keep track of the last time a session

ID was generated. By requiring a new one to be generated on a regular basis—every 30

seconds in this example—the opportunity for an attacker to obtain a valid session ID is

dramatically reduced.

These two approaches combine to virtually eliminate the risk of session fixation. An

attacker has a hard time obtaining a valid session ID because it changes so often, and

because sessions IDs can only be passed in cookies, a URL-based attack is not possible.

Finally, because we enabled the session.use_only_cookies setting, no session cookies

will be left lying around in browser histories or in server referrer logs.

See Also

“Session Fixation Vulnerability in Web-based Applications”; Recipe 18.1 for information about regenerating session IDs on privilege escalation.

11.3 Preventing Session Fixation | 357

11.4 Storing Sessons in Memcached

Problem

You want to store session data somewhere that’s fast and can be accessed by multiple

webservers.

Solution

Use the session handler built into the memcached extension to store your sessions in one

or more Memcached servers. With the memcached extension installed, set the ses

sion.save_handler configuration directive to memcached and then set ses

sion.save_path to the host and port of your Memcached server. For example, if your

Memcached server is running on port 11211 of host 10.5.7.12, set ses

sion.save_path to 10.5.7.12:11211. If you are using multiple Memcached servers,

make session.save_path a comma-separated list of the host:port values.

Once you specify the appropriate session.save_handler and session.save_path that

tells PHP to store your session info in Memcached, you don’t have to do anything to

your $_SESSION-using code to make it work properly. Because the session persistence

backend is so easily pluggable, you can just change the configuration and it works.

If you are using consistent hashing with multiple Memcached servers to distribute your

values across servers, set the configuration directive memcached.sess_consis

tent_hash to on. This ensures that your session data is also spread across the multiple

Memcached servers.

Note that apart from the memcached PHP extension, there is also a memcache (no d on

the end) PHP extension. It also has a built-in session handler. To use that session handler,

set session.save_handler to memcache. The session.save_path configuration direc‐

tive is used to indicate your Memcached servers, but the syntax is slightly different than

the memcached extension. You need to prefix the hostname with the appropriate protocol

(e.g., tcp://) and you can add query string–style name=value pairs to set any option

that Memcache::addServer() accepts. For example, you could set ses

sion.save_path to tcp://10.5.7.12:11211?weight=3,tcp://10.5.7.13:11211?

weight=5 to specify two servers—10.5.7.12 and 10.5.7.12—each running on port 11211

but weighted differently.

Both extensions can capably store sessions in Memcache. The memcached extension

supports some different compression schemes for storing large pieces of data in Memc‐

ache. The memcache extension has a few less features but does not depend on any external

libraries.

358 | Chapter 11: Sessions and Data Persistence

Note that a Memcached server itself does not persist the data it stores across restarts—

it only holds it in memory while it’s running. That means that session data in Memcached

could disappear if one of your Memcached servers crashes or is restarted.

See Also

Documentation on how to configure the memcached extension and on how to configure

the memcache extension; information about Memcached itself.

11.5 Storing Sessions in a Database

Problem

You want to store session data in a database instead of in files. If multiple web servers

all have access to the same database, the session data is then mirrored across all the web

servers.

Solution

Use a class in conjunction with the session_set_save_handler() function to define

database-aware routines for session management. For example, Example 11-1 shows a

class that uses PDO to store session information in a database table.

 Example 11-1. Database-backed session handler

 /** Implementing SessionHandlerInterface is mandatory as of PHP 5.4

 * and will fail in previous versions.

 */

class DBHandler implements SessionHandlerInterface {

protected $dbh;

public function open($save_path, $name) {

try {

$this->connect($save_path, $name);

return true;

} catch (PDOException $e) {

return false;

}

}

public function close() {

return true;

}

public function destroy($session_id) {

$sth = $this->dbh->prepare("DELETE FROM sessions WHERE session_id = ?");

$sth->execute(array($session_id));

11.5 Storing Sessions in a Database | 359

 return true;

}

public function gc($maxlifetime) {

$sth = $this->dbh->prepare("DELETE FROM sessions WHERE last_update < ?");

$sth->execute(array(time() - $maxlifetime));

return true;

}

public function read($session_id) {

$sth = $this->dbh->prepare("SELECT session_data FROM sessions WHERE

session_id = ?");

$sth->execute(array($session_id));

$rows = $sth->fetchAll(PDO::FETCH_NUM);

if (count($rows) == 0) {

return '';

} else {

return $rows[0][0];

}

}

public function write($session_id, $session_data) {

$now = time();

$sth = $this->dbh->prepare("UPDATE sessions SET session_data = ?,

last_update = ? WHERE session_id = ?");

$sth->execute(array($session_data, $now, $session_id));

if ($sth->rowCount() == 0) {

$sth2 = $this->dbh->prepare('INSERT INTO sessions (session_id,

session_data, last_update)

VALUES (?,?,?)');

$sth2->execute(array($session_id, $session_data, $now));

}

}

public function createTable($save_path, $name, $connect = true) {

if ($connect) {

$this->connect($save_path, $name);

}

$sql=<<<_SQL_

CREATE TABLE sessions (

session_id VARCHAR(64) NOT NULL,

session_data MEDIUMTEXT NOT NULL,

last_update TIMESTAMP NOT NULL,

PRIMARY KEY (session_id)

)

SQL;

$this->dbh->exec($sql);

}

protected function connect($save_path) {

 /* Look for user and password in DSN as "query string" params */

$parts = parse_url($save_path);

360 | Chapter 11: Sessions and Data Persistence

 if (isset($parts['query'])) {

parse_str($parts['query'], $query);

$user = isset($query['user']) ? $query['user'] : null;

$password = isset($query['password']) ? $query['password'] : null;

$dsn = $parts['scheme'] . ':';

if (isset($parts['host'])) {

$dsn .= '//' . $parts['host'];

}

$dsn .= $parts['path'];

$this->dbh = new PDO($dsn, $user, $password);

} else {

$this->dbh = new PDO($save_path);

}

$this->dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 // A very simple way to create the sessions table if it doesn't exist.

try {

$this->dbh->query('SELECT 1 FROM sessions LIMIT 1');

} catch (Exception $e) {

$this->createTable($save_path, NULL, false);

}

}

}

Discussion

One of the most powerful aspects of the session module is its abstraction of how sessions

get saved. The session_set_save_handler() function tells PHP to use different func‐

tions for the various session operations such as saving a session and reading session

data.

In PHP 5.4 and later, you give session_set_save_handler() an instance of a class that

implements the SessionHandlerInterface interface. In earlier versions, there’s no ex‐

plicit interface, but the methods to define are the same: the public methods open(),

close(), destroy(), gc(), read(), and write() are called from PHP’s internal session

handling code when necessary. To use this session handler, instantiate the class and pass

it to session_set_save_handler():

include __DIR__ . '/db.php';

ini_set('session.save_path', 'sqlite:/tmp/sessions.db');

session_set_save_handler(new DBHandler);

session_start();

if (! isset($_SESSION['visits'])) {

$_SESSION['visits'] = 0;

}

$_SESSION['visits']++;

print 'You have visited here '.$_SESSION['visits'].' times.';

This code block assumes that the DBHandler class is defined in a file called db.php in

the same directory as itself. Once session.save_path is set to the PDO DSN describing

11.5 Storing Sessions in a Database | 361

the database that holds the sessions table, session_set_save_handler(new DBHan

dler) is all that’s necessary to wire up PHP to the handler. From then on, your session-

using code is the same as if you were using PHP’s default handler.

In Example 11-1, the additional public createTable() method is provided as a conve‐

nient way to create the table into which session data is stored. The connect() method

calls it if it can’t find a sessions table to use.

The createTable() and open() functions are also passed the session name as a separate

variable. The default value for this is PHPSESSID. It is used as the cookie name by PHP

when setting a cookie containing the session ID. If you need to distinguish between

differently named sessions that might be assigned to the same user, modify the DBHan

dler class to incorporate the $name argument into the database table name or as an

additional column in the sessions table.

See Also

Documentation on session_set_save_handler() and on SessionHandlerInterface.

11.6 Storing Arbitrary Data in Shared Memory

Problem

You want a chunk of data to be available to all server processes through shared memory.

Solution

If you want to share data only amongst PHP processes, use APC, as described in

Recipe 5.6. If you want to share data with other processes as well, use the pc_Shm class shown in Example 11-2.

For example, to store a string in shared memory, use the pc_Shm::write() method,

which accepts a key, a length, and a value:

$shm = new pc_Shm();

$secret_code = 'land shark';

$shm->write('mysecret', strlen($secret_code), $secret_code);

Discussion

The pc_Shm class is shown in Example 11-2.

 Example 11-2. Storing arbitrary data in shared memory

class pc_Shm {

protected $tmp;

362 | Chapter 11: Sessions and Data Persistence

 public function __construct($tmp = '') {

if (!function_exists('shmop_open')) {

trigger_error('pc_Shm: shmop extension is required.', E_USER_ERROR);

return;

}

if ($tmp != '' && is_dir($tmp) && is_writable($tmp)) {

$this->tmp = $tmp;

} else {

$this->tmp = '/tmp';

}

}

public function read($id, $size) {

$shm = $this->open($id, $size);

$data = shmop_read($shm, 0, $size);

$this->close($shm);

if (!$data) {

trigger_error('pc_Shm: could not read from shared memory block',

E_USER_ERROR);

return false;

}

return $data;

}

public function write($id, $size, $data) {

$shm = $this->open($id, $size);

$written = shmop_write($shm, $data, 0);

$this->close($shm);

if ($written != strlen($data)) {

trigger_error('pc_Shm: could not write entire length of data',

E_USER_ERROR);

return false;

}

return true;

}

public function delete($id, $size) {

$shm = $this->open($id, $size);

if (shmop_delete($shm)) {

$keyfile = $this->getKeyFile($id);

if (file_exists($keyfile)) {

unlink($keyfile);

}

}

return true;

}

protected function open($id, $size) {

11.6 Storing Arbitrary Data in Shared Memory | 363

 $key = $this->getKey($id);

$shm = shmop_open($key, 'c', 0644, $size);

if (!$shm) {

trigger_error('pc_Shm: could not create shared memory segment',

E_USER_ERROR);

return false;

}

return $shm;

}

protected function close($shm) {

return shmop_close($shm);

}

protected function getKey($id) {

$keyfile = $this->getKeyFile($id);

if (! file_exists($keyfile)) {

touch($keyfile);

}

return ftok($keyfile, 'R');

}

protected function getKeyFile($id) {

return $this->tmp . DIRECTORY_SEPARATOR . 'pcshm_' . $id;

}

}

Because pc_Shm uses standard system functions for accessing shared memory, other

programs (no matter what language they’re written in) can access that data as well. For

example, Example 11-3 shows a short C program that can read data written by pc_Shm.

 Example 11-3. Reading shared memory data from C

 #include <sys/ipc.h>

 #include <sys/shm.h>

 #include <stdio.h>

int main(int argc, char **argv) {

char *id;

size_t size;

if (argc != 3) {

fprintf(stderr, "Usage: %s ID SIZE\n", argv[0]);

return -1;

}

id = argv[1];

size = atoi(argv[2]);

char *path;

asprintf(&path, "/tmp/pcshm_%s", id);

364 | Chapter 11: Sessions and Data Persistence

 key_t token = ftok(path, (int) 'R');

int shmid = shmget(token, size, 0);

void *ptr = shmat(shmid, 0, SHM_RDONLY);

printf("%*s\n", (int) size, (char *) ptr);

shmdt(ptr);

free(path);

}

Compiling that program and then invoking it with arguments mysecret and 10 (or any

sufficiently long length) will print the data inserted into shared memory by the PHP

code.

It’s important to remember that, unlike setting a key/value pair in a regular PHP array,

the shmop functions need to allocate a specific amount of space that the data stored there

is expected to consume. That is why the read and write operations require a size to be

passed to them.

See Also

Recipe 5.6 has more information on how to use APC to share memory among PHP

processes; documentation on PHP’s shmop functions.

11.7 Caching Calculated Results in Summary Tables

Problem

You need to collect statistics from log tables that are too large to efficiently query in real

time.

Solution

Create a table that stores summary data from the complete log table, and query the

summary table to generate reports in nearly real time.

Discussion

Let’s say that you are logging search queries that website visitors use on search engines

like Google and Yahoo! to find your website, and tracking those queries in MySQL. Your

search term tracking log table has this structure:

CREATE TABLE searches

(

searchterm VARCHAR(255) NOT NULL, -- search term determined from

-- HTTP_REFERER parsing

dt DATETIME NOT NULL, -- request date

source VARCHAR(15) NOT NULL -- site where search was performed

);

11.7 Caching Calculated Results in Summary Tables | 365

If you are fortunate enough to be logging thousands or tens of thousands of visits from

the major search engines per hour, the searches table could grow to an unmanageable

size over a period of several months.

You may wish to generate reports that illustrate trends of search terms that have driven

traffic to your website over time from each major search engine so that you can deter‐

mine which search engine to purchase advertising with.

Create a summary table that reflects what your report needs to display, and then query

the full dataset hourly and store the result in the summary table for speedy retrieval

during report generation. Your summary table would have this structure:

CREATE TABLE searchsummary

(

searchterm VARCHAR(255) NOT NULL, -- search term

source VARCHAR(15) NOT NULL, -- site where search was performed

sdate DATE NOT NULL, -- date search performed

searches INT UNSIGNED NOT NULL, -- number of searches

PRIMARY KEY (searchterm, source, sdate)

);

Your report generation script can then use PDO to query the searchsummary table, and

if results are not available, collect them from the searches table and cache the result in

searchsummary:

$st = $db->prepare('SELECT COUNT(*)

FROM

searchsummary

WHERE

sdate = ?');

$st->execute(array(date('Y-m-d', strtotime('yesterday'))));

$row = $st->fetch();

 // no matches in cache

if ($row[0] == 0) {

$st2 = $db->prepare('SELECT

searchterm,

source,

date(dt) AS sdate,

COUNT(*) as searches

FROM

searches

WHERE

date(dt) = ?');

$st2->execute(array(date('Y-m-d', strtotime('yesterday'))));

$stInsert = $db->prepare('INSERT INTO searchsummary

(searchterm,source,sdate,searches)

VALUES (?,?,?,?)');

while ($row = $st2->fetch(PDO::FETCH_NUM)) {

366 | Chapter 11: Sessions and Data Persistence

 $stInsert->execute($row);

}

}

Using this technique, your script will only incur the overhead of querying the full log

table once, and all subsequent requests will retrieve a single row of summary data per

search term.

See Also

Recipe 10.6 for information about PDO::prepare() and PDOStatement::execute().

11.7 Caching Calculated Results in Summary Tables | 367

CHAPTER 12

XML

12.0 Introduction

XML is a popular data-exchange, configuration, and message-passing format. Although

JSON has displaced XML for many basic situations, XML still plays an important role

in a developer’s life. With the help of a few extensions, PHP lets you read and write XML

for every occasion.

XML provides developers with a structured way to mark up data with tags arranged in

a tree-like hierarchy. One perspective on XML is to treat it as CSV on steroids. You can

use XML to store records broken into a series of fields. But instead of merely separating

each field with a comma, you can include a field name, a type, and attributes alongside

the data.

Another view of XML is as a document representation language. For instance, this book

was written using XML. The book is divided into chapters; each chapter into recipes;

and each recipe into Problem, Solution, and Discussion sections. Within any individual

section, we further subdivide the text into paragraphs, tables, figures, and examples. An

article on a web page can similarly be divided into the page title and headline, the authors

of the piece, the story itself, and any sidebars, related links, and additional content.

XML content looks similar to HTML. Both use tags bracketed by < and > for marking

up text. But XML is both stricter and looser than HTML. It’s stricter because all container

tags must be properly closed. No opening elements are allowed without a corresponding

closing tag. It’s looser because you’re not forced to use a set list of tags, such as <a>,

, and <h1>. Instead, you have the freedom to choose a set of tag names that best

describe your data.

Other key differences between XML and HTML are case sensitivity, attribute quoting,

and whitespace. In HTML, and are the same bold tag; in XML, they’re two

369

different tags. In HTML, you can often omit quotation marks around attributes; XML,

however, requires them. So you must always write:

<element attribute="value">

Additionally, HTML parsers generally ignore whitespace, so a run of 20 consecutive

spaces is treated the same as one space. XML parsers preserve whitespace, unless ex‐

plicitly instructed otherwise. Because all elements must be closed, empty elements must

end with />. For instance, in HTML, the line break is
, whereas in XHTML, which

is HTML that validates as XML, it’s written as
.1

There is another restriction on XML documents. When XML documents are parsed

into a tree of elements, the outermost element is known as the root element. Just as a

tree has only one trunk, an XML document must have exactly one root element. In the

previous book example, this means chapters must be bundled inside a book tag. If you

want to place multiple books inside a document, you need to package them inside a

bookcase or another container. This limitation applies only to the document root. Again,

just like trees can have multiple branches off of the trunk, it’s legal to store multiple

books inside a bookcase.

This chapter doesn’t aim to teach you XML; for an introduction to XML, see Learning

 XML by Erik T. Ray (O’Reilly). A solid nuts-and-bolts guide to all aspects of XML is

 XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means (O’Reilly).

Now that we’ve covered the rules, here’s an example. If you are a librarian and want to

convert your card catalog to XML, start with this basic set of XML tags:

<book>

<title>PHP Cookbook</title>

<author>Sklar, David and Trachtenberg, Adam</author>

<subject>PHP</subject>

</book>

From there, you can add new elements or modify existing ones. For example, <au

thor> can be divided into first and last name, or you can allow for multiple records so

two authors aren’t placed in one field.

PHP has a set of XML extensions that:

• Work together as a unified whole

• Are standardized on a single XML library: libxml2

• Fully comply with W3C specifications

• Efficiently process data

1. This is why nl2br() outputs
 by default; that output is XHTML compatible.

370 | Chapter 12: XML

• Provide you with the right XML tool for your job

Additionally, following the PHP tenet that creating web applications should be easy,

there’s an XML extension that makes it simple to read and alter XML documents. The

aptly named SimpleXML extension allows you to interact with the information in an

XML document as though these pieces of information are arrays and objects, iterating

through them with foreach loops and editing them in place merely by assigning new

values to variables.

The first two recipes in this chapter cover parsing XML. Recipe 12.1 shows how to write

XML without additional tools. To use DOM extension to write XML in a standardized

fashion, see Recipe 12.2.

The complement to writing XML is parsing XML. That’s the subject of the next three

recipes. They’re divided based upon the complexity and size of the XML document

you’re trying to parse. Recipe 12.3 covers how to parse basic XML documents. If you

need more sophisticated XML parsing tools, move onto Recipe 12.4. When your XML

documents are extremely large and memory intensive, turn to Recipe 12.5. If this is your

first time using XML, and you’re unsure which recipe is right for you, try them in order,

because the code becomes increasingly complex as your requirements go up.

XPath is the topic of Recipe 12.6. It’s a W3C standard for extracting specific information from XML documents. We like to think of it as regular expressions for XML. XPath is

one of the most useful, yet unused parts of the XML family of specifications. If you

process XML on a regular basis, you should be familiar with XPath.

With XSLT, you can take an XSL stylesheet and turn XML into viewable output. By

separating content from presentation, you can make one stylesheet for web browsers,

another for mobile phones, and a third for print, all without changing the content itself.

This is the subject of Recipe 12.7.

After introducing XSLT, the two recipes that follow show how to pass information back

and forth between PHP and XSLT. Recipe 12.8 tells how to send data from PHP to an

XSLT stylesheet; Recipe 12.9 shows how to call out to PHP from within an XSLT style‐

sheet.

As long as your XML document abides by the structural rules of XML, it is known as

 well-formed. However, unlike HTML, which has a specific set of elements and attributes

that must appear in set places, XML has no such restrictions.

Yet, in some cases, it’s useful to make sure your XML documents abide by a specification.

This allows tools, such as web browsers, RSS readers, or your own scripts, to easily

process the input. When an XML document follows all the rules set out by a specifica‐

tion, it is known as valid. Recipe 12.10 covers how to validate an XML document.

One of PHP’s major limitations is its handling of character sets and document encod‐

ings. PHP strings are not associated with a particular encoding, but all the XML exten‐

12.0 Introduction | 371

sions require UTF-8 input and emit UTF-8 output. Therefore, if you use a character set

incompatible with UTF-8, you must manually convert your data both before sending it

into an XML extension and after you receive it back. Recipe 12.11 explores the best ways to handle this process.

The chapter concludes with a number of recipes dedicated to reading and writing a

number of common types of XML documents, specifically RSS and Atom. These are

the two most popular data syndication formats, and are useful for exchanging many

types of data, including blog posts, podcasts, and even mapping information.

 PHP Cookbook also covers RESTful APIs. This topic is so important, it gets two dedicated

chapters of its own. Chapter 14 describes how to consume RESTful APIs, and Chap‐

ter 15 tells how to implement RESTful APIs of your very own.

12.1 Generating XML as a String

Problem

You want to generate XML. For instance, you want to provide an XML version of your

data for another program to parse.

Solution

Loop through your data and print it out surrounded by the correct XML tags:

header('Content-Type: text/xml');

print '<?xml version="1.0"?>' . " \n";

print "<shows> \n";

$shows = array(array('name' => 'Modern Family',

'channel' => 'ABC',

'start' => '9:00 PM',

'duration' => '30'),

array('name' => 'Law & Order: SVU',

'channel' => 'NBC',

'start' => '9:00 PM',

'duration' => '60'));

foreach ($shows as $show) {

print " <show> \n";

foreach($show as $tag => $data) {

print " <$tag>" . htmlspecialchars($data) . "</$tag> \n";

}

print " </show> \n";

}

print "</shows> \n";

372 | Chapter 12: XML

Discussion

Printing out XML manually mostly involves lots of foreach loops as you iterate through

arrays. However, there are a few tricky details. First, you need to call header() to set the

correct Content-Type header for the document. Because you’re sending XML instead

of HTML, it should be text/xml.

Next, depending on your settings for the short_open_tag configuration directive, try‐

ing to print the XML declaration may accidentally turn on PHP processing. Because the

<? of <?xml version="1.0"?> is the short PHP open tag, to print the declaration to the browser you need to either disable the directive or print the line from within PHP. We

do the latter in the Solution.

Last, entities must be escaped. For example, the & in the show Law & Order needs to be

&. Call htmlspecialchars() to escape your data.

The output from the example in the Solution is shown in Example 12-1.

 Example 12-1. Tonight’s TV listings

<?xml version="1.0"?>

<shows>

<show>

<name>Modern Family</name>

<channel>ABC</channel>

<start>9:00 PM</start>

<duration>30</duration>

</show>

<show>

<name>Law & Order: SVU</name>

<channel>NBC</channel>

<start>9:00 PM</start>

<duration>60</duration>

</show>

</shows>

See Also

Recipe 12.2 for generating XML using DOM; documentation on htmlspecialchars().

12.2 Generating XML with DOM

Problem

You want to generate XML but want to do it in an organized way instead of using print

and loops.

12.2 Generating XML with DOM | 373

Solution

Use the DOM extension to create a DOMDocument object. After building up the document,

call DOMDocument::save() or DOMDocument::saveXML() to generate a well-formed

XML document:

 // create a new document

$dom = new DOMDocument('1.0');

 // create the root element, <book>, and append it to the document

$book = $dom->appendChild($dom->createElement('book'));

 // create the title element and append it to $book

$title = $book->appendChild($dom->createElement('title'));

 // set the text and the cover attribute for $title

$title->appendChild($dom->createTextNode('PHP Cookbook'));

$title->setAttribute('edition', '3');

 // create and append author elements to $book

$sklar = $book->appendChild($dom->createElement('author'));

 // create and append the text for each element

$sklar->appendChild($dom->createTextNode('Sklar'));

$trachtenberg = $book->appendChild($dom->createElement('author'));

$trachtenberg->appendChild($dom->createTextNode('Trachtenberg'));

 // print a nicely formatted version of the DOM document as XML

$dom->formatOutput = true;

echo $dom->saveXML();

<?xml version="1.0"?>

<book>

 <title edition="3">PHP Cookbook</title>

 <author>Sklar</author>

 <author>Trachtenberg</author>

</book>

Discussion

The DOM methods follow a pattern. You create an object as either an element or a text

node, add and set any attributes you want, and then append it to the tree in the spot it

belongs.

Before creating elements, create a new document, passing the XML version as the sole

argument:

$dom = new DOMDocument('1.0');

Now create new elements belonging to the document. Despite being associated with a

specific document, nodes don’t join the document tree until appended:

374 | Chapter 12: XML

$book_element = $dom->createElement('book');

$book = $dom->appendChild($book_element);

Here a new book element is created and assigned to the object $book_element. To create

the document root, append $book_element as a child of the $dom document. The result,

$book, refers to the specific element and its location within the DOM object.

All nodes are created by calling a method on $dom. Once a node is created, it can be

appended to any element in the tree. The element from which we call the append

Child() method determines the location in the tree where the node is placed. In the

previous case, $book_element is appended to $dom. The element appended to $dom is

the top-level node, or the root node.

You can also append a new child element to $book. Because $book is a child of $dom, the

new element is, by extension, a grandchild of $dom:

$title_element = $dom->createElement('title');

$title = $book->appendChild($title_element);

By calling $book->appendChild(), this code places the $title_element element under

the $book element.

To add the text inside the <title></title> tags, create a text node using createText

Node() and append it to $title:

$text_node = $dom->createTextNode('PHP Cookbook');

$title->appendChild($text_node);

Because $title is already added to the document, there’s no need to reappend it to

$book.

The order in which you append children to nodes isn’t important. The following four

lines, which first append the text node to $title_element and then to $book, are equiv‐

alent to the previous code:

$title_element = $dom->createElement('title');

$text_node = $dom->createTextNode('PHP Cookbook');

$title_element->appendChild($text_node);

$book->appendChild($title_element);

To add an attribute, call setAttribute() upon a node, passing the attribute name and

value as arguments:

$title->setAttribute('edition', '3');

If you print the title element now, it looks like this:

<title edition="3" > PHP Cookbook</title>

Once you’re finished, you can output the document as a string or to a file:

12.2 Generating XML with DOM | 375

 // put the string representation of the XML document in $books

$books = $dom->saveXML();

 // write the XML document to books.xml

$dom->save('books.xml');

By default, these methods generate XML output in one long line without any whitespace,

including indentations and line breaks. To fix this, set the formatOutput attribute of

your DOMDocument to true:

 // print a nicely formatted version of the DOM document as XML

$dom->formatOutput = true;

This causes the DOM extension to generate XML like this:

<?xml version="1.0"?>

<book>

<title cover="soft" > PHP Cookbook</title>

</book>

See Also

Recipe 12.1 for writing XML without DOM; Recipe 12.4 for parsing XML with DOM; documentation on DOMDocument and the DOM functions in general; more information about the underlying libxml2 C library.

12.3 Parsing Basic XML Documents

Problem

You want to parse a basic XML document that follows a known schema, and you don’t

need access to more esoteric XML features, such as processing instructions.

Solution

Use the SimpleXML extension. Here’s how to read XML from a file:

$sx = simplexml_load_file(__DIR__ . '/address-book.xml');

foreach ($sx->person as $person) {

$firstname_text_value = $person->firstname;

$lastname_text_value = $person->lastname;

print "$firstname_text_value $lastname_text_value\n";

}

David Sklar

Adam Trachtenberg

376 | Chapter 12: XML

Discussion

SimpleXML has been described as “the mostest bestest thing ever.” Though it’s hard to

live up to such grand praise, SimpleXML does do a remarkable job of making it—dare

we say—simple to interact with XML. When you want to read a configuration file written

in XML, parse an RSS feed, or process the result of a REST request, SimpleXML excels

at these tasks. It doesn’t work well for more complex XML-related jobs, such as reading

a document where you don’t know the format ahead of time or when you need to access

processing instructions or comments.

SimpleXML turns elements into object properties. The text between the tags is assigned

to the property. If more than one element with the same name lives in the same place

(such as multiple <people>s), then they’re placed inside a list.

Element attributes become array elements, where the array key is the attribute name

and the key’s value is the attribute’s value.

To access a single value, reference it directly using object method notation. Let’s use this

XML fragment as an example:

<firstname>David</firstname>

If you have this in a SimpleXML object, $firstname, here’s all you need to do to access

David:

$firstname

SimpleXML assumes that when you have a node that contains only text, you’re interested

in the text. Therefore, print $firstname does what you expect it to: it prints David.

Iteration methods, like foreach, are the best choice for cycling through multiple ele‐

ments. Code for this is shown in later examples.

Attributes are stored as array elements. For example, this prints out the id attribute for

the first person element:

$ab = simplexml_load_file(__DIR__ . '/address-book.xml');

 // the id attribute of the first person

print $ab->person['id'] . " \n";

which gives you:

1

Here’s a more complete example based on this simple address book in XML. It’s used in

the code examples that follow.

<?xml version="1.0"?>

<address-book>

<person id="1" >

 <!--David Sklar-->

12.3 Parsing Basic XML Documents | 377

 <firstname> David</firstname>

<lastname> Sklar</lastname>

<city> New York</city>

<state> NY</state>

<email> sklar@php.net</email>

</person>

<person id="2" >

 <!--Adam Trachtenberg-->

<firstname> Adam</firstname>

<lastname> Trachtenberg</lastname>

<city> San Francisco</city>

<state> CA</state>

<email> amt@php.net</email>

</person>

</address-book>

Use SimpleXML to pull out all the first and last names:

$sx = simplexml_load_file(__DIR__ . '/address-book.xml');

foreach ($sx->person as $person) {

$firstname_text_value = $person->firstname;

$lastname_text_value = $person->lastname;

print "$firstname_text_value $lastname_text_value\n";

}

David Sklar

Adam Trachtenberg

When you use SimpleXML, you can directly iterate over elements using foreach. Here,

the iteration occurs over $sx->person, which holds all the person nodes.

You can also directly print SimpleXML objects:

foreach ($sx->person as $person) {

print "$person->firstname $person->lastname\n";

}

David Sklar

Adam Trachtenberg

PHP interpolates SimpleXML objects inside of quoted strings and retrieves the text

stored in them.

See Also

Recipe 12.4 for parsing complex XML documents; Recipe 12.5 for parsing large XML

documents; documentation on SimpleXML; more information about the underlying

libxml2 C library.

378 | Chapter 12: XML

12.4 Parsing Complex XML Documents

Problem

You have a complex XML document, such as one where you need to introspect the

document to determine its schema, or you need to use more esoteric XML features, such

as processing instructions or comments.

Solution

Use the DOM extension. It provides a complete interface to all aspects of the XML

specification:

 // $node is the DOM parsed node <book cover="soft">PHP Cookbook</book>

$type = $node->nodeType;

switch($type) {

case XML_ELEMENT_NODE:

 // I'm a tag. I have a tagname property.

print $node->tagName; // prints the tagname property: "book"

break;

case XML_ATTRIBUTE_NODE:

 // I'm an attribute. I have a name and a value property.

print $node->name; // prints the name property: "cover"

print $node->value; // prints the value property: "soft"

break;

case XML_TEXT_NODE:

 // I'm a piece of text inside an element.

 // I have a name and a content property.

print $node->nodeName; // prints the name property: "#text"

print $node->nodeValue; // prints the text content: "PHP Cookbook"

break;

default:

 // another type

break;

}

book

Discussion

The W3C’s DOM provides a platform- and language-neutral method that specifies the

structure and content of a document. Using DOM, you can read an XML document

into a tree of nodes and then maneuver through the tree to locate information about a

particular element or elements that match your criteria. This is called tree-based parsing.

Additionally, you can modify the structure by creating, editing, and deleting nodes. In

fact, you can use the DOM functions to author a new XML document from scratch; see

Recipe 12.2.

12.4 Parsing Complex XML Documents | 379

One of the major advantages of DOM is that by following the W3C’s specification, many

languages implement DOM functions in a similar manner. Therefore, the work of

translating logic and instructions from one application to another is considerably sim‐

plified.

DOM is large and complex. For more information, read the specification or pick up a

copy of XML in a Nutshell.

DOM functions in PHP are object oriented. To move from one node to another, access

properties such as $node->childNodes, which contains an array of node objects, and

$node->parentNode, which contains the parent node object. Therefore, to process a

node, check its type and call a corresponding method, as shown:

 // $node is the DOM parsed node <book cover="soft">PHP Cookbook</book>

$type = $node->nodeType;

switch($type) {

case XML_ELEMENT_NODE:

 // I'm a tag. I have a tagname property.

print $node->tagName; // prints the tagname property: "book"

break;

case XML_ATTRIBUTE_NODE:

 // I'm an attribute. I have a name and a value property.

print $node->name; // prints the name property: "cover"

print $node->value; // prints the value property: "soft"

break;

case XML_TEXT_NODE:

 // I'm a piece of text inside an element.

 // I have a name and a content property.

print $node->nodeName; // prints the name property: "#text"

print $node->nodeValue; // prints the text content: "PHP Cookbook"

break;

default:

 // another type

break;

}

To automatically search through a DOM tree for specific elements, use getElements

ByTagname(). Here’s how to do so with multiple book records:

<books>

<book>

<title>PHP Cookbook</title>

<author>Sklar</author>

<author>Trachtenberg</author>

<subject>PHP</subject>

</book>

<book>

<title>Perl Cookbook</title>

<author>Christiansen</author>

<author>Torkington</author>

380 | Chapter 12: XML

 <subject>Perl</subject>

</book>

</books>

And to find all authors:

 // find and print all authors

$authors = $dom->getElementsByTagname('author');

 // loop through author elements

foreach ($authors as $author) {

 // childNodes holds the author values

$text_nodes = $author->childNodes;

foreach ($text_nodes as $text) {

print $text->nodeValue . " \n";

}

}

Sklar

Trachtenberg

Christiansen

Torkington

The getElementsByTagname() method returns an array of element node objects. By

looping through each element’s children, you can get to the text node associated with

that element. From there, you can pull out the node values, which in this case are the

names of the book authors, such as Sklar and Trachtenberg.

See Also

Recipe 12.3 for parsing simple XML documents; Recipe 12.5 for parsing large XML

documents; documentation on DOM; more information about the underlying libxml2

C library.

12.5 Parsing Large XML Documents

Problem

You want to parse a large XML document. This document is so large that it’s impractical

to use SimpleXML or DOM because you cannot hold the entire document in memory.

Instead, you must load the document in one section at a time.

Solution

Use the XMLReader extension:

$reader = new XMLReader();

$reader->open(__DIR__ . '/card-catalog.xml');

12.5 Parsing Large XML Documents | 381

 /* Loop through document */

while ($reader->read()) {

 /* If you're at an element named 'author' */

if($reader->nodeType == XMLREADER::ELEMENT &&

$reader->localName == 'author') {

 /* Move to the text node and print it out */

$reader->read();

print $reader->value . " \n";

}

}

Discussion

There are two major types of XML parsers: ones that hold the entire document in mem‐

ory at once, and ones that hold only a small portion of the document in memory at any

given time.

The first kind are called tree-based parsers, because they store the document into a data

structure known as a tree. The SimpleXML and DOM extensions, from Recipes 12.3

and 12.4, are tree-based parsers. Using a tree-based parser is easier for you, but requires PHP to use more RAM. With most XML documents, this isn’t a problem. However,

when your XML document is quite large, this can cause major performance issues.

The other kind of XML parser is a stream-based parser. Stream-based parsers don’t store

the entire document in memory; instead, they read in one node at a time and allow you

to interact with it in real time. Once you move onto the next node, the old one is thrown

away—unless you explicitly store it yourself for later use. This makes stream-based

parsers faster and less memory-consuming, but you may have to write more code to

process the document.

The easiest way to process XML data using a stream-based parser is using the XMLRead‐

 er extension. This extension is based on the C# XmlTextReader API. If you’re familiar

with SAX (Simple API for XML), XMLReader is more intuitive, feature-rich, and faster.

Begin by creating a new instance of the XMLReader class and specifying the location of

your XML data:

 // Create a new XMLReader object

$reader = new XMLReader();

 // Load from a file or URL

$reader->open('document.xml');

 // Or, load from a PHP variable

$reader->XML($document);

382 | Chapter 12: XML

Most of the time, you’ll use the XMLReader::open() method to pull in data from an

external source, but you can also load it from an existing PHP variable with

XMLReader::XML().

Once the object is configured, you begin processing the data. At the start, you’re posi‐

tioned at the top of the document. You can maneuver through the document using a

combination of the two navigation methods XMLReader provides: XMLReader::read()

and XMLReader::next(). The first method reads in the piece of XML data that imme‐

diately follows the current position. The second method moves to the next sibling ele‐

ment after the current position.

For example, look at this XML:

<books>

<book isbn="1565926811" >

<title> PHP Cookbook</title>

<author> Sklar</author>

<author> Trachtenberg</author>

<subject> PHP</subject>

</book>

<book isbn="0596003137" >

<title> Perl Cookbook</title>

<author> Christiansen</author>

<author> Torkington</author>

<subject> Perl</subject>

</book>

</books>

When the object is positioned at the first <book> element, the read() method moves

you to the next element underneath <book>. (This is technically the whitespace between

<book> and <title>.) In comparison, next() moves you to the next <book> element

and skips the entire PHP Cookbook subtree.

These methods return true when they’re able to successfully move to another node,

and false when they cannot. So, it’s typical to use them inside a while loop, as such:

 /* Loop through document */

while ($reader->read()) {

 /* Process XML */

}

This causes the object to read in the entire XML document one piece at a time. Inside

the while(), examine $reader and process it accordingly.

A common aspect to check is the node type. This lets you know if you’ve reached an

element (and then check the name of that element), a closing element, an attribute, a

piece of text, some whitespace, or any other part of an XML document. Do this by

referencing the nodeType attribute:

12.5 Parsing Large XML Documents | 383

 /* Loop through document */

while ($reader->read()) {

 /* If you're at an element named 'author' */

if($reader->nodeType == XMLREADER::ELEMENT &&

$reader->localName == 'author') {

 /* Process author element */

}

}

This code checks if the node is an element and, if so, that its name is author. For a

complete list of possible values stored in nodeType, check out Table 12-1.

 Table 12-1. XMLReader node type values

Node type

Description

XMLReader::NONE

No node type

XMLReader::ELEMENT

Start element

XMLReader::ATTRIBUTE

Attribute node

XMLReader::TEXT

Text node

XMLReader::CDATA

CDATA node

XMLReader::ENTITY_REF

Entity Reference node

XMLReader::ENTITY

Entity Declaration node

XMLReader::PI

Processing Instruction node

XMLReader::COMMENT

Comment node

XMLReader::DOC

Document node

XMLReader::DOC_TYPE

Document Type node

XMLReader::DOC_FRAGMENT

Document Fragment node

XMLReader::NOTATION

Notation node

XMLReader::WHITESPACE

Whitespace node

XMLReader::SIGNIFICANT_WHITESPACE Significant Whitespace node

XMLReader::END_ELEMENT

End Element

XMLReader::END_ENTITY

End Entity

XMLReader::XML_DECLARATION

XML Declaration node

From there, you can decide how to handle that element and the data it contains. For

example, we can print out all the author names in the card catalog:

$reader = new XMLReader();

$reader->open(__DIR__ . '/card-catalog.xml');

 /* Loop through document */

while ($reader->read()) {

 /* If you're at an element named 'author' */

if($reader->nodeType == XMLREADER::ELEMENT &&

$reader->localName == 'author') {

384 | Chapter 12: XML

 /* Move to the text node and print it out */

$reader->read();

print $reader->value . " \n";

}

}

Sklar

Trachtenberg

Christiansen

Torkington

Once you’ve reached the <author> element, call $reader->read() to advance to the

text inside it. From there, you can find the author names inside of $reader->value.

The XMLReader::value attribute provides you access with a node’s value. This only

applies to nodes where this is a meaningful concept, such as text nodes or CDATA nodes.

In all other cases, such as element nodes, this attribute is set to the empty string.

Table 12-2 contains a complete listing of XMLReader object properties, including value.

 Table 12-2. XMLReader node type values

Name

Type Description

attributeCount int

Number of node attributes

baseURI

string Base URI of the node

depth

int

Tree depth of the node, starting at 0

hasAttributes

bool

If the node has attributes

hasValue

bool

If the node has a text value

isDefault

bool

If the attribute value is defaulted from DTD

isEmptyElement bool

If the node is an empty element tag

localName

string Local name of the node

name

string Qualified name of the node

namespaceURI

string URI of the namespace associated with the node

nodeType

int

Node type of the node

prefix

string Namespace prefix associated with the node

value

string Text value of the node

xmlLang

string xml:lang scope of the node

There’s one remaining major piece of XMLReader functionality: attributes. XMLReader

has a special set of methods to access attribute data when it’s on top of an element node,

including the following: moveToAttribute(), moveToFirstAttribute(), and moveTo

NextAttribute().

The moveToAttribute() method lets you specify an attribute name. For example, here’s

code using the card catalog XML to print out all the ISBN numbers:

12.5 Parsing Large XML Documents | 385

$reader = new XMLReader();

$reader->XML($catalog);

 /* Loop through document */

while ($reader->read()) {

 /* If you're at an element named 'book' */

if ($reader->nodeType == XMLREADER::ELEMENT &&

$reader->localName == 'book') {

$reader->moveToAttribute('isbn');

print $reader->value . " \n";

}

}

Once you’ve found the <book> element, call moveToAttribute('isbn') to advance to

the isbn attribute, so you can read its value and print it out:

1565926811

0596003137

In the examples in this recipe, we print out information on all books. However, it’s easy

to modify them to retrieve data only for one specific book. For example, this code com‐

bines pieces of the examples to print out all the data for Perl Cookbook in an efficient

fashion:

$reader = new XMLReader();

$reader->XML($catalog);

 // Perl Cookbook ISBN is 0596003137

 // Use array to make it easy to add additional ISBNs

$isbns = array('0596003137' => true);

 /* Loop through document to find first <book> */

while ($reader->read()) {

 /* If you're at an element named 'book' */

if ($reader->nodeType == XMLREADER::ELEMENT &&

$reader->localName == 'book') {

break;

}

}

 /* Loop through <book>s to find right ISBNs */

do {

if ($reader->moveToAttribute('isbn') &&

isset($isbns[$reader->value])) {

while ($reader->read()) {

switch ($reader->nodeType) {

case XMLREADER::ELEMENT:

print $reader->localName . ": ";

break;

case XMLREADER::TEXT:

print $reader->value . " \n";

break;

386 | Chapter 12: XML

 case XMLREADER::END_ELEMENT;

if ($reader->localName == 'book') {

break 2;

}

}

}

}

} while ($reader->next());

title: Perl Cookbook

author: Christiansen

author: Torkington

subject: Perl

The first while() iterates sequentially until it finds the first <book> element.

Having lined yourself up correctly, you then break out of the loop and start checking

ISBN numbers. That’s handled inside a do… while() loop that uses $reader->next()

to move down the <book> list. You cannot use a regular while() here or you’ll skip over

the first <book>. Also, this is a perfect example of when to use $reader->next() instead

of $reader->read().

If the ISBN matches a value in $isbns, then you want to process the data inside the

current <book>. This is handled using yet another while() and a switch().

There are three different switch() cases: an opening element, element text, and a closing

element. If you’re opening an element, you print out the element’s name and a colon. If

you’re visiting text, you print out the textual data. And if you’re closing an element, you

check to see whether you’re closing the <book>. If so, then you’ve reached the end of the

data for that particular book, and you need to return to the do… while() loop. This is

handled using a break 2;—while jumps back two levels, instead of the usual one level.

See Also

Recipe 12.3 for parsing simple XML documents; Recipe 12.4 for parsing complex XML

documents; documentation on XMLReader; more information about the underlying

libxml2 C library’s XMLReader functions.

12.6 Extracting Information Using XPath

Problem

You want to make sophisticated queries of your XML data without parsing the document

node by node.

12.6 Extracting Information Using XPath | 387

Solution

Use XPath.

XPath is available in SimpleXML:

$s = simplexml_load_file(__DIR__ . '/address-book.xml');

$emails = $s->xpath('/address-book/person/email');

foreach ($emails as $email) {

 // do something with $email

}

And in DOM:

$dom = new DOMDocument;

$dom->load(__DIR__ . '/address-book.xml');

$xpath = new DOMXPath($dom);

$emails = $xpath->query('/address-book/person/email');

foreach ($emails as $email) {

 // do something with $email

}

Discussion

Except for the simplest documents, it’s rarely easy to access the data you want one ele‐

ment at a time. As your XML files become increasingly complex and your parsing desires

grow, using XPath is easier than filtering the data inside a foreach.

PHP has an XPath class that takes a DOM object as its constructor. You can then search

the object and receive DOM nodes in reply. SimpleXML also supports XPath, and it’s

easier to use because it’s integrated into the SimpleXML object.

DOM supports XPath queries, but you do not perform the query directly on the DOM

object itself. Instead, you create a DOMXPath object, as shown:

$dom = new DOMDocument;

$dom->load(__DIR__ . '/address-book.xml');

$xpath = new DOMXPath($dom);

$emails = $xpath->query('/address-book/person/email');

Instantiate DOMXPath by passing in a DOMDocument to the constructor. To execute the

XPath query, call query() with the query text as your argument. This returns an iterable

DOM node list of matching nodes:

$dom = new DOMDocument;

$dom->load(__DIR__ . '/address-book.xml');

$xpath = new DOMXPath($dom);

$emails = $xpath->query('/address-book/person/email');

foreach ($emails as $e) {

388 | Chapter 12: XML

 $email = $e->firstChild->nodeValue;

 // do something with $email

}

After creating a new DOMXPath object, query this object using DOMXPath::query(),

passing the XPath query as the first parameter (in this example, it’s /people/person/

email). This function returns a node list of matching DOM nodes.

By default, DOMXPath::query() operates on the entire XML document. Search a sub‐

section of the tree by passing in the subtree as a final parameter to query(). For instance,

to gather all the first and last names of people in the address book, retrieve all the person

nodes and query each node individually:

$dom = new DOMDocument;

$dom->load(__DIR__ . '/address-book.xml');

$xpath = new DOMXPath($dom);

$people = $xpath->query('/address-book/person');

foreach ($people as $p) {

$fn = $xpath->query('firstname', $p);

$firstname = $fn->item(0)->firstChild->nodeValue;

$ln = $xpath->query('lastname', $p);

$lastname = $ln->item(0)->firstChild->nodeValue;

print "$firstname $lastname\n";

}

Inside the foreach, call DOMXPath::query() to retrieve the firstname and lastname

nodes. Now, in addition to the XPath query, also pass $p to the method. This makes the

search local to the node.

In contrast to DOM, all SimpleXML objects have an integrated xpath() method. Calling

this method queries the current object using XPath and returns a SimpleXML object

containing the matching nodes, so you don’t need to instantiate another object to use

XPath. The method’s one argument is your XPath query.

Here’s how to find all the matching email addresses in the sample address book:

$s = simplexml_load_file(__DIR__ . '/address-book.xml');

$emails = $s->xpath('/address-book/person/email');

foreach ($emails as $email) {

 // do something with $email

}

This is shorter because there’s no need to dereference the firstChild or to take the

nodeValue.

SimpleXML handles the more complicated example, too. Because xpath() returns Sim‐

pleXML objects, you can query them directly:

12.6 Extracting Information Using XPath | 389

$s = simplexml_load_file(__DIR__ . '/address-book.xml');

$people = $s->xpath('/address-book/person');

foreach($people as $p) {

list($firstname) = $p->xpath('firstname');

list($lastname) = $p->xpath('lastname');

print "$firstname $lastname\n";

}

David Sklar

Adam Trachtenberg

Because the inner XPath queries return only one element, use list to grab it from the

array.

See Also

Documentation on DOM XPath; the offical XPath specification; the XPath chapter from

 XML in a Nutshell.

12.7 Transforming XML with XSLT

Problem

You have an XML document and an XSL stylesheet. You want to transform the document

using XSLT and capture the results. This lets you apply stylesheets to your data and

create different versions of your content for different media.

Solution

Use PHP’s XSLT extension:

 // Load XSL template

$xsl = new DOMDocument;

$xsl->load(__DIR__ . '/stylesheet.xsl');

 // Create new XSLTProcessor

$xslt = new XSLTProcessor();

 // Load stylesheet

$xslt->importStylesheet($xsl);

 // Load XML input file

$xml = new DOMDocument;

$xsl->load(__DIR__ . '/address-book.xml');

 // Transform to string

$results = $xslt->transformToXML($xml);

 // Transform to a file

390 | Chapter 12: XML

$results = $xslt->transformToURI($xml, 'results.txt');

 // Transform to DOM object

$results = $xslt->transformToDoc($xml);

The transformed text is stored in $results.

Discussion

XML documents describe the content of data, but they don’t contain any information

about how that data should be displayed. However, when XML content is coupled with

a stylesheet described using XSL (eXtensible Stylesheet Language), the content is dis‐

played according to specific visual rules.

The glue between XML and XSL is XSLT (eXtensible Stylesheet Language Transforma‐

tions). These transformations apply the series of rules enumerated in the stylesheet to

your XML data. So just as PHP parses your code and combines it with user input to

create a dynamic page, an XSLT program uses XSL and XML to output a new page that

contains more XML, HTML, or any other format you can describe.

There are a few XSLT programs available, each with different features and limitations.

PHP supports only the libxslt processor.

Using XSLT in PHP involves two main steps: preparing the XSLT object and then trig‐

gering the actual transformation for each XML file.

To begin, load in the stylesheet using DOM. Then, instantiate a new XSLTProcessor

object, and import the XSLT document by passing in your newly created DOM object

to the importStylesheet() method, as shown:

 // Load XSL template

$xsl = new DOMDocument;

$xsl->load(__DIR__ . '/stylesheet.xsl');

 // Create new XSLTProcessor

$xslt = new XSLTProcessor();

 // Load stylesheet

$xslt->importStylesheet($xsl);

Now the transformer is up and running. You can transform any DOM object in one of

three ways—into a string, into a file, or back into another DOM object, as shown:

 // Load XML input file

$xml = new DOMDocument;

$xsl->load(__DIR__ . '/stylesheet.xsl');

 // Transform to string

$results = $xslt->transformToXML($xml);

 // Transform to a file

$results = $xslt->transformToURI($xml, 'results.txt');

12.7 Transforming XML with XSLT | 391

 // Transform to DOM object

$results = $xslt->transformToDoc($xml);

When you call transformToXML() or transformToDoc(), the extension returns the re‐

sulting string or object. In contrast, transformToURI() returns the number of bytes

written to the file, not the actual document.

These methods return false when they fail, so to accurately check for failure, write:

if (false === ($results = $xslt->transformToXML($xml))) {

 // an error occurred

}

Using === prevents a return value of 0 from being confused with an actual error.

See Also

Documentation on XSL functions; XSLT by Doug Tidwell (O’Reilly).

12.8 Setting XSLT Parameters from PHP

Problem

You want to set parameters in your XSLT stylesheet from PHP.

Solution

Use the XSLTProcessor::setParameter() method:

 // This could also come from $_GET['city'];

$city = 'San Francisco';

$dom = new DOMDocument;

$dom->load(__DIR__ . '/address-book.xml');

$xsl = new DOMDocument;

$xsl->load(__DIR__ . '/stylesheet.xsl');

$xslt = new XSLTProcessor();

$xslt->importStylesheet($xsl);

$xslt->setParameter(NULL, 'city', $city);

print $xslt->transformToXML($dom);

This code sets the XSLT city parameter to the value stored in the PHP variable $city.

Discussion

You can pass data from PHP into your XSLT stylesheet with the setParameter() meth‐

od. This allows you to do things such as filter data in your stylesheet based on user input.

392 | Chapter 12: XML

For example, this program allows you to find people based on their city:

 // This could also come from $_GET['city'];

$city = 'San Francisco';

$dom = new DOMDocument;

$dom->load(__DIR__ . '/address-book.xml');

$xsl = new DOMDocument;

$xsl->load(__DIR__ . '/stylesheet.xsl');

$xslt = new XSLTProcessor();

$xslt->importStylesheet($xsl);

$xslt->setParameter(NULL, 'city', $city);

print $xslt->transformToXML($dom);

The program uses the following stylesheet:

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >

<xsl:template match="@*|node()" >

<xsl:copy>

<xsl:apply-templates select="@*|node()" />

</xsl:copy>

</xsl:template>

<xsl:template match="/address-book/person" >

<xsl:if test="city=$city" >

<xsl:copy>

<xsl:apply-templates select="@*|node()" />

</xsl:copy>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

The program and stylesheet combine to produce the following results:

<?xml version="1.0"?>

<address-book>

<person id="2" >

 <!--Adam Trachtenberg-->

<firstname> Adam</firstname>

<lastname> Trachtenberg</lastname>

<city> San Francisco</city>

<state> CA</state>

<email> amt@php.net</email>

</person>

</address-book>

12.8 Setting XSLT Parameters from PHP | 393

The PHP script does a standard XSLT transformation, except it calls $xslt-

>setParameter(NULL, city, $city). The first argument is the parameter’s name‐

space, the second is the parameter’s name, and the third is the parameter’s value.

Here, the value stored in the PHP variable $city—in this case, San Francisco—is

assigned to the XSLT parameter city, which does not live under a namespace. This is

equal to placing the following in an XSLT file:

<xsl:param name="city" > San Francisco</xsl:param>

You usually access a parameter inside a stylesheet like you do a PHP variable, by placing

a dollar sign ($) in front of its name. The stylesheet example creates a template that

matches /address-book/person nodes.

Inside the template, you test whether city=$city; in other words, is the city child of

the current node equal to the value of the city parameter? If there’s a match, the children

are copied along; otherwise, the records are eliminated.

In this case, city is set to San Francisco, so David’s record is removed and Adam’s

remains.

See Also

Documentation on XSLTProcessor::setParameter(); XSLT by Doug Tidwell (O’Reilly).

12.9 Calling PHP Functions from XSLT Stylesheets

Problem

You want to call PHP functions from within an XSLT stylesheet.

Solution

Invoke the XSLTProcessor::registerPHPFunctions() method to enable this func‐

tionality:

$xslt = new XSLTProcessor();

$xslt->registerPHPFunctions();

And use the function() or functionString() function within your stylesheet:

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:php="http://php.net/xsl"

xsl:extension-element-prefixes="php" >

394 | Chapter 12: XML

<xsl:template match="/" >

<xsl:value-of select="php:function('strftime', '%c')" />

</xsl:template>

</xsl:stylesheet>

Discussion

XSLT parameters are great when you need to communicate from PHP to XSLT. How‐

ever, they’re not very useful when you require the reverse. You can’t use parameters to

extract information from the stylesheet during the transformation. Ideally, you could

call PHP functions from a stylesheet and pass information back to PHP.

Fortunately, there’s a method that implements this functionality: registerPHPFunc

tions(). Here’s how it’s enabled:

$xslt = new XSLTProcessor();

$xslt->registerPHPFunctions();

This allows you to call any PHP function from your stylesheets. It’s not available by

default because it presents a security risk if you’re processing stylesheets controlled by

other people.

Both built-in and user-defined functions work. Inside your stylesheet, you must define

a namespace and call the function() or functionString() methods, as shown:

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:php="http://php.net/xsl"

xsl:extension-element-prefixes="php" >

<xsl:template match="/" >

<xsl:value-of select="php:function('strftime', '%c')" />

</xsl:template>

</xsl:stylesheet>

At the top of the stylesheet, define the namespace for PHP: http://php.net/xsl. This

example sets the namespace prefix to php. Also, set the extension-element-

prefixes value to php so XSLT knows these are functions.

To call a PHP function, reference php:function(). The first parameter is the function

name; additional parameters are the function arguments. In this case, the function name

is strftime and the one argument is %c. This causes strftime to return the current date

and time.

This example uses the stylesheet, stored as strftime.xsl, to process a single-element XML

document:

12.9 Calling PHP Functions from XSLT Stylesheets | 395

$dom = new DOMDocument;

$dom->loadXML('<blank/>');

$xsl = new DOMDocument;

$xsl->load(__DIR__ . '/strftime.xsl');

$xslt = new XSLTProcessor();

$xslt->importStylesheet($xsl);

$xslt->registerPHPFunctions();

print $xslt->transformToXML($dom);

Mon Jul 22 06:01:10 2014

This works like standard XSLT processing, but there’s an additional call to registerPHP

Functions() to activate PHP function support.

You can also return DOM objects. Example 12-2 takes the XML address book and

mangles all the email addresses to turn the hostname portion into three dots. Everything

else in the document is left untouched.

 Example 12-2. Spam protecting email addresses

function mangle_email($nodes) {

return preg_replace('/([^@\s]+)@([-a-z0-9]+\.)+[a-z]{2,}/is',

'$1@...',

$nodes[0]->nodeValue);

}

$dom = new DOMDocument;

$dom->load(__DIR__ . '/address-book.xml');

$xsl = new DOMDocument;

$xsl->load(__DIR__ . '/mangle-email.xsl');

$xslt = new XSLTProcessor();

$xslt->importStylesheet($xsl);

$xslt->registerPhpFunctions();

print $xslt->transformToXML($dom);

Inside your stylesheet, create a special template for /address-book/person/email el‐

ements. As an example:

<?xml version="1.0" ?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:php="http://php.net/xsl"

xsl:extension-element-prefixes="php" >

<xsl:template match="@*|node()" >

<xsl:copy>

<xsl:apply-templates select="@*|node()" />

</xsl:copy>

</xsl:template>

396 | Chapter 12: XML

<xsl:template match="/address-book/person/email" >

<xsl:copy>

<xsl:value-of select="php:function('mangle_email', node())" />

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

The first template ensures that the elements aren’t modified, and the second passes the

current node to PHP for mangling. In the second template, the mangle_email() func‐

tion is passed the current node, represented in XPath as node(), instead of a string. Be

sure not to place the node() inside quotation marks, or you’ll pass the literal text node().

Nodes become DOM objects inside PHP and always arrive in an array. In this case,

mangle_email() knows there’s always only one object and it’s a DOMText object, so the

email address is located in $nodes[0]->nodeValue.

When you know that you’re only interested in the text portion of a node, use the func

tionString() function. This function converts nodes to PHP strings, which allows you

to omit the array access and nodeValue dereference:

function mangle_email($email) {

return preg_replace('/([^@\s]+)@([-a-z0-9]+\.)+[a-z]{2,}/is',

'$1@...',

$email);

}

 // all other code is the same as before

The new stylesheet template for /address-book/person/email is:

<xsl:template match="/address-book/person/email" >

<xsl:copy>

<xsl:value-of

select="php:functionString('mangle_email', node())" />

</xsl:copy>

</xsl:template>

The mangle_email() function now processes $email instead of $nodes[0]-

>nodeValue because the template now calls the functionString() function.

The function() and functionString() methods are incredibly useful, but using them

undermines the premise of XSL as a language-neutral transformation engine. When

you call PHP from XSLT, you cannot easily reuse your stylesheets in projects that use

Java, Perl, and other languages, because they cannot call PHP. Therefore, you should

consider the trade-off between convenience and portability before using this feature.

See Also

Documentation on XSLTProcessor::registerPHPFunctions(); XSLT by Doug Tid-well (O’Reilly).

12.9 Calling PHP Functions from XSLT Stylesheets | 397

12.10 Validating XML Documents

Problem

You want to make sure your XML document abides by a schema, such as XML Schema,

Relax NG, and DTDs.

Solution

Use the DOM extension.

To validate a DOM object against a schema stored in a file, call DOMDocument::schema

Validate() or DOMDocument::relaxNGValidate():

$file = __DIR__ . '/address-book.xml';

$schema = __DIR__ . '/address-book.xsd';

$ab = new DOMDocument;

$ab->load($file);

if ($ab->schemaValidate($schema)) {

print "$file is valid. \n";

} else {

print "$file is invalid. \n";

}

If your XML document specifies a DTD at the top, call DOMDocument::validate() to

validate it against the DTD.

To validate a DOM object against a schema stored in a variable, call DOMDocument::sche

maValidateSource() or DOMDocument::relaxNGValidateSource():

$file = __DIR__ . '/address-book.xml';

$ab = new DOMDocument;

$ab->load($file);

$schema = file_get_contents(__DIR__ . '/address-book.xsd');

if ($ab->schemaValidateSource($schema)) {

print "XML is valid. \n";

} else {

print "XML is invalid. \n";

}

Discussion

Schemas are a way of defining a specification for your XML documents. Though the

goal is the same, there are multiple ways to encode a schema, each with a different syntax.

Some popular formats are DTDs (Document Type Definitions), XML Schema, and

Relax NG. DTDs have been around longer, but they are not written in XML and have

398 | Chapter 12: XML

other issues, so they can be difficult to work with. XML Schema and Relax NG are more

recent schemas and attempt to solve some of the issues surrounding DTDs.

PHP uses the libxml2 library to provide its validation support. Therefore, it lets you

validate files against all three types. It is most flexible when you’re using XML Schema

and Relax NG, but its XML Schema support is incomplete. You shouldn’t run into issues

in most XML Schema documents; however, you may find that libxml2 cannot handle

some complex schemas or schemas that use more esoteric features.

Within PHP, the DOM extension supports DTD, XML Schema, and Relax NG valida‐

tion, whereas SimpleXML provides only an XML Schema validator.

Validating any file using DOM is a similar process, regardless of the underlying schema

format. To validate, call a validation method on a DOM object. For example:

$file = __DIR__ . '/address-book.xml';

$schema = __DIR__ . '/address-book.xsd';

$ab = new DOMDocument;

$ab->load($file);

if ($ab->schemaValidate($schema)) {

print "$file is valid. \n";

} else {

print "$file is invalid. \n";

}

It returns true if the file passes. If there’s an error, it returns false and prints a message

to the error log. There is no method for capturing the error message.

If the schema is stored in a string, use DOMDocument::schemaValidateSource() instead

of schemaValidate().

Table 12-3 lists all the validation methods.

 Table 12-3. DOM schema validation methods

Method name

Schema type Data location

schemaValidate

XML Schema File

schemaValidateSource

XML Schema String

relaxNGValidate

Relax NG

File

relaxNGValidateSource Relax NG

String

validate

DTD

N/A

All of the validation methods behave in a similar manner, so you only need to switch

the method name in the previous example to switch to a different validation scheme.

Both XML Schema and Relax NG support validation against files and strings. You can

validate a DOM object only against the DTD defined at the top of the XML document.

12.10 Validating XML Documents | 399

See Also

The XML Schema specification and the Relax NG specification.

12.11 Handling Content Encoding

Problem

PHP XML extensions use UTF-8, but your data is in a different content encoding.

Solution

Use the iconv library to convert data before passing it into an XML extension:

$utf_8 = iconv('ISO-8859-1', 'UTF-8', $iso_8859_1);

Then convert the data back when you are finished:

$iso_8859_1 = iconv('UTF-8', 'ISO-8859-1', $utf_8);

Discussion

Character encoding is a major PHP weakness, so you can run into problems if you’re

trying to use XML extensions with arbitrary encoded data.

For simplicity, the XML extensions all exclusively use the UTF-8 character encoding.

That means they all expect data in UTF-8 and output all data in UTF-8. If your data is

ASCII, then you don’t need to worry; UTF-8 is a superset of ASCII. However, if you’re

using other encodings, you will run into trouble sooner or later.

To work around this issue, use the iconv extension to manually encode data back and

forth between your character sets and UTF-8. For example, to convert from ISO-8859-1

to UTF-8:

$utf_8 = iconv('ISO-8859-1', 'UTF-8', $iso_8859_1);

The iconv function supports two special modifiers for the destination encod‐

ing: //TRANSLIT and //IGNORE. The first option tells iconv that whenever it cannot

exactly duplicate a character in the destination encoding, it should try to approximate

it using a series of other characters. The other option makes iconv silently ignore any

unconvertible characters.

For example, the string $geb holds the text Gödel, Escher, Bach. A straight conversion

to ASCII produces an error:

echo iconv('UTF-8', 'ASCII', $geb);

PHP Notice: iconv(): Detected an illegal character in input string...

Enabling the //IGNORE feature allows the conversion to occur:

400 | Chapter 12: XML

echo iconv('UTF-8', 'ASCII//IGNORE', $geb);

However, the output isn’t nice, because the ö is missing:

Gdel, Escher, Bach

The best solution is to use //TRANSLIT:

echo iconv('UTF-8', 'ASCII//TRANSLIT', $geb);

This produces a better-looking string:

G"odel, Escher, Bach

However, be careful when you use //TRANSLIT, because it can increase the number of

characters. For example, the single character ö becomes two characters: " and o.

See Also

More information about working with UTF-8 text is in Recipe 19.12; documentation

on iconv; the GNU libiconv homepage.

12.12 Reading RSS and Atom Feeds

Problem

You want to retrieve RSS and Atom feeds and look at the items. This allows you to

incorporate newsfeeds from multiple websites into your application.

Solution

Use the MagpieRSS parser. Here’s an example that reads the RSS feed for the php.announce mailing list:

require __DIR__ . '/magpie/rss_fetch.inc';

$feed = 'http://news.php.net/group.php?group=php.announce&format=rss';

$rss = fetch_rss($feed);

print " \n";

foreach ($rss->items as $item) {

print '' . $item['title'] .

" \n";

}

print " \n";

12.12 Reading RSS and Atom Feeds | 401

Discussion

RSS is an easy-to-use headline or article syndication format written in XML. Many news

websites, such as the New York Times and the Washington Post, provide RSS feeds that

update whenever new stories are published. Weblogs have also embraced RSS and hav‐

ing an RSS feed for your blog is a standard feature. The PHP website also publishes RSS

feeds for most PHP mailing lists.

Atom is a similar XML syndication format. It extends many of the concepts in RSS,

including a way to read and write Atom data. It also attempts to provide a more well-

defined syntax for syndication than RSS, because the RSS specification doesn’t always

clearly enumerate exactly what is or isn’t permissible in a feed.

Using MagpieRSS, retrieving and parsing RSS and Atom feeds are simple:

$feed = 'http://news.php.net/group.php?group=php.announce&format=rss';

$rss = fetch_rss($feed);

This example reads in the RSS feed for the php.announce mailing list. The feed is then

parsed by fetch_rss() and stored internally within $rss.

Although this feed is RSS 0.93, there’s no need to specify this to MagpieRSS. Its

fetch_rss() function detects the syndication format, including Atom, and formats the

document accordingly.

Each RSS item is then retrieved as an associative array using the items property:

print " \n";

foreach ($rss->items as $item) {

print '' . $item['title'] .

" \n";

}

print " \n";

This foreach loop creates an unordered list of items with the item title linking back to

the URL associated with the complete article, as shown in Figure 12-1. Besides the

required title and link fields, an item can have an optional description field that

contains a brief write-up about the item.

402 | Chapter 12: XML

 Figure 12-1. php.announce RSS feed

Each channel also has an entry with information about the feed, as shown in

Figure 12-2. To retrieve this data, access the channel attribute:

$feed = 'http://news.php.net/group.php?group=php.announce&format=rss';

$rss = fetch_rss($feed);

print " \n";

foreach ($rss->channel as $key => $value) {

print "$key: $value \n";

}

print " \n";

12.12 Reading RSS and Atom Feeds | 403

 Figure 12-2. php.announce RSS channel information

See Also

The MagpieRSS homepage; more information on RSS at Wikipedia.

12.13 Writing RSS Feeds

Problem

You want to generate RSS feeds from your data. This will allow you to syndicate your

content.

Solution

Use this class:

class rss2 extends DOMDocument {

private $channel;

public function __construct($title, $link, $description) {

parent::__construct();

$this->formatOutput = true;

$root = $this->appendChild($this->createElement('rss'));

$root->setAttribute('version', '2.0');

$channel= $root->appendChild($this->createElement('channel'));

$channel->appendChild($this->createElement('title', $title));

$channel->appendChild($this->createElement('link', $link));

$channel->appendChild($this->createElement('description',

$description));

$this->channel = $channel;

404 | Chapter 12: XML

 }

public function addItem($title, $link, $description) {

$item = $this->createElement('item');

$item->appendChild($this->createElement('title', $title));

$item->appendChild($this->createElement('link', $link));

$item->appendChild($this->createElement('description', $description));

$this->channel->appendChild($item);

}

}

$rss = new rss2('Channel Title', 'http://www.example.org',

'Channel Description');

$rss->addItem('Item 1', 'http://www.example.org/item1',

'Item 1 Description');

$rss->addItem('Item 2', 'http://www.example.org/item2',

'Item 2 Description');

print $rss->saveXML();

Discussion

RSS is XML, so you can leverage all the XML-generation features of the DOM extension.

The code in the Solution extends the DOMDocument class to build up a DOM tree by

creating elements and appending them in the appropriate structure.

The class constructor sets up the <rss> and <channel> elements. It takes three argu‐

ments—the channel title, link, and description:

public function __construct($title, $link, $description) {

parent::__construct();

$this->formatOutput = true;

$root = $this->appendChild($this->createElement('rss'));

$root->setAttribute('version', '2.0');

$channel= $root->appendChild($this->createElement('channel'));

$channel->appendChild($this->createElement('title', $title));

$channel->appendChild($this->createElement('link', $link));

$channel->appendChild($this->createElement('description',

$description));

$this->channel = $channel;

}

Inside the method, you call the parent::__construct() method to invoke the actual

DOMDocument::__construct(). Now you can begin building up the document.

12.13 Writing RSS Feeds | 405

First, set the formatOutput attribute to true. This adds indentation and carriage returns to the output, so it’s easy to read.

From there, create the document’s root element, rss, and set its version attribute to

2.0, because this is an RSS 2.0 feed.

All the actual data lives inside a channel element underneath the rss node, so the next

step is to make that element and also to set its title, link, and description child

elements.

That data comes from the arguments passed to the constructor. It’s set using a handy

feature of the createElement() method, which lets you specify both an element’s name

and a text node with data in one call. This is a PHP extension to the DOM specification.

Last, the channel element is saved for easy access later on.

With the main content defined, use the addItem() method to add item entries:

public function addItem($title, $link, $description) {

$item = $this->createElement('item');

$item->appendChild($this->createElement('title', $title));

$item->appendChild($this->createElement('link', $link));

$item->appendChild($this->createElement('description', $description));

$this->channel->appendChild($item);

}

Because item elements contain the same data as the channel, this code is almost identical

to what appears in the constructor.

Although a title, link, and description are required elements of the channel, they are

actually optional in the item. The only requirement of an item is that it contains ei‐

 ther a title or a description. That’s it.

For simplicity, this code requires all three elements. Likewise, it doesn’t provide a way

to add in additional channel or item elements, such as the date the item was published

or a GUID that uniquely identifies the item.

But 43 lines later, the basic RSS 2.0 class is finished. Use it like this:

$rss = new rss2('Channel Title', 'http://www.example.org',

'Channel Description');

$rss->addItem('Item 1', 'http://www.example.org/item1',

'Item 1 Description');

$rss->addItem('Item 2', 'http://www.example.org/item2',

'Item 2 Description');

print $rss->saveXML();

<?xml version="1.0"?>

<rss version="2.0">

<channel>

406 | Chapter 12: XML

 <title>Channel Title</title>

<link>http://www.example.org</link>

<description>Channel Description</description>

<item>

<title>Item 1</title>

<link>http://www.example.org/item1</link>

<description>Item 1 Description</description>

</item>

<item>

<title>Item 2</title>

<link>http://www.example.org/item2</link>

<description>Item 2 Description</description>

</item>

</channel>

</rss>

Create a new instance of the rss2 class and pass along the channel data. Then call its

addItem() method to add individual items to the channel. Once you’re finished, you

can convert the class to XML by using the parent DOMDocument::saveXML() method.

12.14 Writing Atom Feeds

Problem

You want to generate Atom feeds from your data. This will allow you to syndicate your

content.

Solution

Use this class:

class atom1 extends DOMDocument {

private $ns;

public function __construct($title, $href, $name, $id) {

parent::__construct();

$this->formatOutput = true;

$this->ns = 'http://www.w3.org/2005/Atom';

$root = $this->appendChild($this->createElementNS($this->ns, 'feed'));

$root->appendChild($this->createElementNS($this->ns, 'title', $title));

$link = $root->appendChild($this->createElementNS($this->ns, 'link'));

$link->setAttribute('href', $href);

$root->appendChild($this->createElementNS($this->ns, 'updated',

date(DATE_ATOM)));

$author = $root->appendChild($this->createElementNS($this->ns,

'author'));

$author->appendChild($this->createElementNS($this->ns, 'name', $name));

12.14 Writing Atom Feeds | 407

 $root->appendChild($this->createElementNS($this->ns, 'id', $id));

}

public function addEntry($title, $link, $summary) {

$entry = $this->createElementNS($this->ns, 'entry');

$entry->appendChild($this->createElementNS($this->ns, 'title', $title));

$entry->appendChild($this->createElementNS($this->ns, 'link', $link));

$id = uniqid('http://example.org/atom/entry/ids/');

$entry->appendChild($this->createElementNS($this->ns, 'id', $id));

$entry->appendChild($this->createElementNS($this->ns, 'updated',

date(DATE_ATOM)));

$entry->appendChild($this->createElementNS($this->ns, 'summary',

$summary));

$this->documentElement->appendChild($entry);

}

}

$atom = new atom1('Channel Title', 'http://www.example.org',

'John Quincy Atom', 'http://example.org/atom/feed/ids/1');

$atom->addEntry('Item 1', 'http://www.example.org/item1',

'Item 1 Description', 'http://example.org/atom/entry/ids/1');

$atom->addEntry('Item 2', 'http://www.example.org/item2',

'Item 2 Description', 'http://example.org/atom/entry/ids/2');

print $atom->saveXML();

Discussion

The atom1 class is structured similar to the rss2 class from Recipe 12.13. Read its Discussion for a more detailed explanation of the overall code structure and DOM exten‐

sion behavior. This recipe covers the differences between RSS and Atom and how the

class is updated to handle them.

The Atom specification is more complex than RSS. It requires you to place elements

inside a namespace and also forces the generation of unique identifiers for a feed and

individual items, along with the last updated times for those entries.

Also, though its general structure is similar to RSS, it uses different terminology. The

root element is now a feed and an item is now an entry. You don’t need a feed de‐

scription, but you do need an author. And inside the entries, the description is a

summary.

Last, there is no concept of a channel. Both feed data and entries are located directly

under the document element.

408 | Chapter 12: XML

Here’s the updated constructor:

public function __construct($title, $href, $name, $id) {

parent::__construct();

$this->formatOutput = true;

$this->ns = 'http://www.w3.org/2005/Atom';

$root = $this->appendChild($this->createElementNS($this->ns, 'feed'));

$root->appendChild(

$this->createElementNS($this->ns, 'title', $title));

$link = $root->appendChild(

$this->createElementNS($this->ns, 'link'));

$link->setAttribute('href', $href);

$root->appendChild($this->createElementNS(

$this->ns, 'updated', date(DATE_ATOM)));

$author = $root->appendChild(

$this->createElementNS($this->ns, 'author'));

$author->appendChild(

$this->createElementNS($this->ns, 'name', $name));

$root->appendChild(

$this->createElementNS($this->ns, 'id', $id'));

}

All Atom elements live under the http://www.w3.org/2005/Atom XML namespace.

Therefore, all atom1 methods use DOMDocument::createElementNS(), which is the

 namespace version of DOMDocument::createElement(). The Atom namespace is stored

in atom1::ns, so it’s easy to access.

The constructor now takes four arguments: title, link, author name, and feed ID. The

title and id are defined similar to RSS channel elements. However, the link is actually

set as the href attribute of the link element, and the name is a child of the author

element.

Additionally, there is an updated element, which is set to the last update time. In this

case, it’s set to the current time and formatted using PHP’s built-in DATE_ATOM constant

formatting specification.

The addItem() method is renamed to addEntry() to be consistent with the Atom spec‐

ification:

public function addEntry($title, $link, $summary, $id) {

$entry = $this->createElementNS($this->ns, 'entry');

$entry->appendChild(

$this->createElementNS($this->ns, 'title', $title));

$entry->appendChild(

$this->createElementNS($this->ns, 'link', $link));

$entry->appendChild(

$this->createElementNS($this->ns, 'id', $id));

$entry->appendChild(

12.14 Writing Atom Feeds | 409

 $this->createElementNS($this->ns, 'updated', date(DATE_ATOM)));

$entry->appendChild(

$this->createElementNS($this->ns, 'summary', $summary));

$this->documentElement->appendChild($entry);

}

It behaves very similar to its counterpart, with the few additions of new elements, such

as id and updated.

Everything comes together like this:

$atom = new atom1('Channel Title', 'http://www.example.org',

'John Quincy Atom', 'http://example.org/atom/feed/ids/1');

$atom->addEntry('Item 1', 'http://www.example.org/item1',

'Item 1 Description', 'http://example.org/atom/entry/ids/1');

$atom->addEntry('Item 2', 'http://www.example.org/item2',

'Item 2 Description', 'http://example.org/atom/entry/ids/2');

print $atom->saveXML();

<?xml version="1.0"?>

<feed xmlns="http://www.w3.org/2005/Atom">

<title>Channel Title</title>

<link href="http://www.example.org"/>

<updated>2006-10-23T22:33:59-07:00</updated>

<author>

<name>John Quincy Atom</name>

</author>

<id>http://example.org/atom/feed/ids/1</id>

<entry>

<title>Item 1</title>

<link>http://www.example.org/item1</link>

<id>http://example.org/atom/entry/ids/1</id>

<updated>2014-10-23T20:23:32-07:00</updated>

<summary>Item 1 Description</summary>

</entry>

<entry>

<title>Item 2</title>

<link>http://www.example.org/item2</link>

<id>http://example.org/atom/entry/ids/2</id>

<updated>2014-10-23T21:53:44-07:00</updated>

<summary>Item 2 Description</summary>

</entry>

</feed>

Like the rss2 class, atom1 implements only a small subset of the full specification. It’s

enough to generate a valid feed, but if you need to do more, you will need to extend the

class.

410 | Chapter 12: XML

See Also

The Atom homepage; the Atom Wiki; more information on Atom.

12.14 Writing Atom Feeds | 411

CHAPTER 13

Web Automation

13.0 Introduction

Most of the time, PHP is part of a web server, sending content to browsers. Even when

you run it from the command line, it usually performs a task and then prints some

output. PHP can also be useful, however, playing the role of a web client, retrieving

URLs and then operating on the content. Whereas Chapter 14 discusses retrieving URLs

from within PHP, this chapter explores how to process the received content.

Recipes 13.1 through 13.6 help you manipulate those page contents. Recipe 13.1 demonstrates how to mark up certain words in a page with blocks of color. This technique

is useful for highlighting search terms, for example. Cleaning up HTML so it’s easier to

parse and is standards compliant, is the topic of Recipe 13.2. Recipe 13.3 provides a function to find all the links in a page. This is an essential building block for a web spider

or a link checker. Converting between plain text and HTML is covered in Recipes 13.4

and 13.5. Recipe 13.6 shows how to remove all HTML and PHP tags from a web page.

Recipes 13.7 and 13.8 discuss how PHP and JavaScript can work together. Recipe 13.7

explores using PHP to respond to requests made by JavaScript, in which you have to be

concerned about caching and using alternate content types. Recipe 13.8 provides a full-fledged example of PHP–JavaScript integration using the popular and powerful jQuery

toolkit.

Two sample programs use the link extractor from Recipe 13.3. The program in

Recipe 13.9 scans the links in a page and reports which are still valid, which have been moved, and which no longer work. The program in Recipe 13.10 reports on the freshness

of links. It tells you when a linked-to page was last modified and if it’s been moved.

413

13.1 Marking Up a Web Page

Problem

You want to display a web page—for example, a search result—with certain words

highlighted.

Solution

Build an array replacement for each word you want to highlight. Then, chop up the page

into “HTML elements” and “text between HTML elements” and apply the replacements

to just the text between HTML elements. Example 13-1 applies highlighting in the

HTML in $body to the words found in $words.

 Example 13-1. Marking up a web page

$body = '

<p>I like pickles and herring.</p>

A pickle picture

I have a herringbone-patterned toaster cozy.

<herring>Herring is not a real HTML element!</herring>

';

$words = array('pickle','herring');

$replacements = array();

foreach ($words as $i => $word) {

$replacements[] = "$word";

}

 // Split up the page into chunks delimited by a

 // reasonable approximation of what an HTML element

 // looks like.

$parts = preg_split("{(<(?:\" [^\"]*\" |'[^']*'|[^' \" >])*>)}", $body,

-1, // Unlimited number of chunks

PREG_SPLIT_DELIM_CAPTURE);

foreach ($parts as $i => $part) {

 // Skip if this part is an HTML element

if (isset($part[0]) && ($part[0] == '<')) { continue; }

 // Wrap the words with s

$parts[$i] = str_replace($words, $replacements, $part);

}

 // Reconstruct the body

$body = implode('',$parts);

print $body;

414 | Chapter 13: Web Automation

Discussion

Example 13-1 prints:

<p> I like pickle s and ↵

herring . </p>

 A pickle ↵

picture

I have a herring bone-patterned toaster cozy.

<herring> Herring is not a real HTML element! </herring>

Each of the words in $words (pickle and herring) has been wrapped with a

that has a specific class attribute. Use a CSS stylesheet to attach particular display

attributes to these classes, such as a bright yellow background or a border.

The regular expression in Example 13-1 chops up $body into a series of chunks delimited by HTML elements. This lets us just replace the text between HTML elements and leaves

HTML elements or attributes alone whose values might contain a search term. The

regular expression does a pretty good job of matching HTML elements, but if you have

some particularly crazy, malformed markup with mismatched or unescaped quotes, it

might get confused.

Because str_replace() is case sensitive, only strings that exactly match words in

$words are replaced. The last Herring in Example 13-1 doesn’t get highlighted because it begins with a capital letter. To do case-insensitive matching, we need to switch from

str_replace() to regular expressions. (We can’t use str_ireplace() because the re‐

placement has to preserve the case of what matched.) Example 13-2 shows the altered

code that uses regular expressions to do the replacement.

 Example 13-2. Marking up a web page with regular expressions

$body = '

<p>I like pickles and herring.</p>

A pickle picture

I have a herringbone-patterned toaster cozy.

<herring>Herring is not a real HTML element!</herring>

';

$words = array('pickle','herring');

$patterns = array();

$replacements = array();

foreach ($words as $i => $word) {

$patterns[] = '/' . preg_quote($word) .'/i';

$replacements[] = " \\0";

13.1 Marking Up a Web Page | 415

}

 // Split up the page into chunks delimited by a

 // reasonable approximation of what an HTML element

 // looks like.

$parts = preg_split("{(<(?:\" [^\"]*\" |'[^']*'|[^' \" >])*>)}", $body,

-1, // Unlimited number of chunks

PREG_SPLIT_DELIM_CAPTURE);

foreach ($parts as $i => $part) {

 // Skip if this part is an HTML element

if (isset($part[0]) && ($part[0] == '<')) { continue; }

 // Wrap the words with s

$parts[$i] = preg_replace($patterns, $replacements, $part);

}

 // Reconstruct the body

$body = implode('',$parts);

print $body;

The two differences in Example 13-2 are that it builds a $patterns array in the loop at the top and it uses preg_replace() (with the $patterns array) instead of str_re

place(). The i at the end of each element in $patterns makes the match case insen‐

sitive. The \\0 in the replacement preserves the case in the replacement with the case

of what it matched.

Switching to regular expressions also makes it easy to prevent substring matching. In

both Example 13-1 and Example 13-2, the herring in herringbone gets highlighted.

To prevent this, change $patterns[] = '/' . preg_quote($word) .'/i'; in

Example 13-2 to $patterns[] = '/\b' . preg_quote($word) .'\b/i';. The addi‐

tional \b items in the pattern tell preg_replace() only to match a word if it stands on

its own.

See Also

Documentation on str_replace(), on str_ireplace(), on preg_replace(), and on

preg_split(). If you’re feeling squeamish about using regular expressions to parse HTML, see the end of the Discussion of Recipe 13.2.

13.2 Cleaning Up Broken or Nonstandard HTML

Problem

You’ve got some HTML with malformed syntax that you’d like to clean up. This makes

it easier to parse and ensures that the pages you produce are standards compliant.

416 | Chapter 13: Web Automation

Solution

Use PHP’s Tidy extension. It relies on the popular, powerful, HTML Tidy library to turn

frightening piles of tag soup into well-formed, standards-compliant HTML or XHTML.

Example 13-3 shows how to repair a file.

 Example 13-3. Repairing an HTML file with Tidy

$fixed = tidy_repair_file('bad.html');

file_put_contents('good.html', $fixed);

Discussion

The HTML Tidy library has a large number of rules and features built up over time that

creatively handle a wide variety of HTML abominations. Fortunately, you don’t have to

care about what all those rules are to reap the benefits of Tidy. Just pass a filename to

tidy_repair_file() and you get back a cleaned-up version. For example, if bad.html

contains:

I love monkeys.

then Example 13-3 writes the following out to good.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>

<head>

<title></title>

</head>

<body>

 I love monkeys .

</body>

</html>

Tidy has a large number of configuration options that affect the output it produces. Pass configuration to tidy_repair_file() by providing a second argument that is an array

of configuration options and values. Example 13-4 uses the output-xhtml option, which tells Tidy to produce valid XHTML.

 Example 13-4. Production of XHTML with Tidy

$config = array('output-xhtml' => true);

$fixed = tidy_repair_file('bad.html', $config);

file_put_contents('good.xhtml', $fixed);

Example 13-4 writes the following to good.xhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

13.2 Cleaning Up Broken or Nonstandard HTML | 417

<title></title>

</head>

<body>

 I love monkeys .

</body>

</html>

If your source HTML is in a string instead of a file, use tidy_repair_string(). It expects

a first argument that contains HTML, not a filename.

The cleaned-up XHTML produced by Tidy also provides a way to mark up HTML (as

in Recipe 13.1) without using regular expressions. After the HTML has been converted

to a well-formed XHTML document, it can be systematically processed and converted

by PHP’s DOM functions. Example 13-5 shows this in action.

 Example 13-5. Marking up a web page with Tidy and DOM

$body = '

<p>I like pickles and herring.</p>

A pickle picture

I have a herringbone-patterned toaster cozy.

<herring>Herring is not a real HTML element!</herring>

';

$words = array('pickle','herring');

$patterns = array();

$replacements = array();

foreach ($words as $i => $word) {

$patterns[] = '/' . preg_quote($word) . '/i';

$replacements[] = "$word";

}

 /* Tell Tidy to produce XHTML */

$xhtml = tidy_repair_string($body, array('output-xhtml' => true));

 /* Load the XHTML as an XML document */

$doc = new DOMDocument;

$doc->loadXml($xhtml);

 /* When turning our input HTML into a proper XHTML document,

 * Tidy puts the input HTML inside the <body/> element of the

 * XHTML document */

$body = $doc->getElementsByTagName('body')->item(0);

 /* Visit all text nodes and mark up words if necessary */

$xpath = new DOMXpath($doc);

foreach ($xpath->query("descendant-or-self::text()", $body) as $textNode) {

$replaced = preg_replace($patterns, $replacements, $textNode->wholeText);

if ($replaced !== $textNode->wholeText) {

418 | Chapter 13: Web Automation

 $fragment = $textNode->ownerDocument->createDocumentFragment();

 /* This makes sure that the sub-nodes are created properly */

$fragment->appendXml($replaced);

$textNode->parentNode->replaceChild($fragment, $textNode);

}

}

 /* Build the XHTML consisting of the content of everything under <body/> */

$markedup = '';

foreach ($body->childNodes as $node) {

$markedup .= $doc->saveXml($node);

}

print $markedup;

In Example 13-5, the preg_replace() command to add the markup is run on all text

nodes of the DOM tree that results from loading a Tidy-repaired version of the input

HTML into a DOMDocument object. The great thing about this is that we can be certain

that the replacements are only being run on text. Any broken HTML that would have

confused the regular expression used for finding HTML tags in Recipe 13.1 is repaired by Tidy before the DOMDocument is created.

The downside of this approach is that, depending on how broken your input HTML is,

the results of Tidy’s conversion may not be what you expect. Here is the output of

Example 13-5:

<p>I like pickles and herring↵

.</p>

A pickle↵

 picture I

have a herringbone-patterned toaster cozy. ↵

herring is not a real HTML element!

Note that the final part of it is herring is not a real HTML element!. Because <herring/> is not a valid XHTML element, Tidy has stripped

the <herring> and </herring> out, leaving the enclosed text. This is a reasonable thing

to do in order to produce a valid XHTML document, but could be confusing if you’re

not expecting it.

See Also

Documentation on tidy_repair_file(), on tidy_repair_string(), and on Tidy

configuration options. The XHTML 1.0 specification; more information about PHP’s DOM functions is in Recipe 12.4.

13.2 Cleaning Up Broken or Nonstandard HTML | 419

13.3 Extracting Links from an HTML File

Problem

You need to extract the URLs that are specified inside an HTML document.

Solution

Use Tidy to convert the document to XHTML, then use an XPath query to find all the

links, as shown in Example 13-6.

 Example 13-6. Extracting links with Tidy and XPath

$html=<<<_HTML_

<p>Some things I enjoy eating are:</p>

Pickles

Salt-Baked Scallops

Chocolate

HTML;

$doc = new DOMDocument();

$opts = array('output-xhtml' => true,

 // Prevent DOMDocument from being confused about entities

'numeric-entities' => true);

$doc->loadXML(tidy_repair_string($html,$opts));

$xpath = new DOMXPath($doc);

 // Tell $xpath about the XHTML namespace

$xpath->registerNamespace('xhtml','http://www.w3.org/1999/xhtml');

foreach ($xpath->query('//xhtml:a/@href') as $node) {

$link = $node->nodeValue;

print $link . " \n";

}

If Tidy isn’t available, use the pc_link_extractor() function shown in Example 13-7.

 Example 13-7. Extracting links without Tidy

$html=<<<_HTML_

<p>Some things I enjoy eating are:</p>

Pickles

Salt-Baked Scallops

Chocolate

HTML;

$links = pc_link_extractor($html);

420 | Chapter 13: Web Automation

foreach ($links as $link) {

print $link[0] . " \n";

}

function pc_link_extractor($html) {

$links = array();

preg_match_all('/<a\s+.*?href=[\"\']?([^\"\' >]*)[\"\']?[^>]*>(.*?)<\/a>/i', $html,$matches,PREG_SET_ORDER);

foreach($matches as $match) {

$links[] = array($match[1],$match[2]);

}

return $links;

}

Discussion

The XHTML document that Tidy generates when the output-xhtml option is turned

on may contain entities other than the four that are defined by the base XML specifi‐

cation (<, >, &, "). Turning on the numeric-entities option prevents

those other entities from appearing in the generated XHTML document. Their presence

would cause DOMDocument to complain about undefined entities. An alternative is to

leave out the numeric-entities option but set $doc->resolveExternals to true. This

tells DOMDocument to fetch any Document Type Definition (DTD) referenced in the file

it’s loading and use that to resolve the entities. Tidy generates XML with an appropriate

DTD in it. The downside of this approach is that the DTD URL points to a resource on

an external web server, so your program would have to download that resource each

time it runs.

XHTML is an XML application—a defined XML vocabulary for expressing HTML. As

such, all of its elements (the familiar <a/>, <h1/> , and so on) live in a namespace. For XPath queries to work properly, the namespace has to be attached to a prefix (that’s what

the registerNamespace() method does) and then used in the XPath query.

The pc_link_extractor() function is a useful alternative if Tidy isn’t available. Its reg‐

ular expression won’t work on all links, such as those that are constructed with some

hexadecimal escapes, but it should function on the majority of reasonably well-formed

HTML. The function returns an array. Each element of that array is itself a two-element

array. The first element is the target of the link, and the second element is the link anchor

—text that is linked.

The XPath expression in Example 13-6 only grabs links, not anchors. Example 13-8

shows an alternative that produces both links and anchors.

 Example 13-8. Extracting links and anchors with Tidy and XPath

$html=<<<_HTML_

<p>Some things I enjoy eating are:</p>

13.3 Extracting Links from an HTML File | 421

Pickles

Salt-Baked Scallops

Chocolate

HTML;

$doc = new DOMDocument();

$opts = array('output-xhtml'=> true,

'wrap' => 0,

 // Prevent DOMDocument from being confused about entities

'numeric-entities' => true);

$doc->loadXML(tidy_repair_string($html,$opts));

$xpath = new DOMXPath($doc);

 // Tell $xpath about the XHTML namespace

$xpath->registerNamespace('xhtml','http://www.w3.org/1999/xhtml');

foreach ($xpath->query('//xhtml:a') as $node) {

$anchor = trim($node->textContent);

$link = $node->getAttribute('href');

print "$anchor -> $link\n";

}

In Example 13-8, the XPath query finds all the <a/> element nodes. The textContent property of the node holds the anchor text and the link is in the href attribute. The

additional 'wrap' => 0 Tidy option tells Tidy not to do any line-wrapping on the

generated XHTML. This keeps all the link anchors on one line when extracting them.

See Also

Documentation on DOMDocument, on DOMXPath::query(), on DOMXPath::registerNa

mespace(), on tidy_repair_file(), and on preg_match_all(); Recipe 13.2 has more

information about Tidy; XPath; XHTML.

13.4 Converting Plain Text to HTML

Problem

You want to turn plain text into reasonably formatted HTML.

Solution

First, encode entities with htmlentities(). Then, transform the text into various

HTML structures. The pc_text2html() function shown in Example 13-9 has basic

transformations for links and paragraph breaks.

422 | Chapter 13: Web Automation

 Example 13-9. pc_text2html()

function pc_text2html($s) {

$s = htmlentities($s);

$grafs = split(" \n\n",$s);

for ($i = 0, $j = count($grafs); $i < $j; $i++) {

 // Link to what seem to be http or ftp URLs

$grafs[$i] = preg_replace('/((ht|f)tp:\/\/[^\s&]+)/',

'$1',$grafs[$i]);

 // Link to email addresses

$grafs[$i] = preg_replace('/[^@\s]+@([-a-z0-9]+\.)+[a-z]{2,}/i',

'$1',$grafs[$i]);

 // Begin with a new paragraph

$grafs[$i] = '<p>'.$grafs[$i].'</p>';

}

return implode(" \n\n",$grafs);

}

Discussion

The more you know about what the plain text looks like, the better your HTML con‐

version can be. For example, if emphasis is indicated with asterisks (*) or slashes (/)

around words, you can add rules that take care of that, as shown in Example 13-10.

 Example 13-10. More text-to-HTML rules

$grafs[$i] = preg_replace('/(\A|\s)*([^*]+)*(\s|\z)/',

'$1$2$3',$grafs[$i]);

$grafs[$i] = preg_replace('{(\A|\s)/([^/]+)/(\s|\z)}',

'$1<i>$2</i>$3',$grafs[$i]);

See Also

Documentation on preg_replace().

13.5 Converting HTML to Plain Text

Problem

You need to convert HTML to readable, formatted plain text.

Solution

Use the html2text class. Example 13-11 shows it in action.

13.5 Converting HTML to Plain Text | 423

 Example 13-11. Converting HTML to plain text

require_once 'class.html2text.inc';

 /* Give file_get_contents() the path or URL of the HTML you want to process */

$html = file_get_contents(__DIR__ . '/article.html');

$converter = new html2text($html);

$plain_text = $converter->get_text();

Discussion

The html2text class has a large number of formatting rules built in so your generated

plain text has some visual layout for headings, paragraphs, and so on. It also includes a

list of all the links in the HTML at the bottom of the text it generates.

The html2text class version 1.0 uses the /e modifier with preg_re

place() in a few places. This is deprecated in PHP 5.5 and so will

generate some deprecation warnings if your error level is config‐

ured to include them. To remove those warnings, change the pat‐

terns that end on /ie to end in just /i in lines 153, 156, 157, 164, and

170.

See Also

More information on html2text and links to download it.

13.6 Removing HTML and PHP Tags

Problem

You want to remove HTML and PHP tags from a string or file. For example, you want

to make sure there is no HTML in a string before printing it or PHP in a string before

passing it to eval().

Solution

Use strip_tags() or filter_var() to remove HTML and PHP tags from a string, as

shown in Example 13-12.

 Example 13-12. Removing HTML and PHP tags

$html = 'I love computer books.'; $html .= '<?php echo "Hello!" ?>';

print strip_tags($html);

print " \n";

print filter_var($html, FILTER_SANITIZE_STRING);

Example 13-12 prints:

424 | Chapter 13: Web Automation

I love computer books.

I love computer books.

To strip tags from a stream as you read it, use the string.strip_tags stream filter, as

shown in Example 13-13.

 Example 13-13. Removing HTML and PHP tags from a stream

$stream = fopen(__DIR__ . '/elephant.html','r');

stream_filter_append($stream, 'string.strip_tags');

print stream_get_contents($stream);

Discussion

Both strip_tags() and the string.strip_tags filter can be told not to remove certain

tags. Provide a string containing allowable tags to strip_tags() as a second argument.

The tag specification is case insensitive, and for pairs of tags, you only have to specify

the opening tag. For example, to remove all but and <i></i> tags from

$html, call strip_tags($html,'<i>').

With the string.strip_tags filter, pass a similar string as a fourth argument to

stream_filter_append(). The third argument to stream_filter_append() controls

whether the filter is applied on reading (STREAM_FILTER_READ), writing (STREAM_FIL

TER_WRITE), or both (STREAM_FILTER_ALL). Example 13-14 does what Example 13-13

does, but allows <i></i> tags.

 Example 13-14. Removing some HTML and PHP tags from a stream

$stream = fopen(__DIR__ . '/elephant.html','r');

stream_filter_append($stream, 'string.strip_tags',STREAM_FILTER_READ,'b,i');

print stream_get_contents($stream);

stream_filter_append() also accepts an array of tag names instead of a string: ar

ray('b','i') instead of '<i>'.

Whether with strip_tags() or the stream filter, attributes are not

removed from allowed tags. This means that an attribute that

changes display (such as style) or executes JavaScript (any event

handler) is preserved. If you are displaying “stripped” text of arbi‐

trary origin in a web browser to a user without escaping it first, this

could result in cross-site scripting attacks.

A more robust approach that avoids the problems that could result from strip_tags()

reacting poorly to a broken tag or not removing a dangerous attribute is to allow only

a whitelist of known-good tags and attributes in your stripped HTML. With this ap‐

proach, you don’t remove bad things (which leaves you open to the possibility that your

13.6 Removing HTML and PHP Tags | 425

list of bad things is incomplete) but instead only keep good things. The TagStripper

class in Example 13-15 operates this way.

 Example 13-15. “Stripping” tags with a whitelist

class TagStripper {

protected $allowed =

array(

 /* Allow <a/> and only an "href" attribute */

'a'=> array('href' => true),

 /* Allow <p/> with no attributes */

'p' => array());

public function strip($html) {

 /* Tell Tidy to produce XHTML */

$xhtml = tidy_repair_string($html, array('output-xhtml' => true));

 /* Load the dirty HTML into a DOMDocument */

$dirty = new DOMDocument;

$dirty->loadXml($xhtml);

$dirtyBody = $dirty->getElementsByTagName('body')->item(0);

 /* Make a blank DOMDocument for the clean HTML */

$clean = new DOMDocument();

$cleanBody = $clean->appendChild($clean->createElement('body'));

 /* Copy the allowed nodes from dirty to clean */

$this->copyNodes($dirtyBody, $cleanBody);

 /* Return the contents of the clean body */

$stripped = '';

foreach ($cleanBody->childNodes as $node) {

$stripped .= $clean->saveXml($node);

}

return trim($stripped);

}

protected function copyNodes(DOMNode $dirty, DOMNode $clean) {

foreach ($dirty->attributes as $name => $valueNode) {

 /* Copy over allowed attributes */

if (isset($this->allowed[$dirty->nodeName][$name])) {

$attr = $clean->ownerDocument->createAttribute($name);

$attr->value = $valueNode->value;

$clean->appendChild($attr);

}

}

foreach ($dirty->childNodes as $child) {

 /* Copy allowed elements */

if (($child->nodeType == XML_ELEMENT_NODE) &&

(isset($this->allowed[$child->nodeName]))) {

$node = $clean->ownerDocument->createElement(

426 | Chapter 13: Web Automation

 $child->nodeName);

$clean->appendChild($node);

 /* Examine children of this allowed element */

$this->copyNodes($child, $node);

}

 /* Copy text */

else if ($child->nodeType == XML_TEXT_NODE) {

$text = $clean->ownerDocument->createTextNode(

$child->textContent);

$clean->appendChild($text);

}

}

}

}

Given some input HTML, its strip() method of the class in Example 13-15 regularizes

it into XHTML with Tidy, then walks down its DOM tree of elements, copying only

allowed attributes and elements into a new DOM structure. Then, it returns the contents

of that new DOM structure.

Here’s TagStripper in action:

$html=<<<_HTML_

 this is some

stuff

<p> This should be OK, as well as this. </p>

<script>alert('whoops')<p> This gets removed.</p></script>

<p>But this <script>bad</script> stuff has the script removed.</p>

HTML;

$ts = new TagStripper();

print $ts->strip($html);

This prints:

this is some stuff

<p>This should be OK, as well as this.</p>

<p>But this stuff has the script removed.</p>

The initial set of allowed elements and attributes, as defined by the $allowed property

of the TagStripper class in Example 13-15, is intentionally sparse. Add new elements

and attributes carefully as you need them.

See Also

Documentation on strip_tags(), on stream_filter_append(), and on stream fil‐

ters. Recipe 18.4 has more details on cross-site scripting.

13.6 Removing HTML and PHP Tags | 427

13.7 Responding to an Ajax Request

Problem

You’re using JavaScript to make in-page requests with XMLHTTPRequest and need to send

data in reply to one of those requests.

Solution

Set an appropriate Content-Type header and then emit properly formatted data.

Example 13-16 sends a small XML document as a response.

 Example 13-16. Sending an XML response

<?php header('Content-Type: text/xml'); ?>

<menu>

<dish type="appetizer">Chicken Soup</dish>

<dish type="main course">Fried Monkey Brains</dish>

</menu>

Example 13-17 uses the json_encode() function to send a JSON response.

 Example 13-17. Sending a JSON response

$menu = array();

$menu[] = array('type' => 'appetizer',

'dish' => 'Chicken Soup');

$menu[] = array('type' => 'main course',

'dish' => 'Fried Monkey Brains');

header('Content-Type: application/json');

print json_encode($menu);

Discussion

From a purely PHP perspective, sending a response to an XMLHTTPRequest-based re‐

quest is no different than any other response. You send any necessary headers and then

spit out some text. What’s different, however, is what those headers are and, usually,

what the text looks like.

JSON is a particularly useful format for these sorts of responses, because it’s super easy

to deal with the JSON-formatted data from within JavaScript. The output from

Example 13-17 looks like this:

[{"type":"appetizer","dish":"Chicken Soup"},

{"type":"main course","dish":"Fried Monkey Brains"}]

This encodes a two-element JavaScript array of hashes. The json_encode() function is

an easy way to turn PHP data structures (scalars, arrays, and objects) into JSON strings

428 | Chapter 13: Web Automation

and vice versa. This function and the complementary json_decode() function turn

PHP data structures to JSON strings and back again.

With these types of responses, it’s also important to pay attention to caching. Different

browsers have a creative variety of caching strategies when it comes to requests made

from within JavaScript. If your responses are sending dynamic data (which they usually

are), you probably don’t want them to be cached. The two tools in your anti-caching

toolbox are headers and URL poisoning. Example 13-18 shows the full complement of

anti-caching headers you can issue from PHP to prevent a browser from caching a

response.

 Example 13-18. Anti-caching headers

header("Expires: 0");

header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");

header("Cache-Control: no-store, no-cache, must-revalidate");

 // Add some IE-specific options

header("Cache-Control: post-check=0, pre-check=0", false);

 // For HTTP/1.0

header("Pragma: no-cache");

The other anti-caching tool, URL poisoning, requires cooperation from the JavaScript

that is making the request. It adds a name/value pair to the query string of each request

it makes using an arbitrary value. This makes the request URL different each time the

request is made, preventing any misbehaving caches from getting in the way. The Java‐

Script Math.random() function is useful for generating these values.

See Also

Documentation on header(). Read more about XMLHTTPRequest, JSON, and the json

extension. Michael Radwin’s HTTP Caching and Cache-Busting for Content Publishers

is a good introduction to HTTP caching. Section 13 of RFC 2616 has the gory details on HTTP caching.

13.8 Integrating with JavaScript

Problem

You want part of your page to update with server-side data without reloading the whole

page. For example, you want to populate a list with search results.

Solution

Use a JavaScript toolkit such as jQuery to wire up the client side of things so that a

particular user action (such as clicking a button) fires off a request to the server. Write

13.8 Integrating with JavaScript | 429

appropriate PHP code to generate a response containing the right data. Then, use your

JavaScript toolkit to put the results in the page correctly.

Example 13-19 shows a simple HTML document that loads jQuery and the code in

Example 13-20. Example 13-20 is the JavaScript glue that sends a request off to the server when the Search button is clicked and makes sure the results end up on the page in the

right place when they come back. Example 13-21 is the PHP code that does the searching and sends back a JSON-formatted response.

 Example 13-19. Basic HTML for JavaScript integration

<!-- Load jQuery -->

<script type="text/javascript"

src="//code.jquery.com/jquery-1.9.1.min.js"></script>

<!-- Load our JavaScript -->

<script type="text/javascript" src="search.js"></script>

<!-- Some input elements -->

<input type="text" id="q" />

<input type="button" id="go" value="Search"/>

<hr/>

<!-- Where the output goes -->

<div id="output"></div>

 Example 13-20. JavaScript integration glue

 // When the page loads, run this code

$(document).ready(function() {

 // Call the search() function when the 'go' button is clicked

$("#go").click(search);

});

function search() {

 // What's in the text box?

var q = $("#q").val();

 // Send request to the server

 // The first argument should be to wherever you save the search page

 // The second argument sends a query string parameter

 // The third argument is the function to run with the results

$.get('/search.php', { 'q': q }, showResults);

}

 // Handle the results

function showResults(data) {

var html = '';

 // If we got some results...

if (data.length > 0) {

html = '';

 // Build a list of them

for (var i in data) {

var escaped = $('<div/>').text(data[i]).html();

html += '' + escaped + '';

430 | Chapter 13: Web Automation

 }

html += '';

} else {

html = 'No results.';

}

 // Put the result HTML in the page

$("#output").html(html);

}

 Example 13-21. PHP to generate a response for JavaScript

$results = array();

$q = isset($_GET['q']) ? $_GET['q'] : '';

 // Connect to the database from Chapter 10

$db = new PDO('sqlite:/tmp/zodiac.db');

 // Do the query

$st = $db->prepare('SELECT symbol FROM zodiac WHERE planet LIKE ? ');

$st->execute(array($q.'%'));

 // Build an array of results

while ($row = $st->fetch()) {

$results[] = $row['symbol'];

}

if (count($results) == 0) {

$results[] = "No results";

}

 // Splorp out all the anti-caching stuff

header("Expires: 0");

header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");

header("Cache-Control: no-store, no-cache, must-revalidate");

 // Add some IE-specific options

header("Cache-Control: post-check=0, pre-check=0", false);

 // For HTTP/1.0

header("Pragma: no-cache");

 // The response is JSON

header('Content-Type: application/json');

 // Output the JSON data

print json_encode($results);

Discussion

The HTML in Example 13-19 is pretty minimal by design. All that’s there are a few

elements and calls to load external scripts. Separating JavaScript from HTML is good

development practice—similar to segregating your presentation logic and your business

logic on the server side. The first <script/> tag in Example 13-19 loads jQuery from a 13.8 Integrating with JavaScript | 431

CDN. This is convenient so you don’t have to install it on your own server. Using // at

the beginning of the URL is a handy trick to ensure it works well on both http and

https pages.

The second should point to wherever you’ve put the code in Example 13-20. That hand‐

ful of JavaScript functions provides the bridge between the HTML elements in

Example 13-19 and the server-side code in Example 13-21. The first call to $(docu ment).ready tells the web browser, “When the page is finished loading, run the JavaScript code that tells the web browser, ‘When the go button is clicked, run the search()

function.’”

A lot of JavaScript programming is event based—along the lines of setting up rules like

“when such-and-such happens, run this function.” A web page studded with JavaScript

does not have a strictly procedural flow from start to finish. Instead, it presents the user

with lots of possibilities—clicking buttons, typing stuff in text boxes, clicking links, and

so on. Your JavaScript code usually sets up various event handlers—functions that run

in response to clicking, typing, and other events.

In Example 13-20, the search() function uses jQuery’s $.get function to send a request back to the server, passing whatever’s in the text box as the q query string parameter.

The other argument to $.get indicates that when the request arrives, it should be passed

to the showResults() function.

The showResults() function, in turn, takes those results and builds an HTML list out

of them. Once the list has been built up, it sets the content of the output <div/> to

contain that HTML.

Example 13-21 is the familiar part of this triumvirate. It’s very similar to any “search the database for some stuff based on user input” PHP script, except for how it returns results.

Instead of printing HTML, it uses the techniques described in Recipe 13.7 to send back an uncacheable JSON response.

Writing applications that rely on JavaScript-based client-side activity requires a different

programming paradigm than your typical PHP application. Instead of thinking about

how to generate entire dynamic pages, you have to think about how to generate bits of

dynamic data that client-side logic can display or manipulate in convenient ways. A

toolkit such as jQuery gives you a robust platform on which to build such applications.

It abstracts away many of the messy practicalities of JavaScript programming—cross-

browser incompatibilities, the guts of asynchronous I/O, and other housekeeping.

See Also

Recipe 13.7 details sending JSON responses; more information on jQuery.

432 | Chapter 13: Web Automation

13.9 Program: Finding Stale Links

The stale-links.php program in Example 13-22 produces a list of links in a page and their

status. It tells you if the links are okay, if they’ve been moved somewhere else, or if they’re

bad. Run the program by passing it a URL to scan for links:

http://oreilly.com: OK

https://members.oreilly.com: MOVED: https://members.oreilly.com/account/login

http://shop.oreilly.com/basket. do: OK

http://shop.oreilly.com: OK

http://radar.oreilly.com: OK

http://animals.oreilly.com: OK

http://programming.oreilly.com: OK

...

The stale-links.php program uses the cURL extension to retrieve web pages (see

Example 13-22). First, it retrieves the URL specified on the command line. Once a page

has been retrieved, the program uses the XPath technique from Recipe 13.3 to get a list of links in the page. Then, after prepending a base URL to each link if necessary, the

link is retrieved. Because we need just the headers of these responses, we use the HEAD

method instead of GET by setting the CURLOPT_NOBODY option. Setting CURLOPT_HEAD

ER tells curl_exec() to include the response headers in the string it returns. Based on

the response code, the status of the link is printed, along with its new location if it’s been

moved.

 Example 13-22. stale-links.php

if (! isset($_SERVER['argv'][1])) {

die("No URL provided. \n");

}

$url = $_SERVER['argv'][1];

 // Load the page

list($page,$pageInfo) = load_with_curl($url);

if (! strlen($page)) {

die("No page retrieved from $url");

}

 // Convert to XML for easy parsing

$opts = array('output-xhtml' => true,

'numeric-entities' => true);

$xml = tidy_repair_string($page, $opts);

$doc = new DOMDocument();

$doc->loadXML($xml);

$xpath = new DOMXPath($doc);

$xpath->registerNamespace('xhtml','http://www.w3.org/1999/xhtml');

 // Compute the Base URL for relative links

13.9 Program: Finding Stale Links | 433

$baseURL = '';

 // Check if there is a <base href=""/> in the page

$nodeList = $xpath->query('//xhtml:base/@href');

if ($nodeList->length == 1) {

$baseURL = $nodeList->item(0)->nodeValue;

}

 // No <base href=""/>, so build the Base URL from $url

else {

$URLParts = parse_url($pageInfo['url']);

if (! (isset($URLParts['path']) && strlen($URLParts['path']))) {

$basePath = '';

} else {

$basePath = preg_replace('#/[^/]*$#','',$URLParts['path']);

}

if (isset($URLParts['username']) || isset($URLParts['password'])) {

$auth = isset($URLParts['username']) ? $URLParts['username'] : '';

$auth .= ':';

$auth .= isset($URLParts['password']) ? $URLParts['password'] : '';

$auth .= '@';

} else {

$auth = '';

}

$baseURL = $URLParts['scheme'] . '://' .

$auth . $URLParts['host'] .

$basePath;

}

 // Keep track of the links we visit so we don't visit each more than once

$seenLinks = array();

 // Grab all links

$links = $xpath->query('//xhtml:a/@href');

foreach ($links as $node) {

$link = $node->nodeValue;

 // Resolve relative links

if (! preg_match('#^(http|https|mailto):#', $link)) {

if (((strlen($link) == 0)) || ($link[0] != '/')) {

$link = '/' . $link;

}

$link = $baseURL . $link;

}

 // Skip this link if we've seen it already

if (isset($seenLinks[$link])) {

continue;

}

 // Mark this link as seen

$seenLinks[$link] = true;

 // Print the link we're visiting

print $link.': ';

flush();

434 | Chapter 13: Web Automation

 list($linkHeaders, $linkInfo) = load_with_curl($link, 'HEAD');

 // Decide what to do based on the response code

 // 2xx response codes mean the page is OK

if (($linkInfo['http_code'] >= 200) && ($linkInfo['http_code'] < 300)) {

$status = 'OK';

}

 // 3xx response codes mean redirection

else if (($linkInfo['http_code'] >= 300) && ($linkInfo['http_code'] < 400)) {

$status = 'MOVED';

if (preg_match('/^Location: (.*)$/m',$linkHeaders,$match)) {

$status .= ': ' . trim($match[1]);

}

}

 // Other response codes mean errors

else {

$status = "ERROR: {$linkInfo['http_code']}";

}

 // Print what we know about the link

print "$status\n";

}

function load_with_curl($url, $method = 'GET') {

$c = curl_init($url);

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

if ($method == 'GET') {

curl_setopt($c,CURLOPT_FOLLOWLOCATION, true);

}

else if ($method == 'HEAD') {

curl_setopt($c, CURLOPT_NOBODY, true);

curl_setopt($c, CURLOPT_HEADER, true);

}

$response = curl_exec($c);

return array($response, curl_getinfo($c));

}

13.10 Program: Finding Fresh Links

Example 13-23 is a modification of the program in Example 13-22 that produces a list of links and their last-modified time. If the server on which a URL lives doesn’t provide

a last-modified time, the program reports the URL’s last-modified time as the time the

URL was requested. If the program can’t retrieve the URL successfully, it prints out the

status code it got when it tried to retrieve the URL. Run the program by passing it a URL

to scan for links:

http://oreilly.com: OK; Last Modified: Fri, 24 May 2013 18:09:11 GMT

https://members.oreilly.com: MOVED: https://members.oreilly.com/account/login

http://shop.oreilly.com/basket. do: OK

http://shop.oreilly.com: OK

http://radar.oreilly.com: OK; Last Modified: Fri, 24 May 2013 20:40:56 GMT

http://animals.oreilly.com: OK; Last Modified: Fri, 24 May 2013 20:40:18 GMT

13.10 Program: Finding Fresh Links | 435

http://programming.oreilly.com: OK; Last Modified: Fri, 24 May 2013 20:42:44 GMT

...

This output is from a run of the program at about 8:43 P.M. GMT on May 24, 2013. The

links that aren’t accompanied by a last-modified time means the server didn’t provide

one, so those pages are probably dynamic.

The program to find fresh links is conceptually almost identical to the program to find

stale links. It uses the same techniques to pull links out of a page and the same code to

retrieve URLs.

Once a page has been retrieved, each linked URL is retrieved with the head method.

Instead of just printing out a new location for moved links, however, it prints out a

formatted version of the Last-Modified header if it’s available.

 Example 13-23. fresh-links.php

error_reporting(E_ALL);

if (! isset($_SERVER['argv'][1])) {

die("No URL provided. \n");

}

$url = $_SERVER['argv'][1];

 // Load the page

list($page, $pageInfo) = load_with_curl($url);

if (! strlen($page)) {

die("No page retrieved from $url");

}

 // Convert to XML for easy parsing

$opts = array('output-xhtml' => true,

'numeric-entities' => true);

$xml = tidy_repair_string($page, $opts);

$doc = new DOMDocument();

$doc->loadXML($xml);

$xpath = new DOMXPath($doc);

$xpath->registerNamespace('xhtml','http://www.w3.org/1999/xhtml');

 // Compute the Base URL for relative links.

$baseURL = '';

 // Check if there is a <base href=""/> in the page

$nodeList = $xpath->query('//xhtml:base/@href');

if ($nodeList->length == 1) {

$baseURL = $nodeList->item(0)->nodeValue;

}

 // No <base href=""/>, so build the Base URL from $url

else {

$URLParts = parse_url($pageInfo['url']);

436 | Chapter 13: Web Automation

 if (! (isset($URLParts['path']) && strlen($URLParts['path']))) {

$basePath = '';

} else {

$basePath = preg_replace('#/[^/]*$#','',$URLParts['path']);

}

if (isset($URLParts['username']) || isset($URLParts['password'])) {

$auth = isset($URLParts['username']) ? $URLParts['username'] : '';

$auth .= ':';

$auth .= isset($URLParts['password']) ? $URLParts['password'] : '';

$auth .= '@';

} else {

$auth = '';

}

$baseURL = $URLParts['scheme'] . '://' .

$auth . $URLParts['host'] .

$basePath;

}

 // Keep track of the links we visit so we don't visit each more than once

$seenLinks = array();

 // Grab all links

$links = $xpath->query('//xhtml:a/@href');

foreach ($links as $node) {

$link = $node->nodeValue;

 // Resolve relative links

if (! preg_match('#^(http|https|mailto):#', $link)) {

if (((strlen($link) == 0)) || ($link[0] != '/')) {

$link = '/' . $link;

}

$link = $baseURL . $link;

}

 // Skip this link if we've seen it already

if (isset($seenLinks[$link])) {

continue;

}

 // Mark this link as seen

$seenLinks[$link] = true;

 // Print the link we're visiting

print $link.': ';

flush();

list ($linkHeaders, $linkInfo) = load_with_curl($link, 'HEAD');

 // Decide what to do based on the response code

 // 2xx response codes mean the page is OK

if (($linkInfo['http_code'] >= 200) && ($linkInfo['http_code'] < 300)) {

$status = 'OK';

}

 // 3xx response codes mean redirection

else if (($linkInfo['http_code'] >= 300) && ($linkInfo['http_code'] < 400)) {

13.10 Program: Finding Fresh Links | 437

 $status = 'MOVED';

if (preg_match('/^Location: (.*)$/m',$linkHeaders,$match)) {

$status .= ': ' . trim($match[1]);

}

}

 // Other response codes mean errors

else {

$status = "ERROR: {$linkInfo['http_code']}";

}

if (preg_match('/^Last-Modified: (.*)$/mi', $linkHeaders, $match)) {

$status .= "; Last Modified: " . trim($match[1]);

}

 // Print what we know about the link

print "$status\n";

}

function load_with_curl($url, $method = 'GET') {

$c = curl_init($url);

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

if ($method == 'GET') {

curl_setopt($c,CURLOPT_FOLLOWLOCATION, true);

}

else if ($method == 'HEAD') {

curl_setopt($c, CURLOPT_NOBODY, true);

curl_setopt($c, CURLOPT_HEADER, true);

}

$response = curl_exec($c);

return array($response, curl_getinfo($c));

}

438 | Chapter 13: Web Automation

CHAPTER 14

Consuming RESTful APIs

14.0 Introduction

When you want to find out the weather forecast for New York City, the latest tweets

from @rasmus, or update a stored file, you can write a short REST script to process that

data in a format you can easily manipulate.

REST is a straightforward style of web APIs in which you make requests to a URL using

HTTP methods, such as GET and POST. The URL and body, often in JSON or XML,

describes the resource you want to manipulate and the method tells the server what

action it should take.

GET tells the server you want to retrieve existing data, whereas POST means you want

to add a new resource. Use PUT to replace a resource or create a specifically named

resource. And DELETE, of course, deletes the resource.

The brilliance of REST is in use of existing standards. Because most developers are

familiar with HTTP and JSON, the learning curve for REST is short and shallow.

The one downside to REST is there’s no standard schema for data that’s passed in or

returned. Every site is free to use what it feels is the best. Though this is not a problem

for small services, if not designed properly, this can cause complexity when a service

grows.

Still, REST is a very popular format and its simplicity is a key factor in its success.

Recipe 14.1 covers making REST requests.

Recipes in this chapter cover how to generate an HTTP request for your desired REST

call. Because the data returned is (almost always) in a standard file format, there’s no

need to show how to parse the results. Given the nature of REST documents, and that

you’re usually familiar with the schema of the response, the JSON and SimpleXML

extensions are often the best choice. They’re covered in Recipes 5.7 and 12.3.

439

There are many ways to retrieve a remote URL in PHP. Choosing one method over

another depends on your needs for simplicity, control, and portability. The three meth‐

ods discussed in this chapter are standard file functions, the cURL extension, and the

HTTP_Request2 class from PEAR. These three methods can generally do everything you

need and at least one of them should be available to you whatever your server config‐

uration or ability to install custom extensions. Other ways to retrieve remote URLs

include the pecl_http extension, which, though still in development, offers some promising features, and using the fsockopen() function to open a socket over which

you send an HTTP request that you construct piece by piece.

Using a standard file function such as file_get_contents() is simple and convenient.

It automatically follows redirects, so if you use this function to retrieve the directory at

 http://www.example.com/people and the server redirects you to http://www.exam

 ple.com/people/, you’ll get the contents of the directory index page, not a message telling you that the URL has moved. Standard file functions also work with both HTTP and

FTP. The downside to this method is that it requires the allow_url_fopen configuration

directive to be turned on.

The cURL extension is a powerful jack-of-all-request-trades. It relies on the popular

libcurl to provide a fast, configurable mechanism for handling a wide variety of network requests. If this extension is available on your server, we recommend you use it.

If allow_url_fopen is turned off and cURL is not available, the PEAR HTTP_Re

quest2 module saves the day. Like all PEAR modules, it’s plain PHP, so if you can save

a PHP file on your server, you can use it. HTTP_Request2 supports just about anything

you’d like to do when requesting a remote URL, including modifying request headers

and body, using an arbitrary method, and retrieving response headers.

Recipe 14.1 through Recipe 14.7 explain how to make various kinds of HTTP requests, tweaking headers, method, body, and timing. Recipe 14.8 helps you go behind the scenes of an HTTP request to examine the headers in a request and response. If a request you’re

making from a program isn’t giving you the results you’re looking for, examining the

headers often provides clues as to what’s wrong.

14.1 Fetching a URL with the GET Method

Problem

You want to retrieve the contents of a URL. For example, you want to include part of

one site in another site’s content.

Solution

Provide the URL to file_get_contents():

440 | Chapter 14: Consuming RESTful APIs

$page = file_get_contents('http://www.example.com/robots.txt');

Or you can use the cURL extension:

$c = curl_init('http://www.example.com/robots.txt');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

$page = curl_exec($c);

curl_close($c);

You can also use the HTTP_Request2 class from PEAR:

require_once 'HTTP/Request2.php';

$r = new HTTP_Request2('http://www.example.com/robots.txt');

$page = $r->send()->getBody();

Discussion

file_get_contents(), like all PHP file-handling functions, uses PHP’s streams feature.

This means that it can handle local files as well as a variety of network resources, in‐

cluding HTTP URLs. There’s a catch, though—the allow_url_fopen configuration

setting must be turned on (which it usually is).

This makes for extremely easy retrieval of remote documents. You can use the same

technique to grab a remote XML document:

$url = 'http://rss.news.yahoo.com/rss/oddlyenough';

$rss = simplexml_load_file($url);

print '';

foreach ($rss->channel->item as $item) {

print '<a href="' .

htmlentities($item->link) .

'">' .

htmlentities($item->title) .

'';

}

print '';

To retrieve a page that includes query string variables, use http_build_query() to cre‐

ate the query string. It accepts an array of key/value pairs and returns a single string

with everything properly escaped. You’re still responsible for the ? in the URL that sets

off the query string. For example:

$vars = array('page' => 4, 'search' => 'this & that');

$qs = http_build_query($vars);

$url = 'http://www.example.com/search.php?' . $qs;

$page = file_get_contents($url);

To retrieve a protected page, put the username and password in the URL. Here the

username is david, and the password is hax0r:

$url = 'http://david:hax0r@www.example.com/secrets.php';

$page = file_get_contents($url);

14.1 Fetching a URL with the GET Method | 441

Or with cURL:

$c = curl_init('http://www.example.com/secrets.php');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_USERPWD, 'david:hax0r');

$page = curl_exec($c);

curl_close($c);

Likewise with HTTP_Request2:

require 'HTTP/Request2.php';

$r = new HTTP_Request2('http://www.example.com/secrets.php');

$r->setAuth('david', 'hax0r', HTTP_Request2::AUTH_DIGEST);

$page = $r->send()->getBody();

PHP’s http stream wrapper automatically follows redirects. The file_get_con

tents() and fopen() functions support a stream context argument that allows for

specifying options about how the stream is retrieved. One of those options is max_re

directs, the maximum number of redirects to follow.

This example sets max_redirects to 1, which turns off redirect following:

$url = 'http://www.example.com/redirector.php';

 // Define the options

$options = array('max_redirects' => 1);

 // Create a context with options for the http stream

$context = stream_context_create(array('http' => $options));

 // Pass the options to file_get_contents. The second

 // argument is whether to use the include path, which

 // we don't want here.

print file_get_contents($url, false, $context);

The max_redirects stream wrapper option really indicates not how many redirects

should be followed, but the maximum number of requests that should be made when

following the redirect chain. That is, a value of 1 tells PHP to make at most one request

—follow no redirects. A value of 2 tells PHP to make at most two requests—follow no

more than one redirect. (A value of 0, however, behaves like a value of 1—PHP makes

just one request.)

If the redirect chain would have PHP make more requests than are allowed by max_re

directs, PHP issues a warning.

cURL only follows redirects when the CURLOPT_FOLLOWLOCATION option is set:

$c = curl_init('http://www.example.com/redirector.php');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_FOLLOWLOCATION, true);

$page = curl_exec($c);

curl_close($c);

442 | Chapter 14: Consuming RESTful APIs

To set a maximum number of redirects that cURL should follow, set

CURLOPT_FOLLOWLOCATION to true and then set the CURLOPT_MAXREDIRS option to that

maximum number.

HTTP_Request2 follows if the follow_redirects parameter is set to true, as shown

here:

require 'HTTP/Request2.php';

$r = new HTTP_Request2('http://www.example.com/redirector.php');

$r->setConfig(array(

'follow_redirects' => true,

'max_redirects' => 1

));

$page = $r->send()->getBody();

print $page;

cURL can do a few different things with the page it retrieves. As you’ve seen in previous

examples, if CURLOPT_RETURNTRANSFER is set, curl_exec() returns the body of the page

requested. If CURLOPT_RETURNTRANSFER is not set, curl_exec() prints the response

body.

To write the retrieved page to a file, open a file handle for writing with fopen() and set

the CURLOPT_FILE option to that file handle. This example uses cURL to copy a remote

web page to a local file:

$fh = fopen('local-copy-of-files.html','w') or die($php_errormsg);

$c = curl_init('http://www.example.com/files.html');

curl_setopt($c, CURLOPT_FILE, $fh);

curl_exec($c);

curl_close($c);

To pass the cURL resource and the contents of the retrieved page to a function, set the

CURLOPT_WRITEFUNCTION option to a callback for that function (either a function name

or an array whose first element is an object instance or a string containing a class name

and whose second element is a method name). The “write function” must return the

number of bytes it was passed. Note that with large responses, the write function might

get called more than once because cURL processes the response in chunks. This example

uses a cURL write function to save page contents in a database:

class PageSaver {

protected $db;

protected $page ='';

public function __construct() {

$this->db = new PDO('sqlite:./pages.db');

}

public function write($curl, $data) {

14.1 Fetching a URL with the GET Method | 443

 $this->page .= $data;

return strlen($data);

}

public function save($curl) {

$info = curl_getinfo($curl);

$st = $this->db->prepare('INSERT INTO pages '.

'(url,page) VALUES (?,?)');

$st->execute(array($info['url'], $this->page));

}

}

 // Create the saver instance

$pageSaver = new PageSaver();

 // Create the cURL resources

$c = curl_init('http://www.example.com/');

 // Set the write function

curl_setopt($c, CURLOPT_WRITEFUNCTION, array($pageSaver,'write'));

 // Execute the request

curl_exec($c);

 // Save the accumulated data

$pageSaver->save($c);

See Also

Recipe 14.2 for fetching a URL with the POST method; documentation on

file_get_contents(), simplexml_load_file(), stream_context_create(),

curl_init(), curl_setopt(), curl_exec(), curl_getinfo(), and curl_close(); the

PEAR HTTP_Request2 class.

14.2 Fetching a URL with the POST Method and Form Data

Problem

You want to submit a document using the POST method, passing data formatted as an

HTML form.

Solution

Set the method and content stream context options when using the http stream:

$url = 'http://www.example.com/submit.php';

 // The submitted form data, encoded as query-string-style

 // name-value pairs

$body = 'monkey=uncle&rhino=aunt';

$options = array('method' => 'POST',

'content' => $body,

'header' => 'Content-type: application/x-www-form-urlencoded');

 // Create the stream context

444 | Chapter 14: Consuming RESTful APIs

$context = stream_context_create(array('http' => $options));

 // Pass the context to file_get_contents()

print file_get_contents($url, false, $context);

With cURL, set the CURLOPT_POST and CURLOPT_POSTFIELDS options:

$url = 'http://www.example.com/submit.php';

 // The submitted form data, encoded as query-string-style

 // name-value pairs

$body = 'monkey=uncle&rhino=aunt';

$c = curl_init($url);

curl_setopt($c, CURLOPT_POST, true);

curl_setopt($c, CURLOPT_POSTFIELDS, $body);

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

$page = curl_exec($c);

curl_close($c);

Using HTTP_Request2, pass HTTP_Request2::METHOD_POST to setMethod() and chain

calls to addPostParameter() for each name/value pair in the data to submit:

require 'HTTP/Request2.php';

$url = 'http://www.example.com/submit.php';

$r = new HTTP_Request2($url);

$r->setMethod(HTTP_Request2::METHOD_POST)

->addPostParameter('monkey', 'uncle')

->addPostParameter('rhino','aunt');

$page = $r->send()->getBody();

Discussion

Sending a POST method request requires different handling of any form arguments. In

a GET request, these arguments are in the query string, but in a POST request, they go

in the request body. Additionally, the request needs a Content-Length header that tells

the server the size of the content to expect in the request body.

Although they each have different mechanisms by which you specify the request method

and the body content, each of the examples in the Solution automatically add the proper

Content-Length header for you.

If you use a stream context to send a POST request, make sure to set the method option

to post. Case matters.

See Also

Recipe 14.1 for fetching a URL with the GET method; also see the documentation on

curl_setopt() and on stream options ; the PEAR HTTP_Request2 class; RFC 2616.

14.2 Fetching a URL with the POST Method and Form Data | 445

14.3 Fetching a URL with an Arbitrary Method and POST

Body

Problem

You want to request a URL using any method, such as POST, PUT, or DELETE. Your

POST or PUT request may contain formatted data, such as JSON or XML.

Solution

Set the method, header, and content stream context options when using the http

stream:

$url = 'http://www.example.com/meals/123';

$header = "Content-Type: application/json";

 // The request body, in JSON

$body = '[{

"type": "appetizer",

"dish": "Chicken Soup"

}, {

"type": "main course",

"dish": "Fried Monkey Brains"

}]';

$options = array('method' => 'put',

'header' => $header,

'content' => $body);

 // Create the stream context

$context = stream_context_create(array('http' => $options));

 // Pass the context to file_get_contents()

print file_get_contents($url, false, $context);

With cURL, set the CURLOPT_CUSTOMREQUEST option to the method name. To include a

request body, set CURLOPT_HTTPHEADER to the Content-Type and CURLOPT_POST

FIELDS to the body:

$url = 'http://www.example.com/meals/123';

 // The request body, in JSON

$body = '[{

"type": "appetizer",

"dish": "Chicken Soup"

}, {

"type": "main course",

"dish": "Fried Monkey Brains"

}]';

$c = curl_init($url);

curl_setopt($c, CURLOPT_CUSTOMREQUEST, 'PUT');

curl_setopt($c, CURLOPT_HTTPHEADER, array('Content-Type: application/json'));

curl_setopt($c, CURLOPT_POSTFIELDS, $body);

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

446 | Chapter 14: Consuming RESTful APIs

$page = curl_exec($c);

curl_close($c);

In HTTP_Request2, call setMethod() with a method constant, setHeader() with the

Content-Type, and setBody() with the contents of the request body:

require 'HTTP/Request2.php';

$url = 'http://www.example.com/meals/123';

 // The request body, in JSON

$body = '[{

"type": "appetizer",

"dish": "Chicken Soup"

}, {

"type": "main course",

"dish": "Fried Monkey Brains"

}]';

$r = new HTTP_Request2($url);

$r->setMethod(HTTP_Request2::METHOD_PUT);

$r->setHeader('Content-Type', 'application/json');

$r->setBody($body);

$page = $r->send()->getBody();

Discussion

In many REST-style APIs, you need to use more than just GET and POST to modify

resources, you also need to use PUT and DELETE.

The examples in the Solution make HTTP PUT requests to set a dinner menu, with data

formatted in JSON. If your data is in another format, such as XML, change the Content-

Type accordingly. If there is no body, such as in a HTTP DELETE request, only set the

method.

The PUT method is often used for creating or modifying the contents of a specific

resource. cURL has three special options to help with this: CURLOPT_PUT, CURLOPT_IN

FILE, and CURLOPT_INFILESIZE. To upload a file with PUT and cURL, set CUR

LOPT_PUT to true, CURLOPT_INFILE to a filehandle opened to the file that should be

uploaded, and CURLOPT_INFILESIZE to the size of that file. This is shown in

Example 14-1.

 Example 14-1. Uploading a file with cURL and PUT

$url = 'http://www.example.com/upload.php';

$filename = '/usr/local/data/pictures/piggy.jpg';

$fp = fopen($filename,'r');

$c = curl_init($url);

curl_setopt($c, CURLOPT_PUT, true);

curl_setopt($c, CURLOPT_INFILE, $fp);

curl_setopt($c, CURLOPT_INFILESIZE, filesize($filename));

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

14.3 Fetching a URL with an Arbitrary Method and POST Body | 447

$page = curl_exec($c);

print $page;

curl_close($c);

See Also

Documentation on curl_setopt() and on stream options; the PEAR HTTP_Request2

class; Section 5.1.1 of RFC 2616, which discusses request methods; a list of popular

Content-Types.

14.4 Fetching a URL with Cookies

Problem

You want to retrieve a page that requires a cookie to be sent with the request for the

page.

Solution

Use the CURLOPT_COOKIE option with cURL:

$c = curl_init('http://www.example.com/needs-cookies.php');

curl_setopt($c, CURLOPT_COOKIE, 'user=ellen; activity=swimming');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

$page = curl_exec($c);

curl_close($c);

With HTTP_Request2, use the addCookie() method:

require 'HTTP/Request2.php';

$r = new HTTP_Request2('http://www.example.com/needs-cookies.php');

$r->addCookie('user', 'ellen');

$r->addCookie('activity', 'swimming');

$page = $r->send()->getBody();

echo $page;

Discussion

Cookies are sent to the server in the Cookie request header. Although in practice just

another HTTP header, due to their importance, both the cURL extension and the

HTTP_Request2 package have specific functions to set cookies.

The examples in the Solution send two cookies: one named user with value ellen and

one named activity with value swimming.

To request a page that sets cookies and then make subsequent requests that include those

newly set cookies, use cURL’s “cookie jar” feature. On the first request, set CURLOPT_COOK

IEJAR to the name of a file in which to store the cookies. On subsequent requests, set

448 | Chapter 14: Consuming RESTful APIs

CURLOPT_COOKIEFILE to the same filename, and cURL reads the cookies from the file

and sends them along with the request. This is especially useful for a sequence of requests

in which the first request logs in to a site that sets session or authentication cookies, and

then the rest of the requests need to include those cookies to be valid.

Here’s such a sequence of requests:

 // A temporary file to hold the cookies

$cookie_jar = tempnam('/tmp','cookie');

 // log in

$c = curl_init('https://bank.example.com/login.php?user=donald&password=b1g$');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_COOKIEJAR, $cookie_jar);

$page = curl_exec($c);

curl_close($c);

 // retrieve account balance

$c = curl_init('http://bank.example.com/balance.php?account=checking');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_COOKIEFILE, $cookie_jar);

$page = curl_exec($c);

curl_close($c);

 // make a deposit

$c = curl_init('http://bank.example.com/deposit.php');

curl_setopt($c, CURLOPT_POST, true);

curl_setopt($c, CURLOPT_POSTFIELDS, 'account=checking&amount=122.44');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_COOKIEFILE, $cookie_jar);

$page = curl_exec($c);

curl_close($c);

 // remove the cookie jar

unlink($cookie_jar) or die("Can't unlink $cookie_jar");

Be careful where you store the cookie jar. It needs to be in a place your web server has

write access to, but if other users can read the file, they may be able to poach the au‐

thentication credentials stored in the cookies.

HTTP_Request2 offers a similar cookie-tracking feature. You need to invoke the

setCookieJar() method to enable it. Then, if you make multiple requests with the same

HTTP_Request2 object, cookies are automatically preserved from one request to the next.

For example:

require 'HTTP/Request2.php';

$r = new HTTP_Request2;

$r->setCookieJar(true);

 // log in

14.4 Fetching a URL with Cookies | 449

$r->setUrl('https://bank.example.com/login.php?user=donald&password=b1gmoney$');

$page = $r->send()->getBody();

 // retrieve account balance

$r->setUrl('http://bank.example.com/balance.php?account=checking');

$page = $r->send()->getBody();

 // make a deposit

$r->setUrl('http://bank.example.com/deposit.php');

$r->setMethod(HTTP_Request2::METHOD_POST)

->addPostParameter('account', 'checking')

->addPostParameter('amount','122.44');

$page = $r->send()->getBody();

See Also

Documentation on curl_setopt(); the PEAR HTTP_Request2 class; RFC 6265 and

“HTTP Cookies: Standards, Privacy, and Politics” by David M. Kristol.

14.5 Fetching a URL with Arbitrary Headers

Problem

You want to retrieve a URL that requires specific headers to be sent with the request for

the page.

Solution

Set the header stream context option when using the http stream. The header value

must be a single string. Separate multiple headers with a carriage return and newline

(\r\n inside a double-quoted string). For example:

$url = 'http://www.example.com/special-header.php';

$header = "X-Factor: 12\r\nMy-Header: Bob";

$options = array('header' => $header);

 // Create the stream context

$context = stream_context_create(array('http' => $options));

 // Pass the context to file_get_contents()

print file_get_contents($url, false, $context);

With cURL, set the CURLOPT_HTTPHEADER option to an array of headers to send:

$c = curl_init('http://www.example.com/special-header.php');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_HTTPHEADER, array('X-Factor: 12', 'My-Header: Bob'));

$page = curl_exec($c);

curl_close($c);

With HTTP_Request2, use the setHeader() method, as shown:

450 | Chapter 14: Consuming RESTful APIs

require 'HTTP/Request2.php';

$r = new HTTP_Request2('http://www.example.com/special-header.php');

$r->setHeader(array('X-Factor' => 12, 'My-Header','Bob'));

$page = $r->send()->getBody();

print $page;

Discussion

cURL has special options for setting the Referer and User-Agent request headers—

CURLOPT_REFERER and CURLOPT_USERAGENT. Here’s how you use each of these options:

$c = curl_init('http://www.example.com/submit.php');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_REFERER, 'http://www.example.com/form.php');

curl_setopt($c, CURLOPT_USERAGENT, 'cURL via PHP');

$page = curl_exec($c);

curl_close($c);

See Also

Documentation on the http stream wrapper, on curl_setopt(), and on the PEAR

HTTP_Request2 class. The mailing list message explains the ambitious and revolutionary goals behind spelling “Referer” with one “r.”

14.6 Fetching a URL with a Timeout

Problem

You want to fetch a remote URL, but don’t want to wait around too long if the remote

server is busy or slow.

Solution

With the http stream, set the default_socket_timeout configuration option:

 // 15 second timeout

ini_set('default_socket_timeout', 15);

$page = file_get_contents('http://slow.example.com/');

This waits up to 15 seconds to establish the connection with the remote server. Changing

default_socket_timeout affects all new sockets or remote connections created in a

particular script execution.

With cURL, set the CURLOPT_CONNECTTIMEOUT option:

$c = curl_init('http://slow.example.com/');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_CONNECTTIMEOUT, 15);

14.6 Fetching a URL with a Timeout | 451

$page = curl_exec($c);

curl_close($c);

With HTTP_Request2, set the timeout element in a parameter array passed to the

HTTP_Request2 constructor:

require_once 'HTTP/Request2.php';

$r = new HTTP_Request2('http://slow.example.com/');

$r->setConfig(array(

'connect_timeout' => 15

));

$page = $r->send()->getBody();

Discussion

Remote servers are fickle beasts. Even the most most robust, enterprise-class, mission-

critical service can experience an outage. Alternatively, a remote service you depend on

can be up and running, but be unable to handle your requests because of network prob‐

lems between your server and the remote server. Limiting the amount of time that PHP

waits to connect to a remote server is a good idea if using data from remote sources is

part of your page construction process.

All of the techniques outlined in the Solution limit the amount of time PHP waits to

connect to a remote server. Once the connection is made, though, all bets are off in

terms of response time. If you’re truly concerned about speedy responses, additionally

set a limit on how long PHP waits to receive data from the already connected socket.

For a stream connection, use the stream_set_timeout() function. This function needs

to be passed a stream resource, so you have to open a stream with fopen()—no

file_get_contents() here. This example limits the read timeout to 20 seconds:

$url = 'http://slow.example.com';

$stream = fopen($url, 'r');

stream_set_timeout($stream, 20);

$response_body = stream_get_contents($stream);

With cURL, set the CURLOPT_TIMEOUT to the maximum amount of time curl_exec()

should operate. This includes both the connection timeout and the time to read the

entire response body:

curl_setopt($c, CURLOPT_TIMEOUT, 35);

With HTTP_Request2, add a timeout value to the configuration array. This value is the

number of seconds. Here it’s 20 seconds:

require_once 'HTTP/Request2.php';

$r = new HTTP_Request2('http://slow.example.com/');

$r->setConfig(array(

452 | Chapter 14: Consuming RESTful APIs

 'timeout' => 20

));

$page = $r->send()->getBody();

Although setting connection and read timeouts can improve performance, it can also

lead to garbled responses. Your script could read just a partial response before a timeout

expires. If you’ve set timeouts, be sure to validate the entire response that you’ve received.

Alternatively, in situations where fast page generation is crucial, retrieve external data

in a separate process and write it to a local cache. This way, your pages can use the cache

without fear of timeouts or partial responses.

See Also

Documentation on curl_setopt(), on stream_set_timeout(), on default_sock

et_timeout, and on the PEAR HTTP_Request2 class.

14.7 Fetching an HTTPS URL

Problem

You want to retrieve a secure URL.

Solution

Use any of the techniques described in Recipe 14.1 or Recipe 14.2, providing a URL that begins with https.

Discussion

As long as PHP has been built with the OpenSSL library, all of the functions that can

retrieve regular URLs can retrieve secure URLs. Look for the “openssl” section in the

output of phpinfo() to see if your PHP setup has SSL support.

See Also

Recipes 14.1 and 14.2 for retrieving URLs; the OpenSSL Project.

14.8 Debugging the Raw HTTP Exchange

Problem

You want to analyze the HTTP request a browser makes to your server and the corre‐

sponding HTTP response. For example, your server doesn’t supply the expected re‐

14.7 Fetching an HTTPS URL | 453

sponse to a particular request so you want to see exactly what the components of the

request are.

Solution

For simple requests, connect to the web server with Telnet and type in the request

headers. A sample exchange looks like:

POST /submit.php HTTP/1.1

User-Agent: PEAR HTTP_Request2 class (http://pear.php.net/)

Content-Type: application/x-www-form-urlencoded

Connection: close

Host: www.example.com

Content-Length: 12

monkey=uncle

Discussion

When you type in request headers, the web server doesn’t know that it’s just you typing

and not a web browser submitting a request. However, some web servers have timeouts

on how long they’ll wait for a request, so it can be useful to pretype the request and then

just paste it into Telnet. The first line of the request contains the request method (POST),

a space and the path of the file you want (/submit.php), and then a space and the

protocol you’re using (HTTP/1.1). A subsequent line, the Host header, tells the server

which virtual host to use if many are sharing the same IP address. A blank line tells the

server that the request is over; it then spits back its response: first headers, then a blank

line, and then the body of the response. The Netcat program is also useful for this sort of task.

Pasting text into Telnet can get tedious, and it’s even harder to make requests with the

POST method that way. If you make a request with HTTP_Request2, you can retrieve

the response headers and the response body with the getResponseHeader() and

getResponseBody() methods, as shown:

require 'HTTP/Request2.php';

$r = new HTTP_Request2('http://www.example.com/submit.php');

$r = new HTTP_Request2('http://localhost/submit.php');

$r->setMethod(HTTP_Request2::METHOD_POST)

->addPostParameter('monkey', 'uncle');

$response = $r->send();

$response_headers = $response->getHeader();

$response_body = $response->getBody();

To retrieve a specific response header, pass the header name to getResponseHeader().

The header name must be all lowercase. Without an argument, getResponseHead

454 | Chapter 14: Consuming RESTful APIs

er() returns an array containing all the response headers. HTTP_Request2 saves the

outgoing request. Access it by calling the getLastEvent() method, as shown:

require 'HTTP/Request2.php';

$r = new HTTP_Request2('http://www.example.com/submit.php');

$r = new HTTP_Request2('http://localhost/submit.php');

$r->setMethod(HTTP_Request2::METHOD_POST)

->addPostParameter('monkey', 'uncle');

$response = $r->send();

print_r($r->getLastEvent());

That request is something like:

POST /submit.php HTTP/1.1

User-Agent: PEAR HTTP_Request2 class (http://pear.php.net/)

Content-Type: application/x-www-form-urlencoded

Connection: close

Host: www.example.com

Content-Length: 12

monkey=uncle

Accessing response headers with the http stream is possible, but you have to use a

function such as fopen() that gives you a stream resource. One piece of the metadata

you get when passing that stream resource to stream_get_meta_data() after the re‐

quest has been made is the set of response headers. This example demonstrates how to

access response headers with a stream resource:

$url = 'http://www.example.com/submit.php';

$stream = fopen($url, 'r');

$metadata = stream_get_meta_data($stream);

 // The headers are stored in the 'wrapper_data'

foreach ($metadata['wrapper_data'] as $header) {

print $header . " \n";

}

 // The body can be retrieved with

 // stream_get_contents()

$response_body = stream_get_contents($stream);

stream_get_meta_data() returns an array of information about the stream. The wrap

per_data element of that array contains wrapper-specific data. For the http wrapper,

that means the response headers, one per subarray element. It prints something like:

HTTP/1.1 200 OK

Date: Sun, 07 May 2014 18:24:37 GMT

Server: Apache/2.2.2 (Unix)

Last-Modified: Sun, 07 May 2014 01:58:12 GMT

ETag: "1348011-7-16167502"

Accept-Ranges: bytes

Content-Length: 7

14.8 Debugging the Raw HTTP Exchange | 455

Connection: close

Content-Type: text/plain

The fopen() function accepts an optional stream context. Pass it as the fourth argument

to fopen() if you want to use one. (The second argument is the mode and the third

argument is the optional flag indicating whether to use include_path in looking for a

file.)

With cURL, include response headers in the output from curl_exec() by setting the

CURLOPT_HEADER option, as shown:

$c = curl_init('http://www.example.com/submit.php');

curl_setopt($c, CURLOPT_HEADER, true);

curl_setopt($c, CURLOPT_POST, true);

curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

$response_headers_and_page = curl_exec($c);

curl_close($c);

To write the response headers directly to a file, open a filehandle with fopen() and set

CURLOPT_WRITEHEADER to that filehandle, as shown:

$fh = fopen('/tmp/curl-response-headers.txt','w') or die($php_errormsg);

$c = curl_init('http://www.example.com/submit.php');

curl_setopt($c, CURLOPT_POST, true);

curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_WRITEHEADER, $fh);

$page = curl_exec($c);

curl_close($c);

fclose($fh) or die($php_errormsg);

cURL’s CURLOPT_VERBOSE option causes curl_exec() and curl_close() to print out

debugging information to standard error, including the contents of the request, as

shown:

$c = curl_init('http://www.example.com/submit.php');

curl_setopt($c, CURLOPT_VERBOSE, true);

curl_setopt($c, CURLOPT_POST, true);

curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

$page = curl_exec($c);

curl_close($c);

It prints something like:

* Connected to www.example.com (10.1.1.1)

> POST /submit.php HTTP/1.1

Host: www.example.com

Pragma: no-cache

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Content-Length: 23

456 | Chapter 14: Consuming RESTful APIs

Content-Type: application/x-www-form-urlencoded

monkey=uncle&rhino=aunt* Connection #0 left intact

* Closing connection #0

Because cURL prints the debugging information to standard error and not standard

output, it can’t be captured with output buffering. You can, however, open a filehandle

for writing and set CURLOUT_STDERR to that filehandle to divert the debugging infor‐

mation to a file:

$fh = fopen('/tmp/curl.out','w') or die($php_errormsg);

$c = curl_init('http://www.example.com/submit.php');

curl_setopt($c, CURLOPT_VERBOSE, true);

curl_setopt($c, CURLOPT_POST, true);

curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

curl_setopt($c, CURLOPT_STDERR, $fh);

$page = curl_exec($c);

curl_close($c);

fclose($fh) or die($php_errormsg);

Another way to access response headers with cURL is to write a header function. This

is similar to a cURL write function except it is called to handle response headers instead

of the response body. This example defines a HeaderSaver class whose header() method

can be used as a header function to accumulate response headers:

class HeaderSaver {

public $headers = array();

public $code = null;

public function header($curl, $data){

if (is_null($this->code) &&

preg_match('@^HTTP/\d\.\d (\d+) @',$data,$matches)) {

$this->code = $matches[1];

} else {

 // Remove the trailing newline

$trimmed = rtrim($data);

if (strlen($trimmed)) {

 // If this line begins with a space or tab, it's a

 // continuation of the previous header

if (($trimmed[0] == ' ') || ($trimmed[0] == " \t")) {

 // Collapse the leading whitespace into one space

$trimmed = preg_replace('@^[\t]+@',' ', $trimmed);

$this->headers[count($this->headers)-1] .= $trimmed;

}

 // Otherwise, it's a new header

else {

$this->headers[] = $trimmed;

}

}

}

return strlen($data);

14.8 Debugging the Raw HTTP Exchange | 457

 }

}

$h = new HeaderSaver();

$c = curl_init('http://www.example.com/plankton.php');

 // Register the header function

curl_setopt($c, CURLOPT_HEADERFUNCTION, array($h,'header'));

curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

$page = curl_exec($c);

 // Now $h is populated with data

print 'The response code was: ' . $h->code . " \n";

print "The response headers were: \n";

foreach ($h->headers as $header) {

print " $header\n";

}

The HTTP 1.1 standard specifies that headers can span multiple lines by putting at least

one space or tab character at the beginning of the additional lines of the header. The

header arrays returned by stream_get_meta_data() and HTTP_Request2::getRespon

seHeader() do not properly handle multiline headers, though. The additional lines in

a header are treated as separate headers. This code, however, correctly combines the

additional lines in multiline headers.

See Also

Documentation on curl_setopt(), on stream_get_meta_data(), on fopen(), and on

the PEAR HTTP_Request2 class; the syntax of an HTTP request is defined in RFC

2616. The rules about multiline message headers are in Section 4.2. The netcat program is available from the GNU Netcat project.

14.9 Making an OAuth 1.0 Request

Problem

You want to make an OAuth 1.0 signed request.

Solution

Use the PECL oauth extension.

Discussion

OAuth 1.0 enables API providers to let their users securely give third-party developers

access to their accounts by not providing their usernames and passwords.

458 | Chapter 14: Consuming RESTful APIs

Instead, you use two sets of public and private tokens to sign your requests. One set of tokens is for your application; that’s used for every request. The other set is user specific;

they differ from user to user.

You pass along the two public tokens to identify your application and the user. You also

use the two private tokens, also called secrets, to sign the request. The signature is con‐

structed using the HTTP method and URL of the request, along with a few other pieces

of metadata, such as a timestamp.

When the request is received, the API provider validates the signature and other pieces

of the request to ensure its legitimacy. Because only you and the provider have these

secret keys, the API provider knows that if the signatures match the request must have

come from the you. If they disagree, then it’s a fake and should be rejected.

Using the PECL oauth extension, you don’t need to worry about the specifics of the

algorithm itself. What you need to know instead is the general authorization flow, nick‐

named the OAuth Dance:

1. You get an initial set of user tokens. These are also called request tokens or tempo‐

rary tokens, because they’re only used during the authorization process and not to

make actual API calls.

2. You redirect the user to the API provider.

3. The user signs into that site, which authenticates the user and asks him to authorize

your application to make API calls on his behalf.

4. After the user authorizes your application, the API provider redirects the user back

to your application, passing along two pieces of data: the same temporary public

key you provided to match up each reply with its corresponding user and a PIN to

prevent against session fixation attacks.

5. You exchange the PIN for permanent OAuth tokens for the user.

6. You make API calls on behalf of the user.

The “Hello World” example from the Solution uses LinkedIn’s REST APIs to greet the

user with his first name.

For other API providers, the OAuth flow is the same, but you will need to alter URLs

at the top of the example and the API call itself.

See Also

Documentation on the oauth extension; the OAuth 1.0 specification is defined in RFC

5849; the LinkedIn Developer Network.

14.9 Making an OAuth 1.0 Request | 459

14.10 Making an OAuth 2.0 Request

Problem

You want to make an OAuth 2.0 signed request.

Solution

Use the stream functions.

Discussion

OAuth 2.0 enables API providers to let their users securely give third-party developers

access to their accounts by not providing their usernames and passwords.

Instead, you use a token that identifies both your application and the member. This is

also called a “bearer” token, because the API will accept that token as an ID from anyone

who presents it. To mitigate against theft of the token, OAuth 2.0 requests are made over

SSL.

Because OAuth 2.0 forgoes the signatures of OAuth 1.0, there’s no need for a special

extension. Instead, you can use the same HTTP functions you normally use.

The OAuth 2.0 flow goes as follows:

1. You redirect the user to the API provider, passing along a self-generated secret value,

known as the state, and the URL where the user should be redirected after sign in.

2. The user signs into that site, which authenticates him and asks him to authorize

your application to make API calls on his behalf.

3. After the user authorizes your application, the API provider redirects the user back

to your application, passing along two pieces of data: the same state you provided

to match up each reply with its corresponding user and a code.

4. You exchange the code for a permanent OAuth token for the user, passing along

your application ID and secret to identify yourself.

5. You make API calls on behalf of the user.

This “Hello World” example uses LinkedIn’s REST APIs to greet the user with his first

name:

 // Change these

define('API_KEY', 'YOUR_API_KEY_HERE');

define('API_SECRET', 'YOUR_API_SECRET_HERE');

define('REDIRECT_URI', 'http://' . $_SERVER['SERVER_NAME'] .

$_SERVER['SCRIPT_NAME']);

define('SCOPE', 'r_fullprofile r_emailaddress rw_nus');

460 | Chapter 14: Consuming RESTful APIs

 // You'll probably use a database

session_name('linkedin');

session_start();

 // OAuth 2 Control Flow

if (isset($_GET['error'])) {

 // LinkedIn returned an error

print $_GET['error'] . ': ' . $_GET['error_description'];

exit;

} elseif (isset($_GET['code'])) {

 // User authorized your application

if ($_SESSION['state'] == $_GET['state']) {

 // Get token so you can make API calls

getAccessToken();

} else {

 // CSRF attack? Or did you mix up your states?

exit;

}

} else {

if ((empty($_SESSION['expires_at'])) || (time() > $_SESSION['expires_at'])) {

 // Token has expired, clear the state

$_SESSION = array();

}

if (empty($_SESSION['access_token'])) {

 // Start authorization process

getAuthorizationCode();

}

}

 // Congratulations! You have a valid token. Now fetch a profile

$user = fetch('GET', '/v1/people/~:(firstName)');

print "Hello $user->firstName. \n";

exit;

function getAuthorizationCode() {

$params = array('response_type' => 'code',

'client_id' => API_KEY,

'scope' => SCOPE,

'state' => uniqid('', true), // unique long string

'redirect_uri' => REDIRECT_URI,

);

 // Authentication request

$url = 'https://www.linkedin.com/uas/oauth2/authorization?' .

http_build_query($params);

 // Needed to identify request when it returns to us

$_SESSION['state'] = $params['state'];

 // Redirect user to authenticate

header("Location: $url");

14.10 Making an OAuth 2.0 Request | 461

 exit;

}

function getAccessToken() {

$params = array('grant_type' => 'authorization_code',

'client_id' => API_KEY,

'client_secret' => API_SECRET,

'code' => $_GET['code'],

'redirect_uri' => REDIRECT_URI,

);

 // Access Token request

$url = 'https://www.linkedin.com/uas/oauth2/accessToken?' .

http_build_query($params);

 // Tell streams to make a POST request

$context = stream_context_create(

array('http' =>

array('method' => 'POST',

)

)

);

 // Retrieve access token information

$response = file_get_contents($url, false, $context);

 // Native PHP object, please

$token = json_decode($response);

 // Store access token and expiration time

$_SESSION['access_token'] = $token->access_token; // guard this!

$_SESSION['expires_in'] = $token->expires_in; // relative time (in seconds)

$_SESSION['expires_at'] = time() + $_SESSION['expires_in']; //absolute time

return true;

}

function fetch($method, $resource, $body = '') {

$params = array('oauth2_access_token' => $_SESSION['access_token'],

'format' => 'json',

);

 // Need to use HTTPS

$url = 'https://api.linkedin.com' . $resource . '?' .

http_build_query($params);

 // Tell streams to make a (GET, POST, PUT, or DELETE) request

$context = stream_context_create(

array('http' =>

array('method' => $method,

)

)

);

462 | Chapter 14: Consuming RESTful APIs

 // Hocus Pocus

$response = file_get_contents($url, false, $context);

 // Native PHP object, please

return json_decode($response);

}

For other API providers, the OAuth flow is the same, but you will need to alter the keys

and URLs in this example and the API call itself.

See Also

Documentation on the oauth extension; the OAuth 2.0 specification is defined in RFC

6749; the LinkedIn Developer Network.

14.10 Making an OAuth 2.0 Request | 463

CHAPTER 15

Serving RESTful APIs

15.0 Introduction

Exposing APIs using REST allows practically everyone to programmatically access your

application. It doesn’t matter what language they’re using. Because REST embraces the

basic protocol of the Web as its syntax, no special libraries are necessary. If a developer

is capable of making HTTP requests, he can call your RESTful APIs.

REST does not prescribe a specific syntax for requests, the schema of the data passed

back and forth, or even how to serialize data. Instead, it’s an architectural style that

provides a set of patterns and general rules. Each site is then free to implement its APIs

according to its needs, as long as it can follow the guidelines.

A resource is the fundamental unit of REST. Resources can be people, objects, or any‐

thing you wish to act upon. Resources are identified by location, using URLs. (Or by

name, using a URN.)1 Resources have representations, which are various ways to de‐

scribe the resource. Usually the representations use standard data formats, such as JSON,

XML, HTML, PDF, PNG, etc.

It’s a standard pattern to format URLs using /version/resource/key. For example, Rasmus

Lerdorf could be located at http://api.example.com/v1/people/rasmus. This maps to a

person identified as “rasmus” using version 1.0 of the API.

This resource can be represented in JSON as:

{

"firstName": "Rasmus"

1. URL stands for uniform resource locator, and URN stands for uniform resource name. A resource can have both a name and locations. For example, the HTTP 1.1 specification has a URN of urn:ietf:rfc:2616 and a

URL of https://www.ietf.org/rfc/rfc2616.txt. Collectively, URNs and URLs are called URIs, for uniform resource identifiers.

465

 "lastName": "Lerdorf"

}

In REST, the HTTP methods, such as GET and POST, describes the requested action.

So, to process a RESTful request you need to know both the URL and the HTTP method.

Recipe 15.1 demonstrates how to route a request to a URL based on the client’s HTTP

method, and Recipe 15.2 shows to do so with “clean” URLs.

Each method has a well-defined set of behaviors. For example, GET tells the server you

want to retrieve an existing resource, whereas POST means you want to add a new

resource. You use PUT to modify a resource or create a specifically named resource.

And DELETE, of course, deletes the resource.

Beyond this, REST imposes a few other constraints upon your API design. Specifically,

some methods must be safe and others must be idempotent.

Safe methods, such as GET, don’t modify resources (which is why they’re safe). Other

methods, such as POST and DELETE, are not safe. They are allowed to have the side

effect of updating the system, by creating, modifying, or deleting a resource (which is

probably what you want, but it isn’t safe).

Nonsafe methods are further subdivided into two based on idempotency. When a

method is idempotent, calling it multiple times is equivalent to calling it once. For

instance, once you’ve called DELETE on a resource, trying to DELETE it again may

return an error, but won’t cause anything else to be deleted. In contrast, making a POST

request twice can cause two new resources to be created. Table 15-1 provides an outline of this behavior.

 Table 15-1. HTTP method behavior

HTTP method Description

Safe Idempotent

GET

Read a resource

Yes

Yes

POST

Create a resource No

No

PUT

Update a resource No

Yes

DELETE

Delete a resource No

Yes

Detailed specifics of how each method behaves and how to process requests for reading,

creating, updating, and deleting a resource are covered in Recipes 15.3, 15.4, 15.5, and

15.6.

REST uses HTTP status codes to indicate whether the request has succeeded or failed.

The 200s indicate success; 300s indicate further action is needed for the server to re‐

spond; 400s are client errors; and 500s are server errors. For example, a GET request

that’s successful returns 200; a request to a resource that’s at a new URL returns 301,

trying to read a nonexistent resource returns 404, and a request to a server undergoing

maintenance returns 503.

466 | Chapter 15: Serving RESTful APIs

Common status codes and when it’s appropriate to use them are described in the context

of recipes as appropriate. General best practices for returning errors is covered in

Recipe 15.7.

It’s perfectly okay for a resource to have multiple representations. An XML version of

 http://api.example.com/v1/people/rasmus could be:

<person>

<firstName>Rasmus</firstName>

<lastName>Lerdorf</lastName>

</person>

Another example is a text document that has both an HTML and a PDF version, or an

image that comes in both JPEG and PNG formats. How to expose the same resource in

more than one way is covered in Recipe 15.8.

The recipes in this chapter look to provide the foundation for designing and imple‐

menting RESTful APIs in PHP. However, the entirety of that task is far beyond the scope

of a single chapter. REST has many aspects, including caching and hypermedia as the

engine of application state (HATEOAS) that aren’t touched upon. To learn more, you

can go to the source: the original document describing REST is Roy Fielding’s thesis.

Not unexpectedly, this is somewhat academic in nature.

A more practical book that still looks to translate the tenets of REST into specifics is

 RESTful Web APIs by Leonard Richardson, Mike Amundsen, and Sam Ruby (O’Reilly).

 REST in Practice by Jim Webber, Savas Parastatidis, and Ian Robinson (O’Reilly) is a

pragmatic hands-on guide to RESTFul design. Finally, a very in-depth Cookbook style

guide to REST is RESTful Web Services Cookbook by Subbu Allamaraju (O’Reilly).

Chapter 8 covers how to implement additional RESTful concepts, although without

necessarily using RESTful terminology. For example, authentication is covered in

Recipe 8.6, and reading and writing HTTP headers is discussed in Recipes 8.8 and 8.9.

Though an understanding of the fundamentals of RESTful design is necessary to create

a RESTful API of your own, you don’t need to implement all the scaffolding code from

scratch. Unfortunately, there’s no one-size-fits-all official PHP RESTful framework.

(Some may quip that’s PHP itself.) However, there are a number of PHP frameworks to

simplify the overhead of exposing resources. Some are full MVC frameworks with ORM

abstractions to enable the creation of fullstack applications that also expose RESTful

APIs; others are micro-frameworks that provide the thinnest facade on top of your

existing code. This is an area of active development, so you’re bound to find a package

that’s perfect for your situation.

15.0 Introduction | 467

15.1 Exposing and Routing to a Resource

Problem

You want to provide access to a resource and handle requests according to the HTTP

method.

Solution

Use the $_SERVER['REQUEST_METHOD'] variable to route the request:

$request = explode('/', $_SERVER['PATH_INFO']);

$method = strtolower($_SERVER['REQUEST_METHOD']);

switch($method) {

case 'get':

 // handle a GET request

break;

case 'post':

 // handle a POST request

break;

case 'put':

 // handle a PUT request

break;

case 'delete':

 // handle a DELETE request

break;

default:

 // unimplemented method

http_response_code(405);

}

Discussion

When processing a request for a RESTful resource, you need to both know the requested

resource and the action the client wants to take.

However, it’s rare to have a one-to-one mapping between resources and the PHP script

that processes them. For example, a resource for books could use a book’s ISBN as the

key. So, PHP Cookbook is at /v1/books.php/9781449363758, Learning PHP 5 is at /v1/

 books.php/9780596005603, and so on.

But it’s not a good idea to have individual files at each of those locations. Instead, use a

single books.php file, which uses the ISBN as a parameter. In many scripts, you’d pass

the ISBN as a query parameter, such as /v1/books.php?isbn=9781449363758, and read

this in your PHP code at $_GET['isbn'].

However, with REST, you use slashes to identify each resource. And you cannot use the

standard PHP superglobals with a URL such as /v1/books.php/9781449363758. Instead,

468 | Chapter 15: Serving RESTful APIs

parse the path into its components by breaking the $_SERVER['PATH_INFO'] apart on

“/”:

$request = explode('/', $_SERVER['PATH_INFO']);

This breaks a request for /v1/books.php/9781449363758 into:

Array

(

[0] =>

[1] => 9781449363758

)

Next, route the request based on the HTTP method, so you can handle GETs, PUTs,

POSTs, and DELETEs in different functions. For this, use $_SERVER['REQUEST_METH

OD']:

$method = strtolower($_SERVER['REQUEST_METHOD']);

switch($method) {

case 'get':

 // handle a GET request

get_book($request);

break;

case 'post':

 // handle a POST request

post_book($request);

break;

case 'put':

 // handle a PUT request

put_book($request);

break;

case 'delete':

 // handle a DELETE request

delete_book($request);

break;

default:

 // unimplemented method

http_response_code(405);

}

Because you may not choose to implement all methods for a resource, a switch statement

makes it easy to insert the methods you want, while also having a default behavior of

returning HTTP status code 405 to signal “Method Not Allowed”.

You may find it convenient to map the RESTful resources you expose to PHP classes.

Furthermore, those classes can have methods of get(), post(), and so forth. For ex‐

ample:

class books {

static public function get($request) {

 // handle a GET request

}

15.1 Exposing and Routing to a Resource | 469

 static public function post($request) {

 // handle a POST request

}

 // other methods, too

}

class albums {

static public function get($request) {

 // handle a GET request

}

}

Then you can modify the router to be a single index.php to process all resources, instead

of separate files for each resource:

 // break apart URL and extract the root resource

$request = explode('/', $_SERVER['PATH_INFO']);

$resource = array_shift($request);

 // only process valid resources

$resources = array('books' => true, 'music' => true);

if (! array_key_exists($resource, $resources)) {

http_response_code(404);

exit;

}

 // route the request to the appropriate function based on method

$method = strtolower($_SERVER["REQUEST_METHOD"]);

switch($method) {

case 'get':

case 'post':

case 'put':

case 'delete':

 // any other methods you want to support, such as HEAD

if (method_exists($resource, $method)) {

call_user_func(array($resource, $method), $request);

break;

}

 // fall through

default:

http_response_code(405);

}

First, you break apart the URL on /. Then you pop off the first element to extract the

resource, such as books or albums.

Then you make sure that resource is a legitimate one to call. For instance, asking

for /v1/movies/fletch generates a 404 error, because that resource doesn’t exist.

Finally, you check if the class with the same name as the resource has a class method

that matches the HTTP method. If so, you use call_user_func() to invoke the method.

470 | Chapter 15: Serving RESTful APIs

If not, you return a response code of 405 (Method Not Allowed). You also only handle

the get(), post(), put(), and delete() methods, so people cannot invoke other class

methods.

See Also

Recipe 15.2 for exposing clean-looking URLs; documentation on the $_SERVER super‐

global and http_response_code().

15.2 Exposing Clean Resource Paths

Problem

You want your URLs to look clean and not include file extensions.

Solution

Use Apache’s mod_rewrite to map the path to your PHP script:

RewriteEngine on

RewriteBase /v1/

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule ^(.*)$ index.php?PATH_INFO=$1 [L,QSA]

Then use $_GET['PATH_INFO'] in place of $_SERVER['PATH_INFO']:

$request = explode('/', $_GET['PATH_INFO']);

Discussion

Use mod_rewrite to expose elegant URLs, such as /v1/books/9781449363758, even when

there isn’t a file at that specific path. Without this, you end up with the more clumsy

URL of /v1/books.php/9781449363758. If you’re running another web server, such as

nginx, use its own syntax for handling this type of URL mapping.

The code in the Solution tells Apache that when it doesn’t find a file or directory at the

requested path, it should route it to index.php instead. Additionally, so you can still read

in the original URL to properly process the request, extract the path and pass it in as

the PATH_INFO query parameter.

Inside your script, parse the path into its components by breaking it apart on “/”:

$request = explode('/', $_GET['PATH_INFO']);

15.2 Exposing Clean Resource Paths | 471

This breaks a request for /v1/books/9781449363758 into:

Array

(

[0] => books

[1] => 9781449363758

)

Now you can take action based on the resource and path, as described in Recipe 15.1.

See Also

Recipe 15.1 for routing requests for a resource based on HTTP method; documentation

on the Apache mod_rewrite module.

15.3 Exposing a Resource for Reading

Problem

You want to let people read a resource.

Solution

Read requests using GET. Return structured results, using formats such as JSON, XML,

or HTML. Don’t modify any resources.

For a GET request to the resource at http://api.example.com/v1/jobs/123:

GET /v1/jobs/123 HTTP/1.1

Host: api.example.com

Use this PHP code:

 // Assume this was pulled from a database or other data store

$job[123] = [

'id' => 123,

'position' => [

'title' => 'PHP Developer',

],

];

$json = json_encode($job[123]);

 // Resource exists 200: OK

http_response_code(200);

 // And it's being sent back as JSON

header('Content-Type: application/json');

print $json;

472 | Chapter 15: Serving RESTful APIs

To generate this HTTP response:

HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: 61

{

"id": 123,

"position": {

"title": "PHP Developer"

}

}

Discussion

The most common type of REST request is reading data. Reads in REST correspond

with HTTP GET requests. This is the same HTTP method used by your web browser

to read an HTML page, so when you write PHP scripts you’re almost always handling

GET requests.

This makes serving up a REST resource for reading straightforward:

1. Check that the HTTP method is GET.

2. Parse the URL to determine the specific resource and, optionally, key.

3. Retrieve the necessary information, probably from a database.

4. Format the data into the proper structure

5. Send the data back, along with the necessary HTTP headers.

The first steps are covered in Recipe 15.1 and the third is specific to your application.

Once you’ve fetched the data, the next step is formatting it for output. It’s common to

use JSON or XML (or both), but any structured format is perfectly fine. That could be

HTML or YAML or even CSV.

This example takes a record and converts it to JSON:

 // Assume this was pulled from a database or other data store

$job[123] = [

'id' => 123,

'position' => [

'title' => 'PHP Developer',

],

];

$json = json_encode($job[123]);

After you have the response body, the other step is sending the appropriate HTTP

headers. Because this record was found, return a status code of 200 (OK) and because

you’re using JSON, set the Content-Type header:

15.3 Exposing a Resource for Reading | 473

 // Resource exists 200: OK

http_response_code(200);

 // And it's being sent back as JSON

header('Content-Type: text/json');

Last, send the data itself:

print $json;

If there is no Job 123 in the system, tell the caller this wasn’t found using status code

404:

 // Resource exists 404: Not Found

http_response_code(404);

GET requests also have the requirement of not modifying the system. In other words,

reading a resource shouldn’t cause that resource—or any other part of your data—to

change. The technical phrase for this is “safe.”

See Also

Recipe 14.1 for fetching a URL with the GET method; Recipes 15.4, 15.5, and 15.6 for serving resources using other methods.

15.4 Creating a Resource

Problem

You want to let people add a new resource to the system.

Solution

Accept requests using POST. Read the POST body. Return success and the location of

the new resource.

For a POST request to http://api.example.com/v1/jobs:

POST /v1/jobs HTTP/1.1

Host: api.example.com

Content-Type: application/json

Content-Length: 49

{

"position": {

"title": "PHP Developer"

}

}

Use this PHP code:

474 | Chapter 15: Serving RESTful APIs

if ($_SERVER["REQUEST_METHOD"] == 'POST') {

$body = file_get_contents('php://input');

switch(strtolower($_SERVER['HTTP_CONTENT_TYPE'])) {

case "application/json":

$job = json_decode($body);

break;

case "text/xml":

 // parsing here

break;

}

 // Validate input

 // Create new Resource

$id = create($job); // Returns id of 456

$json = json_encode(array('id' => $id));

http_response_code(201); // Created

$site = 'https://api.example.com';

header("Location: $site/" . $_SERVER['REQUEST_URI'] . "/$id");

header('Content-Type: application/json');

print $json;

}

To generate this output:

HTTP/1.1 201 Created

Location: https://api.example.com/jobs/456

Content-Type: application/json

Content-Length: 15

{

"id": 456

}

If the client is allowed to specify (and knows) the ID, use PUT instead:

PUT /v1/jobs/456 HTTP/1.1

Host: api.example.com

Content-Type: application/json

Content-Length: 49

{

"position": {

"title": "PHP Developer"

}

}

Use this PHP code:

if ($_SERVER["REQUEST_METHOD"] == 'PUT') {

$body = file_get_contents('php://input');

switch(strtolower($_SERVER['HTTP_CONTENT_TYPE'])) {

15.4 Creating a Resource | 475

 case "application/json":

$job = json_decode($body);

break;

case "text/xml":

 // parsing here

break;

}

 // Validate input

 // Create new Resource

$request = explode('/', substr($_SERVER['PATH_INFO'], 1));

$resource = array_shift($request);

$id = create($job, $request[0]); // Uses id from request

$json = json_encode(array('id' => $id));

http_response_code(201); // Created

$site = 'https://api.example.com';

header("Location: $site/" . $_SERVER['REQUEST_URI']);

print $json;

}

Discussion

The standard way to add new records is by HTTP POSTing to a parent (or collection)

resource. For example, to add a new job to the system, POST the data to /v1/jobs (in

contrast to a specific resource such as /v1/jobs/123).

It’s the job of the server to parse the data, validate it, and assign an ID for the newly re-

created record. For example:

if ($_SERVER["REQUEST_METHOD"] == 'POST') {

$body = file_get_contents('php://input');

switch(strtolower($_SERVER['HTTP_CONTENT_TYPE'])) {

case "application/json":

$job = json_decode($body);

break;

case "text/xml":

$job = simplexml_load_string($body);

break;

}

 // Validate input

 // Create new Resource

$id = create($job); // Returns id

}

PHP automatically parses standard HTML form data into $_POST. However, for most

REST APIs, the POST body is in JSON (or XML or another format).

476 | Chapter 15: Serving RESTful APIs

This requires you to read and parse the data yourself. The raw POST body is available

using the special stream php://input; slurp it into a variable using file_get_contents().

Next, check the Content-Type HTTP header to learn what data format was sent. You

do this via the $_SERVER['HTTP_CONTENT_TYPE'] superglobal variable. You may only

support one format, such as JSON, but you should still confirm that the client is using

that format.

Based on the Content-Type, use the appropriate function, such as json_decode() or

simplexml_load_string(), to deserialize the data to PHP.

Now you can perform the necessary business logic to validate the input, add the re‐

source, and generate a unique ID for that record.

If everything goes OK, signal success and return the location of the new resource:

http_response_code(201); // Created

$site = 'https://api.example.com';

header("Location: $site/" . $_SERVER['REQUEST_URI'] . "/$id");

print $json;

A status code of 201 signifies a resource has been created, which is preferable over the

more generic 200 (OK). Additionally, it’s a best practice to return the location, either

via the Location HTTP header or in the body. The first is more RESTful, but some

clients find it easier to parse the results in a body than from a header. The Location

HTTP must be an absolute URL.

If there’s a problem with how the request was sent, return a status code in the 4xx range.

Whenever possible, you should return a message explaining how the client can fix her

request.

For example, if a required field is missing or the document is otherwise well-formed

but has an incorrect schema, return 422 (Unprocessable Entity):

http_response_code(422); // Unprocessable Entity

$error_body = [

"error" => "12",

"message" => "Missing required field: job title"

];

print json_encode($error_body);

If you cannot find a specific error code for the problem, then a response code of 400

(Bad Request) is always OK.

If your system cannot definitively say whether a request is or isn’t OK, return 202 (Ac‐

cepted). This is the appropriate way to passive-agressively signal your noncommittal

behavior. This is most frequently used when you process requests via an asynchronous

15.4 Creating a Resource | 477

queue, so the REST server is primarily handing off the request to another system, but

that system doesn’t immediately return a response.

When the client knows the ID associated with the new record (instead of having you

assign one), have them PUT directly to the location (instead of to the parent resource).

For example:

PUT /v1/jobs/123 HTTP/1.1

Host: api.example.com

Content-Type: application/json

Content-Length: 49

{

"position": {

"title": "PHP Developer"

}

}

if ($_SERVER["REQUEST_METHOD"] == 'PUT') {

$body = file_get_contents('php://input');

switch(strtolower($_SERVER['HTTP_CONTENT_TYPE'])) {

case "application/json":

$job = json_decode($body);

break;

case "text/xml":

 // parsing here

break;

}

 // Validate input

 // Create new Resource

$request = explode('/', substr($_SERVER['PATH_INFO'], 1));

$resource = array_shift($request);

$id = create($job, $request[0]); // Uses id from request

$json = json_encode(array('id' => $id));

http_response_code(201); // Created

$site = 'https://api.example.com';

header("Location: $site/" . $_SERVER['REQUEST_URI'] . "/$id");

print $json;

}

Regardless whether the request is a PUT or a POST, the same set of responses are ap‐

propriate. A PUT to an already existing resource (for instance, if /v1/job/123 was already

defined) will overwrite what’s there. In that case, return a 200 OK response code instead

of 201 Created (unless you’re using some form of versioning to protect against this). If

you do have a versioning conflict, return a 409 Conflict response code.

POST requests are not safe, so they are allowed to have side effects. Additionally, they

are not idempotent, so making the same request multiple times causes multiple resour‐

478 | Chapter 15: Serving RESTful APIs

ces to be re-created. This is in contrast to PUT requests, which are not safe, but are

idempotent. Making the same PUT request more than once is equivalent to making it

one time.

See Also

Recipe 14.2 for fetching a URL with the POST method: Recipes 15.3, 15.5, and 15.6 for serving resources using other methods; documentation on php://input.

15.5 Editing a Resource

Problem

You want to let people update a resource.

Solution

Accept requests using PUT. Read the POST body. Return success.

For a PUT request to http://api.example.com/v1/jobs/123:

PUT /v1/jobs/123 HTTP/1.1

Host: api.example.com

Content-Type: application/json

Content-Length: 49

{

"position": {

"title": "PHP Developer"

}

}

Use this PHP code:

if ($_SERVER["REQUEST_METHOD"] == 'PUT') {

$body = file_get_contents('php://input');

switch(strtolower($_SERVER['HTTP_CONTENT_TYPE'])) {

case "application/json":

$job = json_decode($body);

break;

case "text/xml":

 // parsing here

break;

}

 // Validate input

 // Modify the Resource

$request = explode('/', substr($_SERVER['PATH_INFO'], 1));

15.5 Editing a Resource | 479

 $resource = array_shift($request);

$id = update($job, $request[0]); // Uses id from request

http_response_code(204); // No Content

}

To generate this output:

HTTP/1.1 204 No Content

Discussion

To update a resource, accept PUT requests. The resource provided in the POST body

replaces the current resource. See Recipe 15.4 for an explanation of the logic to parse this request.

If the request is successful, return 204 (No Content). You don’t return 201 because the

resource already exists. You can return 200, but 204 is preferable when you don’t return

an HTTP body. This allows the client to definitely know nothing was lost.

PUT requests are not safe, but they are idempotent because the resource being PUT

entirely replaces the current entity. Unfortunately, this means that even updating a one-

character typo requires you to transmit the entire resource.

Some sites allow partial updates using PUT. For example, this request keeps the resource

as is, except for updating the postal code:

PUT /v1/jobs/123 HTTP/1.1

Host: api.example.com

Content-Type: application/json

Content-Length: 43

{

"location" {

"postalCode": 94043

}

}

This makes it hard to disambiguate between when you want to delete a field versus

intentionally not providing it. The PATCH method is a proposed standard for partial

updates, so you can differentiate your behavior based on a PUT or a PATCH.

See Also

Recipe 14.3 for fetching a URL with any method; Recipes 15.3, 15.4, and 15.6 for serving

resources using other methods; RFC 5789 for the HTTP PATCH method.

480 | Chapter 15: Serving RESTful APIs

15.6 Deleting a Resource

Problem

You want to let people delete a resource.

Solution

Accept requests using DELETE. Return success.

For a DELETE request to http://api.example.com/v1/jobs/123:

DELETE /v1/jobs/123 HTTP/1.1

Host: api.example.com

Use this PHP code:

if ($_SERVER["REQUEST_METHOD"] == 'DELETE') {

 // Delete the Resource

$request = explode('/', substr($_SERVER['PATH_INFO'], 1));

$resource = array_shift($request);

$success = delete($request[0]); // Uses id from request

http_response_code(204); // No Content

}

To generate this output:

HTTP/1.1 204 No Content

Discussion

To delete a resource, accept the DELETE method. If the request is successful, return 204

(No Content). You can return 200, but 204 is preferable when you don’t return an HTTP

body. This allows the client to definitely know nothing was lost.

If the resource doesn’t exist (either because it never existed or someone deleted it first),

return 404 (Not Found). If the resource is never coming back (versus it never existed

or is temporarily deleted, but could be re-created), return 410 (Gone). This is often used

when the entire parent resource has been deprecated, such as if you stopped supporting

the ability to handle jobs.

DELETE requests are not safe, but they are idempotent because deleting the same re‐

source multiple times is the same as deleting it once. It’s gone.

See Also

Recipe 14.3 for fetching a URL with any method; Recipes 15.3, 15.4, and 15.5 for serving resources using other methods.

15.6 Deleting a Resource | 481

15.7 Indicating Errors and Failures

Problem

You want to indicate that a failure occurred.

Solution

Return a 4xx status code for client failures. Provide a message with more information.

http_response_code(401); // Unauthorized

$error_body = [

"error" => "Unauthorized",

"code" => 1,

"message" => "Only authenticated users can read " . $_SERVER['REQUEST_URI'],

"url" => "http://developer.example.com/error/1"

];

print json_encode($error_body);

Return a 5xx status code for server failures. Provide a message with more information:

http_response_code(503); // Site down

$error_body = [

"error" => "Down for maintenance",

"code" => 2,

"message" => "Check back in two hours.",

"url" => "http://developer.example.com/error/2"

];

print json_encode($error_body);

Discussion

Helpful and informative error messages are a blessing to consumers of your APIs. A

good error message is specific, and explains what’s wrong and how (if possible) to fix

the problem.

For RESTful servers, this divides into two pieces: the HTTP status code and the error

message returned in the response body. HTTP status codes are divided into two large

buckets.

The 4xx family of codes indicate client-side failures, such as invalid authentication cre‐

dentials (401), being forbidden to access the resource (403), or the resource is no longer

available (410).

Receiving a 4xx error is not blaming the client, because sometimes it’s impossible for it

to know in advance that it’s request is going to be bad (because the user has revoked the

authorization token or the server has deprecated an API without notice). Instead, these

482 | Chapter 15: Serving RESTful APIs

are problems that can be fixed by the client, by providing the right information (such

as valid authentication credentials), modifying the request (only asking for resources

it’s allowed to request), or stopping the request entirely (if it’s gone, it’s gone).

The 5xx family of codes are server-side errors. (It’s not you, it’s me.) For example, the

service is down (503) or an unexpected error due to a bug in the code (500).

These are problems entirely outside of the client’s control and can only be fixed by the

API provider. They cannot be fixed by modifying the request. Instead, they need to wait

until the server has fixed the bug, finished maintenance, or regained the ability to handle

traffic.

Table 15-2 contains a list of common HTTP status codes used in errors.

 Table 15-2. HTTP status codes used in errors

Status code Meaning

Description

400

Bad Request

Bad syntax or other generic error

401

Unauthorized

Must provide valid authentication

403

Forbidden

Not allowed to access the resource for reasons other than invalid authentication

404

Not Found

Resource doesn’t exist (but may in the future)

405

Method Not Allowed Cannot call that method on this resource

410

Gone

The resource no longer exists and never will again

429

Too Many Requests

Past your quota or rate limit

500

Internal Server Error Generic server error

503

Service Unavailable Server is overloaded or down for maintenance

However, a code by itself is rarely sufficient to fully explain the error. For this, you should

provide an error message in the response, ideally in the same format as the request itself

(such as JSON or XML).

The minimal error message is a string of text that describes the problem. However,

though this explains the error, it’s hard to write code to parse from a string. Therefore,

it’s best to also include a numeric error code and a short string. For extra credit, include

a URL to an HTML page that describes the issue in more detail or allows people to ask

questions about how to resolve the problem.

For example:

$http_error_code = 401;

$error_body = [

"error" => "Unauthorized",

"code" => 1,

"message" => "Only authenticated users can read " . $_SERVER['REQUEST_URI'],

"url" => "http://developer.example.com/error/1"

];

15.7 Indicating Errors and Failures | 483

http_response_code($http_error_code); // Unauthorized

print json_encode($error_body);

See Also

RFC 2616 Sections 10.4 and 10.5.

15.8 Supporting Multiple Formats

Problem

You want to support multiple formats, such as JSON and XML.

Solution

Use file extensions:

http://api.example.com/people/rasmus.json

http://api.example.com/people/rasmus.xml

 // Break apart URL

$request = explode('/', $_SERVER['PATH_INFO']);

 // Extract the root resource and type

$resource = array_shift($request);

$file = array_pop($request);

$dot = strrpos($file, ".");

if ($dot === false) { // note: three equal signs

$request[] = $file;

$type = 'json'; // default value

} else {

$request[] = substr($file, 0, $dot);

$type = substr($file, $dot + 1);

}

Or support the Accept HTTP header, to allow requests to http://api.example.com/

 people/rasmus:

GET /people/rasmus HTTP/1.1

Host: api.example.com

Accept: application/json,text/html

require_once 'HTTP2.php';

$http = new HTTP2;

$supportedTypes = array(

'application/json',

'text/xml',

);

$type = $http->negotiateMimeType($supportedTypes, false);

if ($type === false) {

484 | Chapter 15: Serving RESTful APIs

 http_response_code(406); // Not Acceptable

$error_body = 'Choose one of: ' . join(',', $supportedTypes);

print json_encode($error_body);

} else {

 // format response based on $type

}

If all else fails, read a query parameter:

http://api.example.com/people/rasmus?format=json

http://api.example.com/people/rasmus?format=xml

$type = $_GET['format'];

Discussion

When your RESTful API supports multiple formats, such as JSON and XML, there are

a few ways to allow developers to signal which format they want to use.

One option is to use file extensions, such as http://api.example.com/people/

 rasmus.json and http://api.example.com/people/rasmus.xml. Because these aren’t real

files, this requires some parsing of $_SERVER['PATH_INFO']:

 // Break apart URL

$request = explode('/', $_SERVER['PATH_INFO']);

 // Extract the root resource and type

$resource = array_shift($request);

$file = array_pop($request);

$dot = strrpos($file, '.');

if ($dot === false) { // note: three equal signs

$request[] = $file;

$type = 'json'; // default value

} else {

$request[] = substr($file, 0, $dot);

$type = substr($file, $dot + 1);

}

 // $type is json, xml, etc.

You pull off the file segment of the URL and search for the trailing ".“. If it’s not there,

fall back to a default value. If it is, then extract the resource name and type using

substr().

The downside to using file extensions is that clients can only request one specific rep‐

resentation type. If they ask for a JSON version and you don’t support that, then there’s

no way for them to signal an acceptable alternative format in the same request.

Multiple representations for a resource can live at a single location, such as http://

 api.example.com/people/rasmus. In this case, clients can specify a list of formats in their

15.8 Supporting Multiple Formats | 485

preferred order. Then you can negotiate with the client to return the resource in the

best mutually agreeable format.

In this case, the client passes a request like so, using the Accept HTTP header to signal

its preferences:

GET /people/rasmus HTTP/1.1

Host: api.example.com

Accept: application/json,text/html

Unfortunately, proper parsing of the Accept header isn’t easy. So, use a library, such as

PEAR’s HTTP2:

require_once 'HTTP2.php';

$http = new HTTP2;

$supportedTypes = array(

'application/json',

'text/xml',

);

$type = $http->negotiateMimeType($supportedTypes, false);

if ($type === false) {

http_response_code(406); // Not Acceptable

$error_body = 'Choose one of: ' . join(',', $supportedTypes);

print json_encode($error_body);

} else {

 // format response based on $type

}

This lets you specify that you support JSON and XML and uses the

$http->negotiateMimeType() function to return the client’s most preferred format

from the list you support.

As a last result, you can accept the format as a query parameter:

$type = $_GET['format'];

Though simple and easy to implement, this is not considered a proper RESTful design.

See Also

PEAR’s HTTP2 class; the Accept HTTP header.

486 | Chapter 15: Serving RESTful APIs

CHAPTER 16

Internet Services

16.0 Introduction

Before there was HTTP, there was FTP, IMAP, POP3, and a whole alphabet soup of other

protocols. Many people quickly embraced web browsers because the browser provided

an integrated program that let them check their email, transfer files, and view documents

without worrying about the details surrounding the underlying means of communica‐

tion. PHP provides functions, both natively and through PEAR, to use these other pro‐

tocols. With them, you can use PHP to create web frontend applications that perform

all sorts of network-enabled tasks, such as looking up domain names or sending web-

based email. Although PHP simplifies these jobs, it is important to understand the

strengths and limitations of each protocol.

Recipe 16.1 to Recipe 16.3 cover the most popular feature of all: email. Recipe 16.1 shows

how to send basic email messages. Recipe 16.2 describes MIME-encoded email, which

enables you to send plain text and HTML-formatted messages. The IMAP and POP3

protocols, which are used to read mailboxes, are discussed in Recipe 16.3.

Recipe 16.4 covers how to exchange files using FTP (file transfer protocol), which is a method for sending and receiving files across the Internet. FTP servers can require users

to log in with a password or allow anonymous usage.

Searching LDAP servers is the topic of Recipe 16.5, and Recipe 16.6 discusses how to authenticate users against an LDAP server. LDAP servers are used as address books and

as centralized stores for user information. They’re optimized for information retrieval

and can be configured to replicate their data to ensure high reliability and quick response

times.

The chapter concludes with recipes on networking. Recipe 16.7 covers DNS lookups,

both from domain name to IP and vice versa. Recipe 16.8 tells how to check if a host is 487

up and accessible with PEAR’s ping module. Learn how to get information about do‐

mains in Recipe 16.9.

Other parts of the book deal with some network protocols as well. HTTP is covered in

detail in Chapter 13. Those recipes discuss how to fetch URLs in a variety of different ways. Protocols that combine HTTP and JSON are covered in Chapter 14 and Chap‐

ter 15. Those two chapters discuss consuming and serving RESTful APIs.

16.1 Sending Mail

Problem

You want to send an email message. This can be in direct response to a user’s action,

such as signing up for your site, or a recurring event at a set time, such as a weekly

newsletter.

Solution

Use Zetacomponent’s ezcMailComposer class:

$message = new ezcMailComposer();

$message->from = new ezcMailAddress('webmaster@example.com');

$message->addTo(new ezcMailAddress('adam@example.com', 'Adam'));

$message->subject = 'New Version of PHP Released!';

$body = 'Go to http://www.php.net and download it today!';

$message->plainText = $body;

$message->build();

$sender = new ezcMailMtaTransport();

$sender->send($message);

If you can’t use Zetacomponent’s ezcMailComposer class, use PHP’s built-in mail()

function:

$to = 'adam@example.com';

$subject = 'New Version of PHP Released!';

$body = 'Go to http://www.php.net and download it today!';

mail($to, $subject, $body);

Discussion

The Zetacomponent ezcMailComposer class gives you a way to construct email mes‐

sages. How the component sends the message depends on which ezcMailTransport

implementation you use. In the preceding example, ezcMailMtaTransport() uses the

PHP mail() function internally, so it benefits from your PHP configuration. The ezc

MailSmtpTransport can be used to talk to an SMTP server directly, as follows:

488 | Chapter 16: Internet Services

$message = new ezcMailComposer();

$message->from = new ezcMailAddress('webmaster@example.com');

$message->addTo(new ezcMailAddress('adam@example.com', 'Adam'));

$message->subject = 'New Version of PHP Released!';

$body = 'Go to http://www.php.net and download it today!';

$message->plainText = $body;

$message->build();

$host = 'smtpauth.example.com';

$username = 'philb';

$password = 'jf430k24';

$port = 587;

$smtpOptions = new ezcMailSmtpTransportOptions();

$smtpOptions->preferredAuthMethod = ezcMailSmtpTransport::AUTH_LOGIN;

$sender = new ezcMailSmtpTransport($host, $username, $password, $port,

$smtpOptions);

$sender->send($message);

If you can’t use the Zetacomponent ezcMailComposer class, you can use the built-in

mail() function. The program mail() uses to send mail is specified in the send

mail_path configuration variable in your php.ini file. If you’re running Windows, set

the SMTP variable to the hostname of your SMTP server. Your From address comes from

the sendmail_from variable.

The first parameter to mail() is the recipient’s email address, the second is the message

subject, and the last is the message body. You can also add extra headers with an optional

fourth parameter. For example, here’s how to add Reply-To and Organization headers:

$to = 'adam@example.com';

$subject = 'New Version of PHP Released!';

$body = 'Go to http://www.php.net and download it today!';

$header = "Reply-To: webmaster@example.com\r\n"

."Organization: The PHP Group";

mail($to, $subject, $body, $header);

Separate each header with \r\n, but don’t add \r\n following the last header.

Regardless of which method you choose, it’s a good idea to write a wrapper function to

assist you in sending mail. Forcing all your mail through this function makes it easy to

add logging and other checks to every message sent:

function mail_wrapper($to, $subject, $body, $headers) {

mail($to, $subject, $body, $headers);

error_log("[MAIL][TO: $to]");

}

16.1 Sending Mail | 489

Here a message is written to the error log, recording the recipient of each message that’s sent. This provides a timestamp that allows you to more easily track complaints that

someone is trying to use the site to send spam. Another option is to create a list of do

 not send email addresses, which prevent those people from ever receiving another mes‐

sage from your site. You can also validate all recipient email addresses, which reduces

the number of bounced messages.

See Also

Recipe 9.4 for validating email addresses; Recipe 16.2 for sending MIME email;

Recipe 16.3 for more on retrieving mail; documentation on mail(); the PEAR Mail

class; the ezcMailComposer class; RFC 822; sendmail by Bryan Costales with Eric All‐

man and sendmail Desktop Reference by Bryan Costales and Eric Allman (O’Reilly).

16.2 Sending MIME Mail

Problem

You want to send MIME email. For example, you want to send multipart messages with

both plain text and HTML portions and have MIME-aware mail readers automatically

display the correct portion.

Solution

Use Zetacomponent’s ezcMailComposer class, specifying both a plainText and an

htmlText property as follows:

$message = new ezcMailComposer();

$message->from = new ezcMailAddress('webmaster@example.com');

$message->addTo(new ezcMailAddress('adam@example.com', 'Adam'));

$message->subject = 'New Version of PHP Released!';

$body = 'Go to http://www.php.net and download it today!';

$message->plainText = $body;

$html = '<html><body>Hooray! New PHP Version!</body></html>';

$message->htmlText = $html;

$message->build();

$sender = new ezcMailMtaTransport();

$sender->send($message);

Discussion

With the htmlText property specified, ezcMailComposer does all the hard work for you

of constructing the appropriate headers and body delimiters so that mail readers inter‐

pret the e-mail message properly.

490 | Chapter 16: Internet Services

Including inline images is easy with ezcMailComposer. Just reference the appropriate

local path in the src attribute of an tag:

$message = new ezcMailComposer();

$message->from = new ezcMailAddress('webmaster@example.com');

$message->addTo(new ezcMailAddress('adam@example.com', 'Adam'));

$message->subject = 'New Version of PHP Released!';

$body = 'Go to http://www.php.net and download it today!';

$message->plainText = $body;

$html = '<html>Me: </html>';

$message->htmlText = $html;

$message->build();

$sender = new ezcMailMtaTransport();

$sender->send($message);

When you call $message->build(), ezcMailComposer looks for the file specified in the

 tag, includes its contents as an attachment to the message, and updates the

HTML appropriately to reference the attachment.

To add an attachment to the message, such as a graphic or an archive, call addFileAt

tachment() or addStringAttachment():

$message = new ezcMailComposer();

$message->from = new ezcMailAddress('webmaster@example.com');

$message->addTo(new ezcMailAddress('adam@example.com', 'Adam'));

$message->subject = 'New Version of PHP Released!';

$body = 'Go to http://www.php.net and download it today!';

$message->plainText = $body;

$message->addFileAttachment('/home/me/details.png','image','png');

$message->addStringAttachment('extra.txt','Some text', 'text/plain');

$message->build();

$sender = new ezcMailMtaTransport();

$sender->send($message);

See Also

Recipe 16.1 for sending regular email; Recipe 16.3 for more on retrieving mail; the Zetacomponent ezcMailComposer documentation.

16.3 Reading Mail with IMAP or POP3

Problem

You want to read mail using IMAP or POP3, which allows you to create a web-based

email client.

16.3 Reading Mail with IMAP or POP3 | 491

Solution

Use PHP’s IMAP extension, which speaks both IMAP and POP3:

 // open IMAP connection

$mail = imap_open('{mail.server.com:143}', 'username', 'password');

 // or, open POP3 connection

$mail = imap_open('{mail.server.com:110/pop3}', 'username', 'password');

 // grab a list of all the mail headers

$headers = imap_headers($mail);

 // grab a header object for the last message in the mailbox

$last = imap_num_msg($mail);

$header = imap_header($mail, $last);

 // grab the body for the same message

$body = imap_body($mail, $last);

 // close the connection

imap_close($mail);

Discussion

The underlying library PHP uses to support IMAP and POP3 offers a seemingly un‐

ending number of features that allow you to essentially write an entire mail client. With

all those features, however, comes complexity. In fact, there are currently 73 different

functions in PHP beginning with the word imap, and that doesn’t take into account that

some also speak POP3 and NNTP.

However, the basics of talking with a mail server are straightforward. Like many features

in PHP, you begin by opening the connection and grabbing a handle:

$mail = imap_open('{mail.server.com:143}', 'username', 'password');

This opens an IMAP connection to the server named mail.server.com on port 143. It

also passes along a username and password as the second and third arguments.

To open a POP3 connection instead, append /pop3 to the end of the server and port.

Because POP3 usually runs on port 110, add :110 after the server name:

$mail = imap_open('{mail.server.com:110/pop3}', 'username', 'password');

To encrypt your connection with SSL, add /ssl on to the end, just as you did with

pop3. You also need to make sure your PHP installation is built with the --with-imap-

ssl configuration option in addition to --with-imap. Also, you need to build the system

IMAP library itself with SSL support. If you’re using a self-signed certificate and wish

to prevent an attempted validation, also add /novalidate-cert. Finally, most SSL con‐

nections talk on either port 993 or 995. All these options can come in any order, so the

following is perfectly legal:

492 | Chapter 16: Internet Services

$mail = imap_open('{mail.server.com:993/novalidate-cert/pop3/ssl}',

'username', 'password');

Surrounding a variable with curly braces inside of a double-quoted string, such as

{$var}, is a way to tell PHP exactly which variable to interpolate. Therefore, to use

interpolated variables in this first parameter to imap_open(), escape the opening {:

$server = 'mail.server.com';

$port = 993;

$mail = imap_open("\{$server:$port}", 'username', 'password');

After you’ve opened a connection, you can ask the mail server a variety of questions.

To get a listing of all the messages in your inbox, use imap_headers():

$headers = imap_headers($mail);

This returns an array in which each element is a formatted string corresponding to a

message:

A 189) 5-Aug-2007 Beth Hondl an invitation (1992 chars)

Alternatively, to retrieve a specific message, use imap_header() and imap_body() to

pull the header object and body string:

$header = imap_header($message_number);

$body = imap_body($message_number);

The imap_header() function returns an object with many fields. Useful ones include

subject, fromaddress, and udate. All the fields are listed in Table 16-1.

 Table 16-1. imap_header() fields from a server

Name

Description

Type

Example

date or Date

RFC 822–formatted date:

String Fri, 16 Aug 2002 01:52:24 -0400

date('r')

subject or

Message subject

String Re: PHP Cookbook Revisions

Subject

message_id

A unique ID identifying the

String <20030410020818.33915.php@news.example.com>

message

toaddress

The address the message was sent String php-general@lists.php.net

to

to

Parsed version of toaddress

Object mailbox: ‘php-general', host: ‘lists-php.net’

field

fromaddress

The address that sent the message String Ralph Josephs <ralph@example.net>

from

Parsed version of fromad

Object personal: ‘Ralph Josephs', mailbox: ‘ralph', host: ‘example.net’

dress field

reply_toad

The address you should reply to, if String rjosephs@example.net

dress

you’re trying to contact the author

16.3 Reading Mail with IMAP or POP3 | 493

Name

Description

Type

Example

reply_to

Parsed version of reply_toad Object Mailbox: ‘rjosephs', host: ‘example.net’

dress field

senderad

The person who sent the message; String Ralph Josephs <ralph@example.net>

dress

almost always identical to the

from field, but if the from field

doesn’t uniquely identify who sent

the message, this field does

sender

Parsed version of senderad

Object Personal: Ralph Josephs, mailbox: ralph, host: ‘example.net’

dress field

Recent

If the message is recent, or new

String Y or N

since the last time the user

checked for mail

Unseen

If the message is unseen

String Y or " "

Flagged

If the message is marked

String Y or " "

Answered

If a reply has been sent to this

String Y or " "

message

Deleted

If the message is deleted

String Y or " "

Draft

If the message is a draft

String Y or " "

Size

Size of the message in bytes

String 1345

udate

Unix timestamp of message date Int

1013480645

Mesgno

The number of the message in the String 34943

group

The body element is just a string, but if the message is a multipart message, such as one

that contains both an HTML and a plain-text version, $body holds both parts and the

MIME lines describing them:

------=_Part_1046_3914492.1008372096119

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7bit

Plain-Text Message

------=_Part_1046_3914492.1008372096119

Content-Type: text/html

Content-Transfer-Encoding: 7bit

<html>HTML Message</html>

------=_Part_1046_3914492.1008372096119--

To avoid this, use imap_fetchstructure() in combination with imap_fetchbody() to

discover how the body is formatted and to extract just the parts you want:

 // pull the plain text for message $n

$st = imap_fetchstructure($mail, $n);

494 | Chapter 16: Internet Services

if (! empty($st->parts)) {

for ($i = 0, $j = count($st->parts); $i < $j; $i++) {

$part = $st->parts[$i];

if ($part->subtype == 'PLAIN') {

$body = imap_fetchbody($mail, $n, $i+1);

}

}

} else {

$body = imap_body($mail, $n);

}

If a message has multiple parts, $st->parts holds an array of objects describing them.

The part property holds an integer describing the main body MIME type. Table 16-2

lists which numbers go with which MIME types. The subtype property holds the MIME

subtype and tells if the part is plain, html, png, or another type, such as octet-stream.

 Table 16-2. IMAP MIME type values

Number MIME type

PHP constant

Description

Examples

0

text

TYPETEXT

Unformatted text

Plain text, HTML, XML

1

multipart

TYPEMULTIPART

Multipart message

Mixed, form data, signed

2

message

TYPEMESSAGE

Encapsulated message News, HTTP

3

application TYPEAPPLICATION Application data

Octet stream, PDF, Zip

4

audio

TYPEAUDIO

Music file

MP3

5

image

TYPEIMAGE

Graphic image

GIF, JPEG, PNG

6

video

TYPEVIDEO

Video clip

MPEG, Quicktime

7

other

TYPEOTHER

Everything else

VRML models

See Also

Check out recipes 16.1 and 16.2 for more on sending mail; documentation on im

ap_open(), imap_header(), imap-body(), and IMAP in general.

16.4 Getting and Putting Files with FTP

Problem

You want to transfer files using FTP.

Solution

Use PHP’s built-in FTP functions:

$c = ftp_connect('ftp.example.com') or die("Can't connect");

ftp_login($c, $username, $password) or die("Can't login");

16.4 Getting and Putting Files with FTP | 495

ftp_put($c, $remote, $local, FTP_ASCII) or die("Can't transfer"); ftp_close($c) or die("Can't close");

You can also use the cURL extension:

$c = curl_init("ftp://$username:$password@ftp.example.com/$remote");

 // $local is the location to store file on local machine

$fh = fopen($local, 'w') or die($php_errormsg);

curl_setopt($c, CURLOPT_FILE, $fh);

curl_exec($c);

curl_close($c);

Discussion

FTP is a method of exchanging files between one computer and another. Unlike with

HTTP servers, it’s easy to set up an FTP server to both send and receive files.

Using the built-in FTP functions doesn’t require additional libraries, but you must

specifically enable them with --enable-ftp. Because these functions are specialized to

FTP, they’re simple to use when transferring files.

All FTP transactions begin with establishing a connection from your computer, the local

client, to another computer, the remote server:

$c = ftp_connect('ftp.example.com') or die("Can't connect");

Once connected, you need to send your username and password; the remote server can

then authenticate you and allow you to enter:

ftp_login($c, $username, $password) or die("Can't login");

Some FTP servers support a feature known as anonymous FTP. Under anonymous FTP,

users can log in without an account on the remote system. When you use anonymous

FTP, your username is anonymous, and your password is your email address.

Here’s how to transfer files with ftp_put() and ftp_get():

ftp_put($c, $remote, $local, FTP_ASCII) or die("Can't transfer");

ftp_get($c, $local, $remote, FTP_ASCII) or die("Can't transfer");

The ftp_put() function takes a file on your computer and copies it to the remote server;

ftp_get() copies a file on the remote server to your computer. In the previous code,

$remote is the pathname to the remote file, and $local points at the file on your com‐

puter.

There are two final parameters passed to these functions. The FTP_ASCII parameter,

used here, transfers the file as if it were ASCII text. Under this option, line-feed endings

are automatically converted as you move from one operating system to another. The

other option is FTP_BINARY, which is used for nonplain-text files, so no line-feed con‐

versions take place.

496 | Chapter 16: Internet Services

Use ftp_fget() and ftp_fput() to download or upload a file to an existing open file

pointer (opened using fopen()) instead of to a location on the filesystem. For example,

here’s how to retrieve a file and write it to the existing file pointer, $fp:

$fp = fopen($file, 'w');

ftp_fget($c, $fp, $remote, FTP_ASCII) or die("Can't transfer");

Finally, to disconnect from the remote host, call ftp_close() to log out:

ftp_close($c) or die("Can't close");

To adjust the amount of seconds the connection takes to time out, use ftp_set_op

tion():

 // Up the time out value to two minutes:

set_time_limit(120);

$c = ftp_connect('ftp.example.com');

ftp_set_option($c, FTP_TIMEOUT_SEC, 120);

The default value is 90 seconds; however, the default max_execution_time of a PHP

script is 30 seconds. So if your connection times out too early, be sure to check both

values.

To use the cURL extension, you must download cURL and set the --with-curl configuration option when building PHP. To use cURL, start by creating a cURL handle

with curl_init(), and then specify what you want to do using curl_setopt(). The

curl_setopt() function takes three parameters: a cURL resource, the name of a cURL

constant to modify, and a value to assign to the second parameter. In the Solution, the

CURLOPT_FILE constant is used:

$c = curl_init("ftp://$username:$password@ftp.example.com/$remote");

 // $local is the location to store file on local client

$fh = fopen($local, 'w') or die($php_errormsg);

curl_setopt($c, CURLOPT_FILE, $fh);

curl_exec($c);

curl_close($c);

You pass the URL to use to curl_init(). Because the URL begins with ftp://, cURL

knows to use the FTP protocol. Instead of a separate call to log on to the remote server,

you embed the username and password directly into the URL. Next, you set the location

to store the file on your server. Now you open a file named $local for writing and pass

the filehandle to curl_setopt() as the value for CURLOPT_FILE. When cURL transfers

the file, it automatically writes to the filehandle. Once everything is configured, you call

curl_exec() to initiate the transaction and then curl_close() to close the connection.

See Also

Documentation on the FTP extension and cURL; RFC 959.

16.4 Getting and Putting Files with FTP | 497

16.5 Looking Up Addresses with LDAP

Problem

You want to query an LDAP server for address information.

Solution

Use PHP’s LDAP extension:

$ds = ldap_connect('ldap.example.com') or die($php_errormsg);

ldap_bind($ds) or die($php_errormsg);

$sr = ldap_search($ds, 'o=Example Inc., c=US', 'sn=*') or die($php_errormsg);

$e = ldap_get_entries($ds, $sr) or die($php_errormsg);

for ($i=0; $i < $e['count']; $i++) {

echo $info[$i]['cn'][0] . ' (' . $info[$i]['mail'][0] . ')
';

}

ldap_close($ds) or die($php_errormsg);

Discussion

An LDAP (Lightweight Directory Access Protocol) server stores directory information,

such as names and addresses, and allows you to query it for results. In many ways, it’s

like a database, except that it’s optimized for storing information about people.

In addition, instead of the flat structure provided by a database, an LDAP server allows

you to organize people in a hierarchical fashion. For example, employees may be divided

into marketing, technical, and operations divisions, or they can be split regionally into

North America, Europe, and Asia. This makes it easy to find all employees of a particular

subset of a company.

When using LDAP, the address repository is called as a data source. Each entry in the

repository has a globally unique identifier, known as a distinguished name. The distin‐

guished name includes both a person’s name and the company information. For in‐

stance, John Q. Smith, who works at Example Inc., a U.S. company, has a distinguished

name of cn=John Q. Smith, o=Example Inc., c=US. In LDAP, cn stands for common

name, o for organization, and c for country.

You must enable PHP’s LDAP support with --with-ldap. You can download an LDAP

server. This recipe assumes basic knowledge about LDAP.

Communicating with an LDAP server requires four steps: connecting, authenticating,

searching records, and logging off. Besides searching, you can also add, alter, and delete

records.

498 | Chapter 16: Internet Services

The opening transactions require you to connect to a specific LDAP server and then

authenticate yourself in a process known as binding:

$ds = ldap_connect('ldap.example.com') or die($php_errormsg);

ldap_bind($ds) or die($php_errormsg);

Passing only the connection handle, $ds, to ldap_bind() does an anonymous bind. To

bind with a specific username and password, pass them as the second and third pa‐

rameters, like so:

ldap_bind($ds, $username, $password) or die($php_errormsg);

When you are logged in, you can request information. Because the information is ar‐

ranged in a hierarchy, you need to indicate the base distinguished name as the second

parameter. Finally, you pass in the search criteria. For example, here’s how to find all

people with a surname of Jones at company Example Inc. located in the country US:

$sr = ldap_search($ds, 'o=Example Inc., c=US', 'sn=Jones') or die($php_errormsg);

$e = ldap_get_entries($ds, $sr) or die($php_errormsg);

After ldap_search() returns results, use ldap_get_entries() to retrieve the specific

data records. Then iterate through the array of entries, $e:

for ($i=0; $i < $e['count']; $i++) {

echo $e[$i]['cn'][0] . ' (' . $e[$i]['mail'][0] . ')
';

}

Instead of doing count($e), use the precomputed record size located in $e['count'].

Inside the loop, print the first common name and email address for each record. For

example:

David Sklar (sklar@example.com)

Adam Trachtenberg (adam@example.com)

The ldap_search() function searches the entire tree equal to and below the distin‐

guished name base. To restrict the results to a specific level, use ldap_list(). Because

the search takes place over a smaller set of records, ldap_list() can be significantly

faster than ldap_search().

See Also

Recipe 16.6 for authenticating users with LDAP; documentation on LDAP; RFC 2251.

16.6 Using LDAP for User Authentication

Problem

You want to restrict parts of your site to authenticated users. Instead of verifying people

against a database or using HTTP Basic Authorization, you want to use an LDAP server.

16.6 Using LDAP for User Authentication | 499

Holding all user information in an LDAP server makes centralized user administration

easier.

Solution

Use PEAR’s Auth class, which supports LDAP authentication:

$options = array('host' => 'ldap.example.com',

'port' => '389',

'base' => 'o=Example Inc., c=US',

'userattr' => 'uid');

$auth = new Auth('LDAP', $options);

 // begin validation

 // print login screen for anonymous users

$auth->start();

if ($auth->getAuth()) {

 // content for validated users

} else {

 // content for anonymous users

}

 // log users out

$auth->logout();

Discussion

LDAP servers are designed for address storage, lookup, and retrieval, and so are better

to use than standard databases like MySQL or Oracle. LDAP servers are very fast, you

can easily implement access control by granting different permissions to different

groups of users, and many different programs can query the server. For example, most

email clients can use an LDAP server as an address book, so if you address a message

to “John Smith,” the server replies with John’s email address, jsmith@example.com.

PEAR’s Auth class allows you to validate users against files, databases, and LDAP servers.

The first parameter is the type of authentication to use, and the second is an array of

information on how to validate users. For example:

$options = array('host' => 'ldap.example.com',

'port' => '389',

'base' => 'o=Example Inc., c=US',

'userattr' => 'uid');

$auth = new Auth('LDAP', $options);

This creates a new Auth object that validates against an LDAP server located at ldap.ex‐

 ample.com and communicates over port 389. The base directory name is o=Example

Inc., c=US, and usernames are checked against the uid attribute. The uid field stands

500 | Chapter 16: Internet Services

for user identifier. This is normally a username for a website or a login name for a general account. If your server doesn’t store uid attributes for each user, you can substitute the

cn attribute. The common name field holds a user’s full name, such as “John Q. Smith.”

The Auth::auth() method also takes an optional third parameter—the name of a func‐

tion that displays the sign-in form. This form can be formatted however you wish; the

only requirement is that the form input fields must be called username and password.

Also, the form must submit the data using POST:

$options = array('host' => 'ldap.example.com',

'port' => '389',

'base' => 'o=Example Inc., c=US',

'userattr' => 'uid');

function pc_auth_ldap_signin() {

$action = htmlentities($_SERVER['PHP_SELF']);

print<<<_HTML_

<form method="post" action="$action">

Name: <input name="username" type="text">

Password: <input name="password" type="password">

<input type="submit" value="Sign In">

</form>

HTML;

}

$auth = new Auth('LDAP', $options, 'pc_auth_ldap_signin');

Once the Auth object is instantiated, authenticate a user by calling Auth::start():

$auth->start();

If the user is already signed in, nothing happens. If the user is anonymous, the sign-in

form is printed. To validate a user, Auth::start() connects to the LDAP server, does

an anonymous bind, and searches for an address in which the user attribute specified

in the constructor matches the username passed in by the form:

$options['userattr'] = $_POST['username'];

If Auth::start() finds exactly one person that fits this criterion, it retrieves the desig‐

nated name for the user, and attempts to do an authenticated bind, using the designated

name and password from the form as the login credentials. The LDAP server then

compares the password to the userPassword attribute associated with the designated

name. If it matches, the user is authenticated.

You can call Auth::getAuth() to return a boolean value describing a user’s status:

if ($auth->getAuth()) {

print 'Welcome member! Nice to see you again.';

} else {

print 'Welcome guest. First time visiting?';

}

16.6 Using LDAP for User Authentication | 501

The Auth class uses the built-in session module to track users, so once validated, a person remains authenticated until the session expires, or you explicitly log him out with:

$auth->logout();

See Also

Recipe 16.5 for searching LDAP servers; PEAR’s Auth class.

16.7 Performing DNS Lookups

Problem

You want to look up a domain name or an IP address.

Solution

Use gethostbyname() and gethostbyaddr():

$ip = gethostbyname('www.example.com'); // 93.184.216.119

$host = gethostbyaddr('93.184.216.119'); // www.example.com

Discussion

You can generally trust the address returned by gethostbyname(), but you can’t trust

the name returned by gethostbyaddr(). A DNS server with authority for a particular

IP address can return any hostname at all. Usually, administrators set up DNS servers

to reply with a correct hostname, but a malicious user may configure her DNS server

to reply with incorrect hostnames. One way to combat this trickery is to call gethost

byname() on the hostname returned from gethostbyaddr() and make sure the name

resolves to the original IP address.

If either function can’t successfully look up the IP address or the domain name, it doesn’t

return false, but instead returns the argument passed to it. To check for failure, do this:

$host = 'this is not a good host name!';

if ($host == ($ip = gethostbyname($host))) {

 // failure

}

This assigns the return value of gethostbyname() to $ip and also checks that $ip is not

equal to the original $host.

Sometimes a single hostname can map to multiple IP addresses. To find all hosts, use

gethostbynamel():

$hosts = gethostbynamel('www.yahoo.com');

print_r($hosts);

502 | Chapter 16: Internet Services

This prints something like the following (the specific IP addresses may vary based on

your location):

Array

(

 [0] => 98.139.183.24

 [1] => 98.139.180.149

)

In contrast to gethostbyname() and gethostbyaddr(), gethostbynamel() returns an

array, not a string.

You can also do more complicated DNS-related tasks. For instance, you can get the MX

records using getmxrr():

getmxrr('yahoo.com', $hosts, $weight);

for ($i = 0; $i < count($hosts); $i++) {

echo "$weight[$i] $hosts[$i]\n";

}

This prints:

Whereas gethostbyname() retrieves IPv4 A records, and getmxrr() retrieves MX re‐

cords, the dns_get_record() function retrieves whichever type of DNS record you

specify. This is useful, for example, to retrieve IPv6 AAAA records, as follows:

$addrs = dns_get_record('www.yahoo.com', DNS_AAAA);

print_r($addrs);

This prints something like the following (again, the specifics will vary based on your

location):

Array

(

 [0] => Array

 (

 [host] => ds-any-fp3-real.wa1.b.yahoo.com

 [type] => AAAA

 [ipv6] => 2001:4998:f00b:1fe::3001

 [class] => IN

 [ttl] => 34

)

 [1] => Array

 (

 [host] => ds-any-fp3-real.wa1.b.yahoo.com

 [type] => AAAA

 [ipv6] => 2001:4998:f00d:1fe::3001

 [class] => IN

 [ttl] => 34

)

 [2] => Array

16.7 Performing DNS Lookups | 503

 (

 [host] => ds-any-fp3-real.wa1.b.yahoo.com

 [type] => AAAA

 [ipv6] => 2001:4998:f00d:1fe::3000

 [class] => IN

 [ttl] => 34

)

 [3] => Array

 (

 [host] => ds-any-fp3-real.wa1.b.yahoo.com

 [type] => AAAA

 [ipv6] => 2001:4998:f00b:1fe::3000

 [class] => IN

 [ttl] => 34

)

)

Each element of the returned array is a subarray containing information about the re‐

cord type, hostname, IPv6 address, record class, and the TTL—how long the record is

cacheable for.

Read the manual page for dns_get_record() to learn how to indicate which type of

DNS record you are interested in.

To perform zone transfers, dynamic DNS updates, and more, see PEAR’s Net_DNS2

package.

See Also

Documentation on gethostbyname(), gethostbyaddr(), gethostbynamel(),

getmxrr(), and dns_get_record(); PEAR’s Net_DNS2 package; DNS and BIND by Paul Albitz and Cricket Liu (O’Reilly).

16.8 Checking If a Host Is Alive

Problem

You want to ping a host to see if it is still up and accessible from your location.

Solution

Use PEAR’s Net_Ping package:

require 'Net/Ping.php';

$ping = Net_Ping::factory();

if ($ping->checkHost('www.oreilly.com')) {

504 | Chapter 16: Internet Services

 print 'Reachable';

} else {

print 'Unreachable';

}

$data = $ping->ping('www.oreilly.com');

Discussion

The ping program tries to send a message from your machine to another. If everything

goes well, you get a series of statistics chronicling the transaction. An error means that

 ping can’t reach the host for some reason.

On error, Net_Ping::checkhost() returns false, and Net_Ping::ping() returns the

constant PING_HOST_NOT_FOUND. If there’s a problem running the ping program (because

Net_Ping is really just a wrapper for the program), PING_FAILED is returned.

If everything is okay, you receive a Net_Ping_Result object. This object has assorted

methods allowing you to retrieve the information about the ping operation. For exam‐

ple:

require 'Net/Ping.php';

$ping = Net_Ping::factory();

$result = $ping->ping('www.oreilly.com');

print<<<_INFO_

Ping of www.oreilly.com ({$result->getTargetIp()})

with {$result->getTransmitted()} requests had

a minimum time of {$result->getMin()} ms and

a maximum time of {$result->getMax()} ms.

INFO

;

This prints something like:

Ping of www.oreilly.com (23.67.61.152)

with 3 requests had

a minimum time of 35.4 ms and

a maximum time of 40.586 ms.

The Net_Ping::setArgs() method lets you change a few things about how the ping

program is run. For example, you can call $ping->setArgs(array('count' => 7)) to

tell Net_Ping to send seven ping packets instead of the default (usually three or four).

See Also

PEAR’s Net_Ping package.

16.8 Checking If a Host Is Alive | 505

16.9 Getting Information About a Domain Name

Problem

You want to look up contact information or other details about a domain name.

Solution

Use PEAR’s Net_Whois class:

require 'Net/Whois.php';

$server = 'whois.godaddy.com';

$query = 'oreilly.com';

$whois = new Net_Whois();

$data = $whois->query($query, $server);

Discussion

The Net_Whois::query() method returns a large text string whose contents reinforce

how hard it can be to parse different Whois results. For example, the code in the Solution

puts 55 lines of information in $data, beginning with:

Domain Name: OREILLY.COM

Registrar URL: http://www.godaddy.com

Updated Date: 2013-04-22 17:52:42

Creation Date: 1997-05-26 23:00:00

Registrar Expiration Date: 2014-05-25 23:00:00

Registrar: GoDaddy.com, LLC

Registrant Name: O'Reilly Media, Inc.

Registrant Organization: O'Reilly Media, Inc.

Registrant Street: 1005 Gravenstein Highway North

Registrant City: Sebastopol

Registrant State/Province: California

Registrant Postal Code: 95472

Registrant Country: United States

Admin Name: Admin Contact

Admin Organization: O'Reilly Media, Inc.

Admin Street: 1005 Gravenstein Highway North

Admin City: Sebastopol

Admin State/Province: California

Admin Postal Code: 95472

Admin Country: United States

Admin Phone: +1.7078277000

Admin Fax: +1.7078290104

Admin Email: nic-ac@oreilly.com

Tech Name: Tech Contact

Tech Organization: O'Reilly Media, Inc.

Tech Street: 1005 Gravenstein Highway North

Tech City: Sebastopol

506 | Chapter 16: Internet Services

Tech State/Province: California

Tech Postal Code: 95472

Tech Country: United States

Tech Phone: +1.7078277000

Tech Fax: +1.7078290104

Tech Email: nic-tc@oreilly.com

Name Server: NSAUTHA.OREILLY.COM

Name Server: NSAUTHB.OREILLY.COM

The data contained in GoDaddy.com, LLC's WhoIs database,

while believed by the company to be reliable, is provided "as is"

with no guarantee or warranties regarding its accuracy. This

information is provided for the sole purpose of assisting you

in obtaining information about domain name registration records.

Any use of this data for any other purpose is expressly forbidden without the

prior written permission of GoDaddy.com, LLC. By submitting an inquiry,

you agree to these terms of usage and limitations of warranty. In particular,

you agree not to use this data to allow, enable, or otherwise make possible,

dissemination or collection of this data, in part or in its entirety, for any

purpose, such as the transmission of unsolicited advertising and

and solicitations of any kind, including spam. You further agree

not to use this data to enable high volume, automated or robotic electronic

processes designed to collect or compile this data for any purpose,

including mining this data for your own personal or commercial purposes.

Please note: the registrant of the domain name is specified

in the "registrant" section. In most cases, GoDaddy.com, LLC

is not the registrant of domain names listed in this database.

Different domains use different Whois servers. And different Whois servers return

differently formatted results. To find the correct Whois server for a domain, start by

querying against whois.iana.org. That server’s output will contain a line beginning

with whois: which indicates the right server to use for the top-level domain of the

particular domain you’re interested in. And then you can query that server for the

specific details of the domain:

require 'Net/Whois.php';

$query = 'oreilly.com';

$iana_server = 'whois.iana.org';

$whois = new Net_Whois();

$iana_data = $whois->query($query, $iana_server);

preg_match('/^whois:\s+(.+)$/m', $iana_data, $matches);

$tld_whois_server = $matches[1];

$tld_data = $whois->query($query, $tld_whois_server);

print $tld_data;

16.9 Getting Information About a Domain Name | 507

And then depending on the details of the domain, you may have to query an additional

server. For example, the second query in the preceding code returns that whois.godad

dy.com is the authoritative Whois server for oreilly.com.

See Also

PEAR’s Net_Whois class.

508 | Chapter 16: Internet Services

CHAPTER 17

Graphics

17.0 Introduction

With the assistance of the GD library, you can use PHP to create applications that use

dynamic images to display stock quotes, reveal poll results, monitor system perfor‐

mance, and even create games. However, it’s not like using Photoshop or GIMP; you

can’t draw a line by moving your mouse. Instead, you need to precisely specify a shape’s

type, size, and position.

GD has an existing API, and PHP tries to follows its syntax and function-naming con‐

ventions. So if you’re familiar with GD from other languages, such as C or Perl, you can

easily use GD with PHP. If GD is new to you, it may take a few minutes to figure it out,

but soon you’ll be drawing like Picasso.

The feature set of GD varies greatly depending on which version of GD you’re running

and which features were enabled during configuration. GD can support GIFs, JPEGs,

PNGs, and WBMPs. GD reads in PNGs and JPEGs with almost no loss in quality. Also,

GD supports PNG alpha channels, which allow you to specify a transparency level for

each pixel.

Besides supporting multiple file formats, GD lets you draw pixels, lines, rectangles,

polygons, arcs, ellipses, and circles in any color you want. Recipe 17.1 covers straight shapes, and Recipe 17.2 covers the curved ones. To fill shapes with a pattern instead of a solid color, see Recipe 17.3.

You can also draw text using a variety of font types, including built-in and TrueType

fonts. Recipe 17.4 shows the ins and outs of the three main text-drawing functions, and

Recipe 17.5 shows how to center text within a canvas. These two recipes form the basis for Recipe 17.6, which combines an image template with real-time data to create dynamic images. GD also lets you make transparent GIFs and PNGs. Setting a color as

transparent and using transparencies in patterns are discussed in Recipe 17.7.

509

Beyond creating new images, you can work with existing images. For example, add a

watermark to identify yourself by overlaying text or an image on top of the picture. This

is the subject of Recipe 17.8. Generating thumbnail images is covered in Recipe 17.9, which shows how to create scaled-down versions of larger images. To extract image

metadata from digital photos and other images that store information using the EXIF

standard, read Recipe 17.10.

Recipe 17.11 moves away from GD and shows how to securely serve images by restrict‐

ing user access. Last, there’s an example application taking poll results and producing a

dynamic bar graph showing what percentage of users voted for each answer.

GD is bundled with PHP. The GD section of the online PHP Manual also lists the location of the additional libraries necessary to provide support for additional graphics

formats, such as JPEG and PNG, and fonts, such as TrueType.

There are two easy ways to see which version, if any, of GD is installed on your server

and how it’s configured. One way is to call phpinfo(). You should see --with-gd at the

top under Configure Command; further down the page there is also a section titled gd

that has more information about which version of GD is installed and what features are

enabled. The other option is to check the return value of function_exists('image

create'). If it returns true, GD is installed. The imagetypes() function returns a bit

field indicating which graphics formats are available. See PHP’s website for more on how to use this function. If you want to use a feature that isn’t enabled, you need to

rebuild PHP yourself or get your ISP to do so.

The basic image-generation process has three steps: creating the image, adding graphics

and text to the canvas, and displaying or saving the image. For example:

$image = ImageCreateTrueColor(200, 50); // defaults to black

 // color the background grey

$grey = 0xCCCCCC;

ImageFilledRectangle($image, 0, 0, 200 - 1, 50 - 1, $grey);

 // draw a white rectangle on top

$white = 0xFFFFFF;

ImageFilledRectangle($image, 50, 10, 150, 40, $white);

 // send it as PNG

header('Content-type: image/png');

ImagePNG($image);

ImageDestroy($image);

The output of this code, which prints a white rectangle on a grey background, is shown

in Figure 17-1.

510 | Chapter 17: Graphics

 Figure 17-1. A white rectangle on a grey background

To begin, you create an image canvas. The ImageCreateTrueColor() function doesn’t

return an actual image. Instead, it provides you with a handle to an image; it’s not an

actual graphic until you specifically tell PHP to write the image out. Using ImageCrea

teTrueColor(), you can juggle multiple images at the same time.

The parameters passed to ImageCreateTrueColor() are the width and height of the

graphic in pixels. In this case, it’s 200 pixels across and 50 pixels high. The default

background color for new canvases is black.

In addition to creating a new image, you can also edit existing images. To open a graphic,

call ImageCreateFromPNG() or a similarly named function (such as ImageCreateFrom

GIF(), ImageCreateFromJPEG(), ImageCreateFromWBMP(), …) to open a different file

format. The filename is the only argument, and files can live locally or on remote servers:

 // open a PNG from the local machine

$graph = ImageCreateFromPNG('/path/to/graph.png');

 // open a JPEG from a remote server

$icon = ImageCreateFromJPEG('http://www.example.com/images/icon.jpeg');

Call ImageFilledRectangle() to place a box onto the canvas. ImageFilledRectan

gle() takes many parameters: the image to draw on, the x and y coordinates of the

upper-left corner of the rectangle, the x and y coordinates of the lower-right corner of

the rectangle, and finally, the color to use to draw the shape.

The color is a number representing its RGB values, similar to how you do it with HTML

and CSS. For example, the HTML hex code for white is #FFFFFF. In PHP, you write this

in hex as 0xFFFFFF (or you can use the decimal value, which is 16777215).

Another option is to use the ImageAllocate() function, which takes a canvas, and the

red, green, and blue values:

$color = ImageAllocate($image, $r, $g, $b);

 // For example, white

$white = ImageAllocate($image, 0xFF, 0xFF, 0xFF); // hex

$white = ImageAllocate($image, 255, 255, 255); // decimal

 // Or...

$grey = ImageColorAllocate($image, 204, 204, 204);

$orange = ImageColorAllocate($image, 0xE9, 0x52, 0x22);

17.0 Introduction | 511

To paint over the default background color of black, allocate a color and then put a filled rectangle on the canvas. Because canvases begin at (0,0), use those for the first set of x

and y coordinates. Then subtract one from the height and width dimensions for the

second set of x and y coordinates:

 // color the background grey

$grey = 0xCCCCCC;

ImageFilledRectangle($image, 0, 0, 200 - 1, 50 - 1, $grey);

Then you can begin drawing other items. For example, to draw a rectangle on $image,

starting at (50,10) and going to (150,40), in the color white:

 // draw a white rectangle on top

$white = 0xFFFFFF;

ImageFilledRectangle($image, 50, 10, 150, 40, $white);

Unlike what you might expect, (0,0) is in the upper-left corner. Therefore, as you move

down the canvas, the coordinates become larger. For example, in a 50-pixel-high canvas,

the vertical coordinate of a spot 10 pixels from the top of canvas is 10. It’s neither 40 nor

−10.

Now that the image is all ready to go, you can serve it up. First, send a Content-Type

header to let the browser know what type of image you’re sending. In this case, display

a PNG. Next, have PHP write the PNG image out using ImagePNG():

header('Content-type: image/png');

ImagePNG($image);

To write the image to disk instead of sending it to the browser, provide a second argu‐

ment to ImagePNG() with where to save the file:

ImagePNG($image, '/path/to/your/new/image.png');

Because the file isn’t going to the browser, there’s no need to call header(). Make sure

to specify a path and an image name, and be sure PHP has permission to write to that

location.

PHP cleans up the image when the script ends, but to manually deallocate the memory

used by the image, call ImageDestroy($image) and PHP immediately gets rid of it:

ImageDestroy($image);

17.1 Drawing Lines, Rectangles, and Polygons

Problem

You want to draw a line, rectangle, or polygon. You also want to be able to control if the

rectangle or polygon is open or filled in. For example, you want to be able to draw bar

charts or create graphs of stock quotes.

512 | Chapter 17: Graphics

Solution

To draw a line, use ImageLine():

$width = 200;

$height = 50;

$image = ImageCreateTrueColor($width, $height);

$background_color = 0xFFFFFF; // white

ImageFilledRectangle($image, 0, 0, $width - 1, $height - 1, $background_color);

$x1 = $y1 = 0 ; // 0

$x2 = $y2 = $height - 1; // 49

$color = 0xCCCCCC; // gray

ImageLine($image, $x1, $y1, $x2, $y2, $color);

header('Content-type: image/png');

ImagePNG($image);

ImageDestroy($image);

To draw an open rectangle, use ImageRectangle():

ImageRectangle($image, $x1, $y1, $x2, $y2, $color);

To draw a solid rectangle, use ImageFilledRectangle():

ImageFilledRectangle($image, $x1, $y1, $x2, $y2, $color);

To draw an open polygon, use ImagePolygon():

$points = array($x1, $y1, $x2, $y2, $x3, $y3);

ImagePolygon($image, $points, count($points)/2, $color);

To draw a filled polygon, use ImageFilledPolygon():

$points = array($x1, $y1, $x2, $y2, $x3, $y3);

ImageFilledPolygon($image, $points, count($points)/2, $color);

Discussion

The prototypes for all five functions in the Solution are similar. The first parameter is

the canvas to draw on. The next set of parameters are the x and y coordinates to specify

where GD should draw the shape. In ImageLine(), the four coordinates are the end‐

points of the line, and in ImageRectangle(), they’re the opposite corners of the rec‐

tangle. For example, ImageLine($image, 0, 0, 100, 100, $color) produces a diagonal

line. Passing the same parameters to ImageRectangle() produces a rectangle with cor‐

ners at (0,0), (100,0), (0,100), and (100,100). Both shapes are shown in Figure 17-2.

17.1 Drawing Lines, Rectangles, and Polygons | 513

 Figure 17-2. A diagonal line and a square

The ImagePolygon() function is slightly different because it can accept a variable num‐

ber of vertices. Therefore, the second parameter is an array of x and y coordinates. The

function starts at the first set of points and draws lines from vertex to vertex before

finally completing the figure by connecting back to the original point. You must have a

minimum of three vertices in your polygon (for a total of six elements in the array). The

third parameter is the number of vertices in the shape; since that’s always half of the

number of elements in the array of points, a flexible value for this is count($points) /

2 because it allows you to update the array of vertices without breaking the call to

ImageLine().

For example, to draw a right triangle, this generates the image in Figure 17-3:

$size = 50;

$image = ImageCreateTrueColor($size, $size);

$background_color = 0xFFFFFF // white

ImageFilledRectangle($image, 0, 0, $size - 1, $size - 1, $background_color);

 // three points for right triangle

$x1 = $y1 = 0 ; // (0, 0)

$x2 = $y2 = $size - 1; // (49,49)

$x3 = 0; $y3 = $size - 1; // (0,49)

$gray = 0xCCCCCC; // gray

$points = array($x1, $y1, $x2, $y2, $x3, $y3);

ImagePolygon($image, $points, count($points)/2, $gray);

header('Content-type: image/png');

ImagePNG($image);

ImageDestroy($image);

 Figure 17-3. A right triangle

Last, all the functions take a final parameter that specifies the drawing color. This is

usually a color value (e.g., 0xCCCCCC), but can also be the constants IMG_COL

OR_STYLED or IMG_COLOR_STYLEDBRUSHED, if you want to draw nonsolid lines, as dis‐

cussed in Recipe 17.3.

514 | Chapter 17: Graphics

These functions all draw open shapes. To get GD to fill the region with the drawing

color, use ImageFilledRectangle() and ImageFilledPolygon() with the identical set

of arguments as their unfilled cousins.

See Also

Recipe 17.2 for more on drawing other types of shapes; Recipe 17.3 for more on drawing with styles and brushes; documentation on ImageLine(), ImageRectangle(), and Im

agePolygon().

17.2 Drawing Arcs, Ellipses, and Circles

Problem

You want to draw open or filled curves. For example, you want to draw a pie chart

showing the results of a user poll.

Solution

To draw an arc, use ImageArc():

ImageArc($image, $x, $y, $width, $height, $start, $end, $color);

To draw an ellipse, use ImageEllipse():

ImageEllipse($image, $x, $y, $width, $height, $color);

To draw a circle, use ImageEllipse(), and use the same value for both $width and

$height:

ImageEllipse($image, $x, $y, $diameter, $diameter, $color);

Discussion

Because the ImageArc() function is highly flexible, you can create many types of curves.

Like many GD functions, the first parameter is the canvas. The next two parameters are

the x and y coordinates for the center position of the arc. After that comes the arc width and height.

The sixth and seventh parameters are the starting and ending angles, in degrees. A value

of 0 is at three o’clock. The arc then moves clockwise, so 90 is at six o’clock, 180 is at nine

o’clock, and 270 is at the top of the hour. (Be careful—this behavior is not consistent

among all GD functions. For example, when you rotate text, you turn in a counter‐

clockwise direction.) Because the arc’s center is located at ($x,$y), if you draw a sem‐

icircle from 0 to 180, it doesn’t start at ($x,$y); instead, it begins at ($x+

($diameter/2),$y).

17.2 Drawing Arcs, Ellipses, and Circles | 515

As usual, the last parameter is the arc color.

The ImageEllipse() function is similar ImageArc(), except that the starting and ending

angles are omitted because they’re hardcoded to 0 and 360. Because a circle is an ellipse

with the same width and height, to draw a circle, set both numbers to the diameter of

the circle.

For example, this draws an open black circle with a diameter of 100 pixels centered on

the canvas, as shown in the left half of Figure 17-4:

$size = 100;

$image = ImageCreateTrueColor($size, $size);

$background_color = 0xFFFFFF; // white

ImageFilledRectangle($image, 0, 0, $size - 1, $size - 1, $background_color);

$black = 0x000000;

ImageEllipse($image, $size / 2, $size / 2, $size - 1, $size - 1, $black);

To produce a solid ellipse or circle, call ImageFilledEllipse():

ImageFilledEllipse($image, $size / 2, $size / 2, $size - 1, $size - 1, $black);

The output is shown in the right half of Figure 17-4.

 Figure 17-4. An open black circle and a filled black circle

There is also an ImageFilledArc() function. It takes an additional final parameter that

describes the fill style. Use IMG_ARC_CHORD to connect the start and end points of the arc

with a straight line or IMG_ARC_PIE to only draw the arc itself. To avoid filling the arc,

use IMG_ARC_NOFILL. These can be bitwise ored together in a variety of combinations

to create pie wedges and other interesting shapes. For example:

$styles = [IMG_ARC_PIE,

IMG_ARC_CHORD,

IMG_ARC_PIE | IMG_ARC_NOFILL,

IMG_ARC_PIE | IMG_ARC_NOFILL | IMG_ARC_EDGED];

$size = 100;

$image = ImageCreateTrueColor($size * count($styles), $size);

$background_color = 0xFFFFFF; // white

ImageFilledRectangle($image, 0, 0,

$size * count($styles) - 1, $size * count($styles) - 1, $background_color);

516 | Chapter 17: Graphics

$black = 0x000000; // aka 0

for ($i = 0; $i < count($styles); $i++) {

ImageFilledArc($image, $size / 2 + $i * $size, $size / 2,

$size - 1, $size - 1, 0, 135, $black, $styles[$i]);

}

header('Content-type: image/png');

ImagePNG($image);

ImageDestroy($image);

This generates the shapes in Figure 17-5.

 Figure 17-5. An assortment of pie wedges

See Also

Recipe 17.2 for more on drawing other types of shapes; documentation on Image

Arc(), ImageFilledArc(), ImageEllipse(), and ImageFilledEllipse().

17.3 Drawing with Patterned Lines

Problem

You want to draw shapes using line styles other than the default, a solid line.

Solution

To draw shapes with a patterned line, use ImageSetStyle() and pass in

IMG_COLOR_STYLED as the image color:

 // make a two-pixel thick black and white dashed line

$black = 0x000000;

$white = 0xFFFFFF;

$style = array($black, $black, $white, $white);

ImageSetStyle($image, $style);

ImageLine($image, 0, 0, 50, 50, IMG_COLOR_STYLED);

ImageFilledRectangle($image, 50, 50, 100, 100, IMG_COLOR_STYLED);

17.3 Drawing with Patterned Lines | 517

Discussion

The line pattern is defined by an array of colors. Each element in the array is another

pixel in the brush. It’s often useful to repeat the same color in successive elements because

this increases the size of the stripes in the pattern.

For instance, here is code for a square drawn with alternating white and black pixels, as

shown on the left side of Figure 17-6:

 // make a two-pixel thick black and white dashed line

$style = array($white, $black);

ImageSetStyle($image, $style);

ImageFilledRectangle($image, 0, 0, 49, 49, IMG_COLOR_STYLED);

This is the same square, but drawn with a style of five white pixels followed by five black

ones, as shown on the right side of Figure 17-6:

 // make a five-pixel thick black and white dashed line

$style = array($white, $white, $white, $white, $white,

$black, $black, $black, $black, $black);

ImageSetStyle($image, $style);

ImageFilledRectangle($image, 0, 0, 49, 49, IMG_COLOR_STYLED);

 Figure 17-6. Two squares with alternating white and black pixels

The patterns look completely different, even though both styles are just white and black

pixels.

See Also

Recipes 17.1 and 17.2 for more on drawing shapes; documentation on ImageSet

Style().

17.4 Drawing Text

Problem

You want to draw text as a graphic. This allows you to make dynamic buttons or hit

counters.

Solution

For built-in GD fonts, use ImageString():

518 | Chapter 17: Graphics

ImageString($image, 1, $x, $y, 'I love PHP Cookbook', $text_color);

For TrueType fonts, use ImageFTText():

ImageFTText($image, $size, 0, $x, $y, $text_color, '/path/to/font.ttf',

'I love PHP Cookbook');

Discussion

Call ImageString() to place text onto the canvas. Like other GD drawing functions,

ImageString() needs many inputs: the image to draw on, the font number, the x and y

coordinates of the upper-right position of the first characters, the text string to display,

and finally, the color to use to draw the string.

With ImageString(), there are five possible font choices, from 1 to 5. Font number 1

is the smallest, and font 5 is the largest, as shown in Figure 17-7. Anything above or below that range generates a size equivalent to the closest legal number.

 Figure 17-7. Built-in GD font sizes

To draw text vertically instead of horizontally, use the function ImageStringUp() in‐

stead. Figure 17-8 shows the output:

ImageStringUp($image, 1, $x, $y, 'I love PHP Cookbook', $text_color);

 Figure 17-8. Vertical text

17.4 Drawing Text | 519

To use TrueType fonts, you must also install the FreeType library and configure PHP

during installation to use FreeType. To enable FreeType 2.x, use --with-freetype-dir=DIR.

Like ImageString(), ImageFTText() prints a string to a canvas, but it takes slightly

different options and needs them in a different order:

$image = ImageCreateTrueColor(200, 50);

ImageFilledRectangle($image, 0, 0, 199, 49, 0xFFFFFF); // white

$size = 20;

$angle = 0;

$x = 20;

$y = 35;

$text_color = 0x000000; // black

$text = 'Hello PHP!';

$fontpath = __DIR__ . '/stocky/stocky.ttf';

ImageFTText($image, $size, $angle, $x, $y, $text_color, $fontpath,

$text);

header('Content-type: image/png');

ImagePNG($image);

The $size argument is the font size in pixels; $angle is an angle of rotation, in degrees

going counterclockwise; and /path/to/font.ttf is the pathname to the TrueType font file.

Unlike ImageString(), ($x,$y) are the lower-left coordinates of the baseline for the

first character. (The baseline is where the bottom of most characters sit. Characters such

as “g” and “j” extend below the baseline; “a” and “z” sit on the baseline.)

Put them together, and you get Figure 17-9.

 Figure 17-9. TrueType text

See Also

Recipe 17.5 for drawing centered text; documentation on ImageString(), ImageString

Up(), ImageFTText().

17.5 Drawing Centered Text

Problem

You want to draw text in the center of an image.

520 | Chapter 17: Graphics

Solution

Find the size of the image and the bounding box of the text. Using those coordinates,

compute the correct spot to draw the text.

For TrueType fonts, use the ImageFTCenter() function:

function ImageFTCenter($image, $size, $angle, $font, $text, $extrainfo =

array()) {

 // find the size of the image

$xi = ImageSX($image);

$yi = ImageSY($image);

 // find the size of the text

$box = ImageFTBBox($size, $angle, $font, $text, $extrainfo);

$xr = abs(max($box[2], $box[4]));

$yr = abs(max($box[5], $box[7]));

 // compute centering

$x = intval(($xi - $xr) / 2);

$y = intval(($yi + $yr) / 2);

return array($x, $y);

}

For example:

list($x, $y) = ImageFTCenter($image, $size, $angle, $font, $text);

ImageFTText($image, $size, $angle, $x, $y, $fore, $font, $text);

For built-in GD fonts, use the ImageStringCenter() function:

function ImageStringCenter($image, $text, $font) {

 // font sizes

$width = array(1 => 5, 6, 7, 8, 9);

$height = array(1 => 6, 8, 13, 15, 15);

 // find the size of the image

$xi = ImageSX($image);

$yi = ImageSY($image);

 // find the size of the text

$xr = $width[$font] * strlen($text);

$yr = $height[$font];

 // compute centering

$x = intval(($xi - $xr) / 2);

$y = intval(($yi - $yr) / 2);

17.5 Drawing Centered Text | 521

 return array($x, $y);

}

For example:

list($x, $y) = ImageStringCenter($image, $text, $font);

ImageString($image, $font, $x, $y, $text, $fore);

Discussion

The two solution functions return the x and y coordinates for drawing. Depending on

font type, size, and settings, the method used to compute these coordinates differs.

For TrueType fonts, pass ImageFTCenter() an image allocated from ImageCreateTrue

Color() (or one of its friends) and a number of parameters to specify how to draw the

text. Four parameters are required: the font size, the angle, text to be drawn, and the

font. The final one is optional: the array of extra information that can be passed to

ImageFTBBox().

Inside the function, use ImageSX() and ImageSY() to find the size of the canvas; they

return the width and height of the graphic. Then call ImageFTBBox(). It returns eight

numbers: the (x,y) coordinates of the four corners of the text starting in the lower left

and moving around counterclockwise. So the second two coordinates are for the lower-

right spot, and so on. Because the coordinates are relative to the baseline of the text, it’s

typical for these not to be 0. For instance, a lowercase “g” hangs below the bottom of

the rest of the letters; so in that case, the lower-left y value is negative.

Armed with these values, you can now calculate the correct centering values. Because

coordinates of the canvas have (0,0) in the upper-left corner, but ImageFTText() wants

the lower-left corner, the formula for finding $x and $y isn’t the same. For $x, take the

difference between the size of the canvas and the text. This gives the amount of white‐

space that surrounds the text. Then divide that number by two to find the number of

pixels you should leave to the left of the text. For $y, do the same, but add $yi and

$yr. By adding these numbers, you can find the coordinate of the far side of the box,

which is what is needed here because of the inverted way the y coordinate is entered in

GD.

Intentionally ignore the lower-left coordinates in making these calculations. Because

the bulk of the text sits above the baseline, adding the descending pixels into the cen‐

tering algorithm actually worsens the code; it appears off-center to the eye.

To center text, put it together like this:

list($x, $y) = ImageFTCenter($image, $size, $angle, $font, $text);

ImageFTText($image, $size, $angle, $x, $y, $color, $font, $text);

522 | Chapter 17: Graphics

Unfortunately, this example doesn’t work for GD’s built-in fonts or for TrueType fonts.

There’s no function to return the size of a string using the built-in fonts. With a few

modifications, however, you can accommodate these differences.

Because the built-in fonts are fixed width, you can easily measure the size of a character

to create a function that returns the size of the text based on its length. Table 17-1 isn’t 100 percent accurate, but it should return results within one or two pixels, which should

be good enough for most cases.

 Table 17-1. GD built-in font character sizes

Font number Width Height

1

5

6

2

6

8

3

7

13

4

8

15

5

9

15

Inside ImageStringCenter(), calculate the length of the string as an integral multiple

based on its length; the height is just one character high. Note that ImageString() takes

its y coordinate as the uppermost part of the text, so you should switch the sign back to

a minus when you compute $y.

Here is an example using all five fonts that centers text horizontally:

$w = 400; $h = 75;

$image = ImageCreateTrueColor($w, $h);

ImageFilledRectangle($image, 0, 0, $w-1, $h-1, 0xFFFFFF);

$color = 0x000000; // black

$text = 'Pack my box with five dozen liquor jugs.';

for ($font = 1, $y = 5; $font <= 5; $font++, $y += 20) {

list($x) = ImageStringCenter($image, $text, $font);

ImageString($image, $font, $x, $y, $text, $color);

}

The output is shown in Figure 17-10.

 Figure 17-10. Centered GD built-in fonts

17.5 Drawing Centered Text | 523

See Also

Recipe 17.4 for more on drawing text; Recipe 17.5 for more on centering text; documentation on ImageSX(), ImageSY(), and ImageFTBBox().

17.6 Building Dynamic Images

Problem

You want to create an image based on an existing image template and dynamic data

(typically text). For instance, you want to create a hit counter.

Solution

Load the template image, find the correct position to properly center your text, add the

text to the canvas, and send the image to the browser:

include 'imageftcenter.php';

 // Configuration settings

$image = ImageCreateFromPNG('/path/to/button.png'); // Template image

$size = 24;

$angle = 0;

$color = 0x000000;

$fontfile = '/path/to/font.ttf'; // Edit accordingly

$text = $_GET['text']; // Or any other source

 // Print-centered text

list($x, $y) = ImageFTCenter($image, $size, $angle, $fontfile, $text);

ImageFTText($image, $size, $angle, $x, $y, $color, $fontfile, $text);

 // Preserve Transparency

ImageColorTransparent($image,

ImageColorAllocateAlpha($image, 0, 0, 0, 127));

ImageAlphaBlending($image, false);

ImageSaveAlpha($image, true);

 // Send image

header('Content-type: image/png');

ImagePNG($image);

 // Clean up

ImagePSFreeFont($font);

ImageDestroy($image);

Discussion

Building dynamic images with GD is easy; all you need to do is combine a few recipes.

At the top of the code in the Solution, you load in an image from a stock template button;

524 | Chapter 17: Graphics

it acts as the background on which you overlay the text. You define the text to come

directly from the query string. Alternatively, you can pull the string from a database (in

the case of access counters) or a remote server (stock quotes or weather report icons).

After that, continue with the other settings: loading a font and specifying its size, color,

and background color. Before printing the text, however, you need to compute its po‐

sition; ImageFTCenter() from Recipe 17.5 nicely solves this task. Last, serve the image, and deallocate the image from memory.

For example, the following code generates a page of HTML and image tags using dy‐

namic buttons, as shown in Figure 17-11:

<?php

if (isset($_GET['button'])) {

 // Configuration settings

$image = ImageCreateFromPNG(__DIR__ . '/button.png');

$text = $_GET['button']; // dynamically generated text

$font = '/Library/Fonts/Hei.ttf';

$size = 24;

$color = 0x000000;

$angle = 0;

 // Print-centered text

list($x, $y) = ImageFTCenter($image, $size, $angle, $font, $text);

ImageFTText($image, $size, $angle, $x, $y, $color, $font, $text);

 // Preserve Transparency

ImageColorTransparent($image,

ImageColorAllocateAlpha($image, 0, 0, 0, 127));

ImageAlphaBlending($image, false);

ImageSaveAlpha($image, true);

 // Send image

header('Content-type: image/png');

ImagePNG($image);

 // Clean up

ImagePSFreeFont($font);

ImageDestroy($image);

} else {

$url = htmlentities($_SERVER['PHP_SELF']);

?>

<html>

<head>

<title>Sample Button Page</title>

</head>

<body>

<img src="<?php echo $url; ?>?button=Previous"

17.6 Building Dynamic Images | 525

alt="Previous" width="132" height="46">

<img src="<?php echo $url; ?>?button=Next"

alt="Next" width="132" height="46">

</body>

</html>

<?php

}

?>

 Figure 17-11. Sample button page

In this script, if a value is passed in for $_GET['button'], you generate a button and

send out the PNG. If $_GET['button'] isn’t set, you print a basic HTML page with two

embedded calls back to the script with requests for button images—one for a Previous

button and one for a Next button. A more general solution is to create a separate

 button.php page that returns only graphics and set the image source to point at that

page.

See Also

Recipe 17.4 for more on drawing text; Recipe 17.5 for more on centering text; Chapter 9, “Graphics,” in Programming PHP, Third Edition, by Rasmus Lerdorf, Kevin Tatroe,

and Peter MacIntyre (O’Reilly).

17.7 Getting and Setting a Transparent Color

Problem

You want to set one color in an image as transparent. When the image is overlayed on

a background, the background shows through the transparent section of the image.

Solution

Use ImageColorTransparent():

$color = 0xFFFFFF;

ImageColorTransparent($image, $color);

526 | Chapter 17: Graphics

Discussion

Both GIFs and PNGs support transparencies; JPEGs, however, do not. To refer to the

transparent color within GD, use the constant IMG_COLOR_TRANSPARENT. For example,

here’s how to make a dashed line that alternates between black and transparent:

 // make a two-pixel thick black and white dashed line

$style = array($black, $black, IMG_COLOR_TRANSPARENT, IMG_COLOR_TRANSPARENT);

ImageSetStyle($image, $style);

To find the current transparency setting, take the return value of ImageColorTranspar

ent() and pass it to ImageColorsForIndex():

$transparent = ImageColorsForIndex($image, ImageColorTransparent($image));

print_r($transparent);

This prints:

Array

(

 [red] => 255

 [green] => 255

 [blue] => 255

)

The ImageColorsForIndex() function returns an array with the red, green, and blue

values. In this case, the transparent color is white.

See Also

Documentation on ImageColorTransparent() and on ImageColorsForIndex().

17.8 Overlaying Watermarks

Problem

You want to overlay a watermark stamp on top of images.

Solution

If your watermark stamp has a transparent background, use ImageCopy() to use alpha

channels:

$image = ImageCreateFromPNG('/path/to/image.png');

$stamp = ImageCreateFromPNG('/path/to/stamp.png');

$margin = ['right' => 10, 'bottom' => 10]; // offset from the edge

ImageCopy($image, $stamp,

imagesx($image) - imagesx($stamp) - $margin['right'],

17.8 Overlaying Watermarks | 527

 imagesy($image) - imagesy($stamp) - $margin['bottom'],

0, 0, imagesx($stamp), imagesy($stamp));

Otherwise, use ImageCopyMerge() with an opacity;

$image = ImageCreateFromPNG('/path/to/image.png');

$stamp = ImageCreateFromPNG('/path/to/stamp.png');

$margin = ['right' => 10, 'bottom' => 10]; // offset from the edge

$opacity = 50; // between 0 and 100%

ImageCopyMerge($image, $stamp,

imagesx($image) - imagesx($stamp) - $margin['right'],

imagesy($image) - imagesy($stamp) - $margin['bottom'],

0, 0, imagesx($stamp), imagesy($stamp),

$opacity);

Discussion

When you overlay a watermark stamp on top of an image, you want the stamp to be

clearly visible, but you would also like to allow the original image to show through. Also,

to improve attractiveness, it’s nice to offset the watermark from the edge. In this example,

there’s a 10-pixel border.

The ImageCopy() and ImageCopyMerge() functions let you take one image and place it

on top of another. In this case, you copy the stamp on top of the base image.

The first two arguments are destination (your image) and the source (your stamp). Next

are the x and y coordinates for where you’d like the stamp to be. In this case, you want

to put the entire stamp in the lower-right corner, so the x coordinate is the width of the

destination image minus the width of the stamp and the right offset; likewise for the y

coordinate, but using heights instead of widths. To avoid hardcoding the image sizes

into the script, use the ImageSX() and ImageSY() functions, because they dynamically

compute those sizes.

When you know where the stamp is to be placed, you pass four coordinates for the size

of the stamp. Here you pass 0, 0, ImageSX($stamp), and ImageSY($stamp) to copy the

entire stamp. However, you could choose to copy just a portion of the image.

Finally, for ImageCopyMerge(), there’s an argument for the opacity. This sets the trans‐

lucence of the copied image. Values range from 0 to 100. The smaller the number, the

lighter the stamp’s appearance.

Putting this together in action generates Figure 17-12:

$image = ImageCreateFromJPEG(__DIR__ . '/iguana.jpg');

 // Stamp

$w = 400; $h = 75;

$stamp = ImageCreateTrueColor($w, $h);

528 | Chapter 17: Graphics

ImageFilledRectangle($stamp, 0, 0, $w-1, $h-1, 0xFFFFFF);

 // Attribution text

$color = 0x000000; // black

ImageString($stamp, 4, 10, 10,

'Galapagos Land Iguana by Nicolas de Camaret', $color);

ImageString($stamp, 4, 10, 28,

'http://flic.kr/ndecam/6215259398', $color);

ImageString($stamp, 2, 10, 46,

'Licence at http://creativecommons.org/licenses/by/2.0.', $color);

 // Add watermark

$margin = ['right' => 10, 'bottom' => 10]; // offset from the edge

$opacity = 50; // between 0 and 100%

ImageCopyMerge($image, $stamp,

imagesx($image) - imagesx($stamp) - $margin['right'],

imagesy($image) - imagesy($stamp) - $margin['bottom'],

0, 0, imagesx($stamp), imagesy($stamp),

$opacity);

 // Send

header('Content-type: image/png');

ImagePNG($image);

ImageDestroy($image);

ImageDestroy($stamp);

 Figure 17-12. Iguana with a watermark

17.8 Overlaying Watermarks | 529

See Also

Documentation on ImageCopy(), on ImageCopyMerge(), ImageSX(), and ImageSY().

17.9 Creating Thumbnail Images

Problem

You want to create scaled-down thumbnail images.

Solution

Use the ImageCopyResampled() function, scaling the image as needed.

To shrink proportionally:

$filename = __DIR__ . '/php.png';

$scale = 0.5; // Scale

 // Images

$image = ImageCreateFromPNG($filename);

$thumbnail = ImageCreateTrueColor(

ImageSX($image) * $scale,

ImageSY($image) * $scale);

 // Preserve Transparency

ImageColorTransparent($thumbnail,

ImageColorAllocateAlpha($thumbnail, 0, 0, 0, 127));

ImageAlphaBlending($thumbnail, false);

ImageSaveAlpha($thumbnail, true);

 // Scale & Copy

ImageCopyResampled($thumbnail, $image, 0, 0, 0, 0,

ImageSX($thumbnail), ImageSY($thumbnail),

ImageSX($image), ImageSY($image));

 // Send

header('Content-type: image/png');

ImagePNG($thumbnail);

ImageDestroy($image);

ImageDestroy($thumbnail);

To shrink to a fixed-size rectangle:

 // Rectangle Version

$filename = __DIR__ . '/php.png';

 // Thumbnail Dimentions

$w = 50; $h = 20;

 // Images

530 | Chapter 17: Graphics

$original = ImageCreateFromPNG($filename);

$thumbnail = ImageCreateTrueColor($w, $h);

 // Preserve Transparency

ImageColorTransparent($thumbnail,

ImageColorAllocateAlpha($thumbnail, 0, 0, 0, 127));

ImageAlphaBlending($thumbnail, false);

ImageSaveAlpha($thumbnail, true);

 // Scale & Copy

$x = ImageSX($original);

$y = ImageSY($original);

$scale = min($x / $w, $y / $h);

ImageCopyResampled($thumbnail, $original,

0, 0, ($x - ($w * $scale)) / 2, ($y - ($h * $scale)) / 2,

$w, $h, $w * $scale, $h * $scale);

 // Send

header('Content-type: image/png');

ImagePNG($thumbnail);

ImageDestroy($original);

ImageDestroy($thumbnail);

Discussion

Thumbnail images allow you to quickly display a large number of photos in a small

amount of space. The hardest part is knowing the best algorithm to scale or crop (or

both) when your original pictures may be a wide variety of sizes and ratios.

The entire image is preserved when you shrink proportionally; however, this works best

when all your pictures are about the same size and shape. Otherwise, you risk an un‐

wieldy layout and pictures that are oddly shaped.

Another option is shrinking to a fixed size. This simplifies laying out the thumbnails,

but when your ratio doesn’t match the source ratio, you end up with very small pictures.

This recipe compensates by cropping out the largest proportional rectangle from the

image’s center.

For example, Figure 17-13 is a scaled and cropped version of the Iguana image from

Figure 17-12.

 Figure 17-13. Iguana scaled and cropped

17.9 Creating Thumbnail Images | 531

The two algorithms are similar: first, you load in the original and create the thumbnail canvas; then you adjust the thumbnail to preserve the transparencies; next you calculate

the parameters to pass to the ImageCopyResampled() function, which does the work of

scaling the original image to the new size and copying it to the thumbnail canvas; finally,

you save the thumbnail as a PNG.

When scaling to a proportional size, the thumbnail canvas is a factor of the original

dimensions. The ImageSX() and ImageSY() functions allow you to dynamically extract

that data:

$thumbnail = ImageCreateTrueColor(

ImageSX($image) * $scale,

ImageSY($image) * $scale);

Then, when it’s time to scale the image, you again use those two functions to specify the

size of the images:

 // Scale & Copy

ImageCopyResampled($thumbnail, $image, 0, 0, 0, 0,

ImageSX($thumbnail), ImageSY($thumbnail),

ImageSX($image), ImageSY($image));

The ImageCopyResampled() function takes 10 (yes, 10) arguments: the first two are the

new and existing images. The next two are the x and y coordinates of where to put the

new copied image; in this case, because you are overwriting the entire thumbnail, it’s

always 0 and 0. The fifth and sixth arguments are the similar coordinates for the original

image. Again, these are 0 and 0 because you’re scaling down the entire picture.

The final four arguments are another two pairs of coordinates. The first set are the width

and height of the destination rectangle. The second are the same for the origin rectangle.

Here, it’s the full canvas for both.

When scaling to a constant size, the thumbnail canvas is simple. It’s the width and height

you choose:

$thumbnail = ImageCreateTrueColor($w, $h);

However, the code to scale and copy the image is more complicated:

 // Scale & Copy

$x = ImageSX($original);

$y = ImageSY($original);

$scale = min($x / $w, $y / $h);

ImageCopyResampled($thumbnail, $original,

0, 0, ($x - ($w * $scale)) / 2, ($y - ($h * $scale)) / 2,

$w, $h, $w * $scale, $h * $scale);

First, you compute the smallest possible proportional rectangle that can fit inside the

original image. You do that by finding the smaller of the two ratios of the original and

532 | Chapter 17: Graphics

thumbnail width and length. Now you know the size of the original rectangle you’re

cropping out: $w * $scale and $h * $scale.

You could crop this from (0,0); however, the middle of the image is more likely to be

representative of the whole. Therefore, find the offset within the original by subtracting

out half of the scaled rectangle from the middle of the image: $x - ($w * $scale)) /

2 and ($y - ($h * $scale)) / 2.

With this information, ImageCopyResampled() can do its job, scaling and smoothing

the image down to a pretty looking, but smaller, picture.

See Also

Documentation on ImageCopyResampled(), ImageSX(), and ImageSY().

17.10 Reading EXIF Data

Problem

You want to extract metainformation from an image file. This lets you find out when

the photo was taken, the image size, and the MIME type.

Solution

Use the exif_read_data() function:

$exif = exif_read_data('beth-and-seth.jpeg');

print_r($exif);

Array

(

 [FileName] => beth-and-seth.jpg

 [FileDateTime] => 1096055414

 [FileSize] => 182080

 [FileType] => 2

 [MimeType] => image/jpeg

 [SectionsFound] => APP12

 [COMPUTED] => Array

 (

 [html] => width="642" height="855"

 [Height] => 855

 [Width] => 642

 [IsColor] => 1

)

 [Company] => Ducky

 [Info] =>

)

17.10 Reading EXIF Data | 533

Discussion

The Exchangeable Image File Format (EXIF) is a standard for embedding metadata

inside of pictures. Most digital cameras use EXIF, so it’s an popular way of providing

rich data in photo galleries.

PHP has a number of EXIF functions. They don’t require external libraries, but must

be enabled by passing the --enable-exif configuration flag.

The easiest way to extract data is through the exif_read_data() method. It returns an

array of metadata, including the creation date of the photo, the MIME type (which you

can use to help serve up the image), and the image dimensions:

$exif = exif_read_data('beth-and-seth.jpeg');

Use the html value to directly embed height and width attributes within an source

tag.

You can also use the EXIF functions to retrieve a thumbnail image associated with the

picture. To access this, call exif_thumbnail():

$thumb = exif_thumbnail('beth-and-seth.jpeg', $width, $height, $type);

The exif_thumbnail() function takes four parameters. The first is the filename. The

last three are variables passed by reference where the width, height, and image type will

be stored. The function returns the thumbnail image as a binary string, or false on

failure.

To serve up the image directly, use the image_type_to_mime_type() to get the correct

MIME type. Pass that along as an HTTP header and then display the image:

$thumb = exif_thumbnail('beth-and-seth.jpeg', $width, $height, $type);

if ($thumb !== false) {

$mime = image_type_to_mime_type($type);

header("Content-type: $mime");

print $thumb;

} else {

print "Sorry. No thumbnail.";

}

Alternatively, you can create an link:

$file = 'beth-and-seth.jpeg';

$thumb = exif_thumbnail($file, $width, $height, $type);

if ($thumb !== false) {

$img = "<img src=\" $file\" alt=\" Beth and Seth\"

width=\" $width\" height=\" $height\" >";

print $img;

}

534 | Chapter 17: Graphics

See Also

Documentation on exif_read_data() and on exif_thumbnail().

17.11 Serving Images Securely

Problem

You want to control who can view a set of images.

Solution

Don’t keep the images in your document root, but store them elsewhere. To deliver a

file, manually open it and send it to the browser:

header('Content-Type: image/png');

readfile('/path/to/graphic.png');

Discussion

The first line in the Solution sends the Content-Type header to the browser, so the

browser knows what type of object is coming and displays it accordingly. The second

opens a file off a disk (or from a remote URL) for reading, reads it in, dumps it directly

to the browser, and closes the file.

The typical way to serve up an image is to use an tag and set the src attribute to

point to a file on your website. If you want to protect those images, you probably should

use some form of password authentication. Two methods are HTTP Basic and Digest

Authentication, which are covered in Recipe 8.6.

The typical way, however, may not always be the best. First, what happens if you want

to restrict the files people can view, but you don’t want to make things complex by using

usernames and passwords? One option is to link only to the files; if users can’t click the

link, they can’t view the file. They might, however, bookmark old files, or they may also

try and guess other filenames based on your naming scheme and manually enter the

URL into the browser.

If your content is embargoed, you don’t want people to be able to guess your naming

scheme and view images. When information is embargoed, a select group of people,

usually reporters, are given a preview release, so they can write stories about the topic

or be ready to distribute it the moment the embargo is lifted. You can fix this by making

sure only legal content is under the document root, but this requires a lot of file shuffling

back and forth from directory to directory. Instead, you can keep all the files in one

constant place, and deliver only files that pass a check inside your code.

17.11 Serving Images Securely | 535

For example, let’s say you have a contract with a publishing corporation to redistribute one of its comics on your website. However, it doesn’t want you to create a virtual archive,

so you agree to let your users view only the last two weeks’ worth of strips. For everything

else, they’ll need to go to the official site. Also, you may get comics in advance of their

publication date, but you don’t want to let people get a free preview; you want them to

keep coming back to your site on a daily basis.

Here’s the solution. Files arrive named by date, so it’s easy to identify which files belong

to which day. Now, to lock out strips outside the rolling 14-day window, use code like

this:

 // display a comic if it's less than 14 days old and not in the future

 // calculate the current date

list($now_m,$now_d,$now_y) = explode(',',date('m,d,Y'));

$now = mktime(0,0,0,$now_m,$now_d,$now_y);

 // two-hour boundary on either side to account for dst

$min_ok = $now - 14*86400 - 7200; // 14 days ago

$max_ok = $now + 7200; // today

$mo = (int) $_GET['mo'];

$dy = (int) $_GET['dy'];

$yr = (int) $_GET['yr'];

 // find the time stamp of the requested comic

$asked_for = mktime(0,0,0,$mo,$dy,$yr);

 // compare the dates

if (($min_ok > $asked_for) || ($max_ok < $asked_for)) {

echo 'You are not allowed to view the comic for that day.';

} else {

header('Content-type: image/png');

readfile("/www/comics/{$mo}{$dy}{$yr}.png");

}

See Also

Recipe 24.5 for more on reading files.

17.12 Program: Generating Bar Charts from Poll Results

When displaying the results of a poll, it can be more effective to generate a colorful bar

chart instead of just printing the results as text. The function shown in Example 17-1

uses GD to create an image that displays the cumulative responses to a poll question.

 Example 17-1. Graphical bar charts

function bar_chart($question, $answers) {

536 | Chapter 17: Graphics

 // define colors to draw the bars

$colors = array(0xFF6600, 0x009900, 0x3333CC,

0xFF0033, 0xFFFF00, 0x66FFFF, 0x9900CC);

$total = array_sum($answers['votes']);

 // define spacing values and other magic numbers

$padding = 5;

$line_width = 20;

$scale = $line_width * 7.5;

$bar_height = 10;

$x = $y = $padding;

 // allocate a large palette for drawing, since you don't know

 // the image length ahead of time

$image = ImageCreateTrueColor(150, 500);

ImageFilledRectangle($image, 0, 0, 149, 499, 0xE0E0E0);

$black = 0x000000;

 // print the question

$wrapped = explode(" \n", wordwrap($question, $line_width));

foreach ($wrapped as $line) {

ImageString($image, 3, $x, $y , $line, $black);

$y += 12;

}

$y += $padding;

 // print the answers

for ($i = 0; $i < count($answers['answer']); $i++) {

 // format percentage

$percent = sprintf('%1.1f', 100*$answers['votes'][$i]/$total);

$bar = sprintf('%d', $scale*$answers['votes'][$i]/$total);

 // grab color

$c = $i % count($colors); // handle cases with more bars than colors

$text_color = $colors[$c];

 // draw bar and percentage numbers

ImageFilledRectangle($image, $x, $y, $x + $bar,

$y + $bar_height, $text_color);

ImageString($image, 3, $x + $bar + $padding, $y,

"$percent%", $black);

$y += 12;

 // print answer

$wrapped = explode(" \n", wordwrap($answers['answer'][$i], $line_width));

foreach ($wrapped as $line) {

ImageString($image, 2, $x, $y, $line, $black);

17.12 Program: Generating Bar Charts from Poll Results | 537

 $y += 12;

}

$y += 7;

}

 // crop image by copying it

$chart = ImageCreateTrueColor(150, $y);

ImageCopy($chart, $image, 0, 0, 0, 0, 150, $y);

 // PHP 5.5+ supports

 // $chart = ImageCrop($image, array('x' => 0, 'y' => 0,

 // 'width' => 150, 'height' => $y));

 // deliver image

header ('Content-type: image/png');

ImagePNG($chart);

 // clean up

ImageDestroy($image);

ImageDestroy($chart);

}

To call this program, create an array holding two parallel arrays: $answers['answ

er'] and $answer['votes']. Element $i of each array holds the answer text and the

total number of votes for answer $i. Figure 17-14 shows this sample output:

 // Act II. Scene II.

$question = 'What a piece of work is man?';

$answers['answer'][] = 'Noble in reason';

$answers['votes'][] = 29;

$answers['answer'][] = 'Infinite in faculty';

$answers['votes'][] = 22;

$answers['answer'][] = 'In form, in moving, how express and admirable';

$answers['votes'][] = 59;

$answers['answer'][] = 'In action how like an angel';

$answers['votes'][] = 45;

bar_chart($question, $answers);

538 | Chapter 17: Graphics

 Figure 17-14. Graphic bar chart of poll results

Here the answers are manually assigned, but for a real poll, this data could be pulled

from a database instead.

This program is a good start, but because it uses the built-in GD fonts, there are a lot of

magic numbers embedded in the program corresponding to the font height and width.

Also, the amount of space between each answer is hardcoded. If you modify this to

handle more advanced fonts, such as TrueType, you’ll need to update the algorithms

that control those numbers.

At the top of the function, a bunch of RGB combinations are defined; they are used as

the colors to draw the bars. A variety of constants are broken out, such as

$line_width, which is the maximum number of characters per line. The $bar_height

variable determines how high the bars should be, and $scale scales the length of the

bar as a function of the longest possible line. $padding is used to push the results five

pixels away from the edge of the canvas.

You then make a very large canvas to draw the chart; later, you will crop the canvas down

to size, but it can be difficult to know ahead of time how large your total size will be.

The default background color of the bar chart is #E0E0E0, a light grey.

To restrict the width of the chart to a reasonable size, use wordwrap() to break your

$question down to size and explode() it on \n. This gives an array of correctly sized

lines, which you loop on to print out one line at a time.

After printing the question, move on to the answers. First, format the results numbers

with sprintf(). To format the total percentage of votes for an answer as a floating-point

number with one decimal point, use %1.1f. To find the length of the bar corresponding

to that number, you compute a similar number, but instead of multiplying it by 100,

multiply by a magic number, $scale, and return an integer.

The text color is pulled from the $colors array of RGB triplets. Then, call ImageFille

dRectangle() to draw the bar and ImageString() to draw the percentage text to the

right of the bar. After adding some padding, print the answer using the same algorithm

used to print the question.

17.12 Program: Generating Bar Charts from Poll Results | 539

When all the answers have been printed, the total size of the bar chart is stored in $y.

Now you can correctly crop the graphic to size, but there’s no ImageCrop() function.

To work around this, make a new canvas of the appropriate size and ImageCopy() over

the part of the original canvas you want to keep. Then, serve the correctly sized image

as a PNG using ImagePNG(), and clean up with two calls to ImageDestroy().

As mentioned at the beginning of this section, this is just a quick-and-dirty function to

print bar charts. It works and solves some problems, such a wrapped lines, but isn’t 100

percent perfect. For instance, it’s not very customizable. Many settings are baked directly

into the code. Still, it shows how to put together a variety of GD functions to create a

useful graphical application.

540 | Chapter 17: Graphics

CHAPTER 18

Security and Encryption

18.0 Introduction

Web application security is an important topic that attracts attention from both the

developers who create web applications and the attackers who try to exploit them. As a

PHP developer, your applications are sure to be the target of many attacks, and you need

to be prepared.

A large number of web application vulnerabilities are due to a misplaced trust in data

provided by third parties. Such data is known as input, and it should be considered

tainted until proven otherwise. If you display tainted data to your users, you create cross-

site scripting (XSS) vulnerabilities. Recipe 18.4 explains how to avoid these by escaping your output. If you use tainted data in your SQL queries, you can create SQL injection

vulnerabilities. Recipe 18.5 shows you how to eliminate these.

When using data provided by third parties, including the data provided by your users,

it is important to first verify that it is valid. This process is known as filtering, and

Recipe 18.3 shows you how to guarantee that all input is filtered.

Not all security problems can be solved by filtering input and escaping output. Session

fixation, an attack discussed in Recipe 18.1, causes a victim to use a session identifier chosen by an attacker. Cross-site request forgeries, a type of attack discussed in

Recipe 18.2, cause a victim to send a request of an attacker’s choosing.

Closely related to security is encryption, a powerful tool that can help boost your ap‐

plication’s security. Just like any other tool, however, it must be used properly.

Encryption scrambles data. Some data scrambling can’t be unscrambled without un‐

reasonable amounts of processing. This is called one-way encryption or hashing. Other

encryption methods work in two directions: data is encrypted, and then it’s decrypted.

541

PHP supplies tools to encrypt and secure your data. Some tools, such as the pass

word_hash() function, are part of PHP’s base set of functions, and some are extensions

that need to be explicitly included when PHP is compiled (e.g., mcrypt, mhash, and

 cURL).

Recipe 18.7 discusses using password_hash(), which lets you securely hash a password

for storage.

 mcrypt is a more full-featured encryption library that offers different algorithms and

encryption modes. Because it supports different kinds of encryption, mcrypt is especially

helpful when you need to exchange encrypted data with other systems or with programs

not written in PHP. mcrypt is discussed in detail in Recipe 18.10.

PHP gives you the tools to protect your data with robust encryption, but encryption is

just part of the large and often complex security picture. Your encrypted data can be

unlocked with a key, so protecting that key is very important. If your encryption keys

are accessible to unauthorized users (because they’re stored in a file accessible via your

web server or because they’re stored in a file accessible by other users in a shared hosting

environment, for example), your data is at risk, no matter how secure your chosen

encryption algorithm is.

Sensitive data needs to be protected not only on the server, but also when it’s traveling

over the network between the server and your users. Data sent over regular HTTP is

visible to anyone with access to the network at any point between your server and a user.

Recipe 18.13 discusses how to use SSL to prevent network snoopers from observing data as it passes by. For a complete discussion on securing PHP applications, read PHP Security by Chris Shiflett (O’Reilly).

18.1 Preventing Session Fixation

Problem

You need to ensure that a user’s session identifier cannot be provided by a third party,

such as an attacker who seeks to hijack the user’s session.

Solution

Regenerate the session identifier with session_regenerate_id() whenever there is a

change in the user’s privilege, such as after a successful login:

session_regenerate_id();

$_SESSION['logged_in'] = true;

542 | Chapter 18: Security and Encryption

Discussion

Sessions allow you to create variables that persist between requests. For sessions to work,

each of the users’ requests must include a session identifier that uniquely identifies a

session.

By default, PHP accepts a session identifier sent in a cookie, but if session.use_on

ly_cookies is set to 1, it will accept a session identifier in the URL. An attacker can trick

a victim into following a link to your application that includes an embedded session

identifier:

Click Here!

A user who follows this link will resume the session identified as 1234. Therefore, the

attacker now knows the user’s session identifier and can attempt to hijack the user’s

session by presenting the same session identifier.

If the user never logs in or performs any action that differentiates the user from among

the other users of your application, the attacker gains nothing by hijacking the session.

Therefore, by ensuring that the session identifier is regenerated whenever there is a

change in privilege level, you effectively eliminate session fixation attacks. PHP takes

care of updating the session data store and propagating the new session identifier, so

you must only call this one function as appropriate.

As of PHP 5.5.2, a new configuration setting, session.use_strict_mode helps prevent

session hijacking. When this is enabled, PHP accepts only already initialized session

IDs. If a browser sends a new session ID, PHP rejects it and generates a new one.

See Also

Recipe 11.2 for more information about session options that can help to prevent hi‐

jacking and fixation. Recipe 11.3 shows a time-based session ID regeneration scheme.

18.2 Protecting Against Form Spoofing

Problem

You want to be sure that a form submission is valid and intentional.

Solution

Add a hidden form field with a one-time token, and store this token in the user’s session:

<?php

session_start();

18.2 Protecting Against Form Spoofing | 543

$_SESSION['token'] = md5(uniqid(mt_rand(), true));

?>

<form action="buy.php" method="POST">

<input type="hidden" name="token" value="<?php echo $_SESSION['token']; ?>" />

<p>Stock Symbol: <input type="text" name="symbol" /></p>

<p>Quantity: <input type="text" name="quantity" /></p>

<p><input type="submit" value="Buy Stocks" /></p>

</form>

When you receive a request that represents a form submission, check the tokens to be

sure they match:

session_start();

if ((! isset($_SESSION['token'])) ||

($_POST['token'] != $_SESSION['token'])) {

 /* Prompt user for password. */

} else {

 /* Continue. */

}

Discussion

This technique protects against a group of attacks known as cross-site request forgeries

 (CSRF). These attacks all cause a victim to send requests to a target site without the

victim’s knowledge. Typically, the victim has an established level of privilege with the

target site, so these attacks allow an attacker to perform actions that the attacker cannot

otherwise perform. For example, imagine Alice is logged in via cookies to a social net‐

working website, then visits another website. That second website could display a form

to Alice that looks harmless, but really submits itself to a URL on that social networking

website. Because Alice’s browser would send login cookies along with the form sub‐

mission, the social networking website wouldn’t be able to distinguish this malicious

form submission from a good one without CSRF protection.

Adding a token to your forms in this way does not prevent a user from forging his own

request from himself, but this is not something you can prevent, nor is it something to

be concerned with. If you filter input as discussed in Recipe 18.3, you force requests to abide by your rules. The technique shown in this recipe helps to make sure the request

is intentional.

18.3 Ensuring Input Is Filtered

Problem

You want to filter all input prior to use.

544 | Chapter 18: Security and Encryption

Solution

Initialize an empty array in which to store filtered data. After you’ve proven that some‐

thing is valid, store it in this array:

$filters = array('name' => array('filter' => FILTER_VALIDATE_REGEXP,

'options' => array('regexp' => '/^[a-z]+$/i')),

'age' => array('filter' => FILTER_VALIDATE_INT,

'options' => array('min_range' => 13)));

$clean = filter_input_array(INPUT_POST, $filters);

Discussion

By using a strict naming convention, you can more easily keep up with what input has

been filtered. Always initializing $clean to an empty array ensures that data cannot be

injected into the array; you must explicitly add it. In the preceding code, the call to

filter_input_array() initializes $clean to contain only the filtered information.

Once you adopt a technique such as the use of $clean, it is important that you only use

data from this array in your business logic.

See Also

Recipe 9.2 through Recipe 9.9 discuss form input validation for different types of data in detail.

18.4 Avoiding Cross-Site Scripting

Problem

You need to safely avoid cross-site scripting (XSS) attacks in your PHP applications.

Solution

Escape all HTML output with htmlentities(), being sure to indicate the correct char‐

acter encoding:

 /* Note the character encoding. */

header('Content-Type: text/html; charset=UTF-8');

 /* Initialize an array for escaped data. */

$html = array();

 /* Escape the filtered data. */

$html['username'] = htmlentities($clean['username'], ENT_QUOTES, 'UTF-8');

echo "<p>Welcome back, {$html['username']}.</p>";

18.4 Avoiding Cross-Site Scripting | 545

Discussion

The htmlentities() function replaces each character with its HTML entity, if it has

one. For example, > is replaced with >. Although the immediate effect is that the data

is modified, the purpose of the escaping is to preserve the data in a different context.

Whenever a browser renders > as HTML, it appears on the screen as >.

XSS attacks try to take advantage of a situation where data provided by a third party is

included in the HTML without being escaped properly. A clever attacker can provide

code that can be very dangerous to your users when interpreted by their browsers. By

using htmlentities(), you can be sure that such third-party data is displayed properly

and not interpreted.

See Also

Recipe 9.10 discusses cross-site scripting prevention in the context of submitted form data.

18.5 Eliminating SQL Injection

Problem

You need to eliminate SQL injection vulnerabilities in your PHP applications.

Solution

Use a database library such as PDO that performs the proper escaping for your database:

$statement = $db->prepare("INSERT

INTO users (username, password)

VALUES (:username, :password)");

$statement->bindParam(':username', $clean['username']);

$statement->bindParam(':password', $clean['password']);

$statement->execute();

Discussion

Using bound parameters ensures your data never enters a context where it is considered

to be anything except raw data, so no value can possibly modify the format of the SQL

query.

546 | Chapter 18: Security and Encryption

See Also

Chapter 10 for more information about PDO, particularly Recipe 10.6 and

Recipe 10.7; documentation on PDO.

18.6 Keeping Passwords Out of Your Site Files

Problem

You need to use a password to connect to a database, for example. You don’t want to put

the password in the PHP files you use on your site in case those files are exposed.

Solution

Store the password in an environment variable in a file that the web server loads when

starting up. Then, just reference the environment variable in your code:

$db = new PDO($dsn, $_SERVER['DB_USER'], $_SERVER['DB_PASSWORD']);

Discussion

Although this technique removes passwords from the source code of your pages, it

makes them available in other places that need to be protected. Most importantly, make

sure that there are no publicly viewable pages that call phpinfo(). Because phpinfo()

displays all of the environment variables, it exposes any passwords you store there. Also,

make sure not to expose the contents of $_SERVER in other ways, such as with the

print_r() function.

Next, especially if you are using a shared host, make sure the environment variables are

set in such a way that they are only available to your virtual host, not to all users. With

Apache, you can do this by setting the variables in a separate file from the main con‐

figuration file:

SetEnv DB_USER "susannah"

SetEnv DB_PASSWORD "y23a!t@ce8"

Inside the <VirtualHost> directive for the site in the main configuration file

(httpd.conf), include this separate file as follows:

Include "/usr/local/apache/database-passwords"

Make sure that this separate file containing the password (e.g., /usr/local/apache/

 database-passwords) is not readable by any user other than the one that controls the

appropriate virtual host. When Apache starts up and is reading in configuration files,

it’s usually running as root, so it is able to read the included file. A child process that

handles requests typically runs as an unprivileged user, so rogue scripts cannot read the

protected file.

18.6 Keeping Passwords Out of Your Site Files | 547

See Also

Documentation on Apache’s Include directive.

18.7 Storing Passwords

Problem

You need to keep track of users’ passwords, so they can log in to your website.

Solution

When a user signs up or registers, hash the chosen password with bcrypt and store the

hashed password in your database of users.

With PHP 5.5 and later, use the built-in password_hash() function:

 /* Initialize an array for filtered data. */

$clean = array();

 /* Hash the password. */

$hashed_password = password_hash($_POST['password'], PASSWORD_DEFAULT);

 /* Allow alphanumeric usernames. */

if (ctype_alnum($_POST['username'])) {

$clean['username'] = $_POST['username'];

} else {

 /* Error */

}

 /* Store user in the database. */

$st = $db->prepare('INSERT

INTO users (username, password)

VALUES (?, ?)');

$st->execute(array($clean['username'], $hashed_password));

Then, when that user attempts to log in to your website, use the password_verify()

function to see if the supplied password matches the stored, hashed value:

 /* Initialize an array for filtered data. */

$clean = array();

 /* Allow alphanumeric usernames. */

if (ctype_alnum($_POST['username'])) {

$clean['username'] = $_POST['username'];

} else {

 /* Error */

}

$stmt = $db->prepare('SELECT password

548 | Chapter 18: Security and Encryption

 FROM users

WHERE username = ?');

$stmt->execute(array($clean['username']));

$hashed_password = $stmt->fetchColumn();

if (password_verify($_POST['password'], $hashed_password)) {

 /* Login succeeds. */

print "Login OK!";

} else {

 /* Login fails. */

}

If you are not using PHP 5.5 but are using PHP 5.3.7 or later, install the password_com

pat library for implementations of password_hash() and password_verify().

If you are using an older version of PHP, the following Discussion outlines your options

for secure password storage.

Discussion

Storing hashed passwords prevents users’ accounts from becoming compromised if an

unauthorized person gets a peek at your username and password database (although

such unauthorized peeks may foreshadow other security problems).

The password_hash() and password_verify() functions do two things to make it hard

for a bad guy to exploit access to the hashed passwords. First, they incorporate a “salt”

string into the value that gets hashed. This means that even if two of your users choose

the same plain-text password, the hashed value of that password will be different for

each user. If the bad guy figures out one of the user’s passwords, he won’t easily be able

to figure out the other.

The second notable feature of these functions is they use an algorithm (currently bcrypt)

whose cost can be adjusted. This means that as the computers of bad guys grow more

powerful over time, you can easily make it more expensive (computationally) to turn a

hashed password into a plain-text password.

Because it’s hard to turn hashed passwords into plain-text passwords, your stored pass‐

words are somewhat more secure. This also means that you can’t get at the plain text of

users’ passwords, even if you need to. For example, if a user forgets his password, you

won’t be able to tell him what it is. The best you can do is reset the password to a new

value and then tell the user the new password. A method for dealing with lost passwords

is covered in Recipe 18.8.

If you’re using a version of PHP prior to 5.3.7, you can generate reasonably secure

password hashes by using the built-in crypt() function:

 /* Initialize an array for filtered data. */

$clean = array();

18.7 Storing Passwords | 549

 /* Generate an appropriate salt. '$2a$' tells crypt() to

 * use the Blowfish algorithm, and the 08 tells it to do

 * 256 (2^8) rounds of hashing */

$salt = '$2a08';

 /* Blowfish hashes are 22 bytes long, each byte is

 * from 0-9, A-Z, a-z */

for ($i = 0; $i < 22; $i++) {

$r = mt_rand(0, 61);

if ($r < 10) {

$c = ord('0') + $r;

}

else if ($r < 36) {

$c = ord('A') + $r - 10;

}

else {

$c = ord('a') + $r - 36;

}

$salt .= chr($c);

}

$hashed_password = crypt($_POST['password'], $salt);

 /* Allow alphanumeric usernames. */

if (ctype_alnum($_POST['username'])) {

$clean['username'] = $_POST['username'];

} else {

 /* Error */

}

 /* Store user in the database. */

$st = $db->prepare('INSERT

INTO users (username, password)

VALUES (?, ?)');

$st->execute(array($clean['username'], $hashed_password));

And then verify those passwords by retrieving the stored salt and providing it to crypt()

with a user-entered password:

 /* Initialize an array for filtered data. */

$clean = array();

 /* Allow alphanumeric usernames. */

if (ctype_alnum($_POST['username'])) {

$clean['username'] = $_POST['username'];

} else {

 /* Error */

}

$stmt = $db->prepare('SELECT password

FROM users

WHERE username = ?');

$stmt->execute(array($clean['username']));

$hashed_password = $stmt->fetchColumn();

550 | Chapter 18: Security and Encryption

$salt = substr($hashed_password, 0, strlen('$2a$08$') + 22);

if (crypt($_POST['password'], $salt) === $hashed_password) {

 /* Login succeeds. */

print "Login OK!";

} else {

 /* Login fails. */

}

When using crypt(), you need to grab the appropriate salt (and the $2a$08$ prefix that

tells crypt() to use Blowfish) out of the stored value in order to provide it to crypt()

with whatever attempted password the user entered. This ensures that the re-hashed

value will match if the passwords match.

If you are using a version of PHP prior to 5.3.0 and your system’s library that crypt()

relies on does not include support for Blowfish, the preceding code will not work, be‐

cause crypt() will not be able to use the Blowfish algorithm. Test for this by checking

the value of the CRYPT_BLOWFISH constant. If that is 0, then you do not have Blowfish

support.

In that case, you can either upgrade to PHP 5.3 (which bundles its own Blowfish im‐

plementation) or use a different password hashing function, such as the sha1() func‐

tion. If you want to maximize your password security, upgrading your version of PHP

is the better choice. The SHA1 algorithm is much faster to compute than Blowfish, so

it is easier for attackers to find plain-text passwords that match a given hashed value.

See Also

Recipe 18.11 for information on storing encrypted data; the password_compat library; documentation on password_hash(), on password_verify(), on crypt(), and on

sha1().

18.8 Dealing with Lost Passwords

Problem

You want to issue a password to a user who has lost her password.

Solution

Generate a new password and send it to the user’s email address (which you should have

on file):

 /* Generate new password. */

$new_password = '';

18.8 Dealing with Lost Passwords | 551

for ($i = 0; $i < 8; $i++) {

$new_password .= chr(mt_rand(33, 126));

}

 /* Hash new password. */

$hashed_password = password_hash($new_password, PASSWORD_DEFAULT);

 /* Save new hashed password to the database. */

$st = $db->prepare('UPDATE users

SET password = ?

WHERE username = ?');

$st->execute(array($hashed_password, $clean['username']));

 /* Email new plain text password to user. */

mail($clean['email'], 'New Password', "Your new password is: $new_password");

Note that this code uses the PHP 5.5–only password_hash() function. If you’re using

an older version of PHP, follow the recommendations in “Discussion” on page 549.

Discussion

If a user forgets her password, and you store hashed passwords as recommended in

Recipe 18.7, you can’t provide the forgotten password. The one-way nature of hashing

prevents you from retrieving the plain-text password.

Instead, generate a new password and send that to her email address. If you send the

new password to an address you don’t already have on file for that user, you don’t have

a way to verify that the new address really belongs to the user. It may be an attacker

attempting to impersonate the real user.

Because the email containing the new password isn’t hashed, the code in the Solution

doesn’t include the username in the email message to reduce the chances that an attacker

that eavesdrops on the email message can steal the password. To avoid disclosing a new

password by email at all, let a user authenticate herself without a password by answering

one or more personal questions (the answers to which you have on file). These questions

can be “What was the name of your first pet?” or “What’s your mother’s maiden name?”

—anything a malicious attacker is unlikely to know. If the user provides the correct

answers to your questions, you can let her choose a new password.

One way to compromise between security and readability is to generate a password for

a user out of actual words interrupted by some numbers:

$words = array('mother', 'basset', 'detain', 'sudden', 'fellow', 'logged',

'remove', 'snails', 'direct', 'serves', 'daring', 'chirps',

'reward', 'snakes', 'uphold', 'wiring', 'nurses', 'regent',

'ornate', 'dogmas', 'mended', 'hinges', 'verbal', 'grimes',

'ritual', 'drying', 'chests', 'newark', 'winged', 'hobbit');

$word_count = count($words);

552 | Chapter 18: Security and Encryption

$password = sprintf('%s%02d%s',

$words[mt_rand(0,$word_count - 1)],

mt_rand(0,99),

$words[mt_rand(0,$word_count - 1)]);

echo $password;

This code produces passwords that are two six-letter words with two numbers between

them, like mother43hobbit or verbal68nurses. The passwords are long, but remem‐

bering them is made easier by the words in them.

Sending a new password to a user’s email address implicitly assumes that the person

reading the email at that address is authorized to log in. Based on that assumption you

could also just email the user a one-time-use URL. When she visits that URL, show her

a page that lets her reset her password. If the URL is sufficiently hard to guess, then you

can be confident that only the email recipient will access it.

See Also

Recipe 18.7 for information about storing hashed passwords; sitepoint describes how to make one-time-use URLs that you could use with a password reset capability.

18.9 Verifying Data with Hashes

Problem

You want to make sure users don’t alter data you’ve sent them in a cookie or form

element.

Solution

Along with the data, send a “message digest” hash of the data that uses a salt. When you

receive the data back, compute the hash of the received value with the same salt. If they

don’t match, the user has altered the data.

Here’s how to generate a hash in a hidden form field:

<?php

 /* Define a salt. */

define('SALT', 'flyingturtle');

$id = 1337;

$idcheck = hash_hmac('sha1', $id, SALT);

?>

18.9 Verifying Data with Hashes | 553

<input type="hidden" name="id" value="<?php echo $id; ?>" />

<input type="hidden" name="idcheck" value="<?php echo $idcheck; ?>" /> Here’s how to verify the hidden form field data when it’s submitted:

 /* Initialize an array for filtered data. */

$clean = array();

 /* Define a salt. */

define('SALT', 'flyingturtle');

if (hash_hmac('sha1', $_POST['id'], SALT) === $_POST['idcheck']) {

$clean['id'] = $_POST['id'];

} else {

 /* Error */

}

Discussion

When processing the submitted form data, compute the hash of the submitted value of

$_POST['id'] with the same salt. If it matches $_POST['idcheck'], the value of

$_POST['id'] has not been altered by the user. If the values don’t match, you know that

the value of $_POST['id'] you received is not the same as the one you sent.

To use the same hashing technique with a cookie, add it to the cookie value with im

plode():

 /* Define a salt. */

define('SALT', 'flyingturtle');

$name = 'Ellen';

$namecheck = hash_hmac('sha1', $name, SALT);

setcookie('name', implode('|', array($name, $namecheck)));

Parse the hash from the cookie value with explode():

 /* Define a salt. */

define('SALT', 'flyingturtle');

list($cookie_value, $cookie_check) = explode('|', $_COOKIE['name'], 2);

if (hash_hmac('sha1', $cookie_value, SALT) === $cookie_check) {

$clean['name'] = $cookie_value;

} else {

 /* Error */

}

Using a data verification hash in a form or cookie obviously depends on the salt used

in hash computation. If a malicious user discovers your salt, the hash offers no protec‐

tion. Besides guarding the salt zealously, changing it frequently is a good idea. For an

554 | Chapter 18: Security and Encryption

additional layer of protection, use different salts, choosing the specific salt to use in the hash based on some property of the $id value (10 different words selected by $id%10,

for example). That way, the damage is slightly mitigated if one of the words is compro‐

mised.

See Also

hash_hmac() documentation.

18.10 Encrypting and Decrypting Data

Problem

You want to encrypt and decrypt data using one of a variety of popular algorithms.

Solution

Use PHP’s mcrypt extension:

$algorithm = MCRYPT_BLOWFISH;

$key = 'That golden key that opens the palace of eternity.';

$data = 'The chicken escapes at dawn. Send help with Mr. Blue.';

$mode = MCRYPT_MODE_CBC;

$iv = mcrypt_create_iv(mcrypt_get_iv_size($algorithm, $mode),

MCRYPT_DEV_URANDOM);

$encrypted_data = mcrypt_encrypt($algorithm, $key, $data, $mode, $iv);

$plain_text = base64_encode($encrypted_data);

echo $plain_text . " \n";

$encrypted_data = base64_decode($plain_text);

$decoded = mcrypt_decrypt($algorithm, $key, $encrypted_data, $mode, $iv);

 // trim() will remove any trailing NULL bytes that mcrypt_decrypt() may

 // have added to pad the output to be a whole number of 8-byte blocks

echo trim($decoded) . " \n";

This prints:

Cd4Uzc1c5lDxxWc7rXv+mbsElwj2ENrYg5HAPiaOpe7Wr8UAG5aXD9CoG6NdKoOWLSumg9ffSnE=

The chicken escapes at dawn. Send help with Mr. Blue.

Discussion

The mcrypt extension is an interface with mcrypt, a library that implements many dif‐

ferent encryption algorithms. The data is encrypted and decrypted by mcrypt_en

crypt() and mcrypt_decrypt(), respectively. They each take five arguments. The first

is the algorithm to use. To find which algorithms mcrypt supports on your system, call

18.10 Encrypting and Decrypting Data | 555

mcrypt_list_algorithms(). The second argument is the encryption key; the third

argument is the data to encrypt or decrypt. The fourth argument is the mode for the

encryption or decryption (a list of supported modes is returned by

mcrypt_list_modes()). The fifth argument is an initialization vector (IV), used by

some modes as part of the encryption or decryption process.

Except for the data to encrypt or decrypt, all the other arguments must be the same

when encrypting and decrypting. If you’re using a mode that requires an initialization

vector, it’s OK to pass the initialization vector in the clear with the encrypted text.

The different modes are appropriate in different circumstances. Cipher Block Chaining

(CBC) mode encrypts the data in blocks, and uses the encrypted value of each block (as

well as the key) to compute the encrypted value of the next block. The initialization

vector affects the encrypted value of the first block. Cipher Feedback (CFB) and Output

Feedback (OFB) also use an initialization vector, but they encrypt data in units smaller

than the block size. Note that OFB mode has security problems if you encrypt data in

smaller units than its block size. Electronic Code Book (ECB) mode encrypts data in

discrete blocks that don’t depend on each other. ECB mode doesn’t use an initialization

vector. It is also less secure than other modes for repeated use, because the same plain

text with a given key always produces the same cipher text. Constants to set each mode

are listed in Table 18-1.

 Table 18-1. mcrypt mode constants

Mode constant

Description

MCRYPT_MODE_ECB

Electronic Code Book mode

MCRYPT_MODE_CBC

Cipher Block Chaining mode

MCRYPT_MODE_CFB

Cipher Feedback mode

MCRYPT_MODE_OFB

Output Feedback mode with 8 bits of feedback

MCRYPT_MODE_NOFB

Output Feedback mode with n bits of feedback, where n is the block size of the algorithm used MCRYPT_MODE_STREAM Stream Cipher mode, for algorithms such as RC4 and WAKE

Different algorithms have different block sizes. You can retrieve the block size for a

particular algorithm with mcrypt_get_block_size(). Similarly, the initialization vec‐

tor size is determined by the algorithm and the mode. mcrypt_create_iv() and

mcrypt_get_iv_size() make it easy to create an appropriate random initialization

vector:

$iv = mcrypt_create_iv(mcrypt_get_iv_size($algorithm, $mode),

MCRYPT_DEV_URANDOM);

The first argument to mcrypt_create_iv() is the size of the vector, and the second is

a source of randomness. You have three choices for the source of randomness:

MCRYPT_DEV_RANDOM reads from the pseudodevice /dev/random, MCRYPT_DEV_URANDOM

reads from the pseudodevice /dev/urandom, and MCRYPT_RAND uses an internal random

556 | Chapter 18: Security and Encryption

number generator. Not all operating systems support random-generating pseudodevi‐

ces. Make sure to call srand() before using MCRYPT_RAND in order to get a nonrepeating

random number stream.

See Also

The mcrypt extension documentation; the mcrypt library. Choosing an appropriate algorithm and using it securely requires care and planning: for more information about

 mcrypt and the cipher algorithms it uses, see the mcrypt extension documentation, the

 mcrypt home page, and the Wikipedia page about /dev/urandom and /dev/urandom; good books about cryptography include Applied Cryptography by Bruce Schneier (Wi-ley) and Cryptography: Theory and Practice by Douglas R. Stinson (Chapman & Hall).

18.11 Storing Encrypted Data in a File or Database

Problem

You want to store encrypted data that needs to be retrieved and decrypted later by your

web server.

Solution

Store the additional information required to decrypt the data (such as algorithm, cipher

mode, and initialization vector) along with the encrypted information, but not the key:

 /* Encrypt the data. */

$algorithm = MCRYPT_BLOWFISH;

$mode = MCRYPT_MODE_CBC;

$iv = mcrypt_create_iv(mcrypt_get_iv_size($algorithm, $mode),

MCRYPT_DEV_URANDOM);

$ciphertext = mcrypt_encrypt($algorithm, $_POST['key'], $_POST['data'],

$mode, $iv);

 /* Store the encrypted data. */

$st = $db->prepare('INSERT

INTO noc_list (algorithm, mode, iv, data)

VALUES (?, ?, ?, ?)');

$st->execute(array($algorithm, $mode, $iv, $ciphertext));

To decrypt the data, retrieve a key from the user and use it with the saved data:

$row = $db->query('SELECT *

FROM noc_list

WHERE id = 27')->fetch();

$plaintext = mcrypt_decrypt($row['algorithm'],

$_POST['key'],

$row['data'],

18.11 Storing Encrypted Data in a File or Database | 557

 $row['mode'],

$row['iv']);

Discussion

The save-crypt.php script shown in Example 18-1 stores encrypted data to a file.

 Example 18-1. save-crypt.php

function show_form() {

$html = array();

$html['action'] = htmlentities($_SERVER['PHP_SELF'], ENT_QUOTES, 'UTF-8');

print<<<FORM

<form method="POST" action="{$html['action']}">

<textarea name="data"

rows="10" cols="40">Enter data to be encrypted here.</textarea>

Encryption Key: <input type="text" name="key" />

<input name="submit" type="submit" value="Save" />

</form>

FORM;

}

function save_form() {

$algorithm = MCRYPT_BLOWFISH;

$mode = MCRYPT_MODE_CBC;

 /* Encrypt data. */

$iv = mcrypt_create_iv(mcrypt_get_iv_size($algorithm, $mode),

MCRYPT_DEV_URANDOM);

$ciphertext = mcrypt_encrypt($algorithm,

$_POST['key'],

$_POST['data'],

$mode,

$iv);

 /* Save encrypted data. */

$filename = tempnam('/tmp','enc') or exit($php_errormsg);

$file = fopen($filename, 'w') or exit($php_errormsg);

if (FALSE === fwrite($file, $iv.$ciphertext)) {

fclose($file);

exit($php_errormsg);

}

fclose($file) or exit($php_errormsg);

return $filename;

}

if (isset($_POST['submit'])) {

558 | Chapter 18: Security and Encryption

 $file = save_form();

echo "Encrypted data saved to file: $file";

} else {

show_form();

}

Example 18-2 shows the corresponding program, get-crypt.php, that accepts a filename and key and produces the decrypted data.

 Example 18-2. get-crypt.php

function show_form() {

$html = array();

$html['action'] = htmlentities($_SERVER['PHP_SELF'], ENT_QUOTES, 'UTF-8');

print<<<FORM

<form method="POST" action="{$html['action']}">

Encrypted File: <input type="text" name="file" />

Encryption Key: <input type="text" name="key" />

<input name="submit" type="submit" value="Display" />

</form>

FORM;

}

function display() {

$algorithm = MCRYPT_BLOWFISH;

$mode = MCRYPT_MODE_CBC;

$file = fopen($_POST['file'], 'r') or exit($php_errormsg);

$iv = fread($file, mcrypt_get_iv_size($algorithm, $mode));

$ciphertext = fread($file, filesize($_POST['file']));

fclose($file);

$plaintext = mcrypt_decrypt($algorithm, $_POST['key'], $ciphertext,

$mode, $iv);

echo "<pre>$plaintext</pre>";

}

if (isset($_POST['submit'])) {

display();

} else {

show_form();

}

These two programs have their encryption algorithm and mode hardcoded in them, so

there’s no need to store this information in the file. The file consists of the initialization

vector immediately followed by the encrypted data. There’s no need for a delimiter after

the initialization vector (IV), because mcrypt_get_iv_size() returns exactly how many

18.11 Storing Encrypted Data in a File or Database | 559

bytes the decryption program needs to read to get the whole IV. Everything after that

in the file is encrypted data.

Encrypting files using the method in this recipe offers protection if an attacker gains

access to the server on which the files are stored. Without the appropriate key or tre‐

mendous amounts of computing power, the attacker won’t be able to read the files.

However, the security that these encrypted files provide is undercut if the data to be

encrypted and the encryption keys travel between your server and your users’ web

browsers in the clear. Someone who can intercept or monitor network traffic can see

data before it even gets encrypted. To prevent this kind of eavesdropping, use SSL.

An additional risk when your web server encrypts data as in this recipe comes from

how the data is visible before it’s encrypted and written to a file. Someone with root or

administrator access to the server can look in the memory the web server process is

using and snoop on the unencrypted data and the key. If the operating system swaps

the memory image of the web server process to disk, the unencrypted data might also

be accessible in this swap file. This kind of attack can be difficult to pull off but can be

devastating. Once the encrypted data is in a file, it’s unreadable even to an attacker with

root access to the web server, but if the attacker can peek at the unencrypted data before

it’s in that file, the encryption offers little protection.

See Also

Recipe 18.13 discusses SSL and protecting data as it moves over the network; docu‐

mentation on mcrypt_encrypt(), mcrypt_decrypt(), mcrypt_create_iv(), and

mcrypt_get_iv_size().

18.12 Sharing Encrypted Data with Another Website

Problem

You want to exchange data securely with another website.

Solution

If the other website is pulling the data from your site, put the data up on a password-

protected page. You can also make the data available in encrypted form, with or without

a password. If you need to push the data to another website, submit the potentially

encrypted data via post to a password-protected URL.

Discussion

The following page requires a username and password and then encrypts and displays

the contents of a file containing yesterday’s account activity:

560 | Chapter 18: Security and Encryption

$user = 'bank';

$password = 'fas8uj3';

if ($_SERVER['PHP_AUTH_USER'] != $user ||

$_SERVER['PHP_AUTH_PW'] != $password) {

header('WWW-Authenticate: Basic realm="Secure Transfer"');

header('HTTP/1.0 401 Unauthorized');

echo "You must supply a valid username and password for access.";

exit;

}

header('Content-type: text/plain; charset=UTF-8');

$filename = strftime('/usr/local/account-activity.%Y-%m-%d', time() - 86400);

$data = implode('', file($filename));

$algorithm = MCRYPT_BLOWFISH;

$mode = MCRYPT_MODE_CBC;

$key = "There are many ways to butter your toast.";

 /* Encrypt data. */

$iv = mcrypt_create_iv(mcrypt_get_iv_size($algorithm, $mode),

MCRYPT_DEV_URANDOM);

$ciphertext = mcrypt_encrypt($algorithm, $key, $data, $mode, $iv);

echo base64_encode($iv.$ciphertext);

Here’s the corresponding code to retrieve the encrypted page and decrypt the informa‐

tion:

$user = 'bank';

$password = 'fas8uj3';

$algorithm = MCRYPT_BLOWFISH;

$mode = MCRYPT_MODE_CBC;

$key = "There are many ways to butter your toast.";

$url = 'https://bank.example.com/accounts.php';

$c = curl_init($url);

curl_setopt($c, CURLOPT_USERPWD, "$user:$password");

curl_setopt($c, CURLOPT_RETURNTRANSFER, TRUE);

$data = curl_exec($c);

if (FALSE === $data) {

exit("Transfer failed: " . curl_error($c));

}

$binary_data = base64_decode($data);

$iv_size = mcrypt_get_iv_size($algorithm, $mode);

$iv = substr($binary_data, 0, $iv_size);

$ciphertext = substr($binary_data, $iv_size, strlen($binary_data));

echo mcrypt_decrypt($algorithm, $key, $ciphertext, $mode, $iv);

18.12 Sharing Encrypted Data with Another Website | 561

The retrieval program does all the steps of the encryption program, but in reverse. It

retrieves the Base64-encoded encrypted data, supplying a username and password.

Then, it decodes the data with Base64 and separates out the initialization vector. Last,

it decrypts the data and prints it out.

In the previous examples, the username and password are still sent over the network in

clear text, unless the connections happen over SSL. However, if you’re using SSL, it’s

probably not necessary to encrypt the contents of the file. We included both password-

prompting and file encryption in these examples to show how it can be done.

There’s one circumstance, however, in which both password protection and file en‐

cryption is helpful: if the file isn’t automatically decrypted when it’s retrieved. An au‐

tomated program can retrieve the encrypted file and put it, still encrypted, in a place

that can be accessed later. The decryption key thus doesn’t need to be stored in the

retrieval program.

See Also

Recipe 18.13 discusses SSL and protecting data as it moves over the network; docu‐

mentation on mcrypt_encrypt() and mcrypt_decrypt().

18.13 Detecting SSL

Problem

You want to know if a request arrived over SSL.

Solution

Test the value of $_SERVER['HTTPS']:

if ('on' == $_SERVER['HTTPS']) {

echo 'The secret ingredient in Coca-Cola is Soylent Green.';

} else {

echo 'Coca-Cola contains many delicious natural and artificial flavors.';

}

Discussion

SSL operates on a lower level than HTTP. The web server and a browser negotiate an

appropriately secure connection, based on their capabilities, and the HTTP messages

can pass over that secure connection. To an attacker intercepting the traffic, it’s just a

stream of nonsense bytes that can’t be read.

562 | Chapter 18: Security and Encryption

Different web servers have different requirements to use SSL, so check your server’s

documentation for specific details. No changes have to be made to PHP to work over

SSL.

In addition to altering code based on $_SERVER['HTTPS'], you can also set cookies to

be exchanged only over SSL connections. If the last argument to setcookie() is true,

the browser sends the cookie back to the server only over a secure connection:

 /* Set an SSL-only cookie named "sslonly" with value "yes" that expires at the

 end of the current browser session. */

if ('on' === $_SERVER['HTTPS']) {

setcookie('sslonly', 'yes', 0, '/', 'example.org', true);

}

Although the browser sends these cookies back to the server only over an SSL connec‐

tion, the server sends them to the browser (when you call setcookie() in your page)

whether or not the request for the page that sets the cookie is over SSL. If you’re putting

sensitive data in the cookie, make sure that you set the cookie only in an SSL request as

well. Also, keep in mind that the cookie data is unencrypted on the user’s computer.

See Also

Documentation on setcookie().

18.14 Encrypting Email with GPG

Problem

You want to send encrypted email messages. For example, you take orders on your

website and need to send an email to your factory with order details for processing. By

encrypting the email message, you prevent sensitive data such as credit card numbers

from passing over the network in the clear.

Solution

Use the functions provided by the gnupg extension to encrypt the body of the email

message with GNU Privacy Guard (GPG) before sending it:

$plaintext_body = 'Some sensitive order data';

$recipient = 'ordertaker@example.com';

$g = gnupg_init();

gnupg_seterrormode($g, GNUPG_ERROR_WARNING);

 // Fingerprint of the recipient's key

$a = gnupg_addencryptkey($g, "5495F0CA9C8F30A9274C2259D7EBE8584CEF302B");

 // Fingerprint of the sender's key

$b = gnupg_addsignkey($g, "520D5FC5C85EF4F4F9D94E1C1AF1F7C5916FC221",

18.14 Encrypting Email with GPG | 563

 "passphrase");

$encrypted_body = gnupg_encryptsign($g, $plaintext_body);

mail($recipient, 'Web Site Order', $encrypted_body);

The email message can be decrypted by GPG, Pretty Good Privacy (PGP), or an email

client plug-in that supports either program.

Discussion

The code in the Solution uses PHP’s gnupg extension, which, in turn, relies on the

GPGME library, in order to perform OpenPGP-standard operations to encrypt and sign

a message.

The resource returned by gnupg_init() is used in the rest of the function calls as a

container for the specific settings related to the encryption we’re doing. Next, gnupg_se

terrormode($g, GNUPG_ERROR_WARNING) ensures that we’ll get some PHP warnings

generated if there are problems with any GnuPG operations.

This example encrypts and signs a message. The encryption ensures that only the desired

recipient can decrypt and read the message. The signature lets the recipient be sure that

this sender sent the message.

The key fingerprint passed to gnupg_addencryptkey() specifies which key should be

used to encrypt the message. Only someone with access to the private key associated

with this fingerprint will be able to decrypt the message.

The key fingerprint passed to gnupg_addsignkey() specifies which key should be used

to sign the message. The third argument to gnupg_addsignkey() is the passphrase as‐

sociated with this private key.

The functions in the gnupg extension look for keys in the same place that the command-

line gpg executable does: a directory named .gnupg under your home directory (or under

the home directory of the user that PHP is running as). To tell PHP to look in a different

place for keys, set the GNUPGHOME environment variable to the desired directory.

After the keys have been set on the gnupg resource, the call to gnupg_encryptsign()

produces the encrypted, signed message. By default, this value is “armored” as plain

ASCII.

If you need to identify the correct fingerprint to pass to gnupg_addencryptkey() or

gnupg_addsignkey(), use gnupg_keyinfo(), as shown here:

$email = 'friend@example.com';

$g = gnupg_init();

$keys = gnupg_keyinfo($g, $email);

if (count($keys) == 1) {

564 | Chapter 18: Security and Encryption

 $fingerprint = $keys[0]['subkeys'][0]['fingerprint'];

print "Fingerprint for $email is $fingerprint";

}

else {

print "Expected 1, found " . count($keys) .

" keys for $email";

}

Given a gnupg resource and a search string, gnupg_keyinfo() returns an array con‐

taining information about each key in the keyring whose UID (or part of a UID) matches

the search string. Each element in that returned array is itself an array composed of

many elements and subarrays describing lots of per-key information. The finger

print key of the first element of the subkeys array gives us the appropriate value to pass

to other gnupg functions.

See Also

The GNU Privacy Guard homepage and information about the GPGME library. The

PECL page for the gnupg extension and its documentation.

18.14 Encrypting Email with GPG | 565

CHAPTER 19

Internationalization and Localization

19.0 Introduction

Though everyone who programs in PHP has to learn some English eventually to get a

handle on its function names and language constructs, PHP can create applications that

speak just about any language. Some applications need to be used by speakers of many

different languages. Taking an application written for French speakers and making it

useful for German speakers is made easier by PHP’s support for internationalization

and localization.

The recipies in this chapter rely on the capabilities of PHP’s intl extension for inter‐

nationalization and localization tasks. Underlying this extension is the powerful ICU

library. ICU is widely used and has both C/C++ and Java implementations. This means that the concepts around working with in PHP translate well if you are doing globalization work in other (programming) languages.

The intl extension is bundled with PHP versions 5.3.0 and later. To use it with PHP

5.2.0 or later, install it from PECL.

 Internationalization (often abbreviated I18N) is the process of taking an application

designed for just one locale and restructuring it so that it can be used in many different

locales.1 Localization (often abbreviated L10N) is the process of adding support for a

new locale to an internationalized application.2

A locale is a group of settings that describe text formatting and language customs in a

particular area of the world. Locales describe behavior for:

1. The word “internationalization” has 18 letters between the first “i” and the last “n.”

2. The word “localization” has 10 letters between the first “l” and the “n.”

567

 Collation

How text is sorted: which letters go before and after others in alphabetical order.

 Numbers

How numeric information (including currency amounts) is displayed, including

how to group digits, what characters to use as the thousands separator and decimal

point, and how to indicate negative amounts.

 Times and Dates

How time and date information is formatted and displayed, such as names of

months and days and whether to use 24- or 12-hour time.

 Messages

Text messages used by applications that need to display information in multiple

languages.

A locale ID has a few components, each separated by underscores. The first is the

 language code, an abbreviation that indicates a language. This is, for example, “en” for

English or “pt” for Portuguese. The language codes are the two-letter codes specified in

the ISO 639-1 standard.

Next comes an optional script code, which indicates what set of characters should be

used to represent text in this locale. For example, Arab indicates Arabic and Cyrl indi‐

cates Cyrillic. These script codes are enumerated as part of ISO 15924.

After that comes an optional country code, to distinguish between different countries

that speak different versions of the same language. For example, “en_US” for US English

and “en_UK” for British English, or “pt_BR” for Brazilian Portuguese and “pt_PT” for

Portuguese Portuguese. The country codes are the two-letter codes specified in the ISO

3166 standard.

To further allow for specifying differences among the same language and country, the

next component of a locale ID can be an optional variant code. These variant codes,

documented in the IANA language subtag registry, indicate variations such as using the Biscayan dialect of Basque (variant biscayan), or that the Høgnorsk orthography of

Norwegian should be used (variant hognorsk). Your basic day-to-day use of locales will

probably not involve variants.

After the exotic variant can be an optional list of keywords, prefixed by a @. These

keywords are semicolon-separated name=value pairs that offer a further way to provide

customized information about the locale. For example, the locale fr_CA@curren

cy=USD indicates a French-language locale in Canada, but using US dollars for currency.

Useful for merchants on the Quebec-Vermont border, perhaps.

To help you deal with locales, Recipe 19.1 demonstrates how to set the locale as asked for by a user’s web browser.

568 | Chapter 19: Internationalization and Localization

Different techniques are necessary for correct localization of plain text, numbers, dates and times, and currency. Localization can also be applied to external entities your program uses, such as images and included files. Localizing these kinds of content is covered

in Recipe 19.2 through Recipe 19.7.

Locale-aware sorting is discussed in Recipe 19.8 and dealing with large amounts of

localization data is discussed in Recipe 19.9.

Recipe 19.10 through Recipe 19.12 discuss how to make sure your programs work well with a variety of character encodings so they can handle strings such as à l’Opéra-Théâtre, поленика, and 優之良品. One way to do this is to have all text your programs

process be encoded as UTF-8. This encoding scheme can handle the Western characters

in the familiar ISO-8859-1 encoding as well as characters for other writing systems

around the world. These recipes focus on using UTF-8 to provide a seamless, language-

independent experience for your users.

19.1 Determining the User’s Locale

Problem

You want to use the correct locale as specified by a user’s web browser.

Solution

Pass the incoming Accept-Language HTTP header value to the Locale::accept

FromHttp() function to get the proper locale identifier:

if (isset($_SERVER['HTTP_ACCEPT_LANGUAGE'])) {

$localeToUse = Locale::acceptFromHttp($_SERVER['HTTP_ACCEPT_LANGUAGE']);

}

else {

$localeToUse = Locale::getDefault();

}

Discussion

Section 14.4 of RFC 2616, which specifies how HTTP works, provides rules for how

web browsers can send an Accept-Language header with a request to indicate what

languages are preferred as a response to the request. A web browser may send more

than one possible language with values indicating the relative preference for those lan‐

guages. The Locale::acceptFromHttp() function sorts through those values and re‐

turns an ICU locale ID corresponding to the desired language.

If no preferred language is specified, you can use the locale returned by the Locale::get

Default() function, whose value comes from the intl.default_locale configuration

directive (if not overridden by a call to Locale::setDefault()).

19.1 Determining the User’s Locale | 569

See Also

Documentation for Locale::acceptFromHttp(), Locale::getDefault(), and Lo

cale::setDefault(). See more information about RFC 2616.

19.2 Localizing Text Messages

Problem

You want to display text messages in a locale-appropriate language.

Solution

Maintain a message catalog of words and phrases and retrieve the appropriate string

from the message catalog before passing it to a MessageFormatter object to format it

for printing:

$messages = array();

$messages['en_US'] =

array('FAVORITE_FOODS' => 'My favorite food is {0}.',

'FRIES' => 'french fries',

'CANDY' => 'candy',

'CHIPS' => 'potato chips',

'EGGPLANT' => 'eggplant');

$messages['en_GB'] =

array('FAVORITE_FOODS' => 'My favourite food is {0}.',

'FRIES' => 'chips',

'CANDY' => 'sweets',

'CHIPS' => 'crisps',

'EGGPLANT' => 'aubergine');

foreach (array('en_US', 'en_GB') as $locale) {

$candy = new MessageFormatter($locale, $messages[$locale]['CANDY']);

$favs = new MessageFormatter($locale, $messages[$locale]['FAVORITE_FOODS']);

print $favs->format(array($candy->format(array()))) . " \n";

}

This prints:

My favorite food is candy.

My favourite food is sweets.

Discussion

The first argument to the MessageFormatter constructor is the locale for which the

message should be formatted. The second argument is the message pattern. The power

of MessageFormatter comes from the special bits in the pattern delimited by curly

braces. This is where the arguments supplied to the format() method get inserted into

570 | Chapter 19: Internationalization and Localization

the pattern. In the code in the Solution, the {0} in the pattern is replaced by the first element in the array passed to format(). A {1} in a pattern would be replaced by the

second element of the array, and so on.

The easiest way to specify pattern arguments is with numbers—{0} is the first argument,

{1} the second, and so on. Then the value of the first element in the array passed to

format() replaces the {0}, the second replaces the {1}, and so forth down the line. In

the example above, there is one replacement in the FAVORITE_FOODS pattern and no

replacements in the CANDY pattern, so the array passed to $favs->format() has one

element, and the array passed to $candy->format() is empty.

Admittedly, a plain old formatting pattern argument such as {0} is not very exciting.

Using all the machinery of ICU for simple string replacement is underwhelming. More

complicated pattern arguments show how MessageFormatter shines. For example,

consider a message where the text needs to be different based on how many objects are

involved. For example, “You have one item in your shopping cart” versus “You have two

items in your shopping cart.” Here’s how to express that with MessageFormatter:

$messages = array();

$messages['en_US'] =

array('CART' => "You have {0,spellout} " .

"{0, plural, " .

" =1 {item} " .

" other {items} } " .

"in your shopping cart.");

$messages['fr_FR'] =

array('CART' => "Vous {0, plural, " .

" =0 {n'avez pas d'articles} ".

" =1 {avez un article} ".

" other {avez {0,spellout} articles}} ".

"dans votre panier.");

$fmts = array();

foreach (array_keys($messages) as $locale) {

$fmts[$locale] = new MessageFormatter($locale, $messages[$locale]['CART']);

}

for ($i = 0; $i < 10; $i++) {

foreach ($fmts as $locale => $obj) {

print $obj->format(array($i)) . " \n";

}

}

This prints:

You have zero items in your shopping cart.

Vous n'avez pas d'articles dans votre panier.

You have one item in your shopping cart.

Vous avez un article dans votre panier.

You have two items in your shopping cart.

19.2 Localizing Text Messages | 571

Vous avez deux articles dans votre panier.

You have three items in your shopping cart.

Vous avez trois articles dans votre panier.

You have four items in your shopping cart.

Vous avez quatre articles dans votre panier.

You have five items in your shopping cart.

Vous avez cinq articles dans votre panier.

You have six items in your shopping cart.

Vous avez six articles dans votre panier.

You have seven items in your shopping cart.

Vous avez sept articles dans votre panier.

You have eight items in your shopping cart.

Vous avez huit articles dans votre panier.

You have nine items in your shopping cart.

Vous avez neuf articles dans votre panier.

The pattern arguments in this example are more extensive than a simple {0}. The

{0,spellout} argument says “use argument 0, but treat it as type spellout“. This is a

built-in ICU type which turns numerals into their spelled-out equivalents. Because

MessageFormatter is locale-aware, it knows what words to use. E.g., “three” in English

but “trois” in French. The pattern also includes an argument of type plural. Reusing

argument 0, this allows for wholesale different text based on the value of that argument.

In English, it outputs item if the argument is 1, but items otherwise. The French con‐

struction distinguishes between 0, 1, and everything else to ensure proper grammar.

The plural argument type lets the message formatter make a choice based on the nu‐

merical value of an argument. The more general select argument type lets the message

formatter make a choice based on arbitrary values. This is useful for choosing different

words based on the gender of an argument. Here’s how that can work in English:

$message = '{0, select, f {She} m {He} other {It}} went to the store.';

$fmt = new MessageFormatter('en_US', $message);

print $fmt->format(array('f')) . " \n";

print $fmt->format(array('m')) . " \n";

print $fmt->format(array('Unknown')) . " \n";

This prints:

She went to the store.

He went to the store.

It went to the store.

When argument 0 is f, “She” is interpolated into the output. When it’s m, then “He” goes

into the output. Otherwise, “It” goes into the output.

In PHP 5.5, MessageFormatter supports not just numbered arguments, but named

arguments, too. Just make sure that how you refer to the argument in the pattern matches

the array key you use when calling format(). For example:

572 | Chapter 19: Internationalization and Localization

$message = 'I like to eat {food} and {drink}.';

$fmt = new MessageFormatter('en_US', $message);

print $fmt->format(array('food' => 'eggs',

'drink' => 'water'));

This prints:

I like to eat eggs and water.

If you’re using an older version of PHP, you can install version 3.0 (or later) of the intl

extension from PECL to get this capability.

See Also

Documentation on the MessageFormatter class. Because MessageFormatter relies on ICU for its implementation, the ICU documentation on message formatting and arguments is very helpful, in particular the ICU User Guide and ICU 53.1.

19.3 Localizing Dates and Times

Problem

You want to display dates and times in a locale-specific manner.

Solution

Use the date or time argument type, with an optional short, medium, long, or full style

inside a MessageFormatter message:

$when = 1376943432; // Seconds since epoch

$message = "It is {0,time,short} on {0,date,medium}.";

$fmt = new MessageFormatter('en_US', $message);

print $fmt->format(array($when));

This prints:

It is 4:17 PM on Aug 19, 2013.

Use a formatting pattern with a date or time argument type inside a MessageFormat

ter message:

$when = 1376943432; // Seconds since epoch

$message = "Maintenant: {0,date,eeee dd MMMM y}";

$fmt = new MessageFormatter('fr_FR', $message);

print $fmt->format(array($when));

This prints:

Maintenant: lundi 19 août 2013

Use the format() method of an IntlDateFormatter:

19.3 Localizing Dates and Times | 573

$when = 1376943432; // Seconds since epoch

$fmt = new IntlDateFormatter('en_US', IntlDateFormatter::FULL,

IntlDateFormatter::FULL);

print $fmt->format($when);

This prints:

Monday, August 19, 2013 at 8:17:12 PM GMT

Discussion

The date and time argument types for MessageFormatter make it easy to include ap‐

propriate localized representations of dates and times in your output. These “preset”

formats not only respect the appropriate settings for a locale by including the right

information in the right order (for example, distinguishing between places that list

month number before day number and places that list day number before month num‐

ber), but also translate words for months and days of the week into the appropriate

language.

If you want more control over the date and time elements that appear in your message,

supply a format pattern. Table 19-1 lists the elements that can appear in a date/time format pattern.

 Table 19-1. Date and time format pattern characters

Type

Character Description

Example

Hour

a

Ante/Post Meridiem designation

PM

Hour

h

Hour, 12-hour clock (1 – 12)

3

Hour

K

Hour, 12-hour clock (0 – 11)

3

Hour

H

Hour, 24-hour clock (0 – 23)

15

Hour

k

Hour, 24-hour clock (1 – 24)

15

Minute

m

Minute (0 – 59)

8

Second

s

Second (0 – 59)

7

Second

S

Decisecond (0 – 9)

0

Second

SS

Centisecond (00 – 99)

00

Second

SSS

Millisecond (000 – 999)

000

Second

A

Milliseconds in day

54487000

Day

d

Day of month (1 – 31)

18

Day

D

Day of year (1 – 366)

78

Day

EEEEE

Day of week, short abbreviation

T

Day

EEE

Day of week, long abbreviation

Thu

Day

EEEE

Day of week, name

Thursday

Day

e

Day of week, number (0 or 1 to 6 or 7, localized)

5

Day

F

Day of week in the month (e.g., 3 for “third Wednesday”) 3

574 | Chapter 19: Internationalization and Localization

Type

Character Description

Example

Day

g

Modified Julian Day

2453083

Week

w

Week of year, with localized week start (1 – 52)

12

Week

W

Week of month (1 – 5)

3

Month

M

Month (1 – 12)

3

Month

MMMMM Month, short abbreviation

M

Month

MMM

Month, long abbreviation

Mar

Month

MMMM

Month, name

March

Year

y

Year, 4-digit

2004

Year

yy

Year, 2-digit

04

Time Zone z

Time zone, including Summer Time, abbreviated

EST

Time Zone zzzz

Time zone, including Summer Time, full name

Eastern Standard Time

Time Zone Z

Time zone, RFC-822 format

-0500

Time Zone ZZZZ

Time zone, as GMT offset

GMT-05:00

Time Zone ZZZZZ

Time zone, ISO-8601 format

GMT-05:00

Time Zone v

Time zone, not including Summer Time, abbreviated

ET

Time Zone vvvv

Time zone, not including Summer Time, full name

Eastern Time

Time Zone VVVV

Time zone, as location

United States Time (New York)

Other

Q

Quarter, number

1

Other

QQQ

Quarter, number with prefix

Q1

Other

QQQQ

Quarter, as words

1st quarter

Other

G

Era (BC, AD)

AD

Other

''

Two single quotes make one in output

'

PHP’s epoch timestamps and DateTime objects don’t support milliseconds, so the S,

SS, and SSS characters are always zeros. Unless a special meaning is listed in the table

for a repeating character, most other characters when repeated enable you to include

one or more leading zeros. For example, because m represents minute, mm produces 08

for the eighth minute past the hour.

Although a date or time argument type in a MessageFormatter message expects an

integer argument representing seconds since epoch, the IntlDateFormatter accomo‐

dates more ways to specify the time or date you care about. You can provide the value

to format as a DateTime object or as an array of time parts as returned by local

time(). For example:

$fmt = new IntlDateFormatter('en_US', IntlDateFormatter::FULL,

IntlDateFormatter::FULL,

'America/Chicago');

 // Z for time zone means UTC

19.3 Localizing Dates and Times | 575

$obj = new DateTime('2013-08-20T12:34:56Z');

$parts = array('tm_sec' => 56,

'tm_min' => 34,

'tm_hour' => 12,

'tm_mday' => 20,

'tm_mon' => 7, /* 0 = January */

'tm_year' => 113); /* 0 = 1900 */

print $fmt->format($obj) . " \n";

print $fmt->format($parts) . " \n";

This prints:

Tuesday, August 20, 2013 at 7:34:56 AM Central Daylight Time

Tuesday, August 20, 2013 at 12:34:56 PM Central Daylight Time

The values are formatted for output as appropriate for the en_US locale and the America/

Chicago time zone. This means that the hour specified in the DateTime object—12 P.M.

GMT—is adjusted to 7 A.M. Central Daylight Time (the active time zone for August 20,

2013 in Chicago). The time parts provided in the second call to format() do not include

a time zone, so they are assumed to be the same time zone as specified in the IntlDa

teFormatter constructor.

Starting in PHP 5.5, the IntlDateFormatter class also has a helper method to produce

localized, formatted date/time strings in one step, rather than having to construct a new

IntlDateFormatter and then call format(). The static IntlDateFormatter::fromOb

ject() method takes three arguments: a DateTime object, a format, and a locale, and

returns the formatted date/time string. Example 19-1 shows how it works.

 Example 19-1. DateTime object, format, and locale

$obj = new DateTime('2013-08-20T12:34:56');

print IntlDateFormatter::formatObject($obj, 'eeee dd MMMM y', 'es_ES') . " \n";

print IntlDateFormatter::formatObject($obj, IntlDateFormatter::FULL, 'fr_FR') .

" \n";

 // First element is date format, second is time format

$formats = array(IntlDateFormatter::FULL, IntlDateFormatter::SHORT);

print IntlDateFormatter::formatObject($obj, $formats, 'de_DE') . " \n";

This prints:

martes 20 agosto 2013

mardi 20 août 2013 12:34:56 UTC

Dienstag, 20. August 2013 12:34

As shown, the second argument to formatObject can either be an explicit format pattern

string, one of the IntlDateFormatter formatting style constants, or an array of two

formatting style constants. If a format pattern string is provided, that is used. If one

formatting style constant is provided, that is used for both date and time. If an array of

576 | Chapter 19: Internationalization and Localization

two formatting style constants is provided, the first is used for the date style and the second for the time style.

See Also

Recipe 3.1 discusses localtime(). Documentation on IntlDateFormatter, on IntlDa

teFormatter::format(), and on IntlDateFormatter::formatObject(). ICU date and time formatting, including format pattern characters, is explained at the ICU User

Guide.

19.4 Localizing Numbers

Problem

You want to display numbers in a locale-specific format.

Solution

Use the number argument type with MessageFormatter:

$message = '{0,number} / {1,number} = {2,number}';

$args = array(5327, 98, 5327/98);

$us = new MessageFormatter('en_US',$message);

$fr = new MessageFormatter('fr_FR',$message);

print $us->format($args) . " \n";

print $fr->format($args) . " \n";

This prints:

5,327 / 98 = 54.357

5 327 / 98 = 54,357

Discussion

Notice in the output that the same message produces different output based on what

locale the MessageFormatter is set to use. The characters used as the thousands sepa‐

rator and decimal point are locale-specific. What’s shown is the default number style

output. With an additional style parameter added to the type, you can change that.

For example, there are easy shortcuts for displaying numbers as currency amounts and

percentage amounts:

$message = '{0,number,currency}, {0,number,percent}';

$us = new MessageFormatter('en_US',$message);

print $us->format(array(3.33333333));

This prints:

19.4 Localizing Numbers | 577

$3.33, 333%

Instead of the shortcut words currency or percent, you can also specify a format string

as understood by the ICU DecimalFormat class. Many of the characters that can go in

this format string are listed in Table 19-2.

 Table 19-2. DecimalFormat pattern characters

Character Meaning

0

Digit

1-9

Digit, with rounding

#

Digit, display nothing for zero

@

Significant digit

%

Percent sign, multiplies number by 100

¤

Currency symbol

¤¤

Three-letter currency abbreviation

;

Separator for positive and negative patterns

This code runs through several of these patterns for a few different numbers:

$args = array(7,159,-0.3782,6.815574);

$messages = array("0", "00", "1", "11", "222",

"#", "##", "@", "@@@",

"##%", "¤#", "¤1.11",

"¤¤#",

"#.##;(#.## !!!)"

);

foreach ($messages as $message) {

$fmt = new MessageFormatter('en_US',"{0,number,$message}\t{1,number,

$message}\t"."{2,number,$message}\t

{3,number,$message}");

print "$message:\t" . $fmt->format($args) . " \n";

}

And this survey of patterns produces:

0: 7 1590 -0 7

00: 07 159 -00 07

1: 7 159 -0 7

11: 11 154 -00 11

222: 000 222 -000 000

#: 7 159 -0 7

##: 7 159 -0 7

@: 7 200 -0.4 7

@@@: 7.00 159 -0.378 6.82

##%: 700% 15900% -38% 682%

¤#: $7 $159 -$0 $7

578 | Chapter 19: Internationalization and Localization

¤1.11: $6.66 $158.73 -$0.00 $6.66

¤¤#: USD7 USD159 -USD0 USD7

#.##;(#.## !!!): 7 159 (0.38 !!!) 6.82

More precise control over number formatting is possible with the separate NumberFor

matter class. Its constructor accepts a locale, a formatting style, and an optional pattern

string. For example:

$args = array(7,159,-0.3782,6.815574);

$sci = new NumberFormatter('en_US', NumberFormatter::SCIENTIFIC);

$dur = new NumberFormatter('en_US', NumberFormatter::DURATION);

$ord = new NumberFormatter('en_US', NumberFormatter::ORDINAL);

$pat = new NumberFormatter('en_US', NumberFormatter::PATTERN_DECIMAL, '@@@@');

print $sci->format(10040) . " \n";

print $dur->format(64) . " \n";

print $ord->format(15) . " \n";

print $pat->format(1.357926) . " \n";

This prints:

1.004E4

1:04

15th

1.358

The first formatter, using the NumberFormatter::SCIENTIFIC style, turns 10040 into

appropriate scientific notation: 1.004E4. The second formatter, using NumberFormat

ter::DURATION, turns 64 seconds into 1:04—one minute and four seconds. The third

formatter, using NumberFormatter::ORDINAL, produces “15th” from 15. And the last

formatter, using NumberFormatter::PATTERN_DECIMAL, makes use of the same decimal

format pattern characters discussed earlier.

The possibilities listed here are only part of what NumberFormatter can do. The PHP

manual page for NumberFormatter goes into great detail on additional capabilities.

See Also

Recipe 19.5 shows how to use NumberFormatter to localize currency values. Documen‐

tation on the NumberFormatter class and a detailed list of ICU’s decimal format pattern

characters.

19.5 Localizing Currency Values

Problem

You want to display currency amounts in a locale-specific format.

19.5 Localizing Currency Values | 579

Solution

For default formatting inside a message, use the currency style of the number argument

type:

$income = 5549.3;

$debit = -25.95;

$fmt = new MessageFormatter('en_US',

'{0,number,currency} in and {1,number,currency} out');

print $fmt->format(array($income,$debit));

This prints:

$5,549.30 in and -$25.95 out

For more specific formatting, use the formatCurrency() method of a NumberFormatter:

$income = 5549.3;

$debit = -25.95;

$fmt = new NumberFormatter('en_US', NumberFormatter::CURRENCY);

print $fmt->formatCurrency($income, 'USD') . ' in and ' .

$fmt->formatCurrency($debit, 'EUR') . ' out';

This prints:

$5,549.30 in and -€25.95 out

Discussion

The currency style of the number argument type in MessageFormatter uses the default

currency and formatting rules for the locale of the MessageFormatter instance. This is

certainly a concise and easy way to include local currency amounts in messages you are

producing. The code that uses MessageFormatter prints:

$5,549.30 in and -$25.95 out

The formatCurrency() method of NumberFormatter makes it easy to specify other

currencies. In the example that uses NumberFormatter, because the first call to format

Currency() specifies USD (for US dollars) as the currency and the second specifies EUR

(for Euro), the code prints:

$5,549.30 in and -€25.95 out

Although you can construct complex currency formatting rules with the decimal format

patterns that MessageFormatter understands, it is often clearer to express those needs

via the programmatic interface NumberFormatter provides. For example:

$amounts = array(array(152.9, 'USD'),

array(328, 'ISK'),

array(-1, 'USD'),

580 | Chapter 19: Internationalization and Localization

 array(500.53, 'EUR'));

$fmt = new NumberFormatter('en_US', NumberFormatter::CURRENCY);

$fmt->setAttribute(NumberFormatter::PADDING_POSITION,

NumberFormatter::PAD_AFTER_PREFIX);

$fmt->setAttribute(NumberFormatter::FORMAT_WIDTH, 15);

$fmt->setTextAttribute(NumberFormatter::PADDING_CHARACTER, ' ');

foreach ($amounts as $amount) {

print $fmt->formatCurrency($amount[0], $amount[1]) . " \n";

}

This prints out a table of four values in different currencies, inserting enough padding

between the currency symbol and the value to make each line 15 characters wide. The

padding character used is a space, not the default of *. This displays:

$ 152.90

ISK 328

-$ 1.00

€ 500.53

See Also

Documentation on NumberFormatter::formatCurrency() and on the different for‐

matting attributes.

19.6 Localizing Images

Problem

You want to display images that have text in them and have that text in a locale-

appropriate language.

Solution

Make an image directory for each locale you want to support, as well as a global image

directory for images that have no locale-specific information in them. Create copies of

each locale-specific image in the appropriate locale-specific directory. Make sure that

the images have the same filename in the different directories. Instead of printing out

image URLs directly, treat their paths as localizable strings, either by explicitly storing

them in your message catalogs or by computing the right path at runtime.

Discussion

The img() wrapper function in Example 19-2 looks for a locale-specific version of an

image first, then a global one. If neither are present, it prints a message to the error log.

19.6 Localizing Images | 581

 Example 19-2. Finding locale-specific images

function img($locale, $f) {

static $image_base_path = '/usr/local/www/images';

static $image_base_url = '/images';

if (is_readable("$image_base_path/$locale/$f")) {

return "$image_base_url/$locale/$f";

} elseif (is_readable("$image_base_path/global/$f")) {

return "$image_base_url/global/$f";

} else {

error_log("l10n error: locale: $locale, image: '$f'");

}

}

The img() function needs to know both the path to the image file in the filesystem

($image_base_path) and the path to the image from the base URL of your site

(/images). It uses the first to test if the file can be read and the second to construct an

appropriate URL for the image.

A localized image must have the same filename in each localization directory. For ex‐

ample, an image that says “New!” on a yellow starburst should be called new.gif in both

the images/en_US directory and the images/es_US directory, even though the file im‐

 ages/es_US/new.gif is a picture of a yellow starburst with “¡Nuevo!” on it.

Don’t forget that the alt text you display in your image tags also needs to be localized.

Example 19-3 prints a complete localized element.

 Example 19-3. A localized element

print '<img src="' . img($locale, 'cancel.png') . '" ' .

'alt="' . $messages[$locale]['CANCEL'] . '"/>';

If the localized versions of a particular image have varied dimensions, store image height

and width in the message catalog as well. Example 19-4 prints a localized element with height and width attributes.

 Example 19-4. A localized element with height and width

print '<img src="' . img($locale, 'cancel.png') . '" ' .

'alt="' . $messages[$locale]['CANCEL'] . '" ' .

'height="' . $messages[$locale]['CANCEL_IMG_HEIGHT'] . '" ' .

'width="' . $messages[$locale]['CANCEL_IMG_WIDTH'] . '"/>';

The localized messages for CANCEL_IMG_HEIGHT and CANCEL_IMG_WIDTH are not text

strings, but integers that describe the dimensions of the cancel.png image in each locale.

The img() function used here is convenient because it inspects the filesystem at runtime

to find appropriate files. However, if your image collection rarely changes (or changes

in a predictable way, such as when you release a new version of your software) it can be

582 | Chapter 19: Internationalization and Localization

faster to store the paths themselves in the message catalog. This requires you to do some upfront work identifying which locales get a locale-specific image and which get a

generic version, however.

See Also

Recipe 19.2 discusses locale-specific message catalogs.

19.7 Localizing Included Files

Problem

You want to include locale-specific files in your pages.

Solution

Modify include_path once you’ve determined the appropriate locale, as shown in

Example 19-5.

 Example 19-5. Modifying include_path for localization

$base = '/usr/local/php-include';

$locale = 'en_US';

$include_path = ini_get('include_path');

ini_set('include_path',"$base/$locale:$base/global:$include_path");

Discussion

In Example 19-5, the $base variable holds the name of the base directory for your

included localized files. Files that are not locale-specific go in the global subdirectory of

$base, and locale-specific files go in a subdirectory named after their locale (e.g.,

 en_US). Prepending the locale-specific directory and then the global directory to the

include path makes them the first two places PHP looks when you include a file. Putting

the locale-specific directory first ensures that nonlocalized information is loaded only

if localized information isn’t available.

This technique is similar to what the img() function does in the Recipe 19.6. Here,

however, you can take advantage of PHP’s include_path feature to have the directory

searching happen automatically. For maximum utility, reset include_path as early as

possible in your code, preferably at the top of a file loaded via auto_prepend_file on

every request.

See Also

Documentation on include_path and on auto_prepend_file.

19.7 Localizing Included Files | 583

19.8 Sorting in a Locale-Aware Order

Problem

You need to sort text in a way that respects a particular locale’s rules for character or‐

dering.

Solution

Instantiate a Collator object for your locale, and then call its sort() method:

$words = array('Малина', 'Клубника', 'Огурец');

$collator = new Collator('ru_RU');

 // Sorts in-place, just like sort()

$collator->sort($words);

Discussion

PHP’s normal text-handling routines just treat strings as sequences of bytes. They know

nothing about multibyte characters, let alone each locale’s rules about which characters

go “before” which other ones in that locale’s equivalent of alphabetical order. The Col

lator class, however, uses ICU’s big database of locale-specific information to do this

properly.

The Collator’s sort() method corresponds to the PHP sort() function. Collator also

has an asort() method which, just like PHP’s asort() function, maintains index/value

association in the sorted array.

See Also

Documentation on Collator.

19.9 Managing Localization Resources

Problem

You need to keep track of your various message catalogs and images.

Solution

Store each message catalog as a serialized PHP array that maps message keys to locale-

specific message values. Or, if you need interoperability with ICU-aware tools or other

languages, use the ResourceBundle class.

584 | Chapter 19: Internationalization and Localization

Discussion

At its heart, a message catalog is just a mapping from keys to values. An English message

catalog may map HELLO_WORLD to “Hello, World” but a Spanish one maps it to “Hola,

Mundo.”

A simple way to manage these catalogs is to treat them as PHP arrays and then load

them from files (and save them to files) as serialized arrays. Example 19-6 shows a short

program that defines some message catalogs and saves them to files.

 Example 19-6. Saving message catalogs as serialized arrays

$messages = array();

$messages['en_US'] =

array('FAVORITE_FOODS' => 'My favorite food is {0}.',

'FRIES' => 'french fries',

'CANDY' => 'candy',

'CHIPS' => 'potato chips',

'EGGPLANT' => 'eggplant');

$messages['en_GB'] =

array('FAVORITE_FOODS' => 'My favourite food is {0}.',

'FRIES' => 'chips',

'CANDY' => 'sweets',

'CHIPS' => 'crisps',

'EGGPLANT' => 'aubergine');

foreach ($messages as $locale => $entries) {

file_put_contents(__DIR__ . "/$locale.ser", serialize($entries));

}

Given a message catalog saved by Example 19-6, Example 19-7 shows how to load and

use it in your program.

 Example 19-7. Using message catalogs from serialized arrays

 /* This might come from user input or the browser */

define('LOCALE', 'en_US');

 /* If you can't trust the locale, add some error checking

 * in case the file doesn't exist or can't be

 * unserialized. */

$messages = unserialize(file_get_contents(__DIR__ . '/' . LOCALE . '.ser'));

$candy = new MessageFormatter(LOCALE, $messages['CANDY']);

$favs = new MessageFormatter(LOCALE, $messages['FAVORITE_FOODS']);

print $favs->format(array($candy->format(array()))) . " \n";

Treating message catalogs as serialized PHP arrays is straightforward. However, it is a

PHP-specific format. ICU defines a generic format, called a “resource bundle” for shar‐

ing data such as message catalogs between different programs and tools. If you’re work‐

ing with localization tools or other programming languages that understand ICU re‐

source bundles, use the ResourceBundle class to manage them.

19.9 Managing Localization Resources | 585

Creating ICU resource bundles involves creating a text file in the proper format, and

then running ICU’s genrb tool to produce the compiled “binary” version of the bundle.

The following examples assume an ICU resource bundle with the following contents:

en_US {

FAVORITE_FOODS { "My favorite food is {0}." }

FRIES { french fries }

CANDY { candy }

CHIPS { potato chips }

EGGPLANT { eggplant }

}

This resource bundle is compiled by genrb to a file named en_US.res. The en_US, for

the locale, is taken from the top-level table name in the file. The .res suffix is the default

suffix genrb gives to all compiled resource bundles.

Example 19-8 retrieves message catalog entries from this bundle and prints out the same text as Example 19-7.

 Example 19-8. Using message catalogs from resource bundles

define('LOCALE', 'en_US');

$bundle = new ResourceBundle(LOCALE, __DIR__);

$candy = new MessageFormatter(LOCALE, $bundle->get('CANDY'));

$favs = new MessageFormatter(LOCALE, $bundle->get('FAVORITE_FOODS'));

print $favs->format(array($candy->format(array()))) . " \n";

In Example 19-8, the two arguments to the ResourceBundle constructor indicate how

to find the right compiled resource bundle. The second argument is the directory to

look in for the file, and the first argument is the locale name, which is normally the

basename of the file. Once the ResourceBundle has been instantiated, you access indi‐

vidual elements in the bundle with the get() method. The code to print out My favorite

food is candy. is almost identical to Example 19-7. The only difference is the syntax for retrieving the message strings from the resource bundle, rather then as array elements.

See Also

Recipe 19.2 for a discussion of message catalogs; documentation on ResourceBundle.

An overview of ICU resource management, including the syntax for writing resource

bundle files.

586 | Chapter 19: Internationalization and Localization

19.10 Setting the Character Encoding of Outgoing Data

Problem

You want to make sure that browsers correctly handle the UTF-8–encoded text that

your programs emit.

Solution

Set PHP’s default_encoding configuration directive to utf-8. This ensures that the

Content-Type header PHP emits on HTML responses includes the charset=utf-8

piece, which tells web browsers to interpret the page contents as UTF-8 encoded.

Discussion

Setting default_encoding gives web browsers a heads-up that your page contents

should be interpreted as UTF-8 encoded. However, you still have the responsibility of

making sure that the page contents really are properly UTF-8 encoded by using string

functions appropriately. Recipe 19.12 details how to do that.

If you can’t change the default_encoding configuration directive, send the proper

Content-Type header yourself with the header() function, as shown in Example 19-9.

 Example 19-9. Setting character encoding

header('Content-Type: text/html;charset=utf-8');

See Also

Recipe 19.12 for information on generating UTF-8-encoded text.

19.11 Setting the Character Encoding of Incoming Data

Problem

You want to make sure that data flowing into your program has a consistent character

encoding so you can handle it properly. For example, you want to treat all incoming

submitted form data as UTF-8.

Solution

You can’t guarantee that browsers will respect the instructions you give them with regard

to character encoding, but you can do a number of things that make well-behaved

browsers generally follow the rules.

19.10 Setting the Character Encoding of Outgoing Data | 587

First, follow the instructions in Recipe 19.10 so that your programs tell browsers that they are emitting UTF-8–encoded text. A Content-Type header with a charset is a

good hint to a browser that submitted forms should be encoded using the character

encoding the header specifies.

Second, include an accept-charset="utf-8" attribute in <form/> elements that you

output. Although it’s not supported by all web browsers, it instructs the browser to

encode the user-entered data in the form as UTF-8 before sending it to the server.

Discussion

In general, browsers send back form data with the same encoding used to generate the

page containing the form. So if you standardize on UTF-8 output, you can be reasonably

sure that you’re always getting UTF-8 input. The accept-charset <form/> attribute is

part of the HTML 4.0 specification, but is not implemented everywhere.

See Also

Recipe 19.10 for information about sending UTF-8–encoded output; the accept-

charset <form/> attribute is described at the W3C website.

19.12 Manipulating UTF-8 Text

Problem

You want to work with UTF-8–encoded text in your programs. For example, you want

to properly calculate the length of multibyte strings and make sure that all text is output

as proper UTF-8–encoded characters.

Solution

Use a combination of PHP functions for the variety of tasks that UTF-8 compliance

demands.

If the mbstring extension is available, use its string functions for UTF-8–aware string

manipulation. Example 19-10 uses the mb_strlen() function to compute the number

of characters in each of two UTF-8–encoded strings.

 Example 19-10. Using mb_strlen()

 // Set the encoding properly

mb_internal_encoding('UTF-8');

 // ö is two bytes

$name = 'Kurt Gödel';

 // Each of these Hangul characters is three bytes

$dinner = '불고기';

588 | Chapter 19: Internationalization and Localization

$name_len_bytes = strlen($name);

$name_len_chars = mb_strlen($name);

$dinner_len_bytes = strlen($dinner);

$dinner_len_chars = mb_strlen($dinner);

print "$name is $name_len_bytes bytes and $name_len_chars chars\n";

print "$dinner is $dinner_len_bytes bytes and $dinner_len_chars chars\n";

Example 19-10 prints:

Kurt Gödel is 11 bytes and 10 chars

불고기 is 9 bytes and 3 chars

The iconv extension also offers a few multibyte-aware string manipulation functions,

as shown in Example 19-11.

 Example 19-11. Using iconv

 // Set the encoding properly

iconv_set_encoding('internal_encoding','UTF-8');

 // ö is two bytes

$name = 'Kurt Gödel';

 // Each of these Hangul characters is three bytes

$dinner = '불고기';

$name_len_bytes = strlen($name);

$name_len_chars = iconv_strlen($name);

$dinner_len_bytes = strlen($dinner);

$dinner_len_chars = iconv_strlen($dinner);

print "$name is $name_len_bytes bytes and $name_len_chars chars\n";

print "$dinner is $dinner_len_bytes bytes and $dinner_len_chars chars\n";

print "The seventh character of $name is " . iconv_substr($name,6,1) . " \n"; print "The last two characters of $dinner are " . iconv_substr($dinner,-2);

Use the optional third argument to functions such as htmlentities() and htmlspe

cialchars() that instructs them to treat input as UTF-8 encoded, as shown in

Example 19-12.

 Example 19-12. UTF-8 HTML encoding

$encoded_name = htmlspecialchars($_POST['name'], ENT_QUOTES, 'UTF-8');

$encoded_dinner = htmlentities($_POST['dinner'], ENT_QUOTES, 'UTF-8');

Discussion

Eternal vigilance is the price of proper character encoding. If you’ve followed the in‐

structions in Recipe 19.10 and Recipe 19.11, data coming into your program should be

19.12 Manipulating UTF-8 Text | 589

UTF-8 encoded and browsers will properly handle data coming out of your program

as UTF-8 encoded. This leaves you with two responsibilities: to operate on strings in a

UTF-8–aware manner and to generate text that is UTF-8 encoded.

Fulfulling the first responsibility is made easier once you have adopted the fundamental

credo of internationalization awareness: a character is not a byte. The PHP-specific

corollary to this axiom is that PHP’s string functions only know about bytes, not char‐

acters. For example, the strlen() function counts the number of bytes in a string, not

the number of characters. In the prelapsarian days of ISO-8859-1 encoding, this wasn’t

a problem—each of the 256 characters in the character set took up one byte. A UTF-8–

encoded character, on the other hand, uses between one and four bytes. The mbstring

and iconv extensions provide alternatives for some string functions that operate on a

character-by-character basis, not a byte-by-byte basis. These functions are listed in

Table 19-3.

 Table 19-3. Character-based functions

Regular function

mbstring function

iconv function

strlen()

mb_strlen()

iconv_strlen()

strpos()

mb_strpos()

iconv_strpos()

strrpos()

mb_strrpos()

iconv_strrpos()

substr()

mb_substr()

iconv_substr()

strtolower()

mb_strtolower()

-

strtoupper()

mb_strtoupper()

-

substr_count()

mb_substr_count()

-

ereg()

mb_ereg()

-

eregi()

mb_eregi()

-

ereg_replace()

mb_ereg_replace()

-

eregi_replace() mb_eregi_replace() -

split()

mb_split()

-

mail()

mb_send_mail()

-

For mbstring to work properly, it needs to be told to use the UTF-8 encoding scheme.

As in Example 19-10, you can do this in script with the mb_internal_encoding()

function. Or to set this value system-wide, set the mbstring.internal_encoding con‐

figuration directive to UTF-8.

iconv has similar needs. Use the iconv_set_encoding() function as in Example 19-11

or set the iconv.internal_encoding configuration directive.

mbstring provides alternatives for the ereg family of regular expression functions.

However, you can always use UTF-8 strings with the PCRE (preg_*()) regular expres‐

590 | Chapter 19: Internationalization and Localization

sion functions. The u modifier tells a preg function that the pattern string is UTF-8

encoded and enables the use of various Unicode properties in patterns. Example 19-13

uses the “lowercase letter” Unicode property to count the number of lowercase letters

in each of two strings.

 Example 19-13. UTF-8 regular expression matching

$name = 'Kurt Gödel';

$dinner = '불고기';

$name_lower = preg_match_all('/\p{Ll}/u',$name,$match);

$dinner_lower = preg_match_all('/\p{Ll}/u',$dinner,$match);

print "There are $name_lower lowercase letters in $name. \n";

print "There are $dinner_lower lowercase letters in $dinner. \n";

Example 19-13 prints:

There are 7 lowercase letters in Kurt Gödel.

There are 0 lowercase letters in 불고기.

Other functions help you translate between other character encodings and UTF-8. The

utf8_encode() and utf8_decode() functions move strings between the ISO-8859-1

encoding and UTF-8. Because ISO-8859-1 is the default encoding in many situations,

these functions are a handy way to bring non-UTF-8–aware data into compliance. For

example, the dictionaries that the pspell extension uses often have their entries encoded

in ISO-8859-1. In Example 19-14, the utf8_encode() function is necessary to turn the

output of pspell_suggest() into a proper UTF-8–encoded string.

 Example 19-14. Applying UTF-8 encoding to ISO-8859-1 strings

$lang = isset($_GET['lang']) ? $_GET['lang'] : 'en';

$word = isset($_GET['word']) ? $_GET['word'] : 'asparagus';

$ps = pspell_new($lang);

$check = pspell_check($ps, $word);

print htmlspecialchars($word,ENT_QUOTES,'UTF-8');

print $check ? ' is ' : ' is not ';

print ' found in the dictionary.';

print '<hr/>';

if (! $check) {

$suggestions = pspell_suggest($ps, $word);

if (count($suggestions)) {

print 'Suggestions: ';

foreach ($suggestions as $suggestion) {

$utf8suggestion = utf8_encode($suggestion);

$safesuggestion = htmlspecialchars($utf8suggestion,

ENT_QUOTES,'UTF-8');

print "$safesuggestion";

19.12 Manipulating UTF-8 Text | 591

 }

print '';

}

}

It may ease the cognitive burden of proper character encoding to think of it as a task

similar to HTML entity encoding. In each case, text must be processed so that it is

appropriately formatted for a particular context. With entity encoding, that usually

means running data retrieved from an external source through htmlentities() or

htmlspecialchars(). With character encoding, it means turning everything into

UTF-8 before you process it, using a character-aware function for string operations,

and ensuring strings are UTF-8 encoded before outputting them.

See Also

Recipe 19.10 and Recipe 19.11 for setting up your programs for receiving and sending UTF-8–encoded strings; documentation on mbstring, on iconv, on htmlentities(), on htmlspecialchars(), on PCRE pattern syntax, on utf8_encode(), and on utf8_de

code().

Good background resources on managing PHP and character set issues include:

• “Character Sets/Character Encoding Issues” on the PHP WACT wiki

• “Characters vs. Bytes” by Tim Bray

• “A Tutorial on Character Code Issues” by Jukka Korpela

592 | Chapter 19: Internationalization and Localization

CHAPTER 20

Error Handling

20.0 Introduction

The name programmer for those who spend their time developing web applications is

misleading: the vast majority of time one spends programming is actually spent debug‐

 ging. Whether you’re fixing typos or refactoring chunks of code that are performing

poorly in a heavily loaded production environment, odds are you’ll spend a large amount

of your career debugging and testing, and debugging and testing again. And again, and

again, and again.

The raucous party that is a frantic, all-night debugging session was probably omitted

from your job description—who would sign up for that kind of fun? The fact is that

errors, bugs, debugging, and testing are a part of the programmer’s life. If you face this

head on with good practices and techniques, you can minimize the time you spend

debugging and maximize the time you spend on the good stuff.

Unfortunately, many developers don’t spend much time building error handling, de‐

bugging, and testing skills; don’t make the same mistake. If you employ what’s affec‐

tionately known as pessimistic programming, you’ll begin to plan for things to go wrong

—and your application will be prepared to handle it gracefully during those moments.

This chapter deals with errors: finding the source of errors, determining what was going

on when an error occurred, hiding errors from end users, and logging errors so you can

conduct informed debugging sessions after the error occurs. Chapter 21 complements

this information with information on using a debugger with PHP and writing tests.

593

20.1 Finding and Fixing Parse Errors

Problem

Your PHP script fails to run due to fatal parse errors, and you want to find the problem

quickly and continue coding.

Solution

Check the line that the PHP interpreter reports as having a problem. If that line is OK,

work your way backward in the program until you find the problematic line.

Or use a PHP-aware development environment that will alert you to syntax errors as

you code, and that can also help track down parse errors when they occur.

Discussion

Like most programming languages, the PHP interpreter is very picky about the way

scripts are written. When things aren’t written exactly as they they should be, the PHP

interpreter will halt parsing and let you know that things aren’t right. This is called a

 parse error.

Take this flawed program:

<?php

if isset($user_firstname) {

print "Howdy, $user_firstname!";

} else {

print "Howdy!";

}

Save that to a file called howdy.php and run it, and PHP will display this error message:

Parse error: syntax error, unexpected T_ISSET, expecting '(' in ↵

/var/www/howdy.php on line 2

Based on this message, we know that there’s a problem on line 2—specifically, a syntax

error; something about an unexpected T_ISSET.

When PHP parses scripts to convert them into a format that the computer can under‐

stand, it breaks down each line into chunks called tokens. PHP recognizes dozens of

tokens, and it knows the rules about what tokens are allowed to appear in what order

in a line of PHP code. In the preceding parse error, the bit about an unexpected T_IS

SET means that a T_ISSET token was encountered by the PHP interpreter where it’s not

supposed to be.

Reading a little further through the parse error, it’s suddenly clear that the PHP inter‐

preter was expecting a (where it found the T_ISSET token. Looking back at line 2 of

594 | Chapter 20: Error Handling

the program, sure enough, the open parenthesis is missing after the if and before the

isset() function.

Some PHP-aware editing tools can alert you to these problems before you get to the

stage of running the code and getting the parse error in the first place. Figure 20-1 shows our buggy program in NetBeans IDE, complete with advance warning of the parse error

in our future.

 Figure 20-1. NetBeans IDE sees the parse error before it happens

It’s not always as easy as going directly to the line that the parse error tells you to go to.

Sometimes an error several lines prior to the one reported causes a problem that may

not seem like a problem when it is encountered, but is a problem within the context of

what is on the line that the parse error is referring to.

20.1 Finding and Fixing Parse Errors | 595

If you have difficulty finding the source of the error and don’t have access to a debugging tool to help you root out the cause of the error, remember that when all else fails, commenting is your friend. Start by commenting out blocks of code before the line referred

to in the parse error, and then rerunning the offending script. Through the process of

elimination, you will eventually find the line causing the problem.

See Also

The PHP parser token cheat sheet.

20.2 Creating Your Own Exception Classes

Problem

You want control over how (or if) error messages are displayed to users, even though

you’re using several third-party libraries that each have their own views on handling

errors.

Solution

Take advantage of PHP 5’s support for exceptions to create your own exception handler

that will do your bidding when errors occur in third-party libraries:

class CustomException extends Exception {

public function __construct($e) {

 // make sure everything is assigned properly

parent::__construct($e->getMessage(), $e->getCode());

 // log what we know

$msg = "--\n";

$msg .= __CLASS__ . ": [{$this->code}]: {$this->message}\n";

$msg .= $e->getTraceAsString() . " \n";

error_log($msg);

}

 // overload the __toString() method to suppress any "normal" output

public function __toString() {

return $this->printMessage();

}

 // map error codes to output messages or templates

public function printMessage() {

$usermsg = '';

$code = $this->getCode();

switch ($code) {

case SOME_DEFINED_ERROR_CODE:

596 | Chapter 20: Error Handling

 $usermsg = 'Ooops! Sorry about that.';

break;

case OTHER_DEFINED_ERROR_CODE:

$usermsg = "Drat!";

break;

default:

$usermsg = file_get_contents('/templates/general_error.html');

break;

}

return $usermsg;

}

 // static exception_handler for default exception handling

public static function exception_handler($exception) {

throw new CustomException($exception);

}

}

 // make sure to catch every exception

set_exception_handler('CustomException::exception_handler');

try {

$obj = new CoolThirdPartyPackage();

} catch (CustomException $e) {

echo $e;

}

Discussion

PHP 5 introduced the concept of exceptions to PHP. Exceptions are a common construct

in many other languages; they’re used to deal gracefully with unforeseen error condi‐

tions. This is particularly useful when including third-party library code in your scripts

when you’re not 100 percent confident how that code will behave in unpredictable cir‐

cumstances, such as loss of database connectivity, an unresponsive remote API server,

or similar acts of randomness.

Exceptions provide your scripts with a try/catch structure you use to create a sand‐

boxed section of your script where things can go horribly wrong without hurting any‐

thing else:

try {

 // do something

$obj = new CoolThing();

} catch (CustomException $e) {

 // at this point, the CoolThing wasn't cool

print $e;

}

So why use a custom exception, when PHP 5 already provides a perfectly functional

exception class? The default exception class doesn’t exactly fulfill the graceful part of

20.2 Creating Your Own Exception Classes | 597

handling unpredictable results. It just prints out an error message not much different

from regular errors. If you want truly flexible handling of these unfortunate events, a

custom exception handler allows you to do what you have determined is the most ap‐

propriate given the condition.

In the CustomException class in the preceding code, you have two objectives. The first

is to log everything you can about what happened; the second is to be as cool as possible

from the user’s perspective.

The __construct() method sets up the exception by calling the parent’s constructor

(the constructor of the default exception class) to ensure that all possible values are set

for use by your custom exception’s methods.

Then, you immediately log what you can, using an error_log() call that you can replace

with a custom error logger of your choice. In keeping with the goal of handling this

error gracefully, make sure that your error logger is capable of logging this error without

causing another one. For example, if the error you’re about to log is related to failed

database connectivity, it’s probably a good idea if you don’t try to log this error to an

error log table on that same database server.

From there, the CustomException class is written to expect the calling code to print out

the error. However, that is not required behavior. You could just as easily have a try/

catch block like this:

try {

 // do something

$obj = new CoolThing();

} catch (CustomException $e) {

 // at this point, the CoolThing wasn't cool

$e->redirectToOhNoPage();

}

The segment catch (CustomException $e) means that an instance of the CustomEx

ception class will be instantiated and assigned to the variable $e. From there, $e is just

an object that has some predefined values and methods relating to the problem that

caused the exception, but is otherwise a regular object that can be as simple or as com‐

plicated as you want it to be.

One primary difference between a standard error handler and exceptions is the concept

of recovery. The use case shown in this recipe thus far has a good correlation with the

set_error_handler() usage you may already be familiar with. The idea is that your

custom handler can contain a clean-up routine that checks the state of the application

at the time that the custom exception is caught, cleans up as best as it can, and dies

gracefully.

598 | Chapter 20: Error Handling

Exceptions can also be used to easily recover from an error in the midst of an application’s flow. For example, a try block can have multiple catch blocks that are somewhat neater

than a bunch of if/else/else/else blocks:

try {

 // do something

$obj = new CoolThing();

} catch (PossibleException $e) {

 // we thought this could possibly happen

print "<!-- caught exception $e! -->";

$obj = new PlanB();

} catch (AnotherPossibleException $e) {

 // we knew about this possibility as well

print "<!-- aha! caught exception $e -->";

$obj = new PlanC();

} catch (CustomException $e) {

 // if all else fails, go to clean-up

$e->cleanUp();

$e->bailOut();

}

In this example, we’re able to use the try/catch structure to check for exception con‐

ditions without stepping out of the flow of this chunk of code, unless all else truly fails.

If we were unable to recover in any of the ways we knew how to in line with the flow of

the application, we still have the option of bailing out to a catchall custom exception.

We can even throw a new exception inside the catch blocks in order to influence the

order in which exceptions bubble up to a try/catch block that may be wrapping the

chunk of code currently executing.

See Also

Recipe 20.9 for more on logging errors; documentation on exceptions.

20.3 Printing a Stack Trace

Problem

You want to know what’s happening at a specific point in your program, and what

happened leading up to that point.

Solution

Use debug_print_backtrace():

function stooges() {

print "woo woo woo! \n";

larry();

}

20.3 Printing a Stack Trace | 599

function larry() {

curly();

}

function curly() {

moe();

}

function moe() {

debug_print_backtrace();

}

stooges();

This will print:

woo woo woo!

 #0 moe() called at [backtrace.php:12]

 #1 curly() called at [backtrace.php:8]

 #2 larry() called at [backtrace.php:4]

 #3 stooges() called at [backtrace.php:19]

Discussion

The handy debug_print_backtrace() function allows you to quickly get a sense of

what has been been going on in your application immediately before you called a par‐

ticular function.

The more complicated your application, the more information you can expect to have

returned from the backtrace functions. For debugging larger codebases, you may ach‐

ieve bug-hunting success more quickly using a full debugging extension, such as Xde‐

bug, or an integrated development environment (IDE), such as NetBeans, that supports

setting breakpoints, stepping in and out of blocks of code, watching the evolution of

variables, and more.

If all you need is a little more information than you can get from sprinkling print 'Here

I am on line ' . LINE; statements throughout your code, debug_print_back

trace() will suit your needs well.

The output from debug_print_backtrace() includes, by default, the arguments passed

to each function. If those arguments are big arrays or complicated objects, it can make

the output unwieldy. You can pass the constant DEBUG_BACKTRACE_IGNORE_ARGS as a

first argument to debug_print_backtrace() to have arguments eliminated from the

output. If you only need to keep track of the sequence of functions called, this is perfect.

A companion to debug_print_backtrace() is debug_backtrace(). Instead of out‐

putting the backtrace, debug_backtrace() returns it as an array, one element per stack

frame. This is useful if you only need to print certain elements of the backtrace, or you

600 | Chapter 20: Error Handling

want to manipulate it programmatically. Example 20-1 uses the information from de bug_backtrace() to print out a limited trace just showing functions and class names.

 Example 20-1. Using debug_backtrace()

function print_parsed_backtrace() {

$backtrace = debug_backtrace();

for ($i = 1, $j = count($backtrace); $i < $j; $i++) {

$frame = $backtrace[$i];

if (isset($frame['class'])) {

$function = $frame['class'] . $frame['type'] . $frame['function'];

} else {

$function = $frame['function'];

}

print $function . '()';

if ($i != ($j - 1)) {

print ', ';

}

}

}

function stooges() {

print "woo woo woo! \n";

Fine::larry();

}

class Fine {

static function larry() {

$brothers = new Howard;

$brothers->curly();

}

}

class Howard {

function curly() {

$this->moe();

}

function moe() {

print_parsed_backtrace();

}

}

stooges();

This prints:

woo woo woo!

Howard->moe(), Howard->curly(), Fine::larry(), stooges()

Example 20-1 causes a chain of functions to be invoked, with one of them calling

print_parsed_backtrace(). This function then gets information about the stack

frames from debug_backtrace() and then walks through them. The for() loop starts

at 1, not 0, because the first frame on the stack (array element 0) is for the call to

20.3 Printing a Stack Trace | 601

print_parsed_backtrace() itself. If the stack frame is a method call, then the class

element of the array contains the class name of the method and the type element con‐

tains :: for a static method call and -> for an instance method call. If there’s no class

element, it’s just a regular function call.

See Also

Documentation on debug_backtrace() and debug_print_backtrace(); NetBeans;

The Three Stooges.

20.4 Reading Configuration Variables

Problem

You want to get the value of a PHP configuration setting.

Solution

Use ini_get():

 // find out the include path:

$include_path = ini_get('include_path');

Discussion

To get all the configuration variable values in one step, call ini_get_all(). It returns

the variables in an associative array, and each array element is itself an associative array.

The second array has three elements: a global value for the setting, a local value, and an

access code:

 // Put all config values in an associative array

$vars = ini_get_all();

print_r($vars['date.timezone']);

This prints:

Array

(

 [global_value] => UTC

 [local_value] => UTC

 [access] => 7

)

The global_value is the value set from the php.ini file; the local_value is adjusted to

account for any changes made in the web server’s configuration file, any relevant .htac‐

 cess files, and the current script. The value of access is a numeric constant representing

the places where this value can be altered. Table 20-1 explains the values for access.

602 | Chapter 20: Error Handling

Note that the name access is a little misleading in this respect because the value of the setting can always be checked, but not always adjusted.

 Table 20-1. Access values

Value PHP constant

Meaning

1

PHP_INI_USER

Any script, using ini_set()

2

PHP_INI_PERDIR Directory level, using .htaccess

4

PHP_INI_SYSTEM System level, using php.ini or httpd.conf

7

PHP_INI_ALL

Everywhere: scripts, directories, and the system

A value of 6 means the setting can be changed in both the directory and system level,

as 2 + 4 = 6. In practice, there are no variables modifiable only in PHP_INI_USER or

PHP_INI_PERDIR, and all variables are modifiable in PHP_INI_SYSTEM, so everything has

a value of 4, 6, or 7.

You can also get variables belonging to a specific extension by passing the extension

name to ini_get_all():

 // return just the session module specific variables

$session = ini_get_all('session');

By convention, the variables for an extension are prefixed with the extension name and

a period. So all the session variables begin with session. and all the PDO variables begin

with pdo, for example.

Because ini_get() returns the current value for a configuration directive, if you want

to check the original value from the php.ini file, use get_cfg_var():

$original = get_cfg_var('sendmail_from'); // have we changed our address?

The value returned by get_cfg_var() is the same as what appears in the global_val

ue element of the array returned by ini_get_all().

See Also

Recipe 20.5 on setting configuration variables; documentation on ini_get(),

ini_get_all(), and get_cfg_var(); a complete list of configuration variables, their

defaults, and when they can be modified.

20.5 Setting Configuration Variables

Problem

You want to change the value of a PHP configuration setting.

20.5 Setting Configuration Variables | 603

Solution

Use ini_set():

 // add a directory to the include path

ini_set('include_path', ini_get('include_path') . ':/home/fezzik/php');

Discussion

Configuration variables are not permanently changed by ini_set(). The new value

lasts only for the duration of the request in which ini_set() is called. To make a per‐

sistent modification, alter the values stored in the php.ini file.

It isn’t meaningful to alter certain variables, such as asp_tags, because by the time you

call ini_set() to modify the setting, it’s too late to change the behavior the setting

affects. If a variable can’t be changed, ini_set() returns false.

However, it is useful to alter configuration variables in certain pages. For example, if

you’re running a script from the command line, set html_errors to off.

To reset a variable back to its original setting, use ini_restore():

ini_restore('sendmail_from'); // go back to the default value

See Also

Recipe 20.4 on getting values of configuration variables; documentation on ini_set()

and ini_restore().

20.6 Hiding Error Messages from Users

Problem

You don’t want PHP error messages to be visible to users.

Solution

Set the following values in your php.ini or web server configuration file:

display_errors =off

log_errors =on

You can also set these values using ini_set() if you don’t have access to edit your server’s

 php.ini file:

ini_set('display_errors', 'off');

ini_set('log_errors', 'on');

604 | Chapter 20: Error Handling

These settings tell PHP not to display errors as HTML to the browser but to put them

in the server’s error log.

Discussion

When log_errors is set to on, error messages are written to the server’s error log. If you

want PHP errors to be written to a separate file, set the error_log configuration directive

with the name of that file:

error_log = /var/log/php.error.log

or:

ini_set('error_log', '/var/log/php.error.log');

If error_log is set to syslog, PHP error messages are sent to the system logger using

 syslog(3) on Unix and to the Event Log on Windows. If error_log is not set, error

messages are sent to a default location, usually your web server’s error log file. (For the

command-line PHP program, the default error location is the standard error output

stream.)

There are lots of error messages you want to show your users, such as telling them they’ve

filled in a form incorrectly, but you should shield your users from internal errors that

may reflect a problem with your code. There are two reasons for this. First, these errors

appear unprofessional (to expert users) and confusing (to novice users). If something

goes wrong when saving form input to a database, check the return code from the

database query and display a message to your users apologizing and asking them to

come back later. Showing them a cryptic error message straight from PHP doesn’t in‐

spire confidence in your website.

Second, displaying these errors to users is a security risk. Depending on your database

and the type of error, the error message may contain information about how to log in

to your database or server and how it is structured. Malicious users can use this infor‐

mation to mount an attack on your website.

For example, if your database server is down, and you attempt to connect to it with

mysql_connect(), PHP generates the following warning:

 Warning : Can't connect to MySQL server on 'db.example.com' (111) in

 /www/docroot/example.php on line 3
 If this warning message is sent to a user’s browser, he learns that your database server

is called db.example.com and can focus his cracking efforts on it.

20.6 Hiding Error Messages from Users | 605

See Also

Recipe 20.9 for how to log errors; Recipe 20.5 for more about setting configuration values with ini_set(); documentation on PHP configuration directives.

20.7 Tuning Error Handling

Problem

You want to alter the error-logging sensitivity on a particular page. This lets you control

what types of errors are reported.

Solution

To adjust the types of errors PHP complains about, use error_reporting():

error_reporting(E_ALL); // everything

error_reporting(E_ERROR | E_PARSE); // only major problems

error_reporting(E_ALL & ~E_NOTICE); // everything but notices

Discussion

Every error generated has an error type associated with it. For example, if you try to

array_pop() a string, PHP complains that “This argument needs to be an array” because

you can only pop arrays. The error type associated with this message is E_NOTICE, a

nonfatal runtime problem.

By default, the error reporting level is E_ALL & ~E_NOTICE, which means all error types

except notices. The & is a logical AND, and the ~ is a logical NOT. However, the php.ini-

 recommended configuration file sets the error reporting level to E_ALL, which is all error

types.

PHP 5.0 introduced a new error level, E_STRICT. Enabling E_STRICT during develop‐

ment has the benefit of PHP alerting you of ways your code could be improved. You

will receive warnings about the use of deprecated functions, along with tips to nudge

you in the direction of the latest and greatest suggested methods of coding. For PHP

5.0–5.3, E_STRICT is the only error level not included in E_ALL; for maximum coverage

during development, set the error reporting level to E_ALL | E_STRICT. Starting with

PHP 5.4, E_STRICT is included in E_ALL.

Error messages flagged as notices are runtime problems that are less serious than warn‐

ings. They’re not necessarily wrong, but they indicate a potential problem. One example

of an E_NOTICE is “Undefined variable,” which occurs if you try to use a variable without

previously assigning it a value:

606 | Chapter 20: Error Handling

 // Generates an E_NOTICE

foreach ($array as $value) {

$html .= $value;

}

 // Doesn't generate any error message

$html = '';

foreach ($array as $value) {

$html .= $value;

}

In the first case, the first time through the foreach, $html is undefined. So when you

append to it, PHP lets you know you’re appending to an undefined variable. In the

second case, the empty string is assigned to $html above the loop to avoid the E_NO

TICE. The previous two code snippets generate identical code because the default value

of a variable is the empty string. The E_NOTICE can be helpful because, for example, you

may have misspelled a variable name:

foreach ($array as $value) {

$hmtl .= $value; // oops! that should be $html

}

$html = '';

foreach ($array as $value) {

$hmtl .= $value; // oops! that should be $html

}

A custom error-handling function can parse errors based on their type and take an

appropriate action. A complete list of error types is shown in Table 20-2.

 Table 20-2. Error types

Value

Constant

Description

Catchable

1

E_ERROR

Nonrecoverable error

No

2

E_WARNING

Recoverable error

Yes

4

E_PARSE

Parser error

No

8

E_NOTICE

Possible error

Yes

16

E_CORE_ERROR

Like E_ERROR but generated by the PHP core

No

32

E_CORE_WARNING

Like E_WARNING but generated by the PHP core

No

64

E_COMPILE_ERROR

Like E_ERROR but generated by the Zend Engine

No

128

E_COMPILE_WARNING

Like E_WARNING but generated by the Zend Engine

No

256

E_USER_ERROR

Like E_ERROR but triggered by calling trigger_error()

Yes

512

E_USER_WARNING

Like E_WARNING but triggered by calling trigger_error()

Yes

1024

E_USER_NOTICE

Like E_NOTICE but triggered by calling trigger_error()

Yes

2048

E_STRICT

Runtime notices in which PHP suggests changes to improve code quality N/A

(since PHP 5)

20.7 Tuning Error Handling | 607

Value

Constant

Description

Catchable

4096

E_RECOVERABLE_ERROR Dangerous error (such as mismatched type hint) but not fatal

Yes

8192

E_DEPRECATED

Warning that you’ve used a deprecated function or feature

Yes

16384 E_USER_DEPRECATED

Deprecation warning you can trigger in your code

Yes

32767 E_ALL

Everything

No

Errors labeled catchable can be processed by the function registered using set_er

ror_handler(). The others indicate such a serious problem that they’re not safe to be

handled by users, and PHP must take care of them.

The E_RECOVERABLE_ERROR type was introduced in PHP 5.2.0. The E_DEPRECATED and

E_USER_DEPRECATED types were introduced in PHP 5.3.0.

See Also

Recipe 20.8 shows how to set up a custom error handler; documentation on error_re

porting() and set_error_handler(); more information about errors.

20.8 Using a Custom Error Handler

Problem

You want to create a custom error handler that lets you control how PHP reports errors.

Solution

To set up your own error function, use set_error_handler():

set_error_handler('pc_error_handler');

function pc_error_handler($errno, $error, $file, $line) {

$message = "[ERROR][$errno][$error][$file:$line]";

error_log($message);

}

Discussion

A custom error handling function can parse errors based on their type and take the

appropriate action. See Table 20-2 in Recipe 20.7 for a list of error types.

Pass set_error_handler() the name of a function, and PHP forwards all errors to that

function. The error handling function can take up to five parameters. The first param‐

eter is the error type, such as 8 for E_NOTICE. The second is the message thrown by the

error, such as “Undefined variable: html.” The third and fourth arguments are the name

608 | Chapter 20: Error Handling

of the file and the line number in which PHP detected the error. The final parameter is

an array holding all the variables defined in the current scope and their values.

For example, in this code, $html is appended to without first being assigned an initial

value:

error_reporting(E_ALL);

set_error_handler('pc_error_handler');

function pc_error_handler($errno, $error, $file, $line, $context) {

$message = "[ERROR][$errno][$error][$file:$line]";

print "$message";

print_r($context);

}

$form = array('one','two');

foreach ($form as $line) {

$html .= "$line";

}

When the “Undefined variable” error is generated, pc_error_handler() prints:

[ERROR][8][Undefined variable: html][err-all.php:16]

After the initial error message, pc_error_handler() also prints a large array containing

all the global, environment, request, and session variables.

Errors labeled catchable in Table 20-2 can be processed by the function registered using

set_error_handler(). The others indicate such a serious problem that they’re not safe

to be handled by users and PHP must take care of them.

See Also

Recipe 20.7 lists the different error types; documentation on set_error_handler().

20.9 Logging Errors

Problem

You want to save program errors to a log. These errors can include everything from

parser errors and files not being found to bad database queries and dropped connec‐

tions.

Solution

Use error_log() to write to the error log:

20.9 Logging Errors | 609

 // LDAP error

if (ldap_errno($ldap)) {

error_log("LDAP Error #" . ldap_errno($ldap) . ": " . ldap_error($ldap));

}

Discussion

Logging errors facilitates debugging. Smart error logging makes it easier to fix bugs.

Always log information about what caused the error:

$r = mysql_query($sql);

if (! $r) {

$error = mysql_error();

error_log('[DB: query @'.$_SERVER['REQUEST_URI']."][$sql]: $error");

} else {

 // process results

}

You’re not getting all the debugging help you could be if you simply log that an error

occurred without any supporting information:

$r = mysql_query($sql);

if (! $r) {

error_log("bad query");

} else {

 // process result

}

Another useful technique is to include the __FILE__, __LINE__, __FUNCTION__,

__CLASS__, and __METHOD__ “magic” constants in your error messages:

error_log('['. __FILE__.']['. __LINE__."]: $error");

The __FILE__ constant is the current filename, __LINE__ is the current line number,

__FUNCTION__ is the current function name, __METHOD__ is the current method name

(if any), and __CLASS__ is the current class name (if any). Starting with PHP 5.3.0,

__DIR__ is the directory that __FILE__ is in and __NAMESPACE__ is the current name‐

space. Starting in PHP 5.4.0, __TRAIT__ is the current trait name (if any).

See Also

Recipe 20.6 for hiding error messages from users; documentation on error_log(); documentation on magic constants.

610 | Chapter 20: Error Handling

20.10 Eliminating “headers already sent” Errors

Problem

You are trying to send an HTTP header or cookie using header() or setcookie(), but

PHP reports a “headers already sent” error message.

Solution

This error happens when you send nonheader output before calling header() or set

cookie().

Rewrite your code so any output happens after sending headers:

<?php

 // good

setcookie("name", $name);

print "Hello $name!";

 // bad

print "Hello $name!";

setcookie("name", $name);

 // good

setcookie("name",$name); ?>

<html><title>Hello</title>

Discussion

An HTTP message has a header and a body, which are sent to the client in that order.

Once you begin sending the body, you can’t send any more headers. So if you call

setcookie() after printing some HTML, PHP can’t send the appropriate Cookie header.

Also, remove trailing whitespace in any include files. When you include a file with blank

lines outside <?php ?> tags, the blank lines are sent to the browser. Use trim() to remove

leading and trailing blank lines from files:

$file = '/path/to/file.php';

 // backup

copy($file, "$file.bak") or die("Can't copy $file: $php_errormsg");

 // read and trim

$contents = trim(join('',file($file)));

 // write

$fh = fopen($file, 'w') or die("Can't open $file for writing: $php_errormsg");

if (-1 == fwrite($fh, $contents)) { die("Can't write to $file: $php_errormsg");}

fclose($fh) or die("Can't close $file: $php_errormsg");

20.10 Eliminating “headers already sent” Errors | 611

Instead of processing files on a one-by-one basis, it may be more convenient to do so

on a directory-by-directory basis. Recipe 25.7 describes how to process all the files in a directory.

Another perfectly legitimate approach to ensuring included files don’t have any trailing

whitespace is to just leave off the closing ?> tag. If the included file is purely PHP, this

method guarantees that you won’t have to go back to that file to clean up inadvertent whitespace.

If you don’t want to worry about blank lines disrupting the sending of headers, turn on

output buffering as shown in Recipe 8.13. Output buffering prevents PHP from imme‐

diately sending all output to the client. If you buffer your output, you can intermix

headers and body text with abandon. However, it may seem to users that your server

takes longer to fulfill their requests because they have to wait slightly longer before the

browser displays any output.

See Also

Recipe 8.13 for a discussion of output buffering; Recipe 25.7 for processing all files in a directory; documentation on header().

20.11 Logging Debugging Information

Problem

You want to make debugging easier by adding statements to print out variables. But you

want to be able to switch back and forth easily between production and debug modes.

Solution

Put a function that conditionally prints out messages based on a defined constant in a

page included using the auto_prepend_file configuration setting. Save the following

code to debug.php:

 // turn debugging on

define('DEBUG', true);

 // generic debugging function

function pc_debug($message) {

if (defined('DEBUG') && DEBUG) {

error_log($message);

}

}

Set the auto_prepend_file directive in php.ini or your site .htaccess file:

auto_prepend_file=debug.php

612 | Chapter 20: Error Handling

Now call pc_debug() from your code to print out debugging information:

$sql = 'SELECT color, shape, smell FROM vegetables';

pc_debug("[sql: $sql]"); // only printed if DEBUG is true

$r = mysql_query($sql);

Discussion

Debugging code is a necessary side effect of writing code. There are a variety of tech‐

niques to help you quickly locate and squash your bugs. Many of these involve including

scaffolding that helps ensure the correctness of your code. The more complicated the

program, the more scaffolding needed. Fred Brooks, in The Mythical Man-Month

(Addison-Wesley), guesses that there’s “half as much code in scaffolding as there is in

product.” Proper planning ahead of time allows you to integrate the scaffolding into

your programming logic in a clean and efficient fashion. This requires you to think out

beforehand what you want to measure and record and how you plan on sorting through

the data gathered by your scaffolding.

One technique for sifting through the information is to assign different priority levels

to different types of debugging comments. Then the debug function prints information

only if it’s higher than the current priority level:

define('DEBUG',2);

function pc_debug($message, $level = 0) {

if (defined('DEBUG') && ($level > DEBUG)) {

error_log($message);

}

}

$sql = 'SELECT color, shape, smell FROM vegetables';

pc_debug("[sql: $sql]", 1); // not printed, since 1 < 2

pc_debug("[sql: $sql]", 3); // printed, since 3 > 2

Another technique is to write wrapper functions to include additional information to

help with performance tuning, such as the time it takes to execute a database query:

function db_query($sql) {

if (defined('DEBUG') && DEBUG) {

 // start timing the query if DEBUG is on

$DEBUG_STRING = "[sql: $sql]
 \n";

$starttime = microtime(true);

}

$r = mysql_query($sql);

if (! $r) {

$error = mysql_error();

error_log('[DB: query @'.$_SERVER['REQUEST_URI']."][$sql]: $error");

} elseif (defined(DEBUG) && DEBUG) {

 // the query didn't fail and DEBUG is turned on, so finish timing it

20.11 Logging Debugging Information | 613

 $endtime = microtime(true);

$elapsedtime = $endtime - $starttime;

$DEBUG_STRING .= "[time: $elapsedtime]
 \n";

error_log($DEBUG_STRING);

}

return $r;

}

Here, instead of just printing out the SQL to the error log, you also record the number

of seconds it takes MySQL to perform the request. This lets you see if certain queries

are taking too long. See Recipe 22.2 for more discussion of timing code execution.

Finally, you may also want to integrate PEAR’s Log package, which provides an efficient

framework for an abstracted logging system. PEAR Log predefines eight log levels:

PEAR_LOG_EMERG, PEAR_LOG_ALERT, PEAR_LOG_CRIT, PEAR_LOG_ERR, PEAR_LOG_WARN

ING, PEAR_LOG_NOTICE, PEAR_LOG_INFO, and PEAR_LOG_DEBUG. The Log package pro‐

vides a robust assortment of options for customizing error logging, including logging

errors to SQLite and/or to a pop-up browser window.

See Also

Documentation on define(), defined(), and error_log(); The Mythical Man-Month by Frederick P. Brooks (Addison-Wesley); main page for PEAR Log.

614 | Chapter 20: Error Handling

CHAPTER 21

Software Engineering

21.0 Introduction

Typing out the expressions that form your computer program is only the beginning of

building a healthy software system. This chapter discusses what should happen after

you’ve written your initial code—tools for debugging and testing your software.

Recipe 21.1 explores the use of Xdebug, an open source PHP extension that allows for

line-by-line debugging in real time.

Recipes 21.2, 21.3, and 21.4 explore the world of unit testing in PHP, and show you how to turn your fixed bugs into a test suite that can help you ensure that once a bug is fixed,

it stays fixed.

Recipe 21.5 introduces you to easy ways to set up a testing environment on your local computer, so that you can work in a sandbox environment without fear of breaking a

production website while you’re trying to determine what’s gone wrong.

Lastly, Recipe 21.6 explores the built-in web server that’s part of PHP 5.4.0 and later.

21.1 Using a Debugger Extension

Problem

You want to debug your scripts interactively during runtime.

Solution

Use the Xdebug extension. When used along with an Xdebug-capable IDE, you can

examine data structure; set breakpoints; and step into, out of, or over sections of code

interactively.

615

Discussion

This recipe focuses on Xdebug’s interactive debugging capability. To follow along, you

need to be able to compile and install a Zend extension, which means permissions to

edit php.ini on your system. PHP’s dl() extension-loading function does not work with

Xdebug. Finally, examples in this recipe are intended to work with Xdebug 2.2.

Installing the Xdebug extension is a straightforward procedure. You can build from

source, or you can install using the pecl command:

% pecl install xdebug

After you have the extension compiled and installed, you need to edit your php.ini file

with the full path to the xdebug.so module, such as zend_extension = /usr/lib/php/

extensions/no-debug-non-zts-20050922/xdebug.so. The directory into which pecl

installs xdebug.so is the directory specified as the value of the extension_dir config‐

uration directive.

You’ll know you’ve got Xdebug installed correctly when running php -m from the com‐

mand line lists Xdebug twice—once in the [PHP Modules] section of the output and

once in the [Zend Modules] section of the output. If you’re trying to install Xdebug

with a version of PHP you access via your web browser, check for an “xdebug” section

in the output of the phpinfo() function.

In addition, you need to set the xdebug.remote_enable configuration directive to on

for remote debugging to function.

Installing the Xdebug extension, however, is only half of what you need for interactive

debugging. The other half is a debugging client that can talk to Xdebug and help you

inspect your program. In this recipe, we’ll use NetBeans IDE as an example—it’s free,

cross-platform, and easy to operate. Lots and lots of IDEs, both free and commercial,

support Xdebug and its DBGp debugging protocol.

To set up NetBeans to talk to your Xdebug installation, you need to do a few things.

First, in your Project Properties, ensure that your “Project URL” points to the URL of

your web server running PHP. Then, in the PHP section of the preferences pane make

sure the Debugger Port value matches what PHP is configured to use for xdebug.re

mote_port (usually 9000).

If everything is set up properly, when you execute the “Debug Project” command in

NetBeans, it will fire up a request to the home page of your project in your web browser,

and position execution at the first PHP line in your project’s home page, displaying the

code and a Variables watch pane, as shown in Figure 21-1.

616 | Chapter 21: Software Engineering

 Figure 21-1. Beginning a debug session

In the figure, the red square replacing the line number marker on line 12 is a result of

clicking the 12 and inserting a breakpoint. Hitting F5 to continue execution causes PHP

to run until the breakpoint is reached, which is shown in Figure 21-2.

21.1 Using a Debugger Extension | 617

 Figure 21-2. Continuing a debug session

At the breakpoint, the Variables watch pane has been updated to include the values of

the local variables $a and $bob.

Xdebug supports the wide variety of features you’d expect from an interactive debugger

—breakpoints, watchpoints, stack traces, and so forth. Exactly how you access them will

depend on your IDE. But when your PHP program is behaving mysteriously, nothing

beats being able to set a breakpoint, run exactly to a particular line, and then inspect the

values of variables at that point.

See Also

Documentation on Xdebug and on the DBGp protocol; NetBeans IDE Xdebug-enabled

features for PHP.

618 | Chapter 21: Software Engineering

21.2 Writing a Unit Test

Problem

You’re working on a project that extends a set of core functionality, and you want an

easy way to make sure everything still works as the project grows.

Solution

Write a unit test that tests the core functionality of a function or class and alerts you if

something breaks.

A sample test using PHP-QA’s .phpt testing system is:

--TEST--

str_replace() function

--FILE--

<?php

$str = 'Hello, all!';

var_dump(str_replace('all', 'world', $str));

?>

--EXPECT--

string(13) "Hello, world!"

A sample test using the powerful and popular PHPUnit package is:

class StrReplaceTest extends PHPUnit_Framework_TestCase

{

public function testStrReplaceWorks()

{

$str = 'Hello, all!';

$this->assertEquals('Hello, world!', str_replace('all', 'world', $str));

}

}

Discussion

There are a number of ways to write unit tests in PHP. A series of simple .phpt tests

may be adequate for your needs, or you may benefit from a more structured testing

solution such as PHPUnit. We’ll discuss each approach, but the first question is: why

write a unit test in the first place?

Writing an application from scratch in any language is a lot like peeling an onion, only

in reverse. You start with the center of the onion, and build layers on top of layers until

you get to the finished product: an onion.

The more layers you build on top of your core, the more important it is for that core to

continue functioning as you expect it to. The easiset way to ensure that the core of an

21.2 Writing a Unit Test | 619

application continues functioning as expected, especially after modifications, is through unit tests.

In the earlier example, we’re testing that the str_replace() function successfully re‐

places one string with another. The test doesn’t care how the str_replace() function

is written; all that matters is that it works as expected on a recurring basis.

The easiest way to run the .phpt test is to save it in a file ending in .phpt (str_re

place.phpt, for example), and then use PEAR’s built-in .phpt execution tool, like this:

% pear run-tests str_replace.phpt

You’ll see output like this:

Running 1 tests

PASS str_replace() function[str_replace.phpt]

TOTAL TIME: 00:00

1 PASSED TESTS

0 SKIPPED TESTS

You can test a number of features of your core functionality by creating multiple .phpt

files, and executing:

% pear run-tests *.phpt

For full details on the structure of .phpt files, visit http://qa.php.net/write-test.php.

You can also write unit tests using the PHPUnit unit testing framework.

If the PHPUnit test from the Solution is in a file named StrReplaceTest.php, once

PHPUnit is installed, you can run the test like this:

% phpunit StrReplaceTest

That command will look for the file named StrReplaceTest.php and run the test defined

within it.

PHPUnit is a very powerful unit testing framework that can do much more than run a simple test like in the example.

See Also

Documentation on .phpt unit tests and on PHPUnit.

21.3 Writing a Unit Test Suite

Problem

You want to be able to run more than one unit test conveniently on a regular basis.

620 | Chapter 21: Software Engineering

Solution

Wrap your unit tests into a group known as a unit test suite.

Discussion

It’s rare to have a program simple enough that a single unit test will fulfill all the testing

needs that it will have during its lifespan. Over time, as applications grow there is a need

to add more and more tests, either to test new functionality or verify that fixed bugs

 stay fixed.

When your library of tests gets larger than a handful, you’ll find it much more conve‐

nient to group your tests into a unit test suite. A test suite, despite its formal-sounding

name, is just a wrapper around a bunch of tests that can all be run by referring to the

name of the test suite.

Using the PHPUnit framework, create a test suite to test more than just the str_re

place function in PHP. A number of tests related to string functions can be put in a

single file. For example, in a file named StringTest.php, put:

class StringTest extends PHPUnit_Framework_TestCase

{

function testStrReplace()

{

$str = 'Hello, all!';

$this->assertEquals('Hello, world!', str_replace('all', 'world', $str));

}

function testSubstr()

{

$str = 'Hello, all!';

$this->assertEquals('e', substr($str, 1, 1));

}

}

Now you have two tests that will be run from the StringTest class. Create a similar file

called ArrayTest.php, with the following tests defined in it:

class ArrayTest extends PHPUnit_Framework_TestCase

{

function testArrayFlip()

{

$array = array('foo' => 'bar', 'cheese' => 'hotdog');

$flipped = array_flip($array);

$this->assertEquals('foo', reset($flipped));

}

function testArrayPop()

{

$array = array('foo' => 'bar', 'cheese' => 'hotdog');

$popped = array_pop($array);

21.3 Writing a Unit Test Suite | 621

 $this->assertEquals('hotdog', $popped);

$this->assertEquals(1, sizeof($array));

}

}

With four tests to run, it’s time to put together a suite that will run all of these whenever

you want to check to make sure things are working as they should be. By saving both

those files in the same directory, you can just point PHPUnit to that directory to run

them both:

% phpunit testDir

Assuming you’ve saved those two test files in the testDir directory, your output will look

something like:

PHPUnit 3.7.24 by Sebastian Bergmann.

....

Time: 45 ms, Memory: 5.00Mb

OK (4 tests, 5 assertions)

whose name matches *Test.php. PHPUnit will recurse into subdirectories as well.

Using this approach, you can grow your automated testing system to include a large

number of tests and still be able to trigger them all through a single command.

See Also

Documentation on organizing test groups in PHPUnit.

21.4 Applying a Unit Test to a Web Page

Problem

Your application is not broken down into small testable chunks, or you just want to

apply unit testing to the website that your visitors see.

Solution

Use PHPUnit’s Selenium Server integration to write tests that make HTTP requests and

assert conditions on the responses. These tests make assertions about the structure of

 www.example.com:

class ExampleDotComTest extends PHPUnit_Extensions_SeleniumTestCase

{

function setUp() {

$this->setBrowser('firefox');

$this->setBrowserUrl('http://www.example.com');

622 | Chapter 21: Software Engineering

 }

 // basic homepage loading

function testHomepageLoading()

{

$this->open('http://www.example.com/');

$this->assertTitle('Example Domain');

}

 // test clicking on a link and getting the right page

function testClick()

{

$this->open('http://www.example.com/');

$this->clickAndWait('link=More information...');

$this->assertTitle('IANA — IANA-managed Reserved Domains');

}

}

It prints:

PHPUnit 3.7.24 by Sebastian Bergmann.

..

Time: 9.05 seconds, Memory: 3.50Mb

OK (2 tests, 2 assertions)

Discussion

If you’re dealing with a site that’s driven in whole or in part by procedural PHP code, it

is sometimes difficult to write a smaller unit test that tests encapsulated functionality.

Instead, you just want to make sure that the website is working; if it isn’t, you’ll debug

from there. Additionally, running tests against the real web-server output of your code

lets you verify UI elements, proper links, and other user-facing features.

The PHPUnit Selenium extension integrates with Selenium Server, a free, cross-

platform tool for doing in-browser testing. Once you download and run Selenium

Server (just a single Java .jar file), PHPUnit test cases that extend from the PHPUnit_Ex

tensions_SeleniumTestCase base class can communicate with it via some new meth‐

ods. In the preceding example, open() retrieves a particular URL, clickAndWait()

“clicks” a particular link in the returned page to visit a new page, and assertTitle()

makes an assertion about the contents of the <title/> element of a web page.

The Selenium command set is comprehensive, and lets you assert conditions about the

contents of web pages, arrangement of elements, links, and much more.

21.4 Applying a Unit Test to a Web Page | 623

See Also

Documentation on PHPUnit’s Selenium integration, on the Selenium Server, and on

the Selenium command reference.

21.5 Setting Up a Test Environment

Problem

You want to test out PHP scripts without worrying about bringing your website down

or contaminating your production environment.

Solution

Set up a test environment for your application on your desktop machine, using XAMPP.

Discussion

The complexity of setting up a localized running environment for your web application

frequently deters developers from taking that step. The result is often a breakdown in

development best practices, such as editing files on the production website as a privi‐

leged user—never a good idea!

The XAMPP project provides single-installer solutions for four platforms: Windows

98/NT/2000/XP, Mac OS X, Linux (SuSE/RedHat/Mandrake/Debian), and Solaris. The

packages contain synchronized versions of Apache, MySQL, PHP and PEAR,

 phpMyAdmin, and eAccelerator.

With an easy, step-by-step installation procedure, the XAMPP project makes creating

a web-application-running environment on your local machine a snap.

Dealing with a large dataset? Unfortunately, developers working with sites that deal

extensively with content that changes frequently find that they let best practices devel‐

opment habits slip due to a lack of good test data to work with. Don’t let this happen to

you! Simply write a script that mirrors your data structure locally, and then periodically

update your local copy of data with a subset snapshot of the complete dataset. That way

you’re easily able to pull in a current copy of relevant data that’s large enough to be used

for real testing and development purposes.

See Also

The XAMPP project home page.

624 | Chapter 21: Software Engineering

21.6 Using the Built-in Web Server

Problem

You want to use PHP’s built-in web server to quickly spin up a test or simple website.

Solution

With PHP 5.4.0 or later, run the command-line PHP program with an -S argument

giving a hostname and a port to listen on and you’ve got an instant PHP-enabled web

server serving up the directory you started it in:

% php -S localhost:9876

Discussion

With only an -S host:port argument, the built-in web server treats the directory it was

started in as the document root directory. If you start it from /home/roger, then a request

to “/files/monkeys.php” corresponds to the file /home/roger/files/monkeys.php. Re‐

quests that map to a directory, rather then to a particular file, cause the built-in web

server to first look for index.php in that directory, and then index.html in that directory.

To use a different document root directory, provide that with a -t argument when

starting PHP. For example:

% php -S localhost:9876 -t /var/www

For more indirect mapping between request URLs and responses, specify a file con‐

taining PHP to do request routing as an additional argument:

% php -S localhost:9876 router.php

Before looking for a path that matches a request URL, PHP executes the code in rout‐

 er.php. PHP will only attempt to look for a matching path if that code returns false.

This lets you do arbitrary response generation. Example 21-1 shows a request router

that will return currency conversion rates between two currency codes provided in the

URL.

 Example 21-1. Built-in web server request router

$parts = explode('/', $_SERVER['REQUEST_URI']);

 // Expecting a request URI such as /USD/ISK, so make

 // sure there are at least two parts and they are

 // each three letters

if (! (isset($parts[1]) &&

preg_match('/[a-z]{3}/i', $parts[1]) &&

isset($parts[2]) &&

preg_match('/[a-z]{3}/i', $parts[2]))) {

header('Bad Request', true, 400);

21.6 Using the Built-in Web Server | 625

print "Bad Request";

exit();

}

$quotes = 'http://download.finance.yahoo.com/d/quotes.csv?f=nl1&s=%s%s=X,%s%s=X';

$url = sprintf($quotes,

urlencode($parts[1]), urlencode($parts[2]),

urlencode($parts[2]), urlencode($parts[1]));

$response = file_get_contents($url);

$lines = explode(" \n", trim($response));

foreach ($lines as $line) {

list($label, $rate) = str_getcsv($line);

print "" . htmlentities($label) . ": " .

htmlentities($rate) . "
";

}

When Example 21-1 is used as a request router by the built-in web server, $_SERV

ER['REQUEST_URI'] contains the request path the client asks for. In this case, we want

to make requests such as /USD/EUR return the currency conversion rates between US

dollars (USD) and Euro (EUR). So first, the code validates that the request URI contains

two three-letter currency codes. Then, it plugs them into a URL that will download the

conversion rate info from Yahoo! Finance. The response from that URL is a series of

lines, each a set of CSV fields containing what kind of conversion rate it is and the

numerical value of the rate. The foreach loop at the end of the code prints out the rates

with some minimal HTML formatting. Figure 21-3 shows the request URL and the

output when asking for conversion between Icelandic krónur and Japanese Yen. In this

example, the server has been started on port 9876.

 Figure 21-3. Currency conversion request router in action

626 | Chapter 21: Software Engineering

See Also

Documentation on PHP’s built-in web server and on the Yahoo! Finance CSV API.

21.6 Using the Built-in Web Server | 627

CHAPTER 22

Performance Tuning

22.0 Introduction

PHP is pretty speedy. Usually, the slow parts of your PHP programs have to do with

external resources—waiting for a database query to finish or for the contents of a remote

URL to be retrieved. That said, your PHP code itself may not be as efficient as it could

be. This chapter is about techniques for finding and fixing performance problems in

your code.

There’s plenty of debate in the world of software engineering about the best time in the

development process to start optimizing. Optimize too early and you’ll spend too much

time nitpicking over details that may not be important in the big picture; optimize too

late and you may find that you have to rewrite large chunks of your application.

Optimization doesn’t happen in a vacuum. As you tweak your code, you’re not just

adjusting raw execution time—you’re also affecting code size, readability, and main‐

tainability. There are always circumstances that demand screamingly fast execution

time. More frequently, however, programmer time or ease of debugging is a more val‐

uable commodity. Try to balance these concerns as you tackle optimization hurdles in

your code.

Installing a code accelerator is the best thing you can do to improve performance of

PHP. As of PHP 5.5, PHP bundles and builds the Zend OPcache PHP accelerator, but

OPcache works for PHP 5.2 and above. This extension is covered in Recipe 22.1.

If your application is still too slow, get started with integrating some easy analysis meth‐

ods into your development routine. You want to identify which sections of your appli‐

cation are taking up the largest block of time. It’s hard to know in advance what those

will be. It can be a section called once that’s very slow, or maybe a small function that’s

quite fast, but is called frequently. The trick is quickly identifying the troublesome area

in the code, which can be difficult as your application becomes larger and larger.

629

Here are five different ways to break apart your application at various levels: Recipe 22.2

shows you how to time the execution of a function, and Recipe 22.3 expands on that to illustrate how to easily time all the function calls in a block of code. See how to profile

code by statement in Recipe 22.4 and by self-defined sections in Recipe 22.5. Finally, take these approaches even farther with Recipe 22.6, which covers the use of a debugger

extension for application profiling.

An overview of how to stress test your website in Recipe 22.7 reminds you that there’s more to performance tuning than the code itself—network latency and hardware also

play a big role.

One of the most common bottlenecks in many PHP scripts is misuse of regular expres‐

sions; Recipe 22.8 explains a few approaches to solving text-matching problems without incurring the overhead of regular expressions.

22.1 Using an Accelerator

Problem

You want to increase performance of your PHP applications.

Solution

Use the Zend OPcache code-caching PHP accelerator to allow PHP to avoid compiling

scripts into opcodes on each request.

Discussion

PHP code accelerators do the bulk of their magic transparently by storing compiled

versions of PHP scripts on disk or in shared memory in order to skip the compiling

step with each request.

When the PHP engine is told to run a particular program, it reads the source code of

the program and compiles it into a compact internal representation. Then, it executes

the instructions in that compiled representation. When it’s done executing the script,

the engine throws away the compiled representation.

An accelerator, by contrast, keeps the compiled instructions around. The next time the

PHP engine gets a request to run the same program, the accelerator steps in and checks

whether it’s saved a compiled version of that program. If so, it tells the PHP engine to

skip recompilation and just execute the already compiled version. An accelerator can

be configured to update its compiled representations based on different criteria, such

as whenever the original program changes or only when you explicitly tell it to.

630 | Chapter 22: Performance Tuning

As of PHP 5.5, Zend OPcache is automatically built and installed. If you’re running an

earlier version of PHP, install it from GitHub or PECL.

Though PHP 5.5 builds Zend OPcache, you still need to turn it on by editing your php.ini

file to add a reference to the full path of the extension: zend_extension=/path/to/php/

lib/php/extension/debug-non-zts-20121212/opcache.so.

Although you should see a large improvement immediately, you can further improve

performance with additional tuning. As a start, update your production configuration

parameters to:

opcache.memory_consumption=128

opcache.interned_strings_buffer=8

opcache.max_accelerated_files=4000

opcache.revalidate_freq=60

opcache.fast_shutdown=1

opcache.enable_cli=1

Ultimately, the “right” settings are a balance of factors that depend on the size of the

code, how frequently it changes and is called, the amount of memory on your system,

and so on. You will need to experiment and use a stress-testing tool to see what’s ideal

for your specific system. Stress testing is covered in Recipe 22.7.

See Also

Documentation on OPcache.

22.2 Timing Function Execution

Problem

You have a function and you want to see how long it takes to execute.

Solution

Compare time in milliseconds before running the function against the time in milli‐

seconds after running the function to see the elapsed time spent in the function itself:

 // create a long nonsense string

$long_str = uniqid(php_uname('a'), true);

 // start timing from here

$start = microtime(true);

 // function to test

$md5 = md5($long_str);

$elapsed = microtime(true) - $start;

22.2 Timing Function Execution | 631

echo "That took $elapsed seconds. \n";

Discussion

To determine how much time a single function takes to execute, you may not need a

full benchmarking package. Instead, you can get the information you need from the

microtime() function.

Here are three ways to produce the exact same MD5 hash in PHP:

 // PHP's basic md5() function

$hashA = md5('optimize this!');

 // MD5 by way of the mhash extension

$hashB = bin2hex(mhash(MHASH_MD5, 'optimize this!'));

 // MD5 with the hash() function

$hashC = hash('md5', 'optimize this!');

$hashA, $hashB, and $hashC are all 83f0bb25be8de9106700840d66f261cf. However,

the third approach is more than twice as fast as PHP’s basic md5() function.

The dark side of optimization with head-to-head tests like these, though, is that you

need to figure in how frequently the function is called in your code and how readable

and maintainable the alternative is.

For example, in choosing hash functions, if you need your code to run on PHP versions

earlier than 5.1.2 (Heavens forbid!), you either have to use md5() all the time or add a

check that, based on PHP’s version (and perhaps whether the mhash extension is in‐

stalled), decides which function to use. The absolute time difference between md5() and

hash() is on the order of a tenth of a millisecond. If you’re computing thousands or

millions of hashes at a time, it makes sense to insert the extra runtime calculations that

choose the fastest functions. But the fraction of a fraction of a breath of time saved in a

handful of hash computations isn’t worth the extra complexity.

See Also

Recipe 3.11 for a discussion on using microtime(); documentation on the micro

time() function.

22.3 Timing Program Execution by Function

Problem

You have a block of code and you want to profile it to see how long each function takes

to execute.

632 | Chapter 22: Performance Tuning

Solution

Use Xdebug function tracing:

xdebug_start_trace('/tmp/factorial-trace');

function factorial($x) {

return ($x == 1) ? 1 : $x * factorial($x - 1);

}

print factorial(10);

xdebug_stop_trace();

Discussion

The Xdebug extension provides a wide range of helpful debugging and profiling fea‐

tures. It’s available via PECL or as a prebuilt Windows binary.

Its function-tracing feature provides insight into what functions are called from where,

optionally including the arguments passed and returned. It also records the time and

memory taken for each call.

For the factorial example, it generates results such as:

TRACE START [2015-01-05 06:32:11]

0.0005 240136 -> factorial($x = 10) /factorial.php:9

0.0005 240184 -> factorial($x = 9) /factorial.php:6

0.0005 240256 -> factorial($x = 8) /factorial.php:6

0.0006 240304 -> factorial($x = 7) /factorial.php:6

0.0006 240352 -> factorial($x = 6) /factorial.php:6

0.0006 240400 -> factorial($x = 5) /factorial.php:6

0.0007 240448 -> factorial($x = 4) /factorial.php:6

0.0007 240496 -> factorial($x = 3) /factorial.php:6

0.0007 240544 -> factorial($x = 2) /factorial.php:6

0.0008 240592 -> factorial($x = 1) /factorial.php:6

>=> 1

>=> 2

>=> 6

>=> 24

>=> 120

>=> 720

>=> 5040

>=> 40320

>=> 362880

>=> 3628800

0.0010 240136 -> xdebug_stop_trace() /factorial.php:12

0.0010 240176

TRACE END [2015-01-05 06:32:11]

The first column lists the start time in seconds. The next column has the memory usage.

Then you see the function called, along with the argument passed. Finally, it lists the

22.3 Timing Program Execution by Function | 633

filename and line number. As the functions execute, you see the data returned from

each one.

Xdebug allows you to format these results in a number of ways. This specific output

format uses the following configuration parameters:

xdebug.trace_format=0 ; human readable plain text

xdebug.collect_params=4 ; full variable contents and variable name.

xdebug.collect_return=1 ; show return values

Xdebug’s function profiling provides an easy way to get a detailed overview of everything

going on in a section of code. However, there are times when this may be more granular

than you need.

See Also

Documentation on Xdebug and function traces; Recipe 21.1 for using Xdebug for debugging and installation instructions.

22.4 Timing Program Execution by Statement

Problem

You have a block of code and you want to profile it to see how long each statement takes

to execute.

Solution

Use the declare construct and the ticks directive:

function profile($display = false) {

static $times;

switch ($display) {

case false:

 // add the current time to the list of recorded times

$times[] = microtime();

break;

case true:

 // return elapsed times in microseconds

$start = array_shift($times);

$start_mt = explode(' ', $start);

$start_total = doubleval($start_mt[0]) + $start_mt[1];

foreach ($times as $stop) {

$stop_mt = explode(' ', $stop);

$stop_total = doubleval($stop_mt[0]) + $stop_mt[1];

$elapsed[] = $stop_total - $start_total;

634 | Chapter 22: Performance Tuning

 }

unset($times);

return $elapsed;

break;

}

}

 // register tick handler

register_tick_function('profile');

 // clock the start time

profile();

 // execute code, recording time for every statement execution

declare (ticks = 1) {

foreach ($_SERVER['argv'] as $arg) {

print "$arg: " . strlen($arg) ." \n";

}

}

 // print out elapsed times

print "---\n";

$i = 0;

foreach (profile(true) as $time) {

$i++;

print "Line $i: $time\n";

}

Discussion

The ticks directive allows you to execute a function on a repeatable basis for a block

of code. The number assigned to ticks is how many statements go by before the func‐

tions that are registered using register_tick_function() are executed.

In the Solution, we register a single function and have the profile() function execute

for every statement inside the declare block. If there are two elements in $_SERV

ER['argv'], profile() is executed six times: once when the clocks starts; twice for the

two times through the foreach loop; another two when the print strlen($arg) line

is executed; and finally, once when foreach returns false:

Line 1: 5.3882598876953E-5

Line 2: 5.6982040405273E-5

Line 3: 6.2942504882812E-5

Line 4: 6.5803527832031E-5

Line 5: 6.7949295043945E-5

Line 6: 6.9856643676758E-5

You can also set things up to call two functions every three statements:

22.4 Timing Program Execution by Statement | 635

register_tick_function('profile');

register_tick_function('backup');

declare (ticks = 3) {

 // code...

}

You can also pass additional parameters into the registered functions, which can be

object methods instead of regular functions:

 // pass "parameter" into profile()

register_tick_function('profile', 'parameter');

 // call $car->drive();

$car = new Vehicle;

register_tick_function(array($car, 'drive'));

If you want to execute an object method, pass the object and the name of the method

encapsulated within an array. This lets the register_tick_function() know you’re

referring to an object instead of a function.

Call unregister_tick_function() to remove a function from the list of tick functions:

unregister_tick_function('profile');

See Also

Documentation on register_tick_function(), unregister_tick_function(), and

declare.

22.5 Timing Program Execution by Section

Problem

You have a block of code and you want to profile it to see how long each statement takes

to execute.

Solution

Use the PEAR Benchmark module:

require_once 'Benchmark/Timer.php';

$timer = new Benchmark_Timer(true);

$timer->start();

 // some setup code here

$timer->setMarker('setup');

 // some more code executed here

$timer->setMarker('middle');

636 | Chapter 22: Performance Tuning

 // even yet still more code here

$timer->setmarker('done');

 // and a last bit of code here

$timer->stop();

$timer->display();

Discussion

The PEAR Benchmark package gives you a quick-and-dirty way to set a few markers

in your code to identify hotspots at a more macro level. Install it using the PEAR package

manager:

% pear install Benchmark

Calling setMarker() records the time. The display() method prints out a list of mark‐

ers, the time they were set, and the elapsed time from the previous marker:

marker time index ex time perct

Start 1029433375.42507400 - 0.00%

setup 1029433375.42554800 0.00047397613525391 29.77%

middle 1029433375.42568700 0.00013899803161621 8.73%

done 1029433375.42582000 0.00013303756713867 8.36%

Stop 1029433375.42666600 0.00084602832794189 53.14%

total - 0.0015920400619507 100.00%

The Benchmark module also includes the Benchmark_Iterate class, which can be used

to time many executions of a single function:

require 'Benchmark/Iterate.php';

$timer = new Benchmark_Iterate;

 // a sample function to time

function use_preg($ar) {

for ($i = 0, $j = count($ar); $i < $j; $i++) {

if (preg_match('/gouda/',$ar[$i])) {

 // it's gouda

}

}

}

 // another sample function to time

function use_equals($ar) {

22.5 Timing Program Execution by Section | 637

 for ($i = 0, $j = count($ar); $i < $j; $i++) {

if ('gouda' == $ar[$i]) {

 // it's gouda

}

}

}

 // run use_preg() 1000 times

$timer->run(1000,'use_preg',

array('gouda','swiss','gruyere','muenster','whiz'));

$results = $timer->get();

print "Mean execution time for use_preg(): $results[mean]\n";

 // run use_equals() 1000 times

$timer->run(1000,'use_equals',

array('gouda','swiss','gruyere','muenster','whiz'));

$results = $timer->get();

print "Mean execution time for use_equals(): $results[mean]\n";

The Benchmark_Iterate::get() method returns an associative array. The mean ele‐

ment of this array holds the mean execution time for each iteration of the function. The

iterations element holds the number of iterations. The execution time of each iteration

of the function is stored in an array element with an integer key. For example, the time

of the first iteration is in $results[1], and the time of the 37th iteration is in $re

sults[37].

See Also

Information on the PEAR Benchmark class.

22.6 Profiling with a Debugger Extension

Problem

You want a robust solution for profiling your applications so that you can continually

monitor where the program spends most of its time.

Solution

Use Xdebug, available from PECL. With Xdebug installed, adding xdebug.profil

er_enable=1 to your php.ini configuration dumps a trace file to disk. Parsing that trace

file with a tool gives you a breakdown of how time was spent during that run of the PHP

script.

638 | Chapter 22: Performance Tuning

Discussion

With Xdebug installed, it’s a simple matter to start a profiling session that will store

reporting information on application runtime.

To generate this for all requests, set the xdebug.profiler_enable configuration variable

to 1. To conditionally generate this data, set xdebug.profiler_enable to off and xde

bug.profiler_enable_trigger to on. In this configuration, Xdebug will only profile

when you pass in a GET, POST, or Cookie variable named XDEBUG_PROFILE set to any

value.

Though less simple to activate, conditional generation has benefits because you only

save logs for selected requests. For complex applications, profiling dumps can be quite

large; this prevents you from running out of disk space. Also, though not ideal, in the

event you cannot replicate a problem in your testing environment, you can more safely

run Xdebug in production.

The output files generated by Xdebug can be stored anywhere you want them, as long

as it’s writable by PHP. Set the directory using the xdebug.profiler_output_dir con‐

figuration variable and the filename using xdebug.profiler_output_name.

By default, the output filename is cachegrind.out. followed by the process ID. This

value makes it difficult to look at the filename and know what was profiled. Fortunately,

Xdebug allows you to use a variety of formats. For example, you can use xdebug.pro

filer_output_name=cachegrind.out.%R.%t to put the request URI and timestamp.

This generates filenames like cachegrind.out._factorial_php.1388986739.

Process the output files with an application to more easily view and understand the data.

The longest-running functions are good places to start when looking for opportunities

to optimize.

A popular tool is KCachegrind, a GUI application used to drill down deeply into ap‐

plications to determine where hotspots and bottlenecks are occurring. A cross-platform

version of this tool, QCachegrind, is available for people not running the KDE Unix

desktop environment, such as developers on MacOS X or Windows. QCachegrind re‐

quires Qt 4.4 or above.

As a (simplistic) example, this code prints the first 50 factorial numbers:

function factorial($x) {

return ($x == 1) ? 1 : $x * factorial($x - 1);

}

for ($i = 1; $i <= 50; $i++) {

print "$i: " . factorial($i) . " \n";

}

22.6 Profiling with a Debugger Extension | 639

Loading the Xdebug profile dump into QCachegrind, as shown in Figure 22-1, allows

you to see that factorial() is called recursively 2,450 times. This takes 13,376 cycles.

 Figure 22-1. Inspecting profiling results in QCachegrind

Looking to reduce the overhead of recursion, you add a quick-and-dirty memoization

cache:

function factorial($x) {

static $cache = [];

if (isset($cache[$x])) return $cache[$x];

$cache[$x] = (($x == 1) ? 1 : $x * factorial($x - 1));

return $cache[$x];

}

for ($i = 1; $i <= 50; $i++) {

print "$i: " . factorial($i) . " \n";

}

Now, when you load the profiler output, there are no self-referential calls and there is

an order of magnitude decrease in CPU cycles to 643, as shown in Figure 22-2.

640 | Chapter 22: Performance Tuning

 Figure 22-2. Checking for improved results

Depending on your system, QCachegrind can be cumbersome to install because it has

a dependency on Qt. Webgrind is an all-PHP application that parses Xdebug output.

It’s not as full featured, but it does the job for basic exploration, and it’s simple to install

because it’s a PHP script.

Figure 22-3 shows what the results look like.

22.6 Profiling with a Debugger Extension | 641

 Figure 22-3. Inspecting profiling results in Webgrind

See Also

Documentation on Xdebug and profiling; KCachegrind; Webgrind.

22.7 Stress-Testing Your Website

Problem

You want to find out how well your website performs under a heavy load.

Solution

Use a stress-testing and benchmarking tool to simulate a variety of load levels.

Discussion

Stress testing is frequently confused with benchmarking, and it is important to recognize

the difference between the two activities.

Benchmarking a website is often a somewhat casual activity when performed by an

individual developer. The most commonly used tool is the Apache HTTP server bench‐

642 | Chapter 22: Performance Tuning

marking tool, ab, which is designed to test how many requests per second an HTTP

server is capable of serving. For example:

% /usr/bin/ab -n 1000 -c 100 -k www.example.com/test.php

This test would return a report illustrating the average response time for requests to

 http://www.example.com/test.php, based on 1,000 requests, grouped in batches of 100

concurrent requests.

Though that sort of test has value—it gives you a reasonable estimation of how many

requests you can serve per second under normal load—it doesn’t tell you much about

how your entire web application will behave under heavy load. It only pounds on one

URL at a time, after all.

Stress testing is a testing technique whose intent is to break your web application. By

testing to a breaking point, you can identify and repair weaknesses in your application,

or gain a better understanding of when you will need to add additional hardware. When

combined with code profiling, you can also get an idea of what part of your application

will need to scale first; i.e., will you need to add more servers to your database cluster

before you need to add more frontend web server machines?

An excellent open source tool for stress testing is Siege. Siege can be configured to read

a large number of URLs from a configuration file and run through them in order (re‐

gression testing), or it can read a list of URLs and hit them randomly, which better

approximates real-world usage of a website. Siege can also pound on a single URL in a

similar fashion to ab.

If you are unable to install Siege on your system, Lincoln Stein’s torture.pl script is a

good alternative. Many of Siege’s design concepts were inspired by torture.pl, and the

two tools produce similar reports.

See Also

Source and documentation for Siege; ab; source and documentation for torture.pl.

22.8 Avoiding Regular Expressions

Problem

You want to improve script performance by optimizing string-matching operations.

Solution

Replace unnecessary regular expression calls with faster string and character type func‐

tion alternatives.

22.8 Avoiding Regular Expressions | 643

Discussion

A common source of unnecessary computation is the use of regular expression func‐

tions when they are not needed—for example, if you’re validating a form submission

for a valid username and want to make sure that the username contains only alphanu‐

meric characters.

A common approach to this problem is a regular expression:

if (!preg_match('/^[a-z0-9]+$/i', $username)) {

echo 'please enter a valid username.';

}

The same test can be performed much faster with the ctype_alnum() function.

Using code-timing techniques covered in Recipe 22.2, let’s compare the preceding test with ctype_alnum():

$username = 'foo411';

$start = microtime(true);

if (!preg_match('/^[a-z0-9]+/i', $username)) {

echo 'please enter a valid username';

}

$regextime = microtime(true) - $start;

$start = microtime(true);

if (!ctype_alnum($username)) {

echo 'please enter a valid username';

}

$ctypetime = microtime(true) - $start;

echo "preg_match took: $regextime seconds\n";

echo "ctype_alnum took: $ctypetime seconds\n";

This will output results similar to:

preg_match took: 0.000163078308105 seconds

ctype_alnum took: 9.05990600586E-06 seconds

ctype_alnum() is considerably faster; 9.05990600586E-06 is the same as 0.00000906

seconds, which is 18 times faster than the preg_match() regular expression, with exactly

the same result.

When applied to a complex application, replacing unnecessary regular expressions with

equivalent alternatives can add up to a significant performance gain.

644 | Chapter 22: Performance Tuning

A good litmus test for using a regular expression (or not) is to see whether the match

you’re performing can be explained in a brief sentence. Granted, there are some matches,

such as “string is a valid email address,” which cannot be adequately verified without a

complex regular expression. However, “check if string A contains string B” can be tested

with several different approaches, but is ultimately a very simple test that does not

require regular expressions:

$haystack = 'The quick brown fox jumps over the lazy dog';

$needle = 'lazy dog';

 // slowest (and deprecated)

if (ereg($needle, $haystack)) echo 'match!';

 // slow

if (preg_match("/$needle/", $haystack)) echo 'match!';

 // fast

if (strstr($haystack, $needle)) echo 'match!';

 // fastest

if (strpos($haystack, $needle) !== false) echo 'match!';

There is certainly a benefit to double-checking the ctype and string functions before

making a commitment to a regular expression, particularly if you’re working a section

of code that will loop repeatedly.

See Also

Documentation on ctype functions; string functions; and regular expression functions.

22.8 Avoiding Regular Expressions | 645

CHAPTER 23

Regular Expressions

23.0 Introduction

Regular expressions are an intricate and powerful tool for matching patterns and ma‐

nipulating text. Though not as fast as plain-vanilla string matching, regular expressions

are extremely flexible. They allow you to construct patterns to match almost any con‐

ceivable combination of characters with a simple—albeit terse and punctuation-studded

—grammar. If your website relies on data feeds that come in text files—data feeds like

sports scores, news articles, or frequently updated headlines—regular expressions can

help you make sense of them.

This chapter gives a brief overview of basic regular expression syntax and then focuses

on the functions that PHP provides for working with regular expressions. For a bit more

detailed information about the ins and outs of regular expressions, check out the PCRE

section of the PHP online manual and Appendix B of Learning PHP 5 by David Sklar (O’Reilly). To start on the path to regular expression wizardry, read the comprehensive

 Mastering Regular Expressions by Jeffrey E.F. Friedl (O’Reilly).

Regular expressions are handy when transforming plain text into HTML, and vice versa.

Luckily, because these are such helpful subjects, PHP has many built-in functions to

handle these tasks, explained by recipes in other chapters. Recipe 9.10 tells how to escape HTML entities; Recipe 13.6 covers stripping HTML tags; Recipes 13.4 and 13.5 show how to convert plain text to HTML and HTML to plain text, respectively. For information on matching and validating email addresses, see Recipe 9.4.

Over the years, the functionality of regular expressions has grown from its basic roots

to incorporate increasingly useful features. As a result, PHP offers two different sets of

regular expression functions. The first set includes the traditional (or POSIX) functions,

whose names each begin with ereg (for extended regular expressions; the ereg functions

themselves are already an extension of the original feature set). The other set includes

647

the Perl-compatible family of functions, prefaced with preg (for Perl-compatible regular expressions).

The preg functions use a library that mimics the regular expression functionality of the

Perl programming language. This is a good thing because Perl allows you to do a variety

of handy things with regular expressions, including nongreedy matching, forward and

backward assertions, and even recursive patterns.

There’s no longer any reason to use the ereg functions and they are officially deprecated

as of PHP 5.3.0. They offer fewer features, and they’re slower than preg functions.

However, the ereg functions existed in PHP for many years prior to the introduction

of the preg functions, so many programmers still use them because of legacy code or

out of habit. Thankfully, the prototypes for the two sets of functions are identical, so it’s

easy to switch back and forth from one to another without too much confusion. (We

list how to do this while avoiding the major gotchas in Recipe 23.1.)

Think of a regular expression as a program in a very restrictive programming language.

The only task of a regular expression program is to match a pattern in text. In regular

expression patterns, most characters just match themselves. That is, the regular expres‐

sion rhino matches strings that contain the five-character sequence rhino. The fancy

business in regular expressions is due to a handful of punctuation and symbols called

 metacharacters. These symbols don’t literally match themselves, but instead give com‐

mands to the regular expression matcher.

The most frequently used metacharacters include the period (.), asterisk (*), plus sign

(+), and question mark (?). (To match a literal metacharacter in a pattern, precede the

character with a backslash.)

• The period means “match any character,” so the pattern .at matches bat, cat, and

even rat.

• The asterisk means “match 0 or more of the preceding object.” (So far, the only

objects we know about are characters.)

• The plus is similar to asterisk, but means “match one or more of the preceding

object.” So .+at matches brat, sprat, and even the cat inside of catastrophe, but

not plain at. To match at, replace the + with an *.

• The question mark means “the preceding object is optional.” That is, it matches 0

or 1 of the object that precedes it. colou?r matches both color and colour.

To apply * and + to objects greater than one character, place the sequence of characters

that make up the object inside parentheses. Parentheses allow you to group characters

for more complicated matching and also capture the part of the pattern that falls inside

them. A captured sequence can be referenced by preg_replace() to alter a string, and

all captured matches can be stored in an array that’s passed as a third parameter to

648 | Chapter 23: Regular Expressions

preg_match() and preg_match_all(). The preg_match_all() function is similar to

preg_match(), but it finds all possible matches inside a string, instead of stopping at

the first match. Example 23-1 shows a few examples of preg_match(),

preg_match_all(), and preg_replace() at work.

 Example 23-1. Using preg functions

if (preg_match('{<title>.+</title>}', $html)) {

print "The page has a title! \n";

}

if (preg_match_all('//', $html, $matches)) {

print 'Page has ' . count($matches[0]) . " list items\n";

}

 // turn bold into italic

$italics = preg_replace('/(<\/?)b(>)/', '$1i$2', $bold);

Normally, the pattern delimiter character, which starts and ends the pattern string, is /.

Because the pattern delimiter character needs to be backslash-escaped if it appears as a

literal inside the pattern, this is a clumsy delimiter pattern when matching HTML or

XML. The preceding code uses open and close curly braces as delimiters in the first

pattern string to avoid this problem. Any nonalphanumeric, nonwhitespace character

(except backslash) can be a pattern delimiter character. If you use an open-bracket

character as the opening delimiter, you can use a corresponding close bracket as the

closing delimiter.

If you want to match strings with a specific set of characters, create a character class by

putting the characters you want inside square brackets. The character class [aeiou]

matches any one of the characters a, e, i, o, and u. You can also put ranges inside of

square brackets to form a character class. The class [a-z] matches all lowercase English

letters. The class [a-zA-Z0-9] matches digits and English letters. The class [a-zA-

Z0-9_] matches digits, English letters, and the underscore.

So far, all the patterns we’ve seen match anything that contains text that corresponds to

the pattern. That is, [a-z0-9]+ matches grapefruit and c3p0, but it also matches

grr!!! and *******p. All four of those strings meet the condition that [a-z0-9]+

sets out: “one or more of a digit or lowercase English letter.”

 Anchoring your pattern enables matching against strings that only contain characters

that the pattern describes. The caret (^) and the dollar sign ($) anchor the pattern at the

beginning and the end of the string, respectively. Without them, a match can occur

anywhere in the string. So whereas [a-z0-9]+ means “one or more of a digit or lowercase

English letter,” ^[a-z0-9]+ means “begins with one or more of a digit or lowercase

English letter,” [a-z0-9]+$ means “ends with one or more of a digit or lowercase English

23.0 Introduction | 649

letter,” and ^[a-z0-9]+$ means “contains only one or more of a digit or lowercase

English letter. ” Example 23-2 shows a few character classes at work.

 Example 23-2. Matching with character classes and anchors

$thisFileContents = file_get_contents(__FILE__);

 // http://php.net/language.variables gives a regular expression for

 // valid variable names in php. Beginning the pattern with \$ matches

 // a literal $

$matchCount = preg_match_all('/\$[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/',

$thisFileContents, $matches);

print "Matches: $matchCount\n";

foreach ($matches[0] as $variableName) {

print "$variableName\n";

}

Example 23-2 prints each variable name it uses:

Matches: 8

$thisFileContents

$matchCount

$thisFileContents

$matches

$matchCount

$matches

$variableName

$variableName

If it’s easier to define what you’re looking for by its complement, use that. To make a

character class match the complement of what’s inside it, begin the class with a caret. A

caret outside a character class anchors a pattern at the beginning of a string; a caret

inside a character class means “match everything except what’s listed in the square

brackets.” For example, the character class [^aeiou] matches everything but lowercase

English vowels.

Note that the opposite of [aeiou] isn’t [bcdfghjklmnpqrstvwxyz]. The character class

[^aeiou] also matches uppercase vowels such as AEIOU, numbers such as 123, URLs

such as http://www.cnpq.br/, and even emoticons such as :).

The vertical bar (|), also known as the pipe, specifies alternatives. Example 23-3 uses the pipe to find various possibilities for image filenames in a block of text.

 Example 23-3. Matching with |

$text = "The files are cuddly.gif, report.pdf, and cute.jpg.";

if (preg_match_all('/[a-zA-Z0-9]+\.(gif|jpe?g)/',$text,$matches)) {

print "The image files are: " . implode(',',$matches[0]);

}

Example 23-3 prints:

The image files are: cuddly.gif,cute.jpg

650 | Chapter 23: Regular Expressions

We’ve covered just a small subset of the world of regular expressions. We provide some

additional details in later recipes, but the PHP website also has some very useful infor‐

mation on Perl-compatible regular expressions. The links from this last page to Pattern Modifiers and Pattern Syntax are especially detailed and informative.

23.1 Switching from ereg to preg

Problem

You want to convert from using ereg functions to preg functions.

Solution

First, you have to add delimiters to your patterns:

preg_match('/pattern/', 'string');

For case-insensitive matching, use the /i modifier with preg_match() instead:

preg_match('/pattern/i', 'string');

When using integers instead of strings as patterns or replacement values, convert the

number to hexadecimal and specify it using an escape sequence:

$hex = dechex($number);

preg_match("/\x$hex/", 'string');

Discussion

There are a few major differences between ereg and preg. First, when you use preg

functions, the pattern isn’t just the string pattern; it also needs delimiters, as in Perl, so

it’s /pattern/ instead.1 So:

ereg('pattern', 'string');

becomes:

preg_match('/pattern/', 'string');

When choosing your pattern delimiters, don’t put your delimiter character inside the

regular expression pattern, or you’ll close the pattern early. If you can’t find a way to

avoid this problem, you need to escape any instances of your delimiters using the back‐

slash. Instead of doing this by hand, call addcslashes().

1. Or {pattern}, <pattern>, |pattern|, #pattern#, or just about whatever your favorite delimiters are. If you use an opening pair character such as (, <, [, or { as the starting delimiter, PHP expects the corresponding closing pair character as the ending delimiter (), >,], or }). If you use another character as the starting delimiter, PHP expects the same character as the ending delimiter.

23.1 Switching from ereg to preg | 651

For example, if you use / as your delimiter:

$ereg_pattern = '.+';

$preg_pattern = addcslashes($ereg_pattern, '/');

the value of $preg_pattern is now .+<\/b>.

The preg functions don’t have a parallel series of case-insensitive functions. They have

a case-insensitive modifier instead. To convert, change:

eregi('pattern', 'string');

to:

preg_match('/pattern/i', 'string');

Adding the i after the closing delimiter makes the change.

Finally, there is one last obscure difference. If you use a number (not a string) as a pattern

or replacement value in ereg_replace(), it’s assumed you are referring to the ASCII

value of a character. Therefore, because 9 is the ASCII representation of tab (i.e., \t),

this code inserts tabs at the beginning of each line:

$tab = 9;

$replaced = ereg_replace('^', $tab, $string);

Here’s how to convert linefeed endings:

$converted = ereg_replace(10, 12, $text);

To avoid this feature in ereg functions, use this instead:

$tab = '9';

On the other hand, preg_replace() treats the number 9 as the one-character string

'9', not as a tab substitute. To convert these character codes for use in preg_re

place(), convert them to hexadecimal and prefix them with \x. For example, 9 becomes

\x9 or \x09, and 12 becomes \x0c. Alternatively, you can use \t , \r, and \n for tabs,

carriage returns, and linefeeds, respectively.

See Also

Documentation on ereg(), preg_match(), and addcslashes().

23.2 Matching Words

Problem

You want to pull out all words from a string.

652 | Chapter 23: Regular Expressions

Solution

The simplest way to do this is to use the PCRE “word character” character type escape

sequence, \w:

$text = "Knock, knock. Who's there? r2d2!";

$words = preg_match_all('/\w+/', $text, $matches);

var_dump($matches[0]);

Discussion

The \w escape sequence matches letters, digits, and underscores. It does not include

other punctuation. So the output from the preceding code is:

array(6) {

[0]=>

string(5) "Knock"

[1]=>

string(5) "knock"

[2]=>

string(3) "Who"

[3]=>

string(1) "s"

[4]=>

string(5) "there"

[5]=>

string(4) "r2d2"

}

This is mostly correct except that Who’s is broken up into Who and s. To extend this

pattern to handle English contractions properly, we can match against either a word

character or an apostrophe sandwiched by word characters:

$text = "Knock, knock. Who's there? r2d2!";

$pattern = "/(?:\w'\w|\w)+/";

$words = preg_match_all($pattern, $text, $matches);

var_dump($matches[0]);

(The ?: syntax in this pattern prevents the text that matches the parenthesized subpat‐

tern from being “captured. ” This is explained in more detail in Recipe 23.7.)

With the addition of the u modifier, a pattern becomes Unicode-aware and will handle

words properly in non-ASCII character sets. For example:

$fr = 'Toc, toc. Qui est là? R2D2!';

$fr_words = preg_match_all('/\w+/u', $fr, $matches);

print "The French words are:\n\t";

print implode(', ', $matches[0]) . " \n";

$kr = '노크, 노크. 거기 누구입니까? R2D2!';

$kr_words = preg_match_all('/\w+/u', $kr, $matches);

23.2 Matching Words | 653

print "The Korean words are:\n\t";

print implode(', ', $matches[0]) . " \n";

This prints:

The French words are:

 Toc, toc, Qui, est, là, R2D2

The Korean words are:

 노크, 노크, 거기, 누구입니까, R2D2

Without that u at the end of each pattern, the non-ASCII characters would be stripped

out of the matches, producing incorrect results.

See Also

Documentation on preg escape sequences; Recipe 19.12 for information about using UTF-8–encoded strings with the PCRE regex functions.

23.3 Finding the nth Occurrence of a Match

Problem

You want to find the n th word match instead of the first one.

Solution

Use preg_match_all() to pull all the matches into an array; then pick out the specific

matches in which you’re interested, as shown in Example 23-4.

 Example 23-4. Finding the nth match

$todo = "1. Get Dressed 2. Eat Jelly 3. Squash every week into a day";

preg_match_all("/\d\. ([^\d]+)/", $todo, $matches);

print "The second item on the todo list is: ";

 // $matches[1] is an array of each substring captured by ([^\d]+)

print $matches[1][1] . " \n";

print "The entire todo list is: ";

foreach($matches[1] as $match) {

print "$match\n";

}

Discussion

Because the preg_match() function stops after it finds one match, you need to use

preg_match_all() instead if you’re looking for additional matches. The

preg_match_all() function returns the number of full pattern matches it finds. If it

654 | Chapter 23: Regular Expressions

finds no matches, it returns 0. If it encounters an error, such as a syntax problem in the pattern, it returns false.

The third argument to preg_match_all() is populated with an array holding informa‐

tion about the various substrings that the pattern has matched. The first element holds

an array of matches of the complete pattern. For Example 23-4, this means that $match es[0] holds the parts of $todo that match /\d\. ([^\d]+)/: 1. Get Dressed, 2. Eat

Jelly, and 3. Squash every week into a day.

Subsequent elements of the $matches array hold arrays of text matched by each paren‐

thesized subpattern. The pattern in Example 23-4 has just one subpattern ([^\d\]+).

So $matches[1] is an array of strings that match that subpattern: Get Dressed, Eat

Jelly, and Squash every week into a day.

If there were a second subpattern, the substrings that it matched would be in $match

es[2], a third subpattern’s matches would be in $matches[3], and so on.

Instead of returning an array divided into full matches and then submatches,

preg_match_all() can return an array divided by matches, with each submatch inside.

To trigger this, pass PREG_SET_ORDER in as the fourth argument. This is particularly

useful when you’ve got multiple captured subpatterns and you want to iterate through

the subpattern groups one group at a time, as shown in Example 23-5.

 Example 23-5. Grouping captured subpatterns

$todo = "

first=Get Dressed

next=Eat Jelly

last=Squash every week into a day

";

preg_match_all("/([a-zA-Z]+)=(.*)/", $todo, $matches, PREG_SET_ORDER);

foreach ($matches as $match) {

print "The {$match[1]} action is {$match[2]}\n";

}

Example 23-5 prints:

The first action is Get Dressed

The next action is Eat Jelly

The last action is Squash every week into a day

With PREG_SET_ORDER, each value of $match in the foreach loop contains all the sub‐

patterns: $match[0] is the entire matched string, $match[1] the bit before the =, and

$match[2] the bit after the =.

23.3 Finding the nth Occurrence of a Match | 655

See Also

Documentation on preg_match_all().

23.4 Choosing Greedy or Nongreedy Matches

Problem

You want your pattern to match the smallest possible string instead of the largest.

Solution

Place a ? after a quantifier to alter that portion of the pattern, as in Example 23-6.

 Example 23-6. Making a quantifier match as few characters as possible

 // find all emphasized sections

preg_match_all('@.+?@', $html, $matches);

Or use the U pattern-modifier ending to invert all quantifiers from greedy (“match as

many characters as possible”) to nongreedy (“match as few characters as possible”). The

code in Example 23-7 does the same thing as the code in Example 23-6.

 Example 23-7. Making a quantifier match as few characters as possible

 // find all emphasized sections

preg_match_all('@.+@U', $html, $matches);

Discussion

By default, all regular expression quantifiers in PHP are greedy. For example, consider

the pattern ., which matches ", one or more characters, ,” matching against the string I simply love your work. A greedy regular

expression finds one match, because after it matches the opening , its .+ slurps up

as much as possible, finally grinding to a halt at the final . The .+ matches

love your work.

A nongreedy regular expression, on the other hand, finds a pair of matches. The first

 is matched as before, but then .+ stops as soon as it can, only matching love. A

second match then goes ahead: the next .+ matches work.

Example 23-8 shows the greedy and nongreedy patterns at work.

 Example 23-8. Greedy versus nongreedy matching

$html = 'I simply love your work';

 // Greedy

$matchCount = preg_match_all('@.+@', $html, $matches);

print "Greedy count: " . $matchCount . " \n";

656 | Chapter 23: Regular Expressions

 // Nongreedy

$matchCount = preg_match_all('@.+?@', $html, $matches);

print "First non-greedy count: " . $matchCount . " \n";

 // Nongreedy

$matchCount = preg_match_all('@.+@U', $html, $matches);

print "Second non-greedy count: " . $matchCount . " \n";

Example 23-8 prints:

Greedy count: 1

First non-greedy count: 2

Second non-greedy count: 2

Greedy matching is also known as maximal matching and nongreedy matching can be

called minimal matching, because these methods match either the maximum or mini‐

mum number of characters possible.

The ereg() and ereg_replace() functions are always greedy. Being able to choose

between greedy and nongreedy matching is another reason to use the PCRE functions

instead.

Although nongreedy matching is useful for simplistic HTML parsing, it can break down

if your markup isn’t 100 percent valid and there are, for example, stray tags lying

around.2 If your goal is just to remove all (or some) HTML tags from a block of text,

you’re better off not using a regular expression. Instead, use the built-in function

strip_tags(); it’s faster and it works correctly. See Recipe 13.6 for more details.

Finally, even though the idea of nongreedy matching comes from Perl, the U modifier

is incompatible with Perl and is unique to PHP’s Perl-compatible regular expressions.

It inverts all quantifiers, turning them from greedy to nongreedy and also the reverse.

So to get a greedy quantifier inside of a pattern operating under a trailing /U, just add

a ? to the end, the same way you would normally turn a greedy quantifier into a non‐

greedy one.

See Also

Recipe 23.6 for more on capturing text inside HTML tags; Recipe 13.6 for more on stripping HTML tags; documentation on preg_match_all().

2. It’s possible to have valid HTML and still get into trouble; for instance, if you have bold tags inside a comment.

A true HTML parser would ignore them, but our pattern won’t.

23.4 Choosing Greedy or Nongreedy Matches | 657

23.5 Finding All Lines in a File That Match a Pattern

Problem

You want to find all the lines in a file that match a pattern.

Solution

Read the file into an array and use preg_grep().

Discussion

There are two ways to do this. Example 23-9 is faster, but uses more memory. It uses

the file() function to put each line of the file into an array and preg_grep() to filter

out the nonmatching lines.

 Example 23-9. Quickly finding lines that match a pattern

$pattern = "/\bo'reilly\b/i"; // only O'Reilly books

$ora_books = preg_grep($pattern, file('/path/to/your/file.txt'));

Example 23-10 is slower, but more memory efficient. It reads the file a line at a time and uses preg_match() to check each line after it’s read.

 Example 23-10. Efficiently finding lines that match a pattern

$fh = fopen('/path/to/your/file.txt', 'r') or die($php_errormsg);

while (!feof($fh)) {

$line = fgets($fh);

if (preg_match($pattern, $line)) { $ora_books[] = $line; }

}

fclose($fh);

Because the code in Example 23-9 reads in everything all at once, it’s about three times faster than the code in Example 23-10, which parses the file line by line but uses less

memory. Keep in mind that because both methods operate on individual lines of the

file, they can’t successfully use patterns that match text that spans multiple lines.

See Also

Recipe 24.5 on reading files into strings; documentation on preg_grep().

658 | Chapter 23: Regular Expressions

23.6 Capturing Text Inside HTML Tags

Problem

You want to capture text inside HTML tags. For example, you want to find all the heading

tags in an HTML document.

Solution

Read the HTML file into a string and use nongreedy matching in your pattern, as shown

in Example 23-11.

 Example 23-11. Capturing HTML headings

$html = file_get_contents(__DIR__ . '/example.html');

preg_match_all('@<h([1-6])>(.+?)</h\1>@is', $html, $matches);

foreach ($matches[2] as $text) {

print "Heading: $text\n";

}

Discussion

Robust parsing of HTML is difficult using a simple regular expression. This is one

advantage of using XHTML; it’s significantly easier to validate and parse.

For instance, the pattern in Example 23-11 can’t deal with attributes inside the heading tags and is only smart enough to find matching headings, so <h1>Dr.

Strangelove</h1> is OK, because it’s wrapped inside <h1></h1> tags, but not <h2>How I Learned to Stop Worrying and Love the Bomb</h3>, because the opening tag is

<h2>, whereas the closing tag is not.

This technique also works for finding all text inside reasonably well constructed

 and tags, as in Example 23-12.

 Example 23-12. Extracting text from HTML tags

$html = file_get_contents(__DIR__.'/example.html');

preg_match_all('@<(strong|em)>(.+?)</\1>@is', $html, $matches);

foreach ($matches[2] as $text) {

print "Text: $text\n";

}

However, Example 23-12 breaks on nested headings. If example.html contains

Dr. Strangelove or: How I Learned to Stop Worrying and Love

the Bomb, Example 23-12 doesn’t capture the text inside the tags as a separate item.

23.6 Capturing Text Inside HTML Tags | 659

This isn’t a problem in Example 23-11: because headings are block-level elements, it’s illegal to nest them. However, as inline elements, nested and tags are

valid.

Regular expressions can be moderately useful for parsing small amounts of HTML,

especially if the structure of that HTML is reasonably constrained (or you’re generating

it yourself). For more generalized and robust HTML parsing, use the Tidy extension.

It provides an interface to the popular libtidy HTML cleanup library. After Tidy has

cleaned up your HTML, you can use its methods for getting at parts of the document.

Or if you’ve told Tidy to convert your HTML to XHTML, you can use all of the XML

manipulation power of SimpleXML or the DOM extension to slice and dice your HTML

document.

See Also

Recipe 13.1 for information on marking up a web page and Recipe 13.3 for extracting links from an HTML file; documentation on preg_match() and Tidy.

23.7 Preventing Parentheses from Capturing Text

Problem

You’ve used parentheses for grouping in a pattern, but you don’t want the text that

matches what’s in the parentheses to show up in your array of captured matches.

Solution

Put ?: just after the opening parenthesis, as in Example 23-13.

 Example 23-13. Preventing text capture

$html = '<link rel="icon" href="http://www.example.com/icon.gif"/>

<link rel="prev" href="http://www.example.com/prev.xml"/>

<link rel="next" href="http://www.example.com/next.xml"/>';

preg_match_all('/rel="(prev|next)" href="([^"]*?)"/', $html, $bothMatches);

preg_match_all('/rel="(?:prev|next)" href="([^"]*?)"/', $html, $linkMatches);

print '$bothMatches is: '; var_dump($bothMatches);

print '$linkMatches is: '; var_dump($linkMatches);

In Example 23-13, $bothMatches contains the values of the rel and the href attributes.

$linkMatches, however, just contains the values of the href attributes. The code prints:

$bothMatches is: array(3) {

 [0]=>

 array(2) {

660 | Chapter 23: Regular Expressions

 [0]=>

 string(49) "rel="prev" href="http://www.example.com/prev.xml""

 [1]=>

 string(49) "rel="next" href="http://www.example.com/next.xml""

 }

 [1]=>

 array(2) {

 [0]=>

 string(4) "prev"

 [1]=>

 string(4) "next"

 }

 [2]=>

 array(2) {

 [0]=>

 string(31) "http://www.example.com/prev.xml"

 [1]=>

 string(31) "http://www.example.com/next.xml"

 }

}

$linkMatches is: array(2) {

 [0]=>

 array(2) {

 [0]=>

 string(49) "rel="prev" href="http://www.example.com/prev.xml""

 [1]=>

 string(49) "rel="next" href="http://www.example.com/next.xml""

 }

 [1]=>

 array(2) {

 [0]=>

 string(31) "http://www.example.com/prev.xml"

 [1]=>

 string(31) "http://www.example.com/next.xml"

 }

}

Discussion

Preventing capturing is particularly useful when a subpattern is optional. Because it

might not show up in the array of captured text, an optional subpattern can change the

number of pieces of captured text. This makes it hard to reference a particular matched

piece of text at a given index. Making optional subpatterns noncapturing prevents this

problem. Example 23-14 illustrates this distinction.

 Example 23-14. A noncapturing optional subpattern

$html = '<link rel="icon" href="http://www.example.com/icon.gif"/>

<link rel="prev" title="Previous" href="http://www.example.com/prev.xml"/>

<link rel="next" href="http://www.example.com/next.xml"/>';

23.7 Preventing Parentheses from Capturing Text | 661

preg_match_all('/rel="(?:prev|next)"(?: title="[^"]+?")? href="([^"]*?)"/', $html, $linkMatches);

print '$bothMatches is: '; var_dump($linkMatches);

See Also

The PCRE Pattern Syntax documentation.

23.8 Escaping Special Characters in a Regular Expression

Problem

You want to have characters such as * or + treated as literals, not as metacharacters,

inside a regular expression. This is useful when allowing users to type in search strings

you want to use inside a regular expression.

Solution

Use preg_quote() to escape PCRE metacharacters:

$pattern = preg_quote('The Education of H*Y*M*A*N K*A*P*L*A*N').':(\d+)';

if (preg_match("/$pattern/",$book_rank,$matches)) {

print "Leo Rosten's book ranked: ".$matches[1];

}

Discussion

Here are the characters that preg_quote() escapes:

. \ + * ? ^ $ [] () { } < > = ! | :

It escapes the metacharacters with a backslash.

You can also pass preg_quote() an additional character to escape as a second argu‐

ment. It’s useful to pass your pattern delimiter (usually /) as this argument so it also gets

escaped. This is important if you incorporate user input into a regular expression pat‐

tern. The following code expects $_GET['search_term'] from a web form and searches

for words beginning with $_GET['search_term'] in a string $s:

$search_term = preg_quote($_GET['search_term'],'/');

if (preg_match("/\b$search_term/i",$s)) {

print 'match!';

}

Using preg_quote() ensures the regular expression is interpreted properly if, for ex‐

ample, a Magnum, P.I. fan enters t.c as a search term. Without preg_quote(), this

matches tic, tucker, and any other words whose first letter is t and third letter is c.

662 | Chapter 23: Regular Expressions

Passing the pattern delimiter to preg_quote() as well makes sure that user input with

forward slashes in it, such as CP/M, is also handled correctly.

See Also

Documentation on preg_quote().

23.9 Reading Records with a Pattern Separator

Problem

You want to read in records from a file, in which each record is separated by a pattern

you can match with a regular expression.

Solution

Read the entire file into a string and then split on the regular expression:

$contents = file_get_contents('/path/to/your/file.txt');

$records = preg_split('/[0-9]+\) /', $contents);

Discussion

This breaks apart a numbered list and places the individual list items into array elements.

So if you have a list like this:

1) Gödel

2) Escher

3) Bach

you end up with a four-element array, with an empty opening element. That’s because

preg_split() assumes the delimiters are between items, but in this case, the numbers

are before items:

array(4) {

 [0]=>

 string(0) ""

 [1]=>

 string(7) "Gödel

"

 [2]=>

 string(7) "Escher

"

 [3]=>

 string(5) "Bach

"

}

23.9 Reading Records with a Pattern Separator | 663

From one point of view, this can be a feature, not a bug, because the n th element holds the n th item. But, to compact the array, you can eliminate the first element:

$records = preg_split('/[0-9]+\) /', $contents);

array_shift($records);

Another modification you might want is to strip newlines from the elements and sub‐

stitute the empty string instead:

$records = preg_split('/[0-9]+\) /', str_replace(" \n",'',$contents));

array_shift($records);

PHP doesn’t allow you to change the input record separator to anything other than a

newline, so this technique is also useful for breaking apart records divided by strings.

However, if you find yourself splitting on a string instead of a regular expression, sub‐

stitute explode() for preg_split() for a more efficient operation.

See Also

Recipe 24.5 for reading from a file; Recipe 1.12 for parsing CSV files.

23.10 Using a PHP Function in a Regular Expression

Problem

You want to process matched text with a PHP function. For example, you want to decode

all HTML entities in captured subpatterns.

Solution

Use preg_replace_callback(). Instead of a replacement pattern, give it a callback

function. This callback function is passed an array of matched subpatterns and should

return an appropriate replacement string. Example 23-15 decodes entities between

<code></code> tags.

 Example 23-15. Generating replacement strings with a callback function

$h = 'The tag makes text bold: <code>bold</code>'; print preg_replace_callback('@<code>(.*?)</code>@','decode', $h);

 // $matches[0] is the entire matched string

 // $matches[1] is the first captured subpattern

function decode($matches) {

return html_entity_decode($matches[1]);

}

Example 23-15 prints:

The tag makes text bold: bold

664 | Chapter 23: Regular Expressions

Discussion

The second argument to preg_replace_callback() specifies the function that is to be

called to calculate replacement strings. Like everywhere the PHP “callable” pseudotype

is used, this argument can be a string or an array. Use a string to specify a function name.

To use an object instance method as a callback, pass an array whose first element is the

object and whose second element is a string containing the method name. To use a static

class method as a callback, pass an array of two strings: the class name and the method

name. In PHP 5.4.0 and later, you can pass a variable containing an anonymous function,

or define the function inline with the call to preg_replace_callback().

The callback function is passed one argument: an array of matches. Element 0 of this

array is always the text that matched the entire pattern. If the pattern given to preg_re

place_callback() has any parenthesized subpatterns, these are present in subsequent

elements of the $matches array. The keys of the $matches array are numeric, even if

there are named subpatterns in the pattern.

If you are providing an anonymous function as a callback, it can be memory intensive

if the function creation is inline with the call to preg_replace_callback() and inside

a loop. If you want to use an anonymous function with preg_replace_callback(),

store the anonymous function callback in a variable. Then, provide the variable to

preg_replace_callback() as the callback function. Example 23-16 uses an anonymous

function to apply the transformation in Example 23-15 to every line in a file.

 Example 23-16. Generating replacement strings with an anonymous function

$callbackFunction = function($matches) {

return html_entity_decode($matches[1]);

};

$fp = fopen(__DIR__ . '/html-to-decode.html','r');

while (! feof($fp)) {

$line = fgets($fp);

print preg_replace_callback('@<code>(.*?)</code>@',$callbackFunction, $line);

}

fclose($fp);

Example 23-16 uses the anonymous function declaration syntax introduced in PHP

5.3.0. If you’re using an older version of PHP, you can use create_function() to build

your callback, as follows:

$callbackFunction = create_function('$matches',

'return html_entity_decode($matches[1]);');

$fp = fopen(__DIR__ . '/html-to-decode.html','r');

while (! feof($fp)) {

$line = fgets($fp);

print preg_replace_callback('@<code>(.*?)</code>@',$callbackFunction, $line);

23.10 Using a PHP Function in a Regular Expression | 665

}

fclose($fp);

So you can avoid using it, you should be aware of the e pattern modifier. This causes

the replacement string to be evaluated as PHP code. This pattern modifier is deprecated

as of PHP 5.5.0. Using the e modifier opens up remote code execution security vulner‐

abilities when user input is part of the text that preg_replace() operates on. If you

encounter code using preg_replace() with the e modifier, convert it to use preg_re

place_callback() instead.

See Also

Documentation on preg_replace_callback(), on preg_replace(), on create_func

tion(), and on the callable pseudotype.

666 | Chapter 23: Regular Expressions

CHAPTER 24

Files

24.0 Introduction

The input and output in a web application usually flow between browser, server, and

database, but there are many circumstances in which files are involved too. Files are

useful for retrieving remote web pages for local processing, storing data without a da‐

tabase, and saving information to which other programs need access. Plus, as PHP

becomes a tool for more than just pumping out web pages, the file I/O functions are

even more useful.

PHP’s interface for file I/O is similar to that of C, although less complicated. The fun‐

damental unit of identifying a file to read from or write to is a filehandle. This handle

identifies your connection to a specific file, and you use it for operations on the file.

This chapter focuses on opening and closing files and manipulating filehandles in PHP,

as well as what you can do with the file contents once you’ve opened a file. Chapter 25

deals with directories and file metadata such as permissions.

This example opens /tmp/cookie-data and writes the contents of a specific cookie to the

file:

$fh = fopen('/tmp/cookie-data','w') or die("can't open file");

if (-1 == fwrite($fh,$_COOKIE['flavor'])) { die("can't write data"); }

fclose($fh) or die("can't close file");

The function fopen() returns a filehandle if its attempt to open the file is successful. If

it can’t open the file (because of incorrect permissions, for example), it returns false

and generates an E_WARNING-type error. Recipes 24.1 through 24.3 cover ways to open files.

In the example, fwrite() writes the value of the flavor cookie to the filehandle. It

returns the number of bytes written. If it can’t write the string (not enough disk space,

for example), it returns -1.

667

Last, fclose() closes the filehandle. This is done automatically at the end of a request, but it’s a good idea to explicitly close all files you open anyway. It prevents problems

when using the code in a command-line context and frees up system resources. It also

allows you to check the return code from fclose(). Buffered data might not actually

be written to disk until fclose() is called, so it’s here that “disk full” errors are sometimes

reported.

As with other processes, PHP must have the correct permissions to read from and write

to a file. This is usually straightforward in a command-line context but can cause con‐

fusion when running scripts within a web server. Your web server (and consequently

your PHP script) probably runs as a specific user dedicated to web serving (or perhaps

as user nobody). For good security reasons, this user often has restricted permissions

on what files it can access. If your script is having trouble with a file operation, make

sure the web server’s user or group—not yours—has permission to perform that file

operation. Some web-serving setups may run your script as you, though, in which case

you need to make sure that your scripts can’t accidentally read or write personal files

that aren’t part of your website.

Because most file-handling functions just return false on error, you have to do some

additional work to find more details about that error. When the track_errors config‐

uration directive is on, each error message is put in the global variable $php_errormsg.

Including this variable as part of your error output makes debugging easier, as shown:

$fh = fopen('/tmp/cookie-data','w') or die("can't open: $php_errormsg");

if (-1 == fwrite($fh,$_COOKIE['flavor'])) { die("can't write: $php_errormsg"); }

fclose($fh) or die("can't close: $php_errormsg");

If you don’t have permission to write to /tmp/cookie-data, it dies with this error output:

can't open: fopen(/tmp/cookie-data): failed to open stream: Permission denied

Windows and Unix treat files differently. To ensure your file access code works appro‐

priately on Unix and Windows, take care to handle line-delimiter characters and path‐

names correctly.

A line delimiter on Windows is two characters: ASCII 13 (carriage return) followed by

ASCII 10 (line feed or newline). On Unix, it’s just ASCII 10. The typewriter-era names

for these characters explain why you can get “stair-stepped” text when printing out a

Unix-delimited file. Imagine these character names as commands to the platen in a

typewriter or character-at-a-time printer. A carriage return sends the platen back to the

beginning of the line it’s on, and a line feed advances the paper by one line. A miscon‐

figured printer encountering a Unix-delimited file dutifully follows instructions and

does a line feed at the end of each line. This advances to the next line but doesn’t move

the horizontal printing position back to the left margin. The next stair-stepped line of

text begins (horizontally) where the previous line left off.

668 | Chapter 24: Files

PHP functions that use a newline as a line-ending delimiter (for example, fgets())

work on both Windows and Unix because a newline is the character at the end of the

line on either platform.

To remove any line-delimiter characters, use the PHP function rtrim():

$fh = fopen('/tmp/lines-of-data.txt','r') or die($php_errormsg);

while(false !== ($s = fgets($fh))) {

$s = rtrim($s);

 // do something with $s ...

}

fclose($fh) or die($php_errormsg);

This function removes any trailing whitespace in the line, including ASCII 13 and ASCII

10 (as well as tab and space). If there’s whitespace at the end of a line that you want to

preserve, but you still want to remove carriage returns and line feeds, provide rtrim()

with a string containing the characters that it should remove. Other characters are left

untouched, as shown:

$fh = fopen('/tmp/lines-of-data.txt','r') or die($php_errormsg);

while(false !== ($s = fgets($fh))) {

$s = rtrim($s, " \r\n");

 // do something with $s ...

}

fclose($fh) or die($php_errormsg);

Unix and Windows also differ on the character used to separate directories in path‐

names. Unix uses a slash (/), and Windows uses a backslash (\). PHP makes sorting this

out easy, however, because the Windows version of PHP also understands / as a direc‐

tory separator. For example, this successfully prints the contents of C:\Alligator\Croc‐

 odile Menu.txt:

$fh = fopen('c:/alligator/crocodile menu.txt','r') or die($php_errormsg);

while(false !== ($s = fgets($fh))) {

print $s;

}

fclose($fh) or die($php_errormsg);

It also takes advantage of the fact that Windows filenames aren’t case sensitive. However,

Unix filenames are.

Sorting out line-break confusion isn’t only a problem in your code that reads and writes

files, but in your source code files as well. If you have multiple people working on a

project, make sure all developers configure their editors to use the same kind of line

breaks.

Once you’ve opened a file, PHP gives you many tools to process its data. In keeping with

PHP’s C-like I/O interface, the two basic functions to read data from a file are

fread(), which reads a specified number of bytes, and fgets(), which reads a line at a

24.0 Introduction | 669

time (up to an optional specified number of bytes). This example handles lines up to

256 bytes long:

$fh = fopen('orders.txt','r') or die($php_errormsg);

while (! feof($fh)) {

$s = fgets($fh,256);

process_order($s);

}

fclose($fh) or die($php_errormsg);

If orders.txt has a 300-byte line, fgets() returns only the first 256 bytes. The next

fgets() returns the next 44 bytes and stops when it finds the newline. The next fgets()

after that moves to the next line of the file. Without the second argument, fgets() reads

until it reaches the end of the line.

Many operations on file contents, such as picking a line at random (see Recipe 24.8) are conceptually simpler (and require less code) if the entire file is read into a string or array.

The file_get_contents() function reads an entire file into a string, and the file()

function puts each line of a file into an array. The trade-off for simplicity, however, is

memory consumption. This can be especially harmful when you are using PHP as a

server module.

Generally, when a process (such as a web server process with PHP embedded in it)

allocates memory (as PHP does to read an entire file into a string or array), it can’t return

that memory to the operating system until it dies. This means that calling file_get_con

tents() on a 1 MB file from PHP running as an Apache module increases the size of

that Apache process by 1 MB until the process dies. Repeated a few times, this decreases

server efficiency. There are certainly good reasons for processing an entire file at once,

but be conscious of the memory-use implications when you do.

If you are able to avoid loading the entire file into memory, generators are an elegant

way to encapsulate file-iteration logic. Recipe 4.24 shows how to loop over the the lines of a file as if they are stored in an array, while only loading into memory one line at a

time.

Recipes 24.17 through 24.19 deal with running other programs from within a PHP

program. Some program execution operators or functions offer ways to run a program

and read its output all at once (backticks) or read its last line of output (system()). PHP

can use pipes to run a program, pass it input, or read its output. Because a pipe is read

with standard I/O functions (fgets() and fread()), you decide how you want the input

and you can do other tasks between reading chunks of input. Similarly, writing to a pipe

is done with fputs() and fwrite(), so you can pass input to a program in arbitrary

increments.

Pipes have the same permission issues as regular files. The PHP process must have

execute permission on the program being opened as a pipe. If you have trouble opening

670 | Chapter 24: Files

a pipe, especially if PHP is running as a special web server user, make sure the user is allowed to execute the program to which you are opening a pipe.

24.1 Creating or Opening a Local File

Problem

You want to open a local file to read data from it or write data to it.

Solution

Use fopen():

$fh = fopen('file.txt','r') or die("can't open file.txt: $php_errormsg");

Discussion

The first argument to fopen() is the file to open; the second argument is the mode in

which to open the file. The mode specifies what operations can be performed on the file

(reading and/or writing), where the file pointer is placed after the file is opened (at the

beginning or end of the file), whether the file is truncated to zero length after opening,

and whether the file is created if it doesn’t exist, as shown in Table 24-1.

 Table 24-1. fopen() file modes

Mode Readable? Writable? File pointer Truncate? Create?

r

Yes

No

Beginning

No

No

r+

Yes

Yes

Beginning

No

No

w

No

Yes

Beginning

Yes

Yes

w+

Yes

Yes

Beginning

Yes

Yes

a

No

Yes

End

No

Yes

a+

Yes

Yes

End

No

Yes

x

No

Yes

Beginning

No

Yes

x+

Yes

Yes

Beginning

No

Yes

The x and x+ modes return false and generate a warning if the file already exists.

On non-POSIX systems, such as Windows, you need to add a b to the mode when

opening a binary file, or reads and writes get tripped up on NUL (ASCII 0) charac‐

ters. For instance:

$fh = fopen('c:/images/logo.gif','rb');

24.1 Creating or Opening a Local File | 671

Even though Unix systems handle binary files fine without the b in the mode, it’s a good idea to use it always. That way, your code is maximally portable and runs well on both

Unix and Windows.

To operate on a file, pass the filehandle returned from fopen() to other I/O functions

such as fgets(), fputs(), and fclose().

If the file given to fopen() doesn’t have a pathname, the file is opened in the directory

of the running script (web context) or in the current directory (command-line context).

You can also tell fopen() to search for the file to open in the include_path specified in

your php.ini file by passing true as a third argument. This example searches for file.inc

in the include_path:

$fh = fopen('file.inc','r', true) or die("can't open file.inc: $php_errormsg"); See Also

Documentation on fopen().

24.2 Creating a Temporary File

Problem

You need a file to temporarily hold some data.

Solution

If the file needs to last only the duration of the running script, use tmpfile():

$temp_fh = tmpfile();

 // write some data to the temp file

fputs($temp_fh,"The current time is ".strftime('%c'));

 // the file goes away when the script ends

exit(1);

If the file needs to last longer, generate a filename with tempnam(), and then use fopen():

$tempfilename = tempnam('/tmp', 'data-');

$temp_fh = fopen($tempfilename, 'w') or die($php_errormsg);

fputs($temp_fh, "The current time is ".strftime('%c'));

fclose($temp_fh) or die($php_errormsg);

Discussion

The tmpfile() function creates a file with a unique name and returns a filehandle. The

file is removed when fclose() is called on that filehandle, or the script ends.

672 | Chapter 24: Files

Alternatively, tempnam() generates a filename. It takes two arguments: the first is a

directory, and the second is a prefix for the filename. If the directory doesn’t exist or

isn’t writable, tempnam() uses the system temporary directory—the TMPDIR environ‐

ment variable in Unix or the TMP environment variable in Windows. This example shows

what tempnam() generates:

$tempfilename = tempnam('/tmp','data-');

print "Temporary data will be stored in $tempfilename";

This prints:

Temporary data will be stored in /tmp/data-GawVoL

Because of the way PHP generates temporary filenames, a file with the filename that

tempnam() returns is actually created but left empty, even if your script never explicitly

opens the file. This ensures another program won’t create a file with the same name

between the time that you call tempnam() and the time you call fopen() with the file‐

name.

See Also

Documentation on tmpfile() and tempnam().

24.3 Opening a Remote File

Problem

You want to open a file that’s accessible to you via HTTP or FTP.

Solution

Pass the file’s URL to fopen():

$fh = fopen('http://www.example.com/robots.txt','r') or die($php_errormsg);

Discussion

When fopen() is passed a filename that begins with http://, it retrieves the given page

with an HTTP/1.0 GET request (although a Host: header is also passed along to work

with virtual hosts). Only the body of the reply can be accessed using the filehandle, not

the headers. Files can be read, but not written, via HTTP.

When fopen() is passed a filename that begins with ftp://, it returns a pointer to the

specified file, obtained via passive-mode FTP. You can open files via FTP for either

reading or writing, but not both.

24.3 Opening a Remote File | 673

To open URLs that require a username and a password with fopen(), embed the au‐

thentication information in the URL as shown:

$fh = fopen('ftp://username:password@ftp.example.com/pub/Index','r');

$fh = fopen('http://username:password@www.example.com/robots.txt','r');

Opening remote files with fopen() is implemented via a PHP feature called the stream

wrapper. It’s enabled by default but is disabled by setting allow_url_fopen to off in

your php.ini or web server configuration file. If you can’t open remote files with fop

en(), check your server configuration.

See Also

Recipe 14.1 through Recipe 14.7, which discuss retrieving URLs; documentation on

fopen(), remote files and stream wrappers.

24.4 Reading from Standard Input

Problem

You want to read from standard input in a command-line context—for example, to get

user input from the keyboard or data piped to your PHP program.

Solution

Use fopen() to open php://stdin:

$fh = fopen('php://stdin','r') or die($php_errormsg);

while($s = fgets($fh)) {

print "You typed: $s";

}

Discussion

Recipe 26.3 discusses reading data from the keyboard in a command-line context in

more detail. Reading data from standard input isn’t very useful in a web context, because

information doesn’t arrive via standard input. The bodies of HTTP POST and file-

upload requests are parsed by PHP and put into special variables. Non–file-upload

POST request bodies can also be read with the php://input stream, as discussed in

Recipe 8.5.

See Also

Recipe 26.3 for reading from the keyboard in a command-line context; Recipe 8.5 for reading POST request bodies; documentation on fopen().

674 | Chapter 24: Files

24.5 Reading a File into a String

Problem

You want to load the entire contents of a file into a variable. For example, you want to

determine if the text in a file matches a regular expression.

Solution

Use file_get_contents():

$people = file_get_contents('people.txt');

if (preg_match('/Names:.*(David|Susannah)/i',$people)) {

print "people.txt matches.";

}

Discussion

If you want the contents of a file in a string to manipulate, file_get_contents() is

great, but if you just want to print the entire contents of a file, there are easier (and more

efficient) ways than reading it into a string and then printing the string. PHP provides

two functions for this. The first is fpassthru($fh), which prints everything left on the

filehandle $fh and then closes it. The second, readfile($filename), prints the entire

contents of $filename.

You can use readfile() to implement a wrapper around images that shouldn’t always

be displayed. This program makes sure a requested image is less than a week old:

$image_directory = '/usr/local/images';

if (preg_match('/^[a-zA-Z0-9]+\.(gif|jpe?g)$/',$image,$matches) &&

is_readable($image_directory."/$image") &&

(filemtime($image_directory."/$image") >= (time() - 86400 * 7))) {

header('Content-Type: image/'.$matches[1]);

header('Content-Length: '.filesize($image_directory."/$image"));

readfile($image_directory."/$image");

} else {

error_log("Can't serve image: $image");

}

The directory in which the images are stored, $image_directory, needs to be outside

the web server’s document root for the wrapper to be effective. Otherwise, users can

just access the image files directly. The code tests the image file for three things. First,

that the filename passed in $image is just alphanumeric with an ending of ei‐

ther .gif, .jpg, or .jpeg. You need to ensure that characters such as .. or / are not in the 24.5 Reading a File into a String | 675

filename; this prevents malicious users from retrieving files outside the specified directory. Second, use is_readable() to make sure the program can read the file. Finally,

get the file’s modification time with filemtime() and make sure the time is after 86,400

 × 7 seconds ago. There are 86,400 seconds in a day, so 86,400 × 7 is a week.1

If all of these conditions are met, you’re ready to send the image. First, send two headers

to tell the browser the image’s MIME type and file size. Then use readfile() to send

the entire contents of the file to the user.

See Also

Documentation on filesize(), fread(), fpassthru(), and readfile().

24.6 Counting Lines, Paragraphs, or Records in a File

Problem

You want to count the number of lines, paragraphs, or records in a file.

Solution

To count lines, use fgets():

$lines = 0;

if ($fh = fopen('orders.txt','r')) {

while (! feof($fh)) {

if (fgets($fh)) {

$lines++;

}

}

}

print $lines;

Because fgets() reads a line at a time, you can count the number of times it’s called

before reaching the end of a file.

To count paragraphs, increment the counter only when you read a blank line:

$paragraphs = 0;

if ($fh = fopen('great-american-novel.txt','r')) {

while (! feof($fh)) {

$s = fgets($fh);

1. When switching between standard time and daylight saving time, there are not 86,400 seconds in a day. See

Recipe 3.10 for details.

676 | Chapter 24: Files

 if ((" \n" == $s) || (" \r\n" == $s)) {

$paragraphs++;

}

}

}

print $paragraphs;

To count records, increment the counter only when the line read contains just the record

separator and whitespace. Here the record separator is stored in $record_separator:

$records = 0;

$record_separator = '--end--';

if ($fh = fopen('great-american-textfile-database.txt','r')) {

while (! feof($fh)) {

$s = rtrim(fgets($fh));

if ($s == $record_separator) {

$records++;

}

}

}

print $records;

Discussion

When counting lines, $lines is incremented only if fgets() returns a true value. As

fgets() moves through the file, it returns each line it retrieves. When it reaches the last

line, it returns false, so $lines isn’t incremented incorrectly. Because EOF has been

reached on the file, feof() returns true, and the while loop ends.

When counting paragraphs, the solution works properly on simple text but may produce

unexpected results when presented with a long string of blank lines or a file without

two consecutive line breaks. These problems can be remedied with functions based on

preg_split(). If the file is small and can be read into memory, use the split_para

graphs() function. This function returns an array containing each paragraph in the file.

For example:

function split_paragraphs($file,$rs=" \r? \n") {

$text = file_get_contents($file);

$matches = preg_split("/(.*?$rs)(?:$rs)+/s",$text,-1,

PREG_SPLIT_DELIM_CAPTURE|PREG_SPLIT_NO_EMPTY);

return $matches;

}

The contents of the file are broken on two or more consecutive newlines and returned

in the $matches array. The default record-separation regular expression, \r?\n, matches

both Windows and Unix line breaks.

24.6 Counting Lines, Paragraphs, or Records in a File | 677

If the file is too big to read into memory at once, use the split_paragraphs_large

file() function, which reads the file in 16 KB chunks:

function split_paragraphs_largefile($file,$rs=" \r? \n") {

global $php_errormsg;

$unmatched_text = '';

$paragraphs = array();

$fh = fopen($file,'r') or die($php_errormsg);

while(! feof($fh)) {

$s = fread($fh,16384) or die($php_errormsg);

$text_to_split = $unmatched_text . $s;

$matches = preg_split("/(.*?$rs)(?:$rs)+/s",$text_to_split,-1,

PREG_SPLIT_DELIM_CAPTURE|PREG_SPLIT_NO_EMPTY);

 // if the last chunk doesn't end with two record separators, save it

 // to prepend to the next section that gets read

$last_match = $matches[count($matches)-1];

if (! preg_match("/rsrs\$/",$last_match)) {

$unmatched_text = $last_match;

array_pop($matches);

} else {

$unmatched_text = '';

}

$paragraphs = array_merge($paragraphs,$matches);

}

 // after reading all sections, if there is a final chunk that doesn't

 // end with the record separator, count it as a paragraph

if ($unmatched_text) {

$paragraphs[] = $unmatched_text;

}

return $paragraphs;

}

This function uses the same regular expression as split_paragraphs() to split the file

into paragraphs. When it finds a paragraph end in a chunk read from the file, it saves

the rest of the text in the chunk in $unmatched_text and prepends it to the next chunk

read. This includes the unmatched text as the beginning of the next paragraph in the

file.

The record-counting function at the end of the Solution lets fgets() figure out how

long each line is. If you can supply a reasonable upper bound on line length,

stream_get_line() provides a more concise way to count records. This function reads

a line until it reaches a certain number of bytes or it sees a particular delimiter. Supply

it with the record separator as the delimiter, as shown:

678 | Chapter 24: Files

$records = 0;

$record_separator = '--end--';

if ($fh = fopen('great-american-textfile-database.txt','r')) {

$done = false;

while (! $done) {

$s = stream_get_line($fh, 65536, $record_separator);

if (feof($fh)) {

$done = true;

} else {

$records++;

}

}

}

print $records;

This example assumes that each record is no more that 64 KB (65,536 bytes) long. Each

call to stream_get_line() returns one record, not including the record separator.

When stream_get_line() has advanced past the last record separator, it reaches the

end of the file, so $done is set to true to stop counting records.

See Also

Documentation on fgets(), feof(), preg_split(), and stream_get_line().

24.7 Processing Every Word in a File

Problem

You want to do something with every word in a file. For example, you want to build a

concordance of how many times each word is used to compute similarities between

documents.

Solution

Read in each line with fgets(), separate the line into words, and process each word:

$fh = fopen('great-american-novel.txt','r') or die($php_errormsg);

while (! feof($fh)) {

if ($s = fgets($fh)) {

$words = preg_split('/\s+/',$s,-1,PREG_SPLIT_NO_EMPTY);

 // process words

}

}

fclose($fh) or die($php_errormsg);

24.7 Processing Every Word in a File | 679

Discussion

This example calculates the average word length in a file:

$word_count = $word_length = 0;

if ($fh = fopen('great-american-novel.txt','r')) {

while (! feof($fh)) {

if ($s = fgets($fh)) {

$words = preg_split('/\s+/',$s,-1,PREG_SPLIT_NO_EMPTY);

foreach ($words as $word) {

$word_count++;

$word_length += strlen($word);

}

}

}

}

print sprintf("The average word length over %d words is %.02f characters.",

$word_count,

$word_length/$word_count);

Processing every word proceeds differently depending on how “word” is defined. The

code in this recipe uses the Perl-compatible regular expression engine’s \s whitespace

metacharacter, which includes space, tab, newline, carriage return, and formfeed.

Recipe 1.5 breaks apart a line into words by splitting on a space, which is useful in that recipe because the words have to be rejoined with spaces. The Perl-compatible engine

also has a word-boundary assertion (\b) that matches between a word character (al‐

phanumeric) and a nonword character (anything else). Using \b instead of \s to delimit

words most noticeably treats words with embedded punctuation differently. The term

6 o’clock is two words when split by whitespace (6 and o’clock); it’s four words when

split by word boundaries (6, o, ', and clock).

See Also

Recipe 23.2 for using regular expressions to match words; Recipe 1.5 for breaking apart a line by words; documentation on fgets(), preg_split(), and on the Perl-compatible

regular expression extension.

24.8 Picking a Random Line from a File

Problem

You want to pick a line at random from a file; for example, you want to display a selection

from a file of sayings.

680 | Chapter 24: Files

Solution

Spread the selection odds evenly over all lines in a file:

$line_number = 0;

$fh = fopen(__DIR__ . '/sayings.txt','r') or die($php_errormsg);

while (! feof($fh)) {

if ($s = fgets($fh)) {

$line_number++;

if (mt_rand(0, $line_number - 1) == 0) {

$line = $s;

}

}

}

fclose($fh) or die($php_errormsg);

Discussion

As each line is read, a line counter is incremented, and this example generates a random

integer between 0 and $line_number - 1. If the number is 0, the current line is selected

as the randomly chosen line. After all lines have been read, the last line that was selected

as the randomly chosen line is left in $line.

This algorithm neatly ensures that each line in an n line file has a 1/ n chance of being

chosen without having to store all n lines into memory.

See Also

Documentation on mt_rand().

24.9 Randomizing All Lines in a File

Problem

You want to randomly reorder all lines in a file. You have a file of funny quotes, for

example, and you want to pick out one at random.

Solution

Read all the lines in the file into an array with file() and then shuffle the elements of

the array:

$lines = file(__DIR__ . '/quotes-of-the-day.txt');

if (shuffle($lines)) {

 // okay

} else {

24.9 Randomizing All Lines in a File | 681

 die("Failed to shuffle");

}

Discussion

The shuffle() function randomly reorders the array elements, so after shuffling, you

can pick out $lines[0] as a quote to display.

See Also

Recipe 4.20 for shuffle(); documentation on shuffle().

24.10 Processing Variable-Length Text Fields

Problem

You want to read delimited text fields from a file. You might, for example, have a database

program that prints records one per line, with tabs between each field in the record, and

you want to parse this data into an array.

Solution

Use fgetcsv() to read in each line and then split the fields based on their delimiter:

$delim = '|';

$fh = fopen('books.txt','r') or die("can't open: $php_errormsg");

while (! feof($fh)) {

$fields = fgetcsv($fh, 1000, $delim);

 // ... do something with the data ...

print_r($fields);

}

fclose($fh) or die("can't close: $php_errormsg");

Discussion

To parse the following data in books.txt:

Elmer Gantry|Sinclair Lewis|1927

The Scarlatti Inheritance|Robert Ludlum|1971

The Parsifal Mosaic|Robert Ludlum|1982

Sophie's Choice|William Styron|1979

process each record as shown:

$fh = fopen('books.txt','r') or die("can't open: $php_errormsg");

while (! feof($fh)) {

list($title,$author,$publication_year) = fgetcsv($fh, 1000, '|');

 // ... do something with the data ...

682 | Chapter 24: Files

}

fclose($fh) or die("can't close: $php_errormsg");

The fgetcsv() function reads in lines from a file, like fgets(), but it also parses them

into individual fields. As the name suggests, its default delimiter is a comma, but the

function accepts any field. In this example, it’s a pipe.

The line-length argument to fgetcsv() needs to be at least as long as the longest record,

so that a record doesn’t get truncated.

If any of your records contain your delimiter, fgetcsv() can parse these properly if the

data is enclosed or escaped. By default, this is the double quote and backslash characters,

respectively. You can change this:

$fh = fopen('books.txt','r') or die("can't open: $php_errormsg");

while (! feof($fh)) {

list($title,$author,$publication_year) = fgetcsv($fh, 1000, '|', "'", '*');

 // ... do something with the data ...

}

fclose($fh) or die("can't close: $php_errormsg");

Here, records are wrapped in single quotes and the single-quote character is escaped

using an asterisk.

If lines are not properly detected, enable the auto_detect_line_endings configuration

option prior to opening the file:

ini_set('auto_detect_line_endings', true);

$fh = fopen('books.txt','r') or die("can't open: $php_errormsg");

 // rest of processing

See Also

Recipe 1.15 discusses ways to break strings into pieces; Recipes 1.12 and 1.14 cover parsing comma-separated and fixed-width data; documentation on fgetcsv().

24.11 Reading Configuration Files

Problem

You want to use configuration files to initialize settings in your programs.

Solution

Use parse_ini_file():

$config = parse_ini_file('/etc/myapp.ini');

24.11 Reading Configuration Files | 683

Discussion

The function parse_ini_file() reads configuration files structured like PHP’s main

 php.ini file. Instead of applying the settings in the configuration file to PHP’s configu‐

ration, however, parse_ini_file() returns the values from the file in an array.

For example, when parse_ini_file() is given a file with these contents:

; physical features

eyes=brown

hair=brown

glasses=yes

; other features

name=Susannah

likes=monkeys,ice cream,reading

the array it returns is:

Array

(

[eyes] => brown

[hair] => brown

[glasses] => 1

[name] => Susannah

[likes] => monkeys,ice cream,reading

)

Blank lines and lines that begin with ; in the configuration file are ignored. Other lines

with name=value pairs are put into an array with the name as the key and the value,

appropriately, as the value. Words such as on and yes as values are returned as 1, and

words such as off and no are returned as the empty string.

To parse sections from the configuration file, pass 1 as a second argument to

parse_ini_file(). Sections are set off by words in square brackets in the file:

[physical]

eyes=brown

hair=brown

glasses=yes

[other]

name=Susannah

likes=monkeys,ice cream,reading

If this file is in /etc/myapp.ini, then:

$conf = parse_ini_file('/etc/myapp.ini',1);

puts the array in $conf:

Array

(

684 | Chapter 24: Files

 [physical] => Array

(

[eyes] => brown

[hair] => brown

[glasses] => 1

)

[other] => Array

(

[name] => Susannah

[likes] => monkeys,ice cream,reading

)

)

Another approach to configuration is to make your configuration file a valid PHP file

that you load with require instead of parse_ini_file(). If the file config.php contains:

<?php

 // physical features

$eyes = 'brown';

$hair = 'brown';

$glasses = 'yes';

 // other features

$name = 'Susannah';

$likes = array('monkeys','ice cream','reading');

you can set the variables $eyes, $hair, $glasses, $name, and $likes with a simple

require 'config.php';.

The configuration file loaded by require needs to be valid PHP—including the <?php

start tag. The variables named in config.php are set explicitly, not inside an array, as in

parse_ini_file(). For simple configuration files, this technique may not be worth the

extra attention to syntax, but it is useful for embedding logic in the configuration file,

such as this statement:

$time_of_day = (date('a') == 'am') ? 'early' : 'late';

See Also

Documentation on parse_ini_file().

24.12 Modifying a File in Place Without a Temporary File

Problem

You want to change a file without using a temporary file to hold the changes.

24.12 Modifying a File in Place Without a Temporary File | 685

Solution

Read the file with file_get_contents(), make the changes, and rewrite the file with

file_put_contents():

$contents = file_get_contents('pickles.txt');

$contents = strtoupper($contents);

file_put_contents('pickles.txt', $contents);

Discussion

This example turns text emphasized with asterisks or slashes into text with HTML

or <i> tags:

$contents = file_get_contents('message.txt');

 // convert *word* to word

$contents = preg_replace('@*(.*?)*@i','$1',$contents);

 // convert /word/ to <i>word</i>

$contents = preg_replace('@/(.*?)/@i','<i>$1</i>',$contents);

file_put_contents('message.txt', $contents);

Because adding HTML tags makes the file grow, the entire file has to be read into mem‐

ory and then processed. If the changes to a file make each line shrink (or stay the same

size), the file can be processed line by line, saving memory.

For example, this converts text marked with and <i> to text marked with asterisks

and slashes:

$fh = fopen('message.txt','r+') or die($php_errormsg);

 // figure out how many bytes to read

$bytes_to_read = filesize('message.txt');

 // initialize variables that hold file positions

$next_read = $last_write = 0;

 // keep going while there are still bytes to read

while ($next_read < $bytes_to_read) {

 /* move to the position of the next read, read a line, and save

 * the position of the next read */

fseek($fh,$next_read);

$s = fgets($fh) or die($php_errormsg);

$next_read = ftell($fh);

 // convert word to *word*

$s = preg_replace('@<b[^>]*>(.*?)@i','*$1*',$s);

 // convert <i>word</i> to /word/

$s = preg_replace('@<i[^>]*>(.*?)</i>@i','/$1/',$s);

 /* move to the position where the last write ended, write the

 * converted line, and save the position for the next write */

686 | Chapter 24: Files

 fseek($fh,$last_write);

if (-1 == fwrite($fh,$s)) { die($php_errormsg); }

$last_write = ftell($fh);

}

 // truncate the file length to what we've already written

ftruncate($fh,$last_write) or die($php_errormsg);

 // close the file

fclose($fh) or die($php_errormsg);

See Also

Recipes 13.4 and 13.5 for additional information on converting between plain text and HTML; documentation on fseek(), rewind(), ftruncate(), file_get_contents(),

and file_put_contents().

24.13 Flushing Output to a File

Problem

You want to force all buffered data to be written to a filehandle.

Solution

Use fflush():

fwrite($fh,'There are twelve pumpkins in my house.');

fflush($fh);

This ensures that There are twelve pumpkins in my house. is written to $fh.

Discussion

To be more efficient, system I/O libraries generally don’t write something to a file when

you tell them to. Instead, they batch the writes together in a buffer and save all of them

to disk at the same time. Using fflush() forces anything pending in the write buffer to

be actually written to disk.

Flushing output can be particularly helpful when generating an access or activity log.

Calling fflush() after each message to the logfile makes sure that any person or pro‐

gram monitoring the logfile sees the message as soon as possible.

See Also

Documentation on fflush().

24.13 Flushing Output to a File | 687

24.14 Writing to Standard Output

Problem

You want to write to standard output.

Solution

Use echo or print():

print "Where did my pastrami sandwich go?";

echo "It went into my stomach.";

Discussion

Whereas print() is a function, echo is a language construct. This means that print()

returns a value, and echo doesn’t. You can include print() but not echo in larger ex‐

pressions, as shown:

 // this is OK

(12 == $status) ? print 'Status is good' : error_log('Problem with status!');

 // this gives a parse error

(12 == $status) ? echo 'Status is good' : error_log('Problem with status!');

Use php://stdout as the filename if you’re using the file functions $fh = fopen('php://

stdout','w') or die($php_errormsg);.

Writing to standard output via a filehandle instead of simply with print() or echo is

useful if you need to abstract where your output goes, or if you need to print to standard

output at the same time as writing to a file. See Recipe 24.15 for details.

You can write to standard error by opening php://stderr: $fh = fopen('php://

stderr','w');.

See Also

Recipe 24.15 for writing to many filehandles simultaneously; documentation on echo

and on print().

24.15 Writing to Many Filehandles Simultaneously

Problem

You want to send output to more than one filehandle; for example, you want to log

messages to the screen and to a file.

688 | Chapter 24: Files

Solution

Wrap your output with a loop that iterates through your filehandles:

function multi_fwrite($fhs,$s,$length=NULL) {

if (is_array($fhs)) {

if (is_null($length)) {

foreach($fhs as $fh) {

fwrite($fh,$s);

}

} else {

foreach($fhs as $fh) {

fwrite($fh,$s,$length);

}

}

}

}

$fhs = array();

$fhs['file'] = fopen('log.txt','w') or die($php_errormsg);

$fhs['screen'] = fopen('php://stdout','w') or die($php_errormsg);

multi_fwrite($fhs,'The space shuttle has landed.');

Discussion

If you don’t want to pass a length argument to fwrite() (or you always want to), you

can eliminate that check from your multi_fwrite(). This version doesn’t contain a

$length argument:

function multi_fwrite($fhs,$s) {

if (is_array($fhs)) {

foreach($fhs as $fh) {

fwrite($fh,$s);

}

}

}

See Also

Documentation on fwrite().

24.16 Escaping Shell Metacharacters

Problem

You need to incorporate external data in a command line, but you want to escape special

characters so nothing unexpected happens; for example, you want to pass user input as

an argument to a program.

24.16 Escaping Shell Metacharacters | 689

Solution

Use escapeshellarg() to handle arguments and escapeshellcmd() to handle program

names:

system('ls -al '.escapeshellarg($directory));

system(escapeshellcmd($ls_program).' -al');

Discussion

The command line is a dangerous place for unescaped characters. Never pass unmodi‐

fied user input to one of PHP’s shell-execution functions. Always escape the appropriate

characters in the command and the arguments. This is crucial. It is unusual to execute

command lines that are coming from web forms and not something we recommend

lightly. However, sometimes you need to run an external program, so escaping com‐

mands and arguments is useful.

escapeshellarg() surrounds arguments with single quotes (and escapes any existing

single quotes). This example uses escapeshellarg() in printing the process status for

a particular process:

system('/bin/ps '.escapeshellarg($process_id));

Using escapeshellarg() ensures that the right process is displayed even if its ID has

an unexpected character (e.g., a space) in it. It also prevents unintended commands

from being run. If $process_id contains 1; rm -rf /, then system("/bin/ps $pro

cess_id") not only displays the status of process 1, but also executes the command rm

 -rf /.

However, system('/bin/ps'.escapeshellarg($process_id)) runs the com‐

mand /bin/ps 1; rm -rf, which produces an error because 1-semicolon-space-rm-

 space-hyphen-rf isn’t a valid process ID.

Similarly, escapeshellcmd() prevents unintended command lines from executing. The

command system("/usr/local/bin/formatter-$which_program"); runs a different

program depending on the value of $which_program.

For example, if $which_program is pdf 12, the script runs /usr/local/bin/formatter-

 pdf with an argument of 12. But if $which_program is pdf 12; 56, the script runs /usr/

 local/bin/formatter-pdf with an argument of 12, but then also runs the program 56,

which is an error.

To successfully pass the arguments to formatter-pdf, you need escapeshellcmd(): sys

tem(escapeshellcmd("/usr/local/bin/formatter-$which_program"));.

This runs /usr/local/bin/formatter-pdf and passes it two arguments: 12; and 56.

690 | Chapter 24: Files

See Also

Documentation on system(), escapeshellarg(), and escapeshellcmd().

24.17 Passing Input to a Program

Problem

You want to pass input to an external program run from inside a PHP script. For ex‐

ample, your database requires you to run an external program to index text and you

want to pass text to that program.

Solution

Open a pipe to the program with popen(), write to the pipe with fputs() or

fwrite(), and then close the pipe with pclose():

$ph = popen('/usr/bin/indexer --category=dinner','w') or die($php_errormsg);

if (-1 == fputs($ph,"red-cooked chicken\n")) { die($php_errormsg); }

if (-1 == fputs($ph,"chicken and dumplings\n")) { die($php_errormsg); }

pclose($ph) or die($php_errormsg);

Discussion

This example uses popen() to call the nsupdate command, which submits Dynamic

DNS Update requests to name servers:

$ph = popen('/usr/bin/nsupdate -k keyfile') or die($php_errormsg);

if (-1 == fputs($ph,"update delete test.example.com A\n")) { die($php_errormsg);}

if (-1 == fputs($ph,"update add test.example.com 5 A 192.168.1.1\n"))

{ die($php_errormsg);}

pclose($ph) or die($php_errormsg);

Two commands are sent to nsupdate via popen(). The first deletes the test.exam‐

 ple.com A record, and the second adds a new A record for test.example.com with the

address 192.168.1.1.

See Also

Documentation on popen() and pclose(); Dynamic DNS is described in RFC 2136.

24.17 Passing Input to a Program | 691

24.18 Reading Standard Output from a Program

Problem

You want to read the output from a program. For example, you want the output of a

system utility, such as route(8), that provides network information.

Solution

To read the entire contents of a program’s output, use the backtick (`) operator:

$routing_table = `/sbin/routè;

To read the output incrementally, open a pipe with popen():

$ph = popen('/sbin/route','r') or die($php_errormsg);

while (! feof($ph)) {

$s = fgets($ph) or die($php_errormsg);

}

pclose($ph) or die($php_errormsg);

Discussion

The backtick operator executes a program and returns all its output as a single string.

On a Linux system with 1.6 GB of RAM, the command $s = /usr/bin/free; puts the

following multiline string in $s:

 total used free shared buffers cached

Mem: 16471704 15488260 983444 0 627820 12076120

-/+ buffers/cache: 2784320 13687384

Swap: 0 0 0

If a program generates a lot of output, it is more memory efficient to read from a pipe

one line at a time. If you’re printing formatted data to the browser based on the output

of the pipe, you can print it as you get it.

This example prints information about recent Unix system logins formatted as an

HTML table. It uses the /usr/bin/last command:

 // print table header

print<<<_HTML_

<table>

<tr>

<td>user</td><td>login port</td><td>login from</td><td>login time</td>

<td>time spent logged in</td>

</tr>

HTML;

 // open the pipe to /usr/bin/last

$ph = popen('/usr/bin/last','r') or die($php_errormsg);

while (! feof($ph)) {

692 | Chapter 24: Files

 $line = fgets($ph) or die($php_errormsg);

 // don't process blank lines or the info line at the end

if (trim($line) && (! preg_match('/^wtmp begins/',$line))) {

$user = trim(substr($line,0,8));

$port = trim(substr($line,9,12));

$host = trim(substr($line,22,16));

$date = trim(substr($line,38,25));

$elapsed = trim(substr($line,63,10),' ()');

if ('logged in' == $elapsed) {

$elapsed = 'still logged in';

$date = substr_replace($date,'',-5);

}

print "<tr><td>$user</td><td>$port</td><td>$host</td>"; print "<td>$date</td><td>$elapsed</td></tr> \n";

}

}

pclose($ph) or die($php_errormsg);

print '</table>';

See Also

Documentation on popen(), pclose(), and the backtick operator.

24.19 Reading Standard Error from a Program

Problem

You want to read the error output from a program. For example, you want to capture

the system calls displayed by strace(1).

Solution

Redirect standard error to standard output by adding 2>&1 to the command line passed

to popen(). Read standard output by opening the pipe in r mode:

$ph = popen('strace ls 2>&1','r') or die($php_errormsg);

while (!feof($ph)) {

$s = fgets($ph) or die($php_errormsg);

}

pclose($ph) or die($php_errormsg);

Discussion

In both the Unix sh and the Windows cmd.exe shells, standard error is file descriptor 2,

and standard output is file descriptor 1. Appending 2>&1 to a command tells the shell

24.19 Reading Standard Error from a Program | 693

to redirect what’s normally sent to file descriptor 2 (standard error) over to file descriptor 1 (standard output). fgets() then reads both standard error and standard output.

This technique reads in standard error but doesn’t provide a way to distinguish it from

standard output. To read just standard error, you need to prevent standard output from

being returned through the pipe. You do this by redirecting it to /dev/null on Unix and

 NUL on Windows:

 // Unix: only read standard error

$ph = popen('strace ls 2>&1 1>/dev/null','r') or die($php_errormsg);

 // Windows: only read standard error

$ph = popen('ipxroute.exe 2>&1 1>NUL','r') or die($php_errormsg);

See Also

Documentation on popen(); see your popen(3) manpage for details about the shell your system uses with popen(); for information about shell redirection, see the Redirection

section of the sh(1) manpage on Unix systems; on Windows, see the entry on redirection

in the Command Reference section of your system help.

24.20 Locking a File

Problem

You want to have exclusive access to a file to prevent it from being changed while you

read or update it. For example, if you are saving guestbook information in a file, two

users should be able to add guestbook entries at the same time without clobbering each

other’s entries.

Solution

Use flock() to provide advisory locking:

$fh = fopen('guestbook.txt','a') or die($php_errormsg);

flock($fh,LOCK_EX) or die($php_errormsg);

fwrite($fh,$_POST['guestbook_entry']) or die($php_errormsg);

fflush($fh) or die($php_errormsg);

flock($fh,LOCK_UN) or die($php_errormsg);

fclose($fh) or die($php_errormsg);

Discussion

In general, if you find yourself needing to lock a file, it’s best to see if there’s an alternative

way to solve your problem. Often you can (and should!) use a database (or SQLite, if

you don’t have access to a standalone database) instead.

694 | Chapter 24: Files

The file locking flock() provides is called advisory file locking because flock() doesn’t actually prevent other processes from opening a locked file; it just provides a way for

processes to voluntarily cooperate on file access. All programs that need to access files

being locked with flock() need to set and release locks to make the file locking effective.

You can set two kinds of locks with flock(): exclusive locks and shared locks. An ex‐

clusive lock, specified by LOCK_EX as the second argument to flock(), can be held only

by one process at one time for a particular file. A shared lock, specified by LOCK_SH, can

be held by more than one process at one time for a particular file. Before writing to a

file, you should get an exclusive lock. Before reading from a file, you should get a shared

lock.

If any of your code uses flock() to lock a file, then all of your code should. For example,

if one part of your program uses LOCK_EX to get an exclusive lock when writing to a file,

then in any place where you must read the file, be sure to use LOCK_SH to get a shared

lock on the file. If you don’t do that, a process trying to read a file can see the contents

of the file while another process is writing to it.

To unlock a file, call flock() with LOCK_UN as the second argument. It’s important to

flush any buffered data to be written to the file with fflush() before you unlock the

file. Other processes shouldn’t be able to get a lock until that data is written.

By default, flock() blocks until it can obtain a lock. To tell it not to block, add LOCK_NB

to the second argument, as shown:

$fh = fopen('guestbook.txt','a') or die($php_errormsg);

$tries = 3;

while ($tries > 0) {

$locked = flock($fh,LOCK_EX | LOCK_NB);

if (! $locked) {

sleep(5);

$tries--;

} else {

 // don't go through the loop again

$tries = 0;

}

}

if ($locked) {

fwrite($fh,$_POST['guestbook_entry']) or die($php_errormsg);

fflush($fh) or die($php_errormsg);

flock($fh,LOCK_UN) or die($php_errormsg);

fclose($fh) or die($php_errormsg);

} else {

print "Can't get lock.";

}

When the lock is nonblocking, flock() returns right away even if it couldn’t get a lock.

The previous example tries three times to get a lock on guestbook.txt, sleeping five

seconds between each try.

24.20 Locking a File | 695

Locking with flock() doesn’t work in all circumstances, such as on some NFS imple‐

mentations and older versions of Windows. To simulate file locking in these cases, use

a directory as an exclusive lock indicator. This is a separate, empty directory whose

presence indicates that the datafile is locked. Before opening a datafile, create a lock

directory and then delete the lock directory when you’re finished working with the

datafile. Otherwise, the file access code is the same:

 // loop until we can successfully make the lock directory

$locked = 0;

while (! $locked) {

if (@mkdir('guestbook.txt.lock',0777)) {

$locked = 1;

} else {

sleep(1);

}

}

$fh = fopen('guestbook.txt','a') or die($php_errormsg);

if (-1 == fwrite($fh,$_POST['guestbook_entry'])) {

rmdir('guestbook.txt.lock');

die($php_errormsg);

}

if (! fclose($fh)) {

rmdir('guestbook.txt.lock');

die($php_errormsg);

}

rmdir('guestbook.txt.lock') or die($php_errormsg);

A directory is used instead of a file to indicate a lock because the mkdir() function fails

to create a directory if it already exists. This gives you a way, in one operation, to check

if the lock indicator exists and create it if it doesn’t. Any error trapping after the directory

is created, however, needs to clean up by removing the directory before exiting. If the

directory is left in place, no future processes can get a lock by creating the directory.

If you use a file instead of a directory as a lock indicator, the code to create it looks

something like this:

$locked = 0;

while (! $locked) {

if (! file_exists('guestbook.txt.lock')) {

touch('guestbook.txt.lock');

$locked = 1;

} else {

sleep(1);

}

}

This code fails under heavy load because it checks for the lock’s existence with file_ex

ists() and then creates the lock with touch(). After one process calls file_ex

ists(), another might call touch() before the first calls touch(). Both processes would

696 | Chapter 24: Files

then think they’ve got exclusive access to the file when neither really does. With mkdir() there’s no gap between checking for existence and creation, so the process that makes

the directory is ensured exclusive access.

See Also

Documentation on flock().

24.21 Reading and Writing Custom File Types

Problem

You want to use PHP’s standard file access functions to provide access to data that might

not be in a file. For example, you want to use file access functions to read from and write

to shared memory. Or you want to process file contents when they are read before they

reach PHP.

Solution

Use the PEAR Stream_SHM module, which implements a stream wrapper that reads

from and writes to shared memory:

require_once 'Stream/SHM.php';

stream_register_wrapper('shm','Stream_SHM') or die("can't register shm");

$shm = fopen('shm://0xabcd','c');

fwrite($shm, "Current time is: " . time());

fclose($shm);

Discussion

Stream wrappers handle the details of moving data back and forth between PHP and

your custom location or your custom format. This class implements the methods PHP

needs to access your custom data stream: opening, closing, reading, writing, and so on.

A particular wrapper is registered with a particular prefix. You use that prefix when

passing a filename to fopen(), include(), or any other PHP file-handling function to

ensure that your wrapper is invoked.

Stream wrappers are handy for nonfile data sources, but they can also be used to pre‐

process file contents on their way into PHP. Mike Naberezny demonstrates a clever

example of this as applied to templating. With short_open_tags turned off, printing

an object instance variable in a template requires the comparatively verbose <?php echo

$this->property; ?>. Mike’s solution uses a stream wrapper that allows the @ character

to stand in for echo $this->.

Here’s the stream wrapper code:

24.21 Reading and Writing Custom File Types | 697

<?php

 /**

 * Stream wrapper to convert markup of mostly PHP templates into PHP prior

 * to include().

 *

 * Based in large part on the example at

 * http://www.php.net/manual/en/function.stream-wrapper-register.php

 *

 * @author Mike Naberezny (@link http://mikenaberezny.com)

 * @author Paul M. Jones (@link http://paul-m-jones.com)

 */

class ViewStream {

 /**

 * Current stream position.

 *

 * @var int

 */

private $pos = 0;

 /**

 * Data for streaming.

 *

 * @var string

 */

private $data;

 /**

 * Stream stats.

 *

 * @var array

 */

private $stat;

 /**

 * Opens the script file and converts markup.

 */

public function stream_open($path, $mode, $options, &$opened_path) {

 // get the view script source

$path = str_replace('view://', '', $path);

$this->data = file_get_contents($path);

 /**

 * If reading the file failed, update our local stat store

 * to reflect the real stat of the file, then return on failure

 */

if ($this->data===false) {

$this->stat = stat($path);

return false;

}

698 | Chapter 24: Files

 /**

 * Convert <?= ?> to long-form <?php echo ?>

 *

 * We could also convert <%= like the real T_OPEN_TAG_WITH_ECHO

 * but that's not necessary.

 *

 * It might be nice to also convert PHP code blocks <? ?> but

 * let's quit while we're ahead. It's probably better to keep

 * the <?php for larger code blocks but that's your choice. If

 * you do go for it, explicitly check for <?xml as this will

 * probably be the biggest headache.

 */

if (! ini_get('short_open_tag')) {

$find = '/\<\?\= (.*)? \?>/';

$replace = "<?php echo \$1 ?>";

$this->data = preg_replace($find, $replace, $this->data);

}

 /**

 * Convert @$ to $this->

 *

 * We could make a better effort at only finding @$ between <?php ?>

 * but that's probably not necessary as @$ doesn't occur much in the wild

 * and there's a significant performance gain by using str_replace().

 */

$this->data = str_replace('@$', '$this->', $this->data);

 /**

 * file_get_contents() won't update PHP's stat cache, so performing

 * another stat() on it will hit the filesystem again. Since the file

 * has been successfully read, avoid this and just fake the stat

 * so include() is happy.

 */

$this->stat = array('mode' => 0100777,

'size' => strlen($this->data));

return true;

}

 /**

 * Reads from the stream.

 */

public function stream_read($count) {

$ret = substr($this->data, $this->pos, $count);

$this->pos += strlen($ret);

return $ret;

}

 /**

 * Tells the current position in the stream.

24.21 Reading and Writing Custom File Types | 699

 */

public function stream_tell() {

return $this->pos;

}

 /**

 * Tells if we are at the end of the stream.

 */

public function stream_eof() {

return $this->pos >= strlen($this->data);

}

 /**

 * Stream statistics.

 */

public function stream_stat() {

return $this->stat;

}

 /**

 * Seek to a specific point in the stream.

 */

public function stream_seek($offset, $whence) {

switch ($whence) {

case SEEK_SET:

if ($offset < strlen($this->data) && $offset >= 0) {

$this->pos = $offset;

return true;

} else {

return false;

}

break;

case SEEK_CUR:

if ($offset >= 0) {

$this->pos += $offset;

return true;

} else {

return false;

}

break;

case SEEK_END:

if (strlen($this->data) + $offset >= 0) {

$this->pos = strlen($this->data) + $offset;

return true;

} else {

return false;

}

700 | Chapter 24: Files

 break;

default:

return false;

}

}

}

And a sample template:

<html> <?= @$hello ?> </html>

They work together as so:

 /** Stream wrapper */

require_once dirname(__FILE__) . DIRECTORY_SEPARATOR . 'ViewStream.php';

 /**

 * A very dumb template class just to demonstrate the concept.

 *

 * @author Mike Naberezny

 * @link http://mikenaberezny.com/archives/40

 * @link http://phpsavant.com

 */

class IdiotSavant {

public function __construct() {

if (!in_array('view', stream_get_wrappers())) {

stream_wrapper_register('view', 'ViewStream');

}

}

public function render($filename) {

include 'view://' . dirname(__FILE__) . DIRECTORY_SEPARATOR .

$filename . '.html';

}

}

 // Create a new view

$view = new IdiotSavant();

 // Assign the variable "hello" to the scope of the view

$view->hello = 'Hello, World!';

 // Render the view from a template. Outputs "<html> Hello, World! </html>"

$view->render('ExampleTemplate');

The stream wrapper code is saved as ViewStream.php and the sample template is named

 ExampleTemplate.html.

See Also

Documentation on stream_register_wrapper(); the PEAR Stream_SHM module; Mike Naberezny’s blog post “Symfony Templates and Ruby’s ERb.”

24.21 Reading and Writing Custom File Types | 701

24.22 Reading and Writing Compressed Files

Problem

You want to read or write compressed files.

Solution

Use the compress.zlib or compress.bzip2 stream wrapper with the standard file func‐

tions.

To read data from a gzip-compressed file:

$file = __DIR__ . '/lots-of-data.gz';

$fh = fopen("compress.zlib://$file",'r') or die("can't open: $php_errormsg"); if ($fh) {

while ($line = fgets($fh)) {

 // $line is the next line of uncompressed data

}

fclose($fh) or die("can't close: $php_errormsg");

}

Discussion

The compress.zlib stream wrapper provides access to files that have been compressed

with the gzip algorithm. The compress.bzip2 stream wrapper provides access to files

that have been compressed with the bzip2 algorithm. Both stream wrappers allow read‐

ing, writing, and appending with compressed files. To enable the zlib and bzip2 com‐

pression streams, build PHP with --with-zlib and --with-bz2, respectively.

In addition to the stream wrappers, which allow access to compressed local files, there

are stream filters that compress (or uncompress) arbitrary streams on the fly. The

zlib.deflate and zlib.inflate filters compress and uncompress data according to

the zlib “deflate” algorithm. The bzip2.compress and bzip2.uncompress filters do the

same for the bzip2 algorithm.

Each stream filter must be applied to a stream after it is created. This example uses the

bzip2 stream filters to read compressed data from a URL:

$fp = fopen('http://www.example.com/something-compressed.bz2','r');

if ($fp) {

stream_filter_append($fp, 'bzip2.uncompress');

while (! feof($fp)) {

$data = fread($fp);

 // do something with $data;

}

fclose($fp);

}

702 | Chapter 24: Files

See Also

Documentation on compression stream wrappers, on compression filters, and on

stream_filter_append(); the zlib algorithm is detailed in RFCs 1950 and 1951.

24.22 Reading and Writing Compressed Files | 703

CHAPTER 25

Directories

25.0 Introduction

A filesystem stores a lot of additional information about files aside from their actual

contents. This information includes such particulars as the file size, directory, and access

permissions. If you’re working with files, you may also need to manipulate this metadata.

PHP gives you a variety of functions to read and manipulate directories, directory en‐

tries, and file attributes. Like other file-related parts of PHP, the functions are similar

to the C functions that accomplish the same tasks, with some simplifications.

Files are organized with inodes. Each file (and other parts of the filesystem, such as

directories, devices, and links) has its own inode. That inode contains a pointer to where

the file’s data blocks are as well as all the metadata about the file. The data blocks for a

directory hold the names of the files in that directory and the inode of each file.

PHP provides a few ways to look in a directory to see what files it holds. The Directory-

Iterator class provides a comprehensive object-oriented interface for directory tra‐

versal. This example uses DirectoryIterator to print out the name of each file in a

directory:

foreach (new DirectoryIterator('/usr/local/images') as $file) {

print $file->getPathname() . " \n";

}

The opendir(), readdir(), and closedir() functions offer a procedural approach to

the same task. Use opendir() to get a directory handle, readdir() to iterate through

the files, and closedir() to close the directory handle. For example:1

1. PHP also has a dir() class that mirrors the procedural approach (open, read, close) in its methods. Because DirectoryIterator is so much more capable, use that if you want an OO interface.

705

$d = opendir('/usr/local/images') or die($php_errormsg);

while (false !== ($f = readdir($d))) {

print $f . " \n";

}

closedir($d);

In this chapter, we generally use DirectoryIterator for examples.

The filesystem holds more than just files and directories. On Unix, it can also hold

symbolic links. These are special files whose contents are a pointer to another file. You

can delete the link without affecting the file it points to. To create a symbolic link, use

symlink():

symlink('/usr/local/images','/www/docroot/images') or die($php_errormsg);

This code creates a symbolic link called images in /www/docroot that points to /usr/local/

 images.

To find information about a file, directory, or link you must examine its inode. The

function stat() retrieves the metadata in an inode for you. Recipe 25.2 discusses

stat(). PHP also has many functions that use stat() internally to give you a specific

piece of information about a file. These are listed in Table 25-1.

 Table 25-1. File information functions

Function name

What file information does the function provide?

file_exists()

Does the file exist?

fileatime()

Last access time

filectime()

Last metadata change time

filegroup()

Group (numeric)

fileinode()

Inode number

filemtime()

Last change time of contents

fileowner()

Owner (numeric)

fileperms()

Permissions (decimal, numeric)

filesize()

Size

filetype()

Type (fifo, char, dir, block, link, file, unknown)

is_dir()

Is it a directory?

is_executable() Is it executable?

is_file()

Is it a regular file?

is_link()

Is it a symbolic link?

is_readable()

Is it readable?

is_writable()

Is it writable?

706 | Chapter 25: Directories

On Unix, the file permissions indicate what operations the file’s owner, users in the file’s group, and all users can perform on the file. The operations are reading, writing, and

executing. For programs, executing means the ability to run the program; for directories,

executing is the ability to search through the directory and see the files in it.

Unix permissions can also contain a setuid bit, a setgid bit, and a sticky bit. The setuid

bit means that when a program is run, it runs with the user ID of its owner. The setgid

bit means that a program runs with the group ID of its group. For a directory, the setgid

bit means that new files in the directory are created by default in the same group as the

directory. The sticky bit is useful for directories in which people share files because it

prevents nonsuperusers with write permission in a directory from deleting files in that

directory unless they own the file or the directory.

When setting permissions with chmod() (see Recipe 25.3), they must be expressed as

an octal number. This number has four digits. The first digit is any special setting for

the file (such as setuid or setgid). The second digit is the user permissions—what the

file’s owner can do. The third digit is the group permissions—what users in the file’s

group can do. The fourth digit is the world permissions—what all other users can do.

To compute the appropriate value for each digit, add together the permissions you want

for that digit using the values in Table 25-2. For example, a permission value of 0644

means that there are no special settings (the 0), the file’s owner can read and write the

file (the 6, which is 4 + 2, for read and write, respectively), users in the file’s group can

read the file (the first 4), and all other users can also read the file (the second 4). A

permission value of 4644 is the same, except that the file is also setuid.

 Table 25-2. File permission values

Value Permission meaning Special setting meaning

4

Read

setuid

2

Write

setgid

1

Execute

sticky

The permissions of newly created files and directories are affected by a setting called

the umask, which is a permission value that is removed or masked out from the initial

permissions of a file (0666) or directory (0777). For example, if the umask is 0022, the

default permissions for a new file created with touch() or fopen() are 0644 and the

default permissions for a new directory created with mkdir() are 0755. You can get and

set the umask with the function umask(). It returns the current umask and, if an argu‐

ment is supplied to it, changes the umask to the value of that argument. This example

shows how to make the permissions on newly created files prevent anyone but the file’s

owner (and the superuser) from accessing the file:

$old_umask = umask(0077);

touch('secret-file.txt');

umask($old_umask);

25.0 Introduction | 707

The first call to umask() masks out all permissions for group and world. After the file

is created, the second call to umask() restores the umask to the previous setting. When

PHP is run as a server module, it restores the umask to its default value at the end of

each request. Windows has a different (and more powerful) system for organizing file

permissions and ownership, so PHP’s umask() function (like every other permissions-

related function) isn’t available on Windows.

25.1 Getting and Setting File Timestamps

Problem

You want to know when a file was last accessed or changed, or you want to update a

file’s access or change time; for example, you want each page on your website to display

when it was last modified.

Solution

The fileatime(), filemtime(), and filectime() functions return the time of last

access, modification, and metadata change of a file, as shown:

$last_access = fileatime('larry.php');

$last_modification = filemtime('moe.php');

$last_change = filectime('curly.php');

Update a file’s modification time with touch(). Without a second argument, touch()

sets the modification time to the current date and time. To set a file’s modification time

to a specific value, pass that value as an epoch timestamp to touch() as a second argu‐

ment. This example changes the modification time of two files without changing their

contents:

touch('shemp.php'); // set modification time to now

touch('joe.php',$timestamp); // set modification time to $timestamp

Discussion

The fileatime() function returns the last time a file was opened for reading or writing.

The filemtime() function returns the last time a file’s contents were changed. The

filectime() function returns the last time a file’s contents or metadata (such as owner

or permissions) were changed. Each function returns the time as an epoch timestamp.

This code prints the time a page on your website was last updated:

print "Last Modified: ".strftime('%c',filemtime($_SERVER['SCRIPT_FILENAME']));

708 | Chapter 25: Directories

See Also

Documentation on fileatime(), filemtime(), and filectime().

25.2 Getting File Information

Problem

You want to read a file’s metadata—for example, permissions and ownership.

Solution

Use stat(), which returns an array of information about a file:

$info = stat('harpo.php');

Discussion

stat() returns an array with both numeric and string indexes with information about

a file. The elements of this array are in Table 25-3.

 Table 25-3. Information returned by stat()

Numeric index String index Value

0

dev

Device

1

ino

Inode

2

mode

Permissions

3

nlink

Link count

4

uid

Owner’s user ID

5

gid

Group’s group ID

6

rdev

Device type for inode devices (−1 on Windows)

7

size

Size (in bytes)

8

atime

Last access time (epoch timestamp)

9

mtime

Last change time of contents (epoch timestamp)

10

ctime

Last change time of contents or metadata (epoch timestamp)

11

blksize

Block size for I/O (−1 on Windows)

12

blocks

Number of blocks allocated to this file

The mode element of the returned array contains the permissions expressed as a base

10 integer. This is confusing because permissions are usually either expressed symbol‐

ically (e.g., ls’s -rw-r—r-- output) or as an octal integer (e.g., 0644). To convert the

permissions to the more understandable octal format, use base_convert():

25.2 Getting File Information | 709

$file_info = stat('/tmp/session.txt');

$permissions = base_convert($file_info['mode'],10,8);

Here, $permissions is a six-digit octal number. For example, if ls displays the following

about /tmp/session.txt:

-rw-rw-r-- 1 sklar sklar 12 Oct 23 17:55 /tmp/session.txt

then $file_info['mode'] is 33204 and $permissions is 100664. The last three digits

(664) are the user (read and write), group (read and write), and other (read) permissions

for the file. The third digit, 0, means that the file is not setuid or setgid. The leftmost 10

means that the file is a regular file (and not a socket, symbolic link, or other special file).

Because stat() returns an array with both numeric and string indexes, using fore

ach to iterate through the returned array produces two copies of each value. Instead,

use a for loop from element 0 to element 12 of the returned array.

Calling stat() on a symbolic link returns information about the file the symbolic link

points to. To get information about the symbolic link itself, use lstat().

Similar to stat() is fstat(), which takes a filehandle (returned from fopen() or pop

en()) as an argument.

PHP’s stat() function uses the underlying stat(2) system call, which is expensive. To

minimize overhead, PHP caches the result of calling stat(2). So if you call stat() on a

file, change its permissions, and call stat() on the same file again, you get the same

results. To force PHP to reload the file’s metadata, call clearstatcache(), which flushes

PHP’s cached information. PHP also uses this cache for the other functions that return

file metadata: file_exists(), fileatime(), filectime(), filegroup(), filei

node(), filemtime(), fileowner(), fileperms(), filesize(), filetype(), fstat(),

is_dir(), is_executable(), is_file(), is_link(), is_readable(), is_writable(),

and lstat().

See Also

Documentation on stat(), lstat(), fstat(), and clearstatcache().

25.3 Changing File Permissions or Ownership

Problem

You want to change a file’s permissions or ownership; for example, you want to prevent

other users from being able to look at a file of sensitive data.

710 | Chapter 25: Directories

Solution

Use chmod() to change the permissions of a file:

chmod('/home/user/secrets.txt', 0400);

Use chown() to change a file’s owner and chgrp() to change a file’s group:

chown('/tmp/myfile.txt','sklar'); // specify user by name

chgrp('/home/sklar/schedule.txt','soccer'); // specify group by name

chown('/tmp/myfile.txt',5001); // specify user by uid

chgrp('/home/sklar/schedule.txt',102); // specify group by gid

Discussion

The permissions passed to chmod() must be specified as an octal number.

The superuser can change the permissions, owner, and group of any file. Other users

are restricted. They can change only the permissions and group of files that they own,

and can’t change the owner at all. A nonsuperuser can also change only the group of a

file to a group to which the user belongs.

The functions chmod(), chgrp(), and chown() don’t work on Windows.

See Also

Documentation on chmod(), chown(), and chgrp().

25.4 Splitting a Filename into Its Component Parts

Problem

You want to find a file’s path and filename; for example, you want to create a file in the

same directory as an existing file.

Solution

Use basename() to get the filename and dirname() to get the path:

$full_name = '/usr/local/php/php.ini';

$base = basename($full_name); // $base is "php.ini"

$dir = dirname($full_name); // $dir is "/usr/local/php"

Use pathinfo() to get the directory name, base name, and extension in an associative

array:

$info = pathinfo('/usr/local/php/php.ini');

 // $info['dirname'] is "/usr/local/php"

25.4 Splitting a Filename into Its Component Parts | 711

 // $info['basename'] is "php.ini"

 // $info['extension'] is "ini"

Discussion

To create a temporary file in the same directory as an existing file, use dirname() to find

the directory, and pass that directory to tempnam(). For instance:

$dir = dirname($existing_file);

$temp = tempnam($dir,'temp');

$temp_fh = fopen($temp,'w');

The dirname() function is particularly useful in combination with the special constant

__FILE__, which contains the full pathname of the current file. This is not the same as

the currently executing PHP script. If /usr/local/alice.php includes /usr/local/bob.php,

then __FILE__ in bob.php is /usr/local/bob.php.

This makes __FILE__ useful when you want to include or require scripts in the same

directory as a particular file, but you don’t know what that directory is and it isn’t nec‐

essarily in the include path. For example:

$currentDir = dirname(__FILE__);

include $currentDir . '/functions.php';

include $currentDir . '/classes.php';

If this code is in the /usr/local directory, then it includes /usr/local/functions.php

and /usr/local/classes.php. This technique is particularly useful when you’re distributing

code for others to use. With it, you don’t have to require any configuration or include

path modification for your code to work properly. As of PHP 5.3, you use the constant

__DIR__ instead of dirname(__FILE__).

Using functions such as basename(), dirname(), and pathinfo() is more portable than

just splitting up full filenames on the / character because the functions use an operating

system–appropriate separator. On Windows, these functions treat both / and \ as file

and directory separators. On other platforms, only / is used.

There’s no built-in PHP function to combine the parts produced by basename(), dir

name(), and pathinfo() back into a full filename. To do this, combine the parts

with . and the built-in DIRECTORY_SEPARATOR constant, which is / on Unix and \ on

Windows.

See Also

Documentation on basename(), dirname(), pathinfo(), and __FILE__.

712 | Chapter 25: Directories

25.5 Deleting a File

Problem

You want to delete a file.

Solution

Use unlink():

$file = '/tmp/junk.txt';

unlink($file) or die ("can't delete $file: $php_errormsg");

Discussion

The unlink() function is only able to delete files that the user of the PHP process is

able to delete. If you’re having trouble getting unlink() to work, check the permissions

on the file and how you’re running PHP.

See Also

Documentation on unlink().

25.6 Copying or Moving a File

Problem

You want to copy or move a file.

Solution

Use copy() to copy a file:

$old = '/tmp/yesterday.txt';

$new = '/tmp/today.txt';

copy($old,$new) or die("couldn't copy $old to $new: $php_errormsg");

Use rename() to move a file:

$old = '/tmp/today.txt';

$new = '/tmp/tomorrow.txt';

rename($old,$new) or die("couldn't move $old to $new: $php_errormsg");

Discussion

If you have multiple files to copy or move, call copy() or rename() in a loop. You can

operate only on one file each time you call these functions.

25.5 Deleting a File | 713

See Also

Documentation on copy() and rename().

25.7 Processing All Files in a Directory

Problem

You want to iterate over all files in a directory. For example, you want to create a

<select/> box in a form that lists all the files in a directory.

Solution

Use a DirectoryIterator to get each file in the directory:

echo "<select name='file'> \n";

foreach (new DirectoryIterator('/usr/local/images') as $file) {

echo '<option>' . htmlentities($file) . "</option> \n";

}

echo '</select>';

Discussion

The DirectoryIterator yields one value for each element in the directory. That value

is an object with some handy characteristics. The object’s string representation is the

filename (with no leading path) of the directory element. For example, if /usr/local/

 images contains the files cucumber.gif and eggplant.png, the code in the Solution prints:

<select name='file'>

<option>.</option>

<option>..</option>

<option>cucumber.gif</option>

<option>eggplant.png</option>

</select>

A DirectoryIterator yields an object for all directory elements, including . (current

directory) and .. (parent directory). Fortunately, that object has some methods that

help us identify what it is. The isDot() method returns true if it’s either . or ... This

example uses isDot() to prevent those two entries from showing up in the output:

echo "<select name='file'> \n";

foreach (new DirectoryIterator('/usr/local/images') as $file) {

if (! $file->isDot()) {

echo '<option>' . htmlentities($file) . "</option> \n";

}

}

echo '</select>';

714 | Chapter 25: Directories

Table 25-4 lists the other methods available on the objects that a DirectoryIterator yields.

 Table 25-4. DirectoryIterator object information methods

Method Name

Return value

Example

isDir()

Is the element a directory?

false

isDot()

Is the element either . or ..?

false

isFile()

Is the element a regular file?

true

isLink()

Is the element a link?

false

isReadable()

Is the element readable?

true

isWritable()

Is the element writable?

true

isExecutable() Is the element executable?

false

getATime()

The last access time of the element

1144509622

getCTime()

The creation time of the element

1144509600

getMTime()

The last modification time of the element

1144509620

getFilename()

The filename (without leading path) of the element eggplant.png

getPathname()

The full pathname of the element

 /usr/local/images/eggplant.png

getPath()

The leading path of the element

 /usr/local/images

getGroup()

The group ID of the element

500

getOwner()

The owner ID of the element

1000

getPerms()

The permissions of the element, as an octal value

16895

getSize()

The size of the element

328742

getType()

The type of the element (dir, file, link, etc.)

file

getInode()

The inode number of the element

28720

The data that the functions in Table 25-4 report come from the same underlying system calls as the data that the functions in Table 25-1 report, so the same cautions on differences between Unix and Windows apply.

See Also

Documentation on DirectoryIterator.

25.8 Getting a List of Filenames Matching a Pattern

Problem

You want to find all filenames that match a pattern.

25.8 Getting a List of Filenames Matching a Pattern | 715

Solution

Use a FilterIterator subclass with DirectoryIterator. The FilterIterator sub‐

class needs its own accept() method that decides whether or not a particular value is

acceptable.

To only accept filenames that end with common extensions for images:

class ImageFilter extends FilterIterator {

public function accept() {

return preg_match('@\.(gif|jpe?g|png)$@i',$this->current());

}

}

foreach (new ImageFilter(new DirectoryIterator('/usr/local/images')) as $img) {

print " \n";

}

Discussion

The FilterIterator encloses a DirectoryIterator and only allows certain elements

to emerge. It’s up to the accept() method to return true or false to indicate whether

a particular element (accessed with $this->current()) is OK. In the Solution, ac

cept() uses a regular expression to make that determination, but your code can use any

logic you like.

If your pattern can be expressed as a simple shell glob (e.g., *.*), use the glob() function

to get the matching filenames. For example, to find all the text files in a particular

directory:

foreach (glob('/usr/local/docs/*.txt') as $file) {

$contents = file_get_contents($file);

print "$file contains $contents\n";

}

The glob() function returns an array of matching full pathnames. If no files match the

pattern, glob() returns false.

See Also

Recipe 25.9 for details on iterating through each file in a directory recursively; documentation on FilterIterator and on glob(); information about shell pattern match‐

ing.

716 | Chapter 25: Directories

25.9 Processing All Files in a Directory Recursively

Problem

You want to do something to all the files in a directory and in any subdirectories. For

example, you want to see how much disk space is consumed by all the files under a

directory.

Solution

Use a RecursiveDirectoryIterator and a RecursiveIteratorIterator. The Recur

siveDirectoryIterator extends the DirectoryIterator with a getChildren() meth‐

od that provides access to the elements in a subdirectory. The RecursiveIteratorIt

erator flattens the hierarchy that the RecursiveDirectoryIterator returns into one

list. This example counts the total size of files under a directory:

$dir = new RecursiveDirectoryIterator('/usr/local');

$totalSize = 0;

foreach (new RecursiveIteratorIterator($dir) as $file) {

$totalSize += $file->getSize();

}

print "The total size is $totalSize. \n";

Discussion

The objects that the RecursiveDirectoryIterator spits out (and therefore that the

RecursiveIteratorIterator passes along) are the same as what you get from Direc

toryIterator, so all the methods mentioned in Table 25-4 are available.

See Also

Documentation on RecursiveDirectoryIterator and RecursiveIteratorIterator.

25.10 Making New Directories

Problem

You want to create a directory.

Solution

Use mkdir():

mkdir('/tmp/apples',0777) or die($php_errormsg);

25.9 Processing All Files in a Directory Recursively | 717

Discussion

The second argument to mkdir() is the permission mode for the new directory, which

must be an octal number. The current umask is taken away from this permission value

to create the permissions for the new directory. So, if the current umask is 0002, calling

mkdir(/tmp/apples,0777) sets the permissions on the resulting directory to 0775 (user

and group can read, write, and execute; others can only read and execute).

By default, mkdir() only creates a directory if its parent exists. For example, if /usr/local/

 images doesn’t exist, you can’t create /usr/local/images/puppies. To create a directory and its parents, pass true as a third argument to mkdir(). This makes the function act

recursively to create any missing parent directories.

See Also

Documentation on mkdir().

25.11 Removing a Directory and Its Contents

Problem

You want to remove a directory and all of its contents, including subdirectories and

their contents.

Solution

Use RecursiveDirectoryIterator and RecursiveIteratorIterator, specifying that

children (files and subdirectories) should be listed before their parents:

function obliterate_directory($dir) {

$iter = new RecursiveDirectoryIterator($dir);

foreach (new RecursiveIteratorIterator($iter,

RecursiveIteratorIterator::CHILD_FIRST) as $f) {

if ($f->isDir()) {

rmdir($f->getPathname());

} else {

unlink($f->getPathname());

}

}

rmdir($dir);

}

obliterate_directory('/tmp/junk');

718 | Chapter 25: Directories

Discussion

Removing files, obviously, can be dangerous. Because PHP’s built-in directory removal

function, rmdir(), works only on empty directories, and unlink() can’t accept shell

wildcards, the RecursiveIteratorIterator must be told to provide children before

parents with its CHILD_FIRST constant.

See Also

Documentation on rmdir() and on RecursiveIteratorIterator.

25.12 Program: Web Server Directory Listing

The web-ls.php program shown in Example 25-1 provides a view of the files inside your web server’s document root, formatted like the output of the Unix command ls. Filenames are linked so that you can download each file, and directory names are linked so

that you can browse in each directory, as shown in Figure 25-1.

 Figure 25-1. Web listing

Most lines in Example 25-1 are devoted to building an easy-to-read representation of

the file’s permissions, but the guts of the program are in the foreach loop at the end.

The DirectoryIterator yields an element for each entry in the directory. Then, various

methods on the element’s object provide information about that file, and printf()

prints out the formatted information about that file.

The mode_string() functions and the constants it uses turn the octal representation of

a file’s mode (e.g., 35316) into an easier-to-read string (e.g., -rwsrw-r--).

25.12 Program: Web Server Directory Listing | 719

 Example 25-1. web-ls.php

 /* Bit masks for determining file permissions and type. The names and values

 * listed below are POSIX-compliant; individual systems may have their own

 * extensions.

 */

define('S_IFMT',0170000); // mask for all types

define('S_IFSOCK',0140000); // type: socket

define('S_IFLNK',0120000); // type: symbolic link

define('S_IFREG',0100000); // type: regular file

define('S_IFBLK',0060000); // type: block device

define('S_IFDIR',0040000); // type: directory

define('S_IFCHR',0020000); // type: character device

define('S_IFIFO',0010000); // type: fifo

define('S_ISUID',0004000); // set-uid bit

define('S_ISGID',0002000); // set-gid bit

define('S_ISVTX',0001000); // sticky bit

define('S_IRWXU',00700); // mask for owner permissions

define('S_IRUSR',00400); // owner: read permission

define('S_IWUSR',00200); // owner: write permission

define('S_IXUSR',00100); // owner: execute permission

define('S_IRWXG',00070); // mask for group permissions

define('S_IRGRP',00040); // group: read permission

define('S_IWGRP',00020); // group: write permission

define('S_IXGRP',00010); // group: execute permission

define('S_IRWXO',00007); // mask for others permissions

define('S_IROTH',00004); // others: read permission

define('S_IWOTH',00002); // others: write permission

define('S_IXOTH',00001); // others: execute permission

 /* mode_string() is a helper function that takes an octal mode and returns

 * a 10-character string representing the file type and permissions that

 * correspond to the octal mode. This is a PHP version of the mode_string()

 * function in the GNU fileutils package.

 */

$mode_type_map = array(S_IFBLK => 'b', S_IFCHR => 'c',

S_IFDIR => 'd', S_IFREG => '-',

S_IFIFO => 'p', S_IFLNK => 'l',

S_IFSOCK => 's');

function mode_string($mode) {

global $mode_type_map;

$s = '';

$mode_type = $mode & S_IFMT;

 // Add the type character

$s .= isset($mode_type_map[$mode_type]) ?

$mode_type_map[$mode_type] : '?';

 // set user permissions

$s .= $mode & S_IRUSR ? 'r' : '-';

$s .= $mode & S_IWUSR ? 'w' : '-';

$s .= $mode & S_IXUSR ? 'x' : '-';

720 | Chapter 25: Directories

 // set group permissions

$s .= $mode & S_IRGRP ? 'r' : '-';

$s .= $mode & S_IWGRP ? 'w' : '-';

$s .= $mode & S_IXGRP ? 'x' : '-';

 // set other permissions

$s .= $mode & S_IROTH ? 'r' : '-';

$s .= $mode & S_IWOTH ? 'w' : '-';

$s .= $mode & S_IXOTH ? 'x' : '-';

 // adjust execute letters for set-uid, set-gid, and sticky

if ($mode & S_ISUID) {

 // 'S' for set-uid but not executable by owner

$s[3] = ($s[3] == 'x') ? 's' : 'S';

}

if ($mode & S_ISGID) {

 // 'S' for set-gid but not executable by group

$s[6] = ($s[6] == 'x') ? 's' : 'S';

}

if ($mode & S_ISVTX) {

 // 'T' for sticky but not executable by others

$s[9] = ($s[9] == 'x') ? 't' : 'T';

}

return $s;

}

 // start at the document root if not specified

$dir = isset($_GET['dir']) ? $_GET['dir'] : '';

 // locate $dir in the filesystem

$real_dir = realpath($_SERVER['DOCUMENT_ROOT'].$dir);

 // Passing document root through realpath resolves any

 // forward-slash vs. backslash issues

$real_docroot = realpath($_SERVER['DOCUMENT_ROOT']);

 // make sure $real_dir is inside document root

if (! (($real_dir == $real_docroot) ||

((strlen($real_dir) > strlen($real_docroot)) &&

(strncasecmp($real_dir,$real_docroot.DIRECTORY_SEPARATOR,

strlen($real_docroot.DIRECTORY_SEPARATOR)) == 0)))) {

die("$dir is not inside the document root");

}

 // canonicalize $dir by removing the document root from its beginning

$dir = substr($real_dir,strlen($real_docroot)+1);

 // are we opening a directory?

if (! is_dir($real_dir)) {

die("$real_dir is not a directory");

25.12 Program: Web Server Directory Listing | 721

}

print '<pre><table>';

 // read each entry in the directory

foreach (new DirectoryIterator($real_dir) as $file) {

 // translate uid into user name

if (function_exists('posix_getpwuid')) {

$user_info = posix_getpwuid($file->getOwner());

} else {

$user_info = $file->getOwner();

}

 // translate gid into group name

if (function_exists('posix_getgrid')) {

$group_info = $file->getGroup();

} else {

$group_info = $file->getGroup();

}

 // format the date for readability

$date = date('M d H:i',$file->getMTime());

 // translate the octal mode into a readable string

$mode = mode_string($file->getPerms());

$mode_type = substr($mode,0,1);

if (($mode_type == 'c') || ($mode_type == 'b')) {

 /* if it's a block or character device, print out the major and

 * minor device type instead of the file size */

$statInfo = lstat($file->getPathname());

$major = ($statInfo['rdev'] >> 8) & 0xff;

$minor = $statInfo['rdev'] & 0xff;

$size = sprintf('%3u, %3u',$major,$minor);

} else {

$size = $file->getSize();

}

 // format the around the filename

 // no link for the current directory

if ('.' == $file->getFilename()) {

$href = $file->getFilename();

} else {

 // don't include the ".." in the parent directory link

if ('..' == $file->getFilename()) {

$href = urlencode(dirname($dir));

} else {

$href = urlencode($dir) . '/' . urlencode($file);

}

 /* everything but "/" should be urlencoded */

$href = str_replace('%2F','/',$href);

722 | Chapter 25: Directories

 // browse other directories with web-ls

if ($file->isDir()) {

$href = sprintf('%s',

$_SERVER['PHP_SELF'],$href,$file);

} else {

 // link to files to download them

$href= sprintf('%s',$href,$file);

}

 // if it's a link, show the link target, too

if ('l' == $mode_type) {

$href .= ' -> ' . readlink($file->getPathname());

}

}

 // print out the appropriate info for this file

printf('<tr><td>%s</td><td align="right">%s</td>

<td align="right">%s</td><td align="right">%s</td>

<td align="right">%s</td><td>%s</td></tr>',

$mode, // formatted mode string

$user_info['name'], // owner's user name

$group_info['name'], // group name

$size, // file size (or device numbers)

$date, // last modified date and time

$href); // link to browse or download

}

print '</table></pre>';

25.13 Program: Site Search

You can use site-search.php as a search engine for a small-to-medium, file-based, site:

class SiteSearch {

public $bodyRegex = '';

protected $seen = array();

public function searchDir($dir) {

 // array to hold pages that match

$pages = array();

 // array to hold directories to recurse into

$dirs = array();

 // mark this directory as seen so we don't look in it again

$this->seen[realpath($dir)] = true;

try {

foreach (new RecursiveIteratorIterator(

new RecursiveDirectoryIterator($dir)) as $file) {

if ($file->isFile() && $file->isReadable() &&

25.13 Program: Site Search | 723

 (! isset($this->seen[$file->getPathname()]))) {

 // mark this as seen so we skip it

 // if we come to it again

$this->seen[$file->getPathname()] = true;

 // load the contents of the file into $text

$text = file_get_contents($file->getPathname());

 // if the search term is inside the body delimiters

if (preg_match($this->bodyRegex,$text)) {

 // construct the relative URI of the file by removing

 // the document root from the full path

$uri = substr_replace($file->getPathname(),'',0,strlen

($_SERVER['DOCUMENT_ROOT']));

 // if the page has a title, find it

if (preg_match('#<title>(.*?)</title>#Sis',$text,$match)) {

 // and add the title and URI to $pages

array_push($pages, array($uri,$match[1]));

} else {

 // otherwise use the URI as the title

array_push($pages, array($uri,$uri));

}

}

}

}

} catch (Exception $e) {

 // There was a problem opening the directory

}

return $pages;

}

}

 // helper function to sort matched pages alphabetically by title

function by_title($a,$b) {

return ($a[1] == $b[1]) ?

strcmp($a[0],$b[0]) :

($a[1] > $b[1]);

}

 // SiteSearch object to do the searching

$search = new SiteSearch();

 // array to hold the pages that match the search term

$matching_pages = array();

 // directories underneath the document root to search

$search_dirs = array('sports','movies','food');

 // regular expression to use in searching files. The "S" pattern

 // modifier tells the PCRE engine to "study" the regex for greater

 // efficiency.

$search->bodyRegex = '#<body>(.*' . preg_quote($_GET['term'],'#').

724 | Chapter 25: Directories

 '.*)</body>#Sis';

 // add the files that match in each directory to $matching pages

foreach ($search_dirs as $dir) {

$matching_pages = array_merge($matching_pages,

$search->searchDir($_SERVER['DOCUMENT_ROOT'].'/'.$dir));

}

if (count($matching_pages)) {

 // sort the matching pages by title

usort($matching_pages,'by_title');

print '';

 // print out each title with a link to the page

foreach ($matching_pages as $k => $v) {

print sprintf(' %s',$v[0],$v[1]);

}

print '';

} else {

print 'No pages found.';

}

The program looks for a search term (in $_GET['term']) in all files within a specified

set of directories under the document root. Those directories are set in $search_dirs.

It also recurses into subdirectories and follows symbolic links but keeps track of which

files and directories it has seen so that it doesn’t get caught in an endless loop.

If any pages are found that contain the search term, it prints a list of links to those pages,

alphabetically ordered by each page’s title. If a page doesn’t have a title (between the

<title> and </title> tags), the page’s relative URI from the document root is used.

The program looks for the search term between the <body> and </body> tags in each

file. If you have a lot of text in your pages inside <body> tags that you want to exclude

from the search, surround the text that should be searched with specific HTML com‐

ments and then modify $body_regex to look for those tags instead. If your page looks

like what is shown here:

<html>

<head>

<title>Your Title</title>

</head>

<body>

 // Some HTML for menus, headers, etc.

<!-- search-start -->

<h1>Aliens Invade Earth</h1>

<h3>by H.G. Wells</h3>

<p>Aliens invaded earth today. Uh Oh.</p>

25.13 Program: Site Search | 725

 // More of the story

<!-- search-end -->

 // Some HTML for footers, etc.

</body>

</html>

to match the search term against just the title, author, and story inside the HTML com‐

ments, change $search->bodyRegex to this:

$search->bodyRegex = '#<!-- search-start -->(.*' . preg_quote($_GET['term'],'#').

'.*)<!-- search-end -->#Sis';

If you don’t want the search term to match text that’s inside HTML or PHP tags in your

pages, add a call to strip_tags() to the code that loads the contents of the file for

searching, as shown:

 // load the contents of the file into $text

$text = strip_tags(file_get_contents($file->getPathname()));

726 | Chapter 25: Directories

CHAPTER 26

Command-Line PHP

26.0 Introduction

PHP was created for web programming and is still used mostly for that purpose. How‐

ever, PHP is also capable as a general-purpose scripting language. Using PHP for scripts

you run from the command line is especially helpful when they share code with your

web applications. If you have a discussion board on your website, you might want to

run a program every few minutes or hours to scan new postings and alert you to any

messages that contain certain keywords. Writing this scanning program in PHP lets you

share relevant discussion-board code with the main discussion-board application. Not

only does this save you time, but it also helps avoid maintenance overhead down the

road.

PHP builds include a command-line interface (CLI) version. The CLI binary is similar

to web server modules and the CGI binary but has some important differences that

make it more shell friendly. Some configuration directives have hardcoded values with

CLI; for example, the html_errors directive is set to false, and implicit_flush is set

to true. The max_execution_time directive is set to 0, allowing unlimited program

runtime. Finally, register_argc_argv is set to true. This means you can look for ar‐

gument information in $argv and $argc instead of in $_SERVER['argv'] and $_SERV

ER['argc']. Argument processing is discussed in Recipe 26.1 and Recipe 26.2.

To run a script, pass the script filename as an argument:

% php scan-discussions.php

On Unix, you can also use the hash-bang syntax at the top of your scripts to run the

PHP interpreter automatically. If the PHP binary is in /usr/local/bin, make the first line

of your script:

 #!/usr/local/bin/php

727

You can then run the script just by typing its name on the command line, as long as the

file has execute permission.

If it’s likely that you’ll use some of your classes and functions both for the Web and for

the command line, abstract the code that needs to react differently in those different

circumstances, such as HTML versus plain-text output or access to environment vari‐

ables that a web server sets up. A useful tactic is to check if the return value of php_sa

pi_name() is cli. You can then branch your scripts’ behavior as follows:

if ('cli' == php_sapi_name()) {

print "Database error: ".mysql_error()." \n";

} else {

print "Database error.
";

error_log(mysql_error());

}

This code not only adjusts the output formatting based on the context it’s executing in

(\n versus
), but also where the information goes. On the command line, it’s helpful

to the person running the program to see the error message from MySQL, but on the

Web, you don’t want your users to see potentially sensitive data. Instead, the code outputs

a generic error message and stores the details in the server’s error log for private review.

One helpful option on the command line is the -d flag, which lets you specify custom

INI entries without modifying your php.ini file. For example, here’s how to turn on

output buffering:

% php -d output_buffering=1 scan-discussions.php

The CLI binary also takes an -r argument. When followed by some PHP code without

<?php and ?> script tags, the CLI binary runs the code. For example, here’s how to print

the current time:

% php -r 'print strftime("%c");'

For a list of complete CLI binary options, pass the -h command:

% php -h

Finally, the CLI binary defines handles to the standard I/O streams as the constants

STDIN, STDOUT, and STDERR. You can use these instead of creating your own filehandles

with fopen():

 // read from standard in

$input = fgets(STDIN,1024);

 // write to standard out

fwrite(STDOUT,$jokebook);

 // write to standard error

fwrite(STDERR,$error_code);

728 | Chapter 26: Command-Line PHP

26.1 Parsing Program Arguments

Problem

You want to process arguments passed on the command line.

Solution

Look in $argc for the number of arguments and $argv for their values. The first argu‐

ment, $argv[0], is the name of script that is being run:

if ($argc != 2) {

die("Wrong number of arguments: I expect only 1.");

}

$size = filesize($argv[1]);

print "I am $argv[0] and report that the size of ";

print "$argv[1] is $size bytes.";

Discussion

To set options based on flags passed from the command line, loop through $argv from

1 to $argc, as shown in Example 26-1.

 Example 26-1. Parsing commmand-line arguments

for ($i = 1; $i < $argc; $i++) {

switch ($argv[$i]) {

case '-v':

 // set a flag

$verbose = true;

break;

case '-c':

 // advance to the next argument

$i++;

 // if it's set, save the value

if (isset($argv[$i])) {

$config_file = $argv[$i];

} else {

 // quit if no filename specified

die("Must specify a filename after -c");

}

break;

case '-q':

$quiet = true;

break;

default:

die('Unknown argument: '.$argv[$i]);

break;

26.1 Parsing Program Arguments | 729

 }

}

In this example, the -v and -q arguments are flags that set $verbose and $quiet, but

the -c argument is expected to be followed by a string. This string is assigned to $con

fig_file.

The $argc and $argv variables are concise, but they are not populated if the regis

ter_argc_argv config directive is turned off. However, $_SERVER['argc'] and $_SERV

ER['argv'] always contain the argument count and argument values. Those are good

places to look for argument information if you want maximally portable code.

See Also

Recipe 26.2 for more on parsing arguments with getopt; documentation on $argc,

$argv, and $_SERVER.

26.2 Parsing Program Arguments with getopt

Problem

You want to parse program options that may be specified as short or long options, or

they may be grouped.

Solution

Use the built-in getopt() function. As of PHP 5.3.0, it supports long options, optional

values, and other convenient features:

 // accepts -a, -b, and -c

$opts1 = getopt('abc');

 // accepts --alice and --bob

$opts2 = getopt('', array('alice','bob'));

Discussion

To parse short-style options, pass getopt() the array of command-line arguments and

a string specifying valid options. This example allows -a, -b, or -c as arguments, alone

or in groups:

$opts = getopt('abc');

For the previous option string abc, these are valid sets of options to pass:

730 | Chapter 26: Command-Line PHP

% program.php -a -b -c

% program.php -abc

% program.php -ab -c

The getopt() method returns an array. For each option specified on the command line,

there is one element in the array. The key of the array element is the option name and

the value of the array element is the option value. Counterintuitively, for flag-style op‐

tions that don’t take a value (such as a, b and c in the preceding), the value in the

corresponding array element is false. For example, if the preceding program is run as:

% program.php -a -b sneeze

This makes $opts:

array(2) {

["a"]=>

bool(false)

["b"]=>

bool(false)

}

Put a colon after an option in the specification string to indicate that it requires a value.

Two colons means the value is optional. So ab:c:: means that a can’t have a value, b

must, and c can take a value if specified. With this specification string, running the

program as:

% program.php -a -b sneeze

This makes $opts:

array(2) {

["a"]=>

bool(false)

["b"]=>

string(6) "sneeze"

}

Instead of being ignored as an unspecified option, sneeze is now set as the value of b.

To parse long-style arguments, supply a second argument to getopt() containing an

array that describes your desired arguments. Put each argument in an array element

(leave off the leading --) and follow it with : to indicate a mandatory argument or ::

to indicate an optional argument. The first argument to getopt() (the string for short-

style arguments) can be left blank or not, depending on whether you also want to parse

short-style arguments. This example allows debug as an argument with no value, name

with a mandatory value, and size with an optional value:

$opts = getopt('', array('debug','name:','size::'));

These are valid ways to run this program:

26.2 Parsing Program Arguments with getopt | 731

% program.php --debug

% program.php --name=Susannah

% program.php --name Susannah

% program.php --debug --size

% program.php --size=56 --name=Susannah

% program.php --name --debug

The last example is valid (if counterproductive) because it treats --debug as the value

of the name argument and doesn’t consider the debug argument to be set. Values can be

separated from their arguments on the command line by either an = or a space.

Note that for long-style arguments, getopt() does not include the leading -- in the

array of parsed arguments. An argument specified as --name on the command line

results in a key of name in the parsed argument array.

See Also

Recipe 26.1 for parsing of program options without getopt; documentation on getopt().

26.3 Reading from the Keyboard

Problem

You need to read in some typed user input.

Solution

Read from the special filehandle STDIN:

print "Type your message. Type '.' on a line by itself when you're done. \n";

$last_line = false; $message = '';

while (! $last_line) {

$next_line = fgets(STDIN,1024);

if (". \n" == $next_line) {

$last_line = true;

} else {

$message .= $next_line;

}

}

print " \nYour message is:\n$message\n";

If the Readline extension is installed, use readline():

$last_line = false; $message = '';

while (! $last_line) {

$next_line = readline();

if ('.' == $next_line) {

$last_line = true;

732 | Chapter 26: Command-Line PHP

 } else {

$message .= $next_line." \n";

}

}

print " \nYour message is:\n$message\n";

If the ncurses extension is installed, use ncurses_getch():

$line = '';

ncurses_init();

ncurses_addstr("Type a message, ending with ! \n");

 /* Display the keystrokes as they are typed */

ncurses_echo();

while (($c = ncurses_getch()) != ord("!")) {

$line .= chr($c);

}

ncurses_end();

print "You typed: [$line]\n";

Discussion

With the special filehandle STDIN, you can use all the standard file-reading functions to

process input (fread(), fgets(), etc.). The Solution uses fgets(), which returns input

a line at a time. If you use fread(), the input still needs to be newline terminated to

make fread() return. For example, if you run:

$msg = fread(STDIN,4);

print "[$msg]";

and type in tomato and then a newline, the output is [toma]. The fread() grabs only

four characters from STDIN, as directed, but still needs the newline as a signal to return

from waiting for keyboard input.

The Readline extension provides an interface to the GNU Readline library. The read

line() function returns a line at a time, without the ending newline. Readline allows

Emacs- and vi-style line editing by users. You can also use it to keep a history of previ‐

ously entered commands:

$command_count = 1;

while (true) {

$line = readline("[$command_count]--> ");

readline_add_history($line);

if (is_readable($line)) {

print "$line is a readable file. \n";

}

$command_count++;

}

26.3 Reading from the Keyboard | 733

This example displays a prompt with an incrementing count before each line. Because

each line is added to the Readline history with readline_add_history(), pressing the

up and down arrows at a prompt scrolls through the previously entered lines.

The ncurses extension is an interface to the GNU ncurses library, which provides com‐

prehensive control over keyboard events, mouse events, and screen output in text mode.

The primary way to read keyboard input with ncurses is the ncurses_getch() function,

which returns the ASCII code for the key pressed. A key difference between ncurses

and the other two methods described here is that no newline is required before the

keystroke is processed. The ncurses_getch() function returns right away after one

keypress. In the example in the Solution, the code loops, repeatedly calling ncur

ses_getch() (and appending the typed character to $line) until ! is typed.

See Also

Documentation on fopen(), fgets(), fread(), the Readline extension, and the Read‐

line library; the ncurses extension, and the ncurses library. Recipe 26.5 also discusses ncurses.

26.4 Running PHP Code on Every Line of an Input File

Problem

You want to read an entire file and execute PHP code on every line. For example, you

want to create a command-line version of grep that uses PHP’s Perl-compatible regular

expression engine.

Solution

Use the -R command-line flag to process standard input:

% php -R 'if (preg_match("/$argv[1]/", $argn)) print "$argn\n";'

php

< /usr/share/dict/words

ephphatha

To execute a block of code before or after processing the lines, use the -B and -E options,

respectively:

% php -B '$count = 0;'

-R 'if (preg_match("/$argv[1]/", $argn)) $count++;'

-E 'print "$count\n";'

php

< /usr/share/dict/words

l

734 | Chapter 26: Command-Line PHP

Discussion

Sometimes you want to quickly process a file using PHP via the command line, either

as a standalone project or within a sequence of piped commands. This lets you whip up

a quick-and-dirty script to transform data.

PHP makes that easy using three command-line flags and two special variables: -R, -B,

-E, $argn, and $argi.

The -R flag specifies the PHP code you want to execute for every line in the file. Within

that block of code, you can access the line’s text in the $argn variable.

As a basic example, here’s a PHP script that takes HTML input, strips the tags, and prints

out the result:

php -R 'print strip_tags($argn) . "\n"; ' < index.html

Because PHP automatically strips the newline from the end of the input, this code not

only displays the results of strip_tags($argn), but also echos a newline.

It operates on the file index.html, which is passed in as standard input. There is no

mechanism for specifying the file that you want processed.

This slightly more complicated example, which is a simple version of grep, shows how

to accept input arguments via the $argv array:

% php -R 'if (preg_match("/$argv[1]/", $argn)) print "$argn\n";'

php

< /usr/share/dict/words

ephphatha

The first value passed to preg_match() is /$argv[1]/, which is the first argument passed

to the script. In this example, it’s php, so this code is searching for all the words in

the /usr/share/dict/words file containing php.

For what it’s worth, ephphatha is an Aramaic word meaning be opened.

Beyond the individual lines, you sometimes need to execute initialization or clean-up

code. Specify this using the -B and -E flags.

Building on the grep example, this code counts the total number of matching lines:

% php -B '$count = 0;'

-R 'if (preg_match("/$argv[1]/", $argn)) $count++;'

-E 'print "$count\n";'

php

< /usr/share/dict/words

1

26.4 Running PHP Code on Every Line of an Input File | 735

Inside the -B block, you initialize the $count to 0. It’s then incremented in the -R block whenever there’s a match. Finally, the total number is printed out in the -E block.

To find out the percentage of matching lines, in addition to the total, use $argi:

% php -B '$count = 0;'

-R 'if (preg_match("/$argv[1]/", $argn)) $count++;'

-E 'print "$count/$argi\n";'

php

< /usr/share/dict/words

1/234937

The $argi variable contains the current line number of the file, so inside the -E block,

it’s set to the total number of lines.

See Also

Documentation on using PHP from the command line.

26.5 Reading Passwords

Problem

You need to read a string from the command line without it being echoed as it’s typed

—for example, when entering passwords.

Solution

If the ncurses extension is available, use ncurses_getch() to read each character, mak‐

ing sure “noecho” mode is turned on:

$password = '';

ncurses_init();

ncurses_addstr("Enter your password:\n");

 /* Do not display the keystrokes as they are typed */

ncurses_noecho();

while (true) {

 // get a character from the keyboard

$c = chr(ncurses_getch());

if (" \r" == $c || " \n" == $c) {

 // if it's a newline, break out of the loop, we've got our password

break;

} elseif (" \x08" == $c) {

 /* if it's a backspace, delete the previous char from $password */

$password = substr_replace($password,'',-1,1);

} elseif (" \x03" == $c) {

 // if it's Control-C, clear $password and break out of the loop

$password = NULL;

736 | Chapter 26: Command-Line PHP

 break;

} else {

 // otherwise, add the character to the password

$password .= $c;

}

}

ncurses_end();

Otherwise, on Unix systems, use /bin/stty to toggle echoing of typed characters:

 // turn off echo

`/bin/stty -echò;

 // read password

$password = trim(fgets(STDIN));

 // turn echo back on

`/bin/stty echò;

Neither ncurses nor stty is available on Windows platforms.

Discussion

Because ncurses gives character-by-character control over input (and because it’s easy

to toggle whether input is echoed to the screen), it makes it a great solution for reading

passwords. The ncurses_getch() function reads a character without echoing it to the

screen. It returns the ASCII code of the character read, so you convert it to a character

using chr(). You then take action based on the character typed. If it’s a newline or

carriage return, you break out of the loop because the password has been entered. If it’s

a backspace, you delete a character from the end of the password. If it’s a Ctrl-C interrupt,

you set the password to NULL and break out of the loop. If none of these things are true,

the character is concatenated to $password. When you exit the loop, $password holds

the entered password.

If you’re using a Unix system but don’t have the ncurses extension available, use /bin/

 stty to control the terminal characteristics so that typed characters aren’t echoed to the

screen while you read a password.

The following code displays Login: and Password: prompts, and compares the entered

password to the corresponding encrypted password stored in /etc/passwd. This requires

that the system not use shadow passwords:

print "Login: ";

$username = rtrim(fgets(STDIN)) or die($php_errormsg);

preg_match('/^[a-zA-Z0-9]+$/',$username)

or die("Invalid username: only letters and numbers allowed");

print 'Password: ';

26.5 Reading Passwords | 737

`/bin/stty -echò;

$password = rtrim(fgets(STDIN)) or die($php_errormsg);

`/bin/stty echò;

print " \n";

 // find corresponding line in /etc/passwd

$fh = fopen('/etc/passwd','r') or die($php_errormsg);

$found_user = 0;

$pattern = '/^' . preg_quote($username) . ':/';

while (! ($found_user || feof($fh))) {

$passwd_line = fgets($fh,256);

if (preg_match($pattern,$passwd_line)) {

$found_user = 1;

}

}

fclose($fh);

$found_user or die ("Can't find user \" $username\" ");

 // parse the correct line from /etc/passwd

$passwd_parts = split(':',$passwd_line);

 /* encrypt the entered password and compare it to the password in

 /etc/passwd */

$encrypted_password = crypt($password, $password_parts[1]);

if ($encrypted_password == $passwd_parts[1]) {

print "login successful";

} else {

print "login unsuccessful";

}

See Also

Documentation on readline(), chr(), the ncurses extension, and the ncurses library; on Unix, see your system’s stty(1) manpage.

26.6 Colorizing Console Output

Problem

You want to display console output in different colors.

Solution

Use PEAR’s Console_Color2 class:

$color = new Console_Color2();

$ok = $color->color('green');

$fail = $color->color('red');

738 | Chapter 26: Command-Line PHP

$reset = $color->color('reset');

print $ok . "OK " . $reset . "Something succeeded! \n";

print $fail . "FAIL " . $reset . "Something failed! \n";

If you’re already using ncurses, incorporate colors by using the appropriate functions:

ncurses_init();

ncurses_start_color();

ncurses_init_pair(1, NCURSES_COLOR_GREEN, NCURSES_COLOR_BLACK);

ncurses_init_pair(2, NCURSES_COLOR_RED, NCURSES_COLOR_BLACK);

ncurses_init_pair(3, NCURSES_COLOR_WHITE, NCURSES_COLOR_BLACK);

ncurses_color_set(1);

ncurses_addstr("OK ");

ncurses_color_set(3);

ncurses_addstr("Something succeeded! \n");

ncurses_color_set(2);

ncurses_addstr("FAIL ");

ncurses_color_set(3);

ncurses_addstr("Something succeeded! \n");

Discussion

By including special escape sequences in console output, you can instruct the console

to display text in different colors. Instead of having to remember the magical numbers

of the different special characters that make up these escape sequences, use PEAR’s

Console_Color2. Its color() method returns a string containing the right escape se‐

quence to change colors. When one of those strings is included in the output stream, it

changes the color of all subsequent text (until another escape sequence alters the active

color). In addition to the special “color” reset (which resets the active color to the

default), the color() method understands the following color names: black, red, green,

brown, blue, purple, cyan, grey, and yellow.

The ncurses extension also offers its own functions for manipulating color. Although

the syntax is different, logically it behaves the same way. Color values are defined, and

then function calls (to ncurses_color_set()) that alter the “active” color can be inter‐

spersed with functions that output text.

See Also

The Console_Color2 class; documentation on ncurses_init_pair() and ncurses_col

or_set(). More information about ncurses color programming and about color escape

sequences.

26.6 Colorizing Console Output | 739

26.7 Program: DOM Explorer

The dom-explorer.php program shown in Example 26-2 provides a shell-like prompt to let you explore an HTML document interactively. It reads an HTML document from a

provided URL, parses it into a DOMDocument, and then gives you a prompt at which you

can enter commands to see the node structure and contents of the documents.

Additionally, dom-explorer.php uses the Readline word-completion features to more

easily enter node locations. Enter a few characters and hit Tab to see a list of nodes that

match the characters you’ve typed:

% php dom-explorer.php http://www.php.net

/html > ls

head body

/html > ls head

title style[1] comment()[1] style[2] comment()[2] meta link[1] link[2] link[3] ↵

script[1] link[4] script[2]

/html > cat head/title

PHP: Hypertext Preprocessor

/html > cd body

/html/body > ls

text()[1] div[1] text()[2] div[2] text()[3] div[3] text()[4] div[4] text()[5] ↵

div[5] text()[6] div[6] text()[7] script comment()

/html/body > cd div[2]

/html/body/div[2] > ls

a text()[1] div text()[2]

/html/body/div[2] > cat a

/html/body/div[2] > cat div

downloads |

documentation | faq

| getting help | mailing lists | licenses | wiki

| reporting bugs | php.net sites | conferences | my

php.net

/html/body/div[2] > exit

The code for dom-explorer.php is in Example 26-2.

 Example 26-2. dom-explorer.php

 /* Need to specify a URL on the commandline */

isset($argv[1]) or die("No URL specified");

 /* Load the HTML and start the command loop */

$explorer = new DomExplorer($argv[1]);

$explorer->loop();

class DomExplorer {

public function __construct($url) {

$html = file_get_contents($url);

if (false === $html) {

740 | Chapter 26: Command-Line PHP

 throw new Exception("Can't retrieve $url");

}

 /* Turn the HTML into valid XHTML */

$clean = tidy_repair_string($html, array('output-xhtml' => true));

 /* Load it into a DOMDocument, hiding any libxml

 * warnings */

$this->doc = new DOMDocument();

libxml_use_internal_errors(true);

if (false === $this->doc->loadHtml($clean)) {

throw new Exception("Can't parse {$url} as HTML");

}

libxml_use_internal_errors(false);

$this->currentNode = $this->doc->documentElement;

$this->x = new DOMXPath($this->doc);

}

public function loop() {

 /* The "completion" function will provide tab-completion at the prompt */

readline_completion_function(array($this, 'completion'));

while (true) {

 /* Use the current node as part of the prompt */

$line = readline($this->currentNode->getNodePath() . ' > ');

readline_add_history($line);

 /* The first word typed in is the command, the rest are arguments */

$parts = explode(' ', $line);

$cmd = array_shift($parts);

 /* Each command is a method, so call it if it exists */

$cmd_function_name = "cmd_$cmd";

if (is_callable(array($this, $cmd_function_name))) {

try {

$this->$cmd_function_name($parts);

} catch (Exception $e) {

print $e->getMessage() . " \n";

}

}

else {

print "Unknown Command: $line\n";

}

}

}

 /**

 * Command: exit the program

 */

protected function cmd_exit($args) {

exit();

}

 /**

26.7 Program: DOM Explorer | 741

 * Command: list all nodes under the current node or

 * a specified node

 */

protected function cmd_ls($args) {

if (isset($args[0]) && strlen($args[0])) {

$node = $this->resolvePath($args[0]);

}

else {

$node = $this->currentNode;

}

print implode(' ' , $this->getChildNodePaths($node)) . " \n";

}

 /**

 * Command: change to a new current node

 */

protected function cmd_cd($args) {

 /* If an argument is provided, use it */

if (isset($args[0]) && strlen($args[0])) {

$this->currentNode = $this->resolvePath($args[0]);

}

 /* Otherwise go back to the "root" */

else {

$this->currentNode = $this->doc->documentElement;

}

}

 /**

 * Command: print the text content of a node

 */

protected function cmd_cat($args) {

if (isset($args[0]) && strlen($args[0])) {

$node = $this->resolvePath($args[0]);

print $node->textContent . " \n";

}

else {

throw new Exception("cat requires an argument");

}

}

 /**

 * Get all the paths of the nodes under the provided

 * node, trimming off the path of the current node from

 * the paths of the child nodes

 */

protected function getChildNodePaths($node) {

$children = array();

$curdir = $node->getNodePath();

foreach ($node->childNodes as $node) {

$path = $node->getNodePath();

$sub = substr($path, strlen($curdir) + 1);

$children[] = $sub;

742 | Chapter 26: Command-Line PHP

 }

return $children;

}

 /**

 * When tab is pressed, return an array of child

 * node paths as possible completion targets

 */

protected function completion($str, $index) {

return $this->getChildNodePaths($this->currentNode);

}

 /**

 * Resolve an xpath expression relative to the current

 * node, and make sure it only matches 1 target node

 */

protected function resolvePath($arg) {

$matches = $this->x->query($arg, $this->currentNode);

if ($matches === false) {

throw new Exception("Bad expresion: $arg");

}

if ($matches->length == 0) {

throw new Exception("No match for $arg");

}

if ($matches->length > 1) {

throw new Exception("{$matches->length} matches for arg");

}

return $matches->item(0);

}

}

26.7 Program: DOM Explorer | 743

CHAPTER 27

Packages

27.0 Introduction

Packages and libraries allow you to not reinvent the wheel. Instead, you’re able to use

the wheels created by others in your projects. This chapter shows you how to use three

collections of packages: Composer, PEAR, and PECL. Each provides a set of tools for

you to easily incorporate packages into your own code, and even contribute packages

of your own back to the common collective.

Composer is a dependency manager. Use it to install the code, including any external

packages, needed by the libraries you want use. Composer makes it simple to wrangle

the proper versions of code into your projects, both when you begin the project and

when you decide to upgrade a package to a newer release. Packagist, the primary place

to find Composer packages, has tens of thousands PHP packages.

PEAR is the PHP Extension and Application Repository, a collection of open source

classes that work together. Developers can use PEAR classes to parse XML, implement

authentication systems, generate CAPTCHAs, send MIME mail with attachments, and

a wide variety of other common (and not so common) tasks. A pear is also a tasty fruit.

PECL is the PHP Extension Community Library. PECL, pronounced “pickle,” is a series

of extensions to PHP written in C. These extensions are just like the ones distributed

with the main PHP release, but they’re of more specialized interest—such as a MongoDB

database driver or an OAuth 1.0 extension.

Each of these three collections fills a different need. Composer accepts all contributions.

Anyone can register their package for use by anyone. There are often multiple packages

that all solve similar problems, and quality can be anywhere from first class to highly

buggy. In contrast, PEAR is a vetted set of code with one best implementation of any

area, each working in conjunction with another. It’s like The Cathedral and the Ba‐

745

 zaar. And where Composer and PEAR both handle code written in PHP, PECL covers

the C extension side of PHP’s world.

PEAR and PECL also install one version of a library to be used across all projects. In

theory, this simplifies management because there’s only one set of files to keep up-to-

date. However, in practice, it’s common to need two different versions of the same

package at the same time. Two libraries often use the same underlying package, such as

an HTTP request utility.

But whereas the first library requires features from HTTP version 2.0, the second library

is still on version 1.8. Even worse, version 2.0 is backwards incompatible with 1.8. So,

by upgrading the HTTP package to solve one dependency, you’ve broken another pack‐

age in the process. And without any obvious way to foresee or workaround the problem

when it comes up.

Composer takes a more limited approach. It installs separate copies of packages for

every single project. This allows fine-grained control over the specific versions in use

at any time, allows you to upgrade multiple projects at your own schedule, and makes

it easy for you to bundle up your code and its dependencies into a self-contained unit.

Many people have found this to take less time to manage, despite its duplicative nature.

Composer is not bundled with PHP, so the first step is to download and install it onto

your computer. Installing and using Composer is the topic of Recipe 27.1. Information about Composer, including the documentation, the latest version of the software, and

its issue tracker is at the Composer website.

After Composer is running, you need to find packages to use. Recipe 27.2 covers

searching and browsing Packagist. After you locate the packages and versions you want,

ask Composer to add them.

For example, to install the latest 2.x version of the PHP_CodeCoverage library from

PHPUnit:

% php composer.phar require phpunit/php-code-coverage:2.*

This downloads and installs the package into your project. Then, to let your scripts

know where to find PHP_CodeCoverage, or any other package installed by Composer,

add this to the top of your script:

require 'vendor/autoload.php';

That’s it! One single file handles the work to discover where each package and its related

classes live. Full details on installing Composer packages is covered in Recipe 27.3.

To find general information on PEAR, read the PEAR manual; to discover the latest

PEAR packages, go to http://pear.php.net. The PEAR website also provides links to mailing list archives, as well as RSS feeds that allow easy monitoring of new package

releases.

746 | Chapter 27: Packages

Part of PEAR is a program called pyrus that makes it easy for you to download and install additional PEAR packages. This program is also known as the PEAR installer for

PHP 5.3+.1 Recipe 27.4 shows how to use the PEAR installer.

Any developer can use the PEAR class management infrastructure with her projects.

When developers create their own packages using the PEAR format, you can use py‐

 rus to download and install the files from each project’s website. This is called creating

a PEAR channel. The PEAR installer supports a wide variety of channel-specific features

that are covered in recipes throughout this chapter.

This chapter explains how to find a PEAR package that you may want to use and how

to install it on your machine. Because PEAR and PEAR channels offer many packages,

you need an easy way to browse them. Recipe 27.5 covers different ways to find PEAR

packages. When you’ve found a package’s name and determined which channel server

it is on, Recipe 27.6 shows how to view package details and information.

After you locate a package you want to use, you need to run pyrus to transfer the package

to your machine and install it in the correct location. Installing PEAR packages and

PECL extensions are the subjects of Recipes 27.7 and 27.10, respectively. Recipe 27.8

shows how to discover if any upgrades are available to packages on your machine and

how to install the latest versions. If you want to remove a package, see Recipe 27.9.

To view instructions and examples of how to use a particular PEAR package, check the

PEAR website. Many packages have end-user documentation complete with examples.

The rest typically include at least a set of generated API documentation that provides

examples of usage. If all else fails, read the top section of the package’s PHP files; most

contain an example of usage there as well.

Documentation for PECL extensions is not always as easy to find. Some PECL exten‐

sions are very well documented within the main PHP manual; the APC extension is an excellent example. Other PECL extensions are not documented at all, and usage must

be gleaned by reading PHP test scripts included with the source bundles from the PECL

website. In extreme cases, you can only get the full idea of what an extension does by

reading the extension source code.

The combination of Composer, PEAR, and PECL provides a vast collection of high-

quality reusable code that make these projects tremendous assets to the PHP community

at large.

1. There is an older PEAR installer named pear, which you may come across. This works with earlier versions of PHP, which is helpful for people using legacy systems.

27.0 Introduction | 747

27.1 Defining and Installing Composer Dependencies

Problem

You want to use Composer. This allows you to install new packages, upgrade, and get

information about your existing packages.

Solution

Install Composer:

% curl -sS https://getcomposer.org/installer | php

To execute a command, type the command name as the first argument on the command

line:

% php composer.phar command

Discussion

To install Composer, you download the installer file and send it to PHP. Composer uses

PHP to ensure your system is set up as it requires, handle any configuration settings,

and complete the installation process. When it’s done, you have a file called compos‐

 er.phar in the current directory.

Composer is a PHP script, so you can ask PHP to run it:

% php composer.phar command

Or, run it directly by putting composer.phar in the same location as PHP:

% mv composer.phar /usr/local/bin/composer

% composer command

If you have problems, make sure you have permission to write to that directory and that

the file is executable:

% sudo mv composer.phar /usr/local/bin/composer

% sudo chmod +x /usr/local/bin/composer

Your copy of PHP may be in a different place. To find it, run:

% which php

/usr/bin/php

With Composer up and running, pass it commands to execute. For example, to install

a package:

% composer install

For a list of all valid Composer commands, use list.

748 | Chapter 27: Packages

Composer has commands for both using and developing packages; as a result, there are

some commands that you may not need. The archive command, for example, creates

a new package. If you only run other people’s packages, you can safely ignore this com‐

mand. See Table 27-1 for a list of frequently used commands.

 Table 27-1. Common Composer commands

Command name Description

search

Searches for packages

init

Creates a basic composer.json file

install

Installs the project dependencies

update

Updates your dependencies to the latest version

self-update

Updates Composer to the latest version

See Also

The Composer site and documentation on installation.

27.2 Finding Composer Packages

Problem

You want to find packages you can install using Composer.

Solution

Check Packagist or ask Composer to list or search packages.

Discussion

Packagist is the primary collection of Composer packages. Anyone can add their pack‐

age to its directory, so others can find it by browsing or searching.

After you find a package, Packagist provides you with a terse overview, as shown in

Figure 27-1.

27.2 Finding Composer Packages | 749

 Figure 27-1. Guzzle Package Information page on the Packagist website

Packagist doesn’t host any source code or documentation. For that, you need to visit the

project’s repository and home page.

Composer can list all the packages known by Packagist with the show command:

% php composer.phar show

No composer.json found in the current directory, showing available packages ↵

from packagist

platform:

composer-plugin-api 1.0.0 The Composer Plugin API

ext-bcmath 0 The bcmath PHP extension

...

lib-xsl 1.1.26 The xsl PHP library

php 5.3.26 The PHP interpreter

php-64bit 5.3.26 The PHP interpreter (64bit)

750 | Chapter 27: Packages

available:

0k/php-oe-json

0s1r1s/dev-shortcuts-bundle

0x20h/monoconf

...

zz/zz

zzal/cakephp-hash

However, this list is tens of thousands of lines long. So, it’s better to search instead using

the search command:

% php composer.phar search http

No composer.json found in the current directory, showing packages from packagist

guzzle/http HTTP libraries used by Guzzle

illuminate/http

symfony/http-foundation Symfony HttpFoundation Component

symfony/http-kernel Symfony HttpKernel Component

net/http A basic HTTP client

minfraud/http MaxMind minFraud HTTP API

react/http Library for building an evented http server.

techdivision/http HTTP protocol implementation for usage in server context

vinelab/http An http library developed for the laravel framework. aliases

itself as HttpClient

joomla/http Joomla HTTP Package

minond/http Http helpers

icanboogie/http Provides an API to handle HTTP requests.

aura/http The Aura HTTP package provides objects to build and send HTTP ↵

requests and responses.

orno/http A wrapper for Symfony\HttpFoundation with some encapsulation and ↵

convenience methods.

zendframework/zend-http provides an easy interface for performing Hyper-Text ↵

Transfer Protocol (HTTP) requests

See Also

Packagist.

27.3 Installing Composer Packages

Problem

You want to install packages using Composer.

Solution

Use Composer’s require command:

% php composer.phar require vendor/package:version

27.3 Installing Composer Packages | 751

For example, to install the latest 2.x version of the PHP_CodeCoverage library from

PHPUnit:

% php composer.phar require phpunit/php-code-coverage:2.*

Or use a composer.json file:

{

"require" : {

"phpunit/php-code-coverage": "2.*"

}

}

with Composer’s install command:

% php composer.phar install

Discussion

Composer reads instructions from a file, composer.json, to calculate a set of packages

you want it to install.

This file is a simple JSON document. The most important element is the require key.

This tells Composer which packages you need to have. For example:

{

"require": {

"phpunit/php-code-coverage": "2.1.*"

}

}

This says you require the package php-code-coverage published by phpunit, and you’re

willing to take any version, as long as it’s somewhere in the 2.1s.

Create this file using any text editor, or use Composer itself with the require command:

% php composer.phar require vendor/package:version

This creates (or edits) the file and adds the necessary JSON.

Composer uses a combination of vendor and package as a simple way to namespace

packages. Many people have created packages with the same basic names, such as log

or json or db. This lets you specify exactly which one.

In some cases, the vendor and the package have the same name. For example, guzzle/

guzzle. That’s okay.

The composer.json file can contain multiple packages with more sophisticated instruc‐

tions:

{

"require": {

"phpunit/php-code-coverage": "2.1.*",

752 | Chapter 27: Packages

 "guzzle/guzzle": ">=3.7.0",

"monolog/monolog": "1.7.0"

}

}

This asks for any 2.1.x version of phpunit/php-code-coverage (but less than 2.2.0),

any version of guzzle/guzzle 3.7.0 or higher (including 3.8 and 4.0), and only version

1.7.0 of monolog/monolog (and nothing else).

To trigger the install, use the install command:

% php composer.phar install

These packages may have their own dependencies, which the vendor specifies in its own

 composer.json file. This includes a version of PHP, specific PHP extensions (such as

cURL), and other packages (such as a basic logging class).

During installation, Composer automatically checks your system for these require‐

ments. If you don’t meet them, it will attempt to fix this (by downloading packages) or

complain (if you need to upgrade PHP).

By convention, Composer places all installed packages inside a vendor folder in the

current working directory. This keeps everything in one place and allows you to easily

add this folder to your .gitignore file.

After installation, Composer writes out a file named composer.lock with the exact set of

packages and version it installed. This allows you to “lock in” the particular set of pack‐

ages that work for your application. That way, in case you encounter some unexpected

change in one of the packages when you upgrade, you can always recover to a “known

good” set.

To use a package, require Composer’s standard autoloader code at the top, then declare

the namespace of your package, and instantiate the object. This is the beginning of a

script that uses the Guzzle HTTP Client:

require 'vendor/autoload.php';

use Guzzle\Http\Client;

 // Create a client to work with the LinkedIn API

$client = new Client('https://api.linkedin.com/{version}', array(

'version' => 'v1'

));

The mystery of how Composer can have a short autoloader class, yet still manage to

find all the packages, is solved through standards.

Two separate packages found on Packagist don’t promise any form of similar design or

architecture. However, many packages do commit to various levels of interoperability.

27.3 Installing Composer Packages | 753

They do so by implementing a set of standards defined by a working group of developers

of PHP Frameworks.

PSRs, for PHP Standards Recommendation, lets you know how two packages will be‐

have with each other. The most critical one is PSR-0, the autoloading standard. When

you have many packages, each with its own file naming and directory syntax, it’s not

easy to know how to properly require them into your code.

Packages that implement PSR-0 agree to a common set of conventions for namespaces

and how their PHP files, and the directories they’re located in, are named and organized.

This allows any PSR-0–compatible package to safely live alongside every other PSR-0

package and to be loaded using one common autoload function.

All packages managed by Composer follow this standard. This allows Composer to

make it easy for you to use them.

See Also

Documentation on using Composer; the PSR-0 Autoloading Standard; the PHP_Co‐

deCoverage package; the Guzzle project; and Monolog.

27.4 Using the PEAR Installer

Problem

You want to use the PEAR installer, pyrus. This allows you to install new packages,

upgrade, and get information about your existing PEAR packages.

Solution

Install Pyrus.

To execute a command, type the command name as the first argument on the command

line:

% php pyrus.phar command

Discussion

Pyrus is a tool to manage PEAR packages. It’s not bundled with PHP, so you need to

install it yourself. Fortunately, Pyrus is distributed as a self-contained PHP Archive (aka

a phar). So, all that’s necessary is to download the file.

Then use PHP to run it:

% php pyrus.phar --version

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

754 | Chapter 27: Packages

Using PEAR installation found at /Users/rasmus/lib

php pyrus.phar version 2.0.0a4.

Here’s how to list all installed PEAR packages with the list-packages command:

% php pyrus.phar list-packages

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

Listing installed packages [/Users/rasmus/lib]:

[channel pecl.php.net]:

(no packages installed in channel pecl.php.net)

[channel doc.php.net]:

(no packages installed in channel doc.php.net)

[channel __uri]:

(no packages installed in channel __uri)

[channel pear.php.net]:

Archive_Tar 1.3.7 stable

Console_Getopt 1.3.0 stable

PEAR 1.9.4 stable

Structures_Graph 1.0.4 stable

XML_Util 1.2.1 stable

For a list of all valid PEAR commands, use help.

 pyrus has commands for both using and developing PEAR packages; as a result, there

are many commands that you may not need. The package command, for example,

creates a new PEAR package. If you only run other people’s packages, you can safely

ignore this command. See Table 27-2 for a list of frequently used commands.

 Table 27-2. Common PEAR installer commands

Command name

Shortcut Description

install

i

Download and install packages

upgrade

up

Upgrade installed packages

uninstall

un

Remove installed packages

list-packages

l

List installed packages

list-upgrades

lu

List all available upgrades for installed packages

channel-discover di

Initialize an alternate PEAR Channel from its server

list-channels

lc

List all locally configured PEAR Channels

search

s

Search for packages

To find where your PEAR packages are located, run the get php_dir PEAR command.

You can check the value of the include_path by calling ini_get('include_path')

from within PHP or by looking at your php.ini file. If you can’t alter php.ini because

you’re in a shared hosting environment, add the directory to the include_path at the

top of your script before including any PEAR files. See Recipe 20.5 for more on setting configuration variables from within PHP.

27.4 Using the PEAR Installer | 755

You can configure Pyrus settings using:

% php pyrus.phar set setting value

Here setting is the name of the parameter to modify and value is the new value. To

see all your current settings, use the get command:

% php pyrus.phar get

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

System paths:

php_dir => /Users/rasmus/lib/php

ext_dir => /usr/lib/php/extensions/no-debug-non-zts-20121212

cfg_dir => /Users/rasmus/lib/cfg

doc_dir => /Users/rasmus/lib/docs

bin_dir => /usr/bin

data_dir => /Users/rasmus/lib/data

www_dir => /Users/rasmus/lib/www

test_dir => /Users/rasmus/lib/tests

src_dir => /Users/rasmus/lib/src

php_bin => /usr/bin/php

php_ini => /private/etc/php.ini

php_prefix =>

php_suffix =>

Custom System paths:

User config (from /Users/rasmus/.pear/pearconfig.xml):

default_channel => pear2.php.net

auto_discover => 0

http_proxy =>

cache_dir => /Users/rasmus/lib/cache

temp_dir => /Users/rasmus/lib/temp

verbose => 1

preferred_state => stable

umask => 0022

cache_ttl => 3600

my_pear_path => /Users/rasmus/lib

plugins_dir => /Users/rasmus/.pear

(variables specific to pear2.php.net):

username =>

password =>

preferred_mirror => pear2.php.net

download_dir => /Users/rasmus/lib/downloads

openssl_cert =>

handle =>

paranoia => 2

Custom User config (from /Users/rasmus/.pear/pearconfig.xml):

(variables specific to pear2.php.net):

See Also

Pyrus documentation on installation.

756 | Chapter 27: Packages

27.5 Finding PEAR Packages

Problem

You want a listing of PEAR packages. From this list you want to learn more about each

package and decide if you want to install it.

Solution

Browse PEAR 2 packages and PEAR packages, or search for packages. Use pear’s remote-list command to get a listing of PEAR packages. Explore listings of PEAR

channel servers.

Discussion

There are a few ways to review available PEAR and PEAR-compatible packages. First,

to browse the listings of official PEAR packages in a directory-style fashion, go to http://

 pear2.php.net/categories/ and http://pear.php.net/packages.php?php=5. From there you

can burrow into each individual PEAR category.

Alternatively, you can search through the listings at the following address: http://

 pear.php.net/search.php. The search page allows you to search by package name, author, category, and release date.

You can also ask Pyrus to provide you with a listing of packages in the PEAR channel

using the remote-list command:

% php pyrus.phar remote-list pear

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

Remote packages for channel pear:

Audio:

Key: * = installed, ! = upgrades available

Authentication:

Auth 1.6.4 Creating an authentication system.

Auth_HTTP 2.1.8 HTTP authentication

Auth_PrefManager 1.2.2 Preferences management class

Auth_PrefManager2 2.0.0dev\ Preferences management class

1

...

XML_XPath2 n/a The PEAR::XML_XPath2 package provided

an XPath/DOM XML manipulation,

maneuvering and query interface.

XML_XRD 0.3.0 PHP library to parse and generate

"Extensible Resource Descriptor"

(XRD + JRD) files

XML_XSLT_Wrapper 0.2.2 Provides a single interface to the

different XSLT interface or commands

27.5 Finding PEAR Packages | 757

 XML_XUL 0.9.1 Class to build Mozilla XUL applications.

Key: * = installed, ! = upgrades available

You can also query compatible PEAR Channel servers for available packages using the

remote-list command. To do so, you must first make Pyrus aware of the alternate

channel server. For example:

% php pyrus.phar channel-discover pear.drush.org

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

Discovery of channel pear.drush.org successful

% php pyrus.phar list-channels

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

Listing channels [/Users/rasmus/lib]:

__uri (__uri)

doc.php.net (phpdocs)

pear.drush.org (drush)

pear.php.net (pear)

pecl.php.net (pecl)

% php pyrus.phar remote-list drush

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

Remote packages for channel drush:

Default:

drush 6.2.0.0 command line shell and Unix scripting

interface for Drupal

Key: * = installed, ! = upgrades available

To install a file from a remote channel, prepend the channel name and a slash before

the package name. For example, to install the drush package from the drush channel:

% php pyrus.phar install drush/drush

Using PEAR installation found at /Users/rasmus/lib

Downloading pear.drush.org/drush

Mime-type: application/x-tar

[===>] 100% (494/494 kb)

Installed pear.drush.org/drush-6.2.0.0

See Also

Recipe 27.6 to find more information about a package.

758 | Chapter 27: Packages

27.6 Finding Information About a Package

Problem

You want to gather information about a package, such as a description of what it does,

who maintains it, what version you have installed, and which license it’s released under.

Solution

Use Pyrus’s info command:

% php pyrus.phar info pear/HTTP2

You can also view the package’s home page.

Discussion

The info command provides summary information about a package:

% php pyrus.phar info pear/HTTP2

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

HTTP2 (pear.php.net Channel)

--

Package type: Version: 1.1.1 (API 1.1.0), Stability: stable (API stable)

Release Date: 2013-10-23 15:33:41

Package Summary: Miscellaneous HTTP utilities

Package Description Excerpt:

The HTTP class is a class with static methods for doing

miscellaneous HTTP related stuff like date formatting,

language negotiation or HTTP redirection....

(`php pyrus.phar info pear/HTTP2 description` for full description)

Release Notes Excerpt:

- Fix parsing arguments values without quotes...

(`php pyrus.phar info pear/HTTP2 notes` for full release notes)

If you don’t have the package installed, it will ask the remote server for a description.

For further details about the package description or release notes, append descrip

tion or notes to your request.

The package home page provides a more complete view and also provides links to earlier

releases, a change log, and browsable access to the package’s repository. You can also

view package download statistics. Figure 27-2 shows a sample package information

page.

27.6 Finding Information About a Package | 759

 Figure 27-2. HTTP2 Package Information page on the PEAR website

See Also

Recipe 27.5 to search for packages.

27.7 Installing PEAR Packages

Problem

You want to install a PEAR package.

Solution

Download and install the package from the PEAR Channel server using Pryus:

% php pyrus.phar install pear/Package_Name

You can also install from another PEAR Channel:

% php pyrus.phar install channel/ Package_Name

760 | Chapter 27: Packages

You can also install from any location on the Internet:

% php pyrus.phar install http://pear.example.com/ Package_Name-1.0.0.tgz

Here’s how to install if you have a local copy of a package:

% php pyrus.phar install Package_Name-1.0.0.tgz

Discussion

To install PEAR packages, you need write permission where the packages are stored;

this defaults to /usr/local/lib/php/.

You can also request multiple packages at the same time:

% php pyrus.phar install pear/XML_RSS pear/XML_SVG

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

Downloading pear.php.net/XML_RSS

Mime-type: application/octet-stream

Downloading pear.php.net/XML_SVG==============================>] 100% (6/ 6 kb)

Mime-type: application/octet-stream

Installed pear.php.net/XML_RSS-1.0.2==========================>] 100% (7/ 7 kb)

Installed pear.php.net/XML_SVG-1.1.0

When installing a package, Pyrus checks that you have all the necessary PHP functions

and PEAR packages that the new package depends on. If this check fails, it installs all

required PEAR dependencies:

% php pyrus.phar install pear/XML_XUL-alpha

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

Downloading pear.php.net/XML_XUL

Mime-type: application/octet-stream

Downloading pear.php.net/XML_Util2===========================>] 100% (26/26 kb)

Mime-type: application/octet-stream

Downloading pear.php.net/XML_Parser2=========================>] 100% (16/16 kb)

Mime-type: application/octet-stream

Installed pear.php.net/XML_XUL-0.9.1=========================>] 100% (11/11 kb)

Installed pear.php.net/XML_Util2-0.1.0

Installed pear.php.net/XML_Parser2-0.1.0

Once a PEAR package is installed, use it in your PHP scripts by calling require_once.

For example, here’s how to include the HTTP_Request2 package:

require_once 'HTTP/Request2.php';

Generally, if a package name contains an underscore, replace it with a slash, and

add .php to the end.

Because PEAR packages are included as regular PHP files, make sure the directory

containing the PEAR packages is in your include_path. If it isn’t, include_once and

require_once can’t find PEAR class files.

27.7 Installing PEAR Packages | 761

See Also

Recipe 27.10 for information on installing PECL packages; Recipe 27.8 for more on

upgrading an existing package; Recipe 27.9 to uninstall a package.

27.8 Upgrading PEAR Packages

Problem

You want to upgrade a package on your system to the latest version for additional func‐

tionality and bug fixes.

Solution

Find out if any upgrades are available and then tell Pyrus to upgrade the packages you

want:

% php pyrus.phar list-upgrades

% pear upgrade pear/Package_Name

Discussion

Upgrading to a new version of a package is a simple task with Pyrus. If you know a

specific package is out of date, you can upgrade it directly. However, you may also just

want to check periodically to see if any new releases are available.

To do this, use the list-upgrades command, which prints out a table showing the

channel server of the package, package name, local version number and state, version

number and state of the remote upgrade, and size of the download of the upgrade:

% php pyrus.phar list-upgrades

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

(no packages installed in channel __uri)

(no packages installed in channel doc.php.net)

(no upgrades for packages installed in channel pear.drush.org)

Upgrades for channel pear.php.net:

XML_Beautifier 1.2.2 (stable, released 2010-10-25)

Console_Getopt 1.3.1 (stable, released 2011-03-08)

Archive_Tar 1.3.11 (stable, released 2013-02-09)

(no packages installed in channel pecl.php.net)

To upgrade a particular package, use the upgrade command. For example:

% php pyrus.phar upgrade pear/XML_Beautifier-1.2.2

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

Downloading pear.php.net/XML_Beautifier

762 | Chapter 27: Packages

Mime-type: application/octet-stream

Installed pear.php.net/XML_Beautifier-1.2.2=======>] 100% (14/14 kb)

The short command for list-upgrades is lu; for upgrade it’s up.

PEAR also has an RSS feed listing new and upgraded packages.

See Also

Recipes 27.7 and 27.10 for information on installing PEAR and PECL packages;

Recipe 27.9 to uninstall a package; Recipe 12.12 for more on parsing RSS feeds.

27.9 Uninstalling PEAR Packages

Problem

You wish to remove a PEAR package from your system.

Solution

The uninstall command tells the PEAR installer to delete packages:

% php pyrus.phar uninstall pear/XML_Beautifier

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

Uninstalled pear.php.net/XML_Beautifier

Discussion

Uninstalling a package removes it completely from your system. If you want to reinstall

it, you must begin as if the package was never installed.

If you try to remove a package that another package depends on, Pyrus will warn you

and halt the uninstall process. For example, take a look at a sample PEAR installation:

% sudo php pyrus.phar list-packages

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

Listing installed packages [/Users/rasmus/lib]:

[channel pear.php.net]:

Archive_Tar 1.3.7 stable

Console_Getopt 1.3.0 stable

HTTP2 1.1.1 stable

PEAR 1.9.4 stable

Structures_Graph 1.0.4 stable

XML_Beautifier 1.2.1 stable

XML_Parser 1.3.4 stable

XML_Parser2 0.1.0 beta

XML_RSS 1.0.2 stable

XML_SVG 1.1.0 stable

27.9 Uninstalling PEAR Packages | 763

XML_Util 1.2.1 stable

XML_Util2 0.1.0 alpha

Now, try to uninstall the XML_Parser package:

% php pyrus.phar uninstall pear/XML_Parser

Pyrus version 2.0.0a4 SHA-1: 72271D92C3AA1FA96DF9606CD538868544609A52

Using PEAR installation found at /Users/rasmus/lib

Pyrus\Installer\Exception: Dependency validation failed for some installed

packages, installation aborted

Pyrus\Dependency\Exception: channel://pear.php.net/XML_Parser (version >=

1.0.1, excluded versions: 1.0.1) is required by installed package

"channel://pear.php.net/XML_RSS"

You can still force a package that has dependencies to uninstall by using the -f flag or

--force flag to instruct Pyrus to ignore dependencies and uninstall anyway. Use this

capability with caution.

There is no way to automatically roll back an upgrade to an earlier version of a package

by using uninstall.

The short command for uninstall is un.

See Also

Recipes 27.7 and 27.10 for information on installing PEAR and PECL packages.

27.10 Installing PECL Packages

Problem

You want to install a PECL package; this builds a PHP extension written in C to use

inside PHP.

Solution

Make sure you have all the necessary extension libraries and then use the bundled in‐

staller pecl:

% pecl install mailparse

To use the extension from PHP, add the appropriate line to your php.ini file:

extension=mailparse.so

Discussion

The frontend process for installing PECL packages is just like installing PEAR packages

for code written in PHP. However, the behind-the-scenes tasks are very different. Be‐

764 | Chapter 27: Packages

cause PECL extensions are written in C, the installer needs to compile the extension

and configure it to work with the installed version of PHP. As a result, at present, you

can build PECL packages on Unix machines if you have the necessary development

tools installed.

Unlike PHP-based PEAR packages, PECL extensions don’t automatically inform you

when you lack a library necessary to compile the extension. Instead, you are responsible

for correctly preinstalling these files. If you are having trouble getting a PECL extension

to build, check the README file and the other documentation that comes with the

package. The installer puts these files inside the docs directory under your PEAR hier‐

archy.

When you install a PECL extension, the pecl command downloads the distribution file,

extracts it, runs phpize to configure the extension for the version of PHP installed on

the machine, and then makes and installs the extension. It may also prompt you for the

location of libraries:

% pecl install memcached

downloading memcached-2.1.0.tgz ...

Starting to download memcached-2.1.0.tgz (39,095 bytes)

..........done: 39,095 bytes

11 source files, building

running: phpize

Configuring for:

PHP Api Version: 20100412

Zend Module Api No: 20100525

Zend Extension Api No: 220100525

...

Build complete.

...

install ok: channel://pecl.php.net/memcached-2.1.0

You should add "extension=memoize.so" to php.ini

PECL extensions are stored in different places than PEAR packages written in PHP. If

you want to run pecl, you must be able to write inside the PHP extensions directory.

Because of this, you may want to install these packages while running as the same user

you used to install PHP. Also, check the execute permissions of these files; because most

PEAR files aren’t executable, your umask may not provide those executable files with

the correct set of permissions.

If you’re running PHP and PECL in a Windows environment, you may prefer to down‐

load precompiled DLLs for the PECL extensions you need by browsing the extension’s

page.

27.10 Installing PECL Packages | 765

See Also

Recipe 27.7 for information on installing PEAR packages; Recipe 27.8 for more on

upgrading an existing package; Recipe 27.9 to uninstall a package.

766 | Chapter 27: Packages

Index

Symbols

required fields and, 240

!== (not-identity operator), 5, 113

using form elements with multiple options

"" (double quotes), 1, 309

and, 304

$ (dollar sign), 140

validating form input and, 281, 288

$argc, 727

verifying data with hashes and, 554

$argv, 727

$_REQUEST array, 276

$GLOBALS, 175

$_SERVER array

$_COOKIE array

argument processing and, 727, 730

PHP page processing and, 275

creating a resource and, 477

preventing global variable injection and, 301

detecting SSL and, 562

reading cookie values and, 238

exposing/routing to a resource and, 468

using cookie authentication and, 247

generating high-precision time and, 82

$_ENV array, 256, 275

PHP page processing and, 275

$_FILES array, 275, 292

processing form input and, 277

$_GET array

reading an HTTP header and, 248

building dynamic images and, 526

removing passwords from source code and,

escaping special characters and, 662

547

exposing clean resource paths, 471

setting environment variables and, 256

exposing/routing to a resource and, 468

supporting multiple formats and, 485

handling remote variables and, 303

using cookie authentication and, 246

in Site Search program, 725

using HTTP basic/digest authentication and,

PHP page processing and, 275

241

preventing global variable injection and, 301

validating form input and, 279

$_POST array

$_SERVER[HTTPS], 562

cookie authentication and, 246

$_SESSION array, 296, 354

creating a resource and, 476

% (percent sign), 326

handling remote variables and, 303

& (ampersand symbol), 240

PHP page processing and, 235, 275

& operator, 161, 167

preventing global variable injection and, 301

-> (arrow), 182, 218

 We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

767

. (dot)

__sleep(), 220

concatenation operator, 16

__toString(), 190, 596

in remote variables, 303

__unset(), 201

:: (double colon), 182, 211, 215

__wakeUp(), 151, 220

; (semicolon), using heredoc formats, 3

{} (curly braces)

<<< (heredoc format), 3

dynamic variable names and, 140

= (assignment operator), 197, 198

interpolating strings and, 17

= (equals), 137

| (vertical bar), 650

cloning objects, 198

object references, assigning, 197

A

=& (assignment operator), 167

object references, assigning, 197

abstract classes, 193

== (equality operator), 112, 137

abstract methods, 196

=== (identity operator), 5

accelerators, 630

=== (strict equality check), 112

Accept-Encoding header, 255

? (question mark), 656

Accept-Language header, 569

?: operator, 653, 660

access control, 186

[] (square brackets)

access values, 603

creating a character class with, 649

accessor functions, 188

form elements with multiple options and,

acos(), 51

304

addcslashes(), 651

parsing configuration files and, 684

addresses, looking up with LDAP, 498

referencing individual bytes with, 5

Ajax requests, 428

\ (backslash), 1, 648, 669

allow_url_fopen, 441

\b (word-boundary assertion), 680

ampersand symbol (&), 240

\n (newline), 2, 18, 27

anonymous FTP, 496

\r (carriage return), 2, 27

Apache

\s (whitespace metacharacter), 680

communicating within, 257

\t (tab), 2

mod_rewrite, 471

\w (word character), 653

rogue scripts and, 547

^ (caret), 650

APC extension, data store functionality, 143,

_ (SQL wildcard), 326

362

_ (underscore), 184

arcs, drawing, 515

_getch(), 733

$argc, 727

__autoload(), 229

arguments

__call(), 207, 212

argument list, 165

__callStatic(), 207, 212

controlling cookies with, 236

__CLASS__ constant, 219, 610

ensuring value types, 163

__clone method, 200

long-style, 730

__construct, 181, 184, 209, 598

method polymorphism and, 213

__destruct(), 185

passing by reference, 161

__DIR__ constant, 279

specifying by name, 162

__FILE__ constant, 146, 610, 712

variable numbers of, 164

__FUNCTION__ constant, 610

$argv, 727

__get(), 201

arithmetic functions, 53

__isset(), 201

array(), 94, 139

__LINE__ constant, 610

ArrayAccess interface, 131

__METHOD__ constant, 610

arrays

__set(), 201

accessing objects using array syntax, 131

anonymous, 98

768 | Index

applying functions to each element in, 124

assignment operators

assigning integer series to, 99

=, 167, 197, 198

assigning multiple values to, 94

=&, 167

associating multiple elements per key, 97

associative arrays, 93

auto-global, 276

atan(), 51

combining, 106

atan2(), 52

converting to strings, 108

Atom feeds

definition of, 93

reading, 401

deleting elements from, 102

writing, 407

eliminating duplicates in, 123

attributes (XML), 369

finding differences in pairs of, 126

authentication

finding elements in, 111

benefits of, 235

finding intersection in pairs of, 126

cookie, 245

finding keys in, 110

Digest, 242

finding largest/smallest elements in, 115

HTTP basic, 241

finding specific elements in, 114

LDAP, 500

finding unions in pairs of, 126

session, 247

finding value positions in, 113

auto-global arrays, 276

in PHP, 93

initializing empty, 545

B

iterating over large, 128

iterating through, 99

backslash (\), 1, 648, 669

modifying size of, 104

bar charts, 512, 536

multidimensional, 304

base classes, 180, 195

printing with commas, 109

base e (natural log), 46

randomizing element order in, 123

Base64 encoding, 242, 562

reversing element order in, 116

basename(), 711

sorting, 116

bases

sorting by computable fields, 118

converting between, 55

sorting multiple, 120

using numbers in, 56

sorting with methods, 122

base_convert(), 55

specifying first element index, 96

BCMath library, handling large and small num‐

types of, 93

bers, 53

array_intersect(), 288

bcrypt, 548

array_key_exists(), 110, 285

bearer tokens, 460

array_merge(), 106, 162

Benchmark (PEAR), 636

array_multisort(), 120

binary data

array_pad(), 104

escaping quotes for queries, 325

array_push(), 94

storing in strings, 28

array_reverse(), 116

bindColumn(), 318

array_search(), 113

bindec(), 55

array_splice(), 102

bindParam(), 323

array_to_comma_string(), 109

blanks, removing from strings, 17

array_unique(), 123

Blowfish, 551

array_walk(), 124

bound parameters, 322, 546

arrow (->), 182, 218

browsers

asin(), 51

buffering output to, 253, 612

asort(), 115, 117, 119, 584

download interruptions, 265

flushing output to, 252

redirecting to mobile optimized sites, 258

Index | 769

redirecting users, 251

preventing changes to, 189

user verification, 259

proxy classes, 212

build query(), 332

requiring similar behavior from, 191

bytes

unit tests for, 619

processing individually, 9

variables as names for, 230

reversing, 10

client failures, 482

clone keyword, 198

C

closure syntax, 177

code-caching accelerators, 630

Cache_Lite, 339

color(), 739

caching

colors

avoiding, 429

adding to graphics, 511, 514

calculated results in summary tables, 365

in patterned lines, 518

code-caching, 630

transparent, 526

database queries/results, 339

combine(), 213

calendars

comma-separated values (CSV)

LittleCalendar program, 87

downloadable files, 31

non-Gregorian, 84

generating, 18, 682

calls, chaining, 205

parsing, 20

call_user_func(), 172

command-line interface (CLI)

call_user_func_array(), 173

benefits of PHP scripting, 727

capitalization, 14

binary options, 728

case-sensitivity, 669

displaying colored console output, 738

ceil(), 40

DOM Explorer program, 740

chaining calls, 205

error messages, 728

character-based functions, 590

escaping special characters, 689

characters, processing individually, 9

flags and variables, 735

charts

parsing arguments with getopt(), 730

bar charts, 512, 536

processing arguments on command line, 729

pie charts, 515

reading passwords, 736

checkbirthdate(), 76

reading typed user input, 674, 732

checkboxes

running PHP code on every line, 734

validating input from, 287

running scripts, 727

working with multiple choices, 304

comparison functions, 37, 118

checkdate(), 75, 289

Composer

child classes, 180, 182, 189, 193, 210

benefits of, 746

chmod(), 710

common commands, 749

Cipher Block Chaining (CBC), 556

defining/installing dependencies, 748

Cipher Feedback (CFB), 556

finding packages for, 749

circles, drawing, 515

installing packages using, 751

classes

overview of, 745

autoloading definitions, 229

compressed responses, 255

creating abstract base classes, 193

concatenation operator (.), 16

defining, 180

concordances, 679

defining class constants, 215

configuration files, reading, 683

definition of, 179

configuration variables

gathering information about, 231

reading, 602

handling property access in, 201

setting, 603

hierarchy of, 180

constructors, 181, 184

implementing inheritance in, 182

770 | Index

content encoding, 372, 400

encryption/decryption of, 555

cookies

holding temporarily, 672

authentication with, 245

sharing, 143

avoiding data alteration in, 553

sharing encrypted, 560

benefits of, 235

storing encrypted, 557

controlling behavior of, 236

storing in shared memory, 143, 362

cURL’s cookie jar feature, 449

verifying with hashes, 553

deleting, 238

data encapsulation, 187

detecting SSL with, 563

data persistence, 353

fetching URLs with, 448

data records

reading values of, 238

counting, 676

session tracking with, 354

generating fixed-width field, 21

setting, 236

parsing fixed-width field, 22

Coordinated Universal Time (UTC), 61

data types

copy(), 713

arrays, 93–133

cos(), 51

dates and times, 61–92

cosine, 51

numbers, 35–59

country codes, 568

serialized, 149

createFromFormat(), 67

strings, 1–33

create_function(), 176

databases

credit cards

accessing database connections, 341

encrypting account numbers, 563

automatically loading information from, 184

validating account numbers, 290

benefits of PHP, 307

validating expiration dates, 289

building queries programmatically, 330

cross-site request forgeries (CSRF), 544

caching queries/results, 339

cross-site scripting (XSS), 291, 541, 545

creating unique identifiers, 329

crypt(), 551

DBM databases, 310

CSV (see comma-separated values)

displaying large datasets, 336

cURL extension

escaping quotes, 325

cookie jar feature, 449

finding number of rows returned, 324

fetching URLs with arbitrary headers, 447

formatting data for, 18

fetching URLs with arbitrary methods, 446

logging debugging information/errors, 327,

fetching URLs with GET, 441

609

fetching URLs with POST, 445

overview of, 309

finding stale links with, 433

password protection for, 547

transferring files with, 496

querying multiple times, 321

curly braces ({})

Redis key-value store, 351

dynamic variable names and, 140

relational, 313

interpolating strings and, 17

rows, finding number of by a query, 324

currency, 49, 579

sample table structure/data, 308

custom error handlers

SQL

creating, 596

connecting to, 315

using, 608

modifying data in, 320

CustomException class, 596

querying, 316

retrieving rows without a loop, 319

D

SQLite, 313

storing encrypted data in, 557

data

storing sessions in, 359

avoiding tainted input (see security)

storing threaded message boards, 343

controlling access to, 710

Index | 771

date(), 61–65, 69, 73

PHP-aware, 595

date.timezone configuration, 62

unit tests, 619

DateInterval(), 83

XAMPP, 624

DatePeriod class, 83

Xdebug extension, 615, 638

dates/times

debug_print_backtrace(), 599

adding/subtracting intervals, 79

decbin(), 55

calculating differences between, 71

dechex(), 55

calculating with time zones/DST, 80

decimals, validating form input of, 281

calendar program, 87

decoct(), 55

challenges of working with, 61

decryption, 555, 557, 563

conventions addressing, 61

deep clones, 200

converting from epoch timestamps, 68

deg2rad(), 52

converting to epoch timestamps, 66

DELETE, 320, 324, 447, 481

creating drop-down menus based on, 305

delta values, 37

finding current, 63

dependency managers, 745

finding day of week, 73

(see also Composer)

format pattern characters, 574

destruct(), 185

function overview, 62

dictionaries, 93

generating high-precision, 82

difference, finding, 126

generating time ranges, 83

Digest authentication, 241

localization of, 573

directories

non-Gregorian calendars, 84

changing file permissions/ownership, 710

parsing from strings, 77

copying/moving files, 713

printing in specified format, 69

creating new, 717

validating dates, 75

deleting files, 713

validating form input, 289

getting file information, 709

DateTime::add(), 79

getting/setting file timestamps, 708

DateTime::createFromFormat(), 67

matching filenames, 715

DateTime::diff(), 71

overview of, 705

DateTime::format(), 69, 73

processing files recursively, 717

DateTime::sub(), 79

removing, 718

date_default_timezone_get(), 82

site search program, 723

date_default_timezone_set(), 62, 68, 80

splitting filenames by components, 711

daylight saving time (DST), 61, 80

web server directory listing program, 719

DAYOFWEEK(), 75

dirname(), 712

DBA abstraction layer, 310

documents

DBCxn::get(), 342

accessing individual objects, 388

DBM databases

comparing, 679

overview of, 307

exploring node structure in, 740

using, 310

generating XHTML, 421

debugging

parsing basic XML, 376

importance of, 593

parsing complex XML, 379

interactively at runtime, 615

parsing large XML, 381

logging for, 327, 609, 612

transforming with XLST, 391

raw HTTP exchanges, 454

dollar sign ($), 140

setting up test environments, 624

DOM

tools for

generating XML with, 373

built-in web server, 625

XSLT and, 390

overview of, 615

772 | Index

DOM methods

reversing order in arrays, 116

DOM Explorer program, 740

separating in arrays, 169

DOMDocument objects, 373

ellipses, drawing, 515

schema validation, 399

email address validation, 259, 283

tree-based parsing, 379

email messages

validating documents, 398

encryption with GPC, 563

domain names

reading IMAP/POP3 email, 491

collecting information about, 506

sending, 488

finding, 502

sending multipart, 490, 495

DOMDocument class, 404

empty(), 136

DOMDocument object, 373, 419

encryption

DOMDocument::createElement(), 409

algorithms for, 555

DOMDocument::createElementNS(), 409

benefits of PHP for, 542

DOMDocument::relaxNGValidate(), 398

of email with GPC, 563

DOMDocument::save(), 374

overview of, 541

DOMDocument::saveXML(), 374

(see also security)

DOMDocument::schemaValidate(), 398

sharing encrypted data, 560

DOMXPath, 387

storing encrypted data, 557

dot (.)

environment variables

concatenation operator, 16

reading, 255

in remote variables, 303

setting, 256

double colon (::), 182, 211, 215, 218

epoch timestamps

double quotes (""), 1, 309

converting time/date parts to, 66, 77

downloads, handling interrupted, 265

converting to time/date parts, 68

drop-down menus

definition of, 62

creating based on date, 305

in localization, 575

validating input from, 284

equality operator (==), 112, 137

working with multiple choices, 304

equals (=), 137

DTDs (Document Type Definitions), 399

cloning objects, 198

duplicates

object references, assigning, 197

avoiding variable copies, 167

ereg(), 657

removing from arrays, 123

ereg_replace(), 657

dynamic functions, 176

errorCode()(PDO method), 327

dynamic images, building, 524

errorInfo()(PDO method), 327

errors/error messages

E

altering default reporting levels, 606

catchable, 607

eavesdropping, prevention of, 560

controlling display of, 596

echo(), 688

creating in RESTful servers, 482

Electronic Code Book (ECB), 556

disk full, 668

elements

displaying inline, 297

applying functions to, 124

eliminating headers already sent errors, 611

associating multiple per key, 97

error types, 607

creating in DOM methods, 374

finding/fixing parse errors, 594

cycling through in arrays, 99

hiding from users, 604

deleting from arrays, 102

logging, 327, 609

finding in arrays, 111

logging debugging information, 612

finding largest/smallest in arrays, 115

printing stack traces, 599

finding specific in arrays, 114

reading configuration variables, 602

randomizing order in arrays, 123

Index | 773

reading standard error, 693

deleting, 713

recovery from, 598

escaping shell metacharacters, 689

setting configuration variables, 603

file information functions, 706

tracking, 668

flushing output to, 687

using custom error handlers, 608

I/O overview, 667

error_log(), 609

localization of, 583

error_reporting(), 606

locking, 694

escapeshellcmd(), 689

logging errors, 609

ETag header, 249

manipulating metadata (see directories)

event handlers, 432

matching lines in, 658

excapeshellarg(), 689

modifying in place, 685

exception classes, creating, 596

opening remote, 673

excMailComposer, 488

passing input into programs, 691

EXIF (Exchangeable Image File Format), 533

processing every word in, 679

exit(), 251

processing uploaded, 292

explode(), 25, 169

processing variable-length text fields, 682

exponents, calculating, 46

randomizing lines in, 681

expressions, interpolating within strings, 16

reading configuration files, 683

extended regular expressions (ereg)

reading from standard input, 674

overview of, 648

reading into strings, 675

switching to preg functions, 651

reading standard error, 693

extending, definition of, 180

reading standard program output, 692

extends keyword, 182

reading/writing compressed, 702

E_NOTICE, 168

reading/writing custom types, 697

E_RECOVERABLE_ERROR, 163

removing HTML/PHP tags from, 424

repairing with Tidy extension, 417

F

running PHP code on every line, 734

selecting random lines from, 680

failures

STDIN filehandle, 733

indicating from functions, 171

storing encrypted data in, 557

indicating in RESTful servers, 482

transferring using FTP, 495

false keyword, 171

Windows vs. Unix treatment of, 668

fclose(), 668

writing to many filehandles, 688

feof(), 677

writing to standard output, 688

fetch()(PDO method), 316, 319

filesystem (see directories; files)

fetchAll()(PDO method), 316, 319

file_get_contents(), 440, 675, 685

fetch_rss(), 402

filtering, 541, 544

fflush(), 687

(see also security)

fgetcsv(), 20, 171, 682

filter_has_var(), 279

fgets(), 669, 676

filter_input(), 281

file extensions, 484

FILTER_VALIDATE_EMAIL, 283

fileatime(), 708

FILTER_VALIDATE_FLOAT, 281

filectime(), 708

FILTER_VALIDATE_INT, 281

filemtime(), 675, 708

filter_var(), 424

files

final keyword, 189

case-sensitivity, 669

5xx status codes, 483

copying/moving, 713

fixation, 357, 542

counting lines, paragraphs, records, 676

fixed-width field records, 21

creating temporary, 672

creating/opening local, 671

774 | Index

floating-point numbers

ftp_put(), 496

comparing, 37

function(), 394

definition of, 35

functions

rounding, 38

accessing global variables inside, 175

flock(), 694

accessing parameters, 158

floor(), 40

accessor functions, 188

fluent interfaces, 205

benchmarking calls, 82, 631

flush(), 252

calling from XSLT stylesheets, 394

fopen(), 20, 667, 671, 673

calling variable functions, 172

for loops, 40

creating dynamic, 176

forced logout, 244

declaring, 157

foreach loops, 99, 114, 316, 373

drawbacks of, 188

forgotten passwords, 551

enforcing types of arguments, 163

formatCurrency(), 49, 579

extracting information about, 222

forms

interpolating within strings, 16

benefits of PHP handling of, 275

listing, 231

displaying inline error messages for, 297

overview of, 158

drop-down menus based on date, 305

passing values by reference, 161

handling remote variables with periods, 303

purpose of, 157

multiple options in, 304

returning failures, 171

preserving input, 297

returning multiple values, 169

preventing problems

returning values by reference, 167

cross-site scripting, 291

setting default values, 159

global variable injection, 301

skipping selected values, 170

multiple submissions, 299

timing execution of, 631

processing input

tracing with Xdebug, 632

overview of, 275

unit tests for, 619

reusing HTML pages, 275

using in regular expressions, 664

processing uploaded files, 292

using named parameters, 162

validating input

with varible numbers of arguments, 164

checkboxes, 287

functionString(), 394

credit card numbers, 290

func_get_args(), 166, 174

dates/times, 289

func_num_args(), 166

drop-down menus, 284

fwrite(), 667, 689, 691

email addresses, 283

importance of, 275

G

numbers, 281

preventing spoofing, 543

GD library

radio buttons, 285

additional libraries necessary, 510

required fields, 279

benefits of, 509

with hidden field data, 553

built-in fonts, 518, 523

working with multipage, 295

feature overview, 509

4xx status codes, 482

versions of, 510

fputcsv(), 18, 31

(see also graphics)

fputs(), 691

generators, 128

FreeType library, 520

GET requests, 278, 440, 472

French Republican calendar, 84

getdate(), 63, 68

FTP (File Transfer Protocol), 495, 673

getElementsByTagname(), 381

ftp_get(), 496

getEmail(), 188

getenv(), 255

Index | 775

gethostbyaddr(), 502

headers

gethostbyname(), 502

headers already sent error messages, 611

getopt(), 730

reading specific, 249

getResult(), 183

writing, 249

get_browser(), 258

here document (heredoc) format, 1, 3, 16

global variables, 175, 301

hexadecimal numbers, 56

globalization (see internationalization; localiza‐

hexdec(), 55

tion)

highlighting, applying to web pages, 414

gmmktime(), 66

hijacking, 356

GMP library, handling large and small numbers, HTML

53

capturing headings, 659

gmstrftime(), 62

cleaning up broken/nonstandard, 416

GNU Privacy Guard (GPG), 563

converting to from plain text, 422

graphics

converting to plain text, 423

adding color to, 511, 514

exploring document structure, 740

basic image-generation process, 510

extracting links, 420

building dynamic images, 524

removing tags, 424

creating thumbnail images, 530

HTML Tidy library, 417

drawing centered text, 520

html2text, 423

drawing curved images, 515

htmlentities(), 240, 291, 422, 545

drawing line-based images, 512

htmlspecialchars(), 291

drawing text, 518

HTTP Basic authentication, 241

drawing with patterned lines, 517

HTTP Range feature, 265

editing existing images, 511

HTTP requests

GD library

determining GET vs. POST, 278

additional libraries necessary, 510

lack of statefulness in, 235, 353

benefits of, 509

reading headers, 248

built-in fonts, 518

reading POST request bodies, 240

feature overview, 509

RESTful APIs and, 439

versions of, 510

writing headers, 249

generating bar charts, 536

HTTP status codes

getting/setting transparent colors, 526

errors, 482

overlaying watermarks, 527

overview of, 466

reading EXIF data, 533

setting, 250

serving images securely, 535

http_build_query(), 239, 441

graphs, 512

http_response_code(), 251

greatest common divisor (GCD), 54

greedy matches, 656

I

Greenwich Mean Time (GMT), 61

I18N (see internationalization)

H

IANA language subtag registry, 568

iconv library, 400, 588

hash functions, choosing, 632

ICU library

hash maps, 93

globalization with, 567

hashing

number formatting rules, 48

definition of, 541

idempotent methods, 466

passwords, 549

identity operator (===), 5

verifying data with, 553

ImageArc(), 515

header(), 31, 249, 251, 373, 611

ImageColorTransparent(), 526

ImageCopy(), 528

776 | Index

ImageCopyMerge(), 528

internationalization

ImageCopyResampled(), 530

benefits of PHP for, 567

ImageEllipse(), 515

definition of, 567

ImageFilledPolygon(), 513

manipulating UTF-8 text, 588

ImageFilledRectangle(), 513

setting incoming character encoding, 587

ImageFTCenter(), 521

setting outgoing character encoding, 587

ImageFTText(), 519

(see also localization)

ImageLine(), 513

internet services (see web services)

ImagePolygon(), 513

intersection, computing, 126

ImageREctangel(), 513

in_array(), 111, 124, 284

images

IP addresses, finding, 502

adding centered text to, 520

ISO standards

adding color to, 514

15924, 568

adding transparent colors to, 526

639-1, 568

building dynamic, 524

isset(), 135, 138, 162

controlling access to, 535, 675

is_numeric(), 36

extracting metainformation, 533

is_uploaded_file(), 294

generation with GD library, 510

is_valid_credit_card(), 290

(see also graphics)

JPEG and PNG formats, 467

J

localization of, 581, 584

scaling, 530

JavaScript

ImageSetStyle(), 517

event-based programming in, 432

ImageString(), 518

integrating with, 429

IMAP extension, 491

Jewish calendar, 84

imap_headers(), 493

join(), 108

img(), 581

jQuery, 429

implode(), 331

Julian calendar, 84

indexed_links(), 336

indexes, 93, 96

K

inheritance

Kcachegrind, 639

definition of, 180

key/value pairs, 310

implementing, 182

keyboards, reading from, 674, 732

preventing, 203

keys, finding in arrays, 110, 113

restricting, 189

initialization vector (IV), 560

ini_get(), 602

L

ini_set(), 603

L10N (see localization)

inodes, 705

language codes, 568

input, security concerns over, 541

(see also localization)

(see also forms; security)

lanquage-level named parameters, 162

INSERT, 320, 324, 330

lastInsertId()(PDO method), 330

instantiation, definition of, 180

LDAP (Lightweight Directory Access Protocol)

integers

looking up addresses with, 498

assigning consecutive to arrays, 99

using for authentication, 500

definition of, 35

libxml2 library, 399

operating on series of, 40

lines

validating form input of, 281

counting, 676

interfaces, 191, 205

line delimiters, 668, 669

Index | 777

randomizing, 681

mail(), 488

selecting random, 680

(see also email messages)

lines, drawing, 512, 517

maps, 93

list(), 139, 169, 170

max(), 115

literal characters, 662

maximal matching, 657

LittleCalendar program, 87

may_pluralize(), 50

locale

mb_strlen(), 588

definition of, 567

mcrypt, 555

determining, 569

md5(), 299, 329, 632

locale IDs, 568

memchached, 358

localization

memory, sharing, 143

benefits of PHP for, 567

message boards, 343

definition of, 567

message catalogs, 584

determining locale, 569

message digests, 553

managing resorces, 584

MessageFormatter, 570

of currency values, 579

metacharacters, 648, 662, 689

of dates/times, 573

metainformation, extracting, 533

of files, 583

methods

of images, 581

abstract, 196

of numbers, 577

access control for, 186

of text messages, 570

accessing, 182

overview of, 567

accessing overridden, 210

sorting in locale-aware order, 584

applying to multiple classes, 191

(see also internationalization)

calling directly, 182

localtime(), 63

chaining calls, 205

LOCK_EX, 695

creating dynamically, 212

log out methods, 244

defining on object destruction, 185

logarithms, 46

defining on object instantiation, 184

logf(), 174

defining static, 217

login procedures, 245

definition of, 179

(see also authentication)

explicitly calling parent, 183

lost passwords, 551

inheritance of, 182

lowercase, 14

inspecting objects for, 222

ltrim(), 17

listing, 231

Luhn algorithm, 290

method polymorphism, 213

preventing changes to, 189

M

microtime(), 82, 631

MIME email, 490, 495

magic methods

min(), 115

__autoload, 229

minimal matching, 657

__call(), 207, 212

mkdir(), 717

__callStatic(), 207, 212

mktime(), 61, 66

__get(), 201

mobile optimized sites, 258

__isset(), 201

mod_rewrite, 471

__set(), 201

monetary values, 49, 579

__sleep(), 220

move_upladed_file(), 294

__unset(), 201

mt_getrandmax(), 43

__wakeup(), 220

mt_rand(), 42

magic quotes, 309, 326

mt_srand(), 43

MagpieRSS parser, 401

778 | Index

multipage forms, 295

validating credit card numbers, 290

multiple formats, supporting, 484

validating form input of, 281

multi_fwrite(), 689

number_format(), 47

must_be_an_array(), 163

numerical arrays, 93

MySQL

date/time functions in, 75

O

inheritance in, 183

OAuth

N

making 1.0 requests, 458

making 2.0 requests, 460

name/value pairs, 239

object relational map (ORM), 212

names, dynamic, 140

object-oriented programming (OOP)

natsort(), 117

accessing objects using array syntax, 131

ncurses_getch(), 736

accessing overridden methods, 210

NetBeans IDE, 595, 600

aggregating objects, 206

Net_Ping package, 504

assigning object references, 197

Net_Whois::query(), 506

autoloading class files, 229

newsfeeds, 401

benefits of, 179

nodes

chaining calls, 205

appending in DOM method, 374

cloning objects, 198

exploring document structure, 740

controlling object serialization, 220

in XMLReader, 382

creating abstract base classes, 193

modifying document structure with, 379

creating methods dynamically, 212

nongreedy matches, 656

data encapsulation, 187

nosafe methods, 466

defining class constants, 215

not-identiry operator (!==), 5, 113

defining object constructors, 184

nowdoc format, 4

defining object destructors, 185

NUL (ASCII 0), 671

defining object stringification, 190

NumberFormatter class, 48

defining static properties/methods, 217

numbers

determining class instance, 226

basics of, 35

history of in PHP, 179

calculating exponents, 46

implementing access control, 186

calculating trigonometric functions, 51

instantiating objects, 183

checking for in variables, 36

instantiating objects dynamically, 230

comparing floating-point, 37

introspecting objects, 222

converting between bases, 55

listing functions/methods, 231

decimal format pattern characters, 578

overriding property accesses, 201

finding distance, 58

overview of, 179

formatting, 47

preventing changes to classes/methods, 189

formatting monetary values, 49

private vs. public methods in, 188

generating biased random numbers, 44

requiring classes to behave similarly, 191

generating predictable random, 43

using method polymorphism, 213

generating random within a range, 42

objects

handling very large/small, 53

aggregating, 206

localization of, 577

benefits of, 188

non-decimal bases, 56

cloning, 198

operating on series of, 40

controlling serialization of, 220

printing correct plurals, 50

creating new instances of, 183

rounding floating-point, 38

defining object constructors, 184

taking logarithms, 46

defining object destructors, 185

Index | 779

defining static methods/properties in, 217

parse_ini_file(), 683

defining stringification, 190

parsing

determining class instance, 226

arguments parsed on command line, 729

DirectoryIterator information methods, 715

basic XML documents, 376

instantiating dynamically, 230

complex XML documents, 379

introspecting, 222

finding/fixing errors, 594

linking, 197

large XML documents, 381

uniform operation of, 193

logging errors, 609

ob_end_flush(), 254

program arguments with getopt(), 730

ob_start(), 254

RSS feeds, 401

octal numbers, 56

stream-based, 382

octdec(), 55

tokenization in, 594

one-way encryption, 541

tree-based, 379

OPcache accelerator, 630

variable-length text fields, 682

optimization, 629

passwords

(see also performance tuning)

generating new, 551

output control

in URLs, 441

buffering to browsers, 253, 612

maintained in DBM database, 311

compressing, 255

reading without echoes, 736

displaying colored, 738

removing from source code, 547

flushing to browsers, 252

sharing encrypted data with, 560

flushing to files, 687

storing, 548

overview of, 236

verification logic in PHP program, 241

reading standard output, 692

password_hash(), 549

writing to standard output, 688

password_verify(), 549

Output Feedback (OFB), 556

pathinfo(), 711

pclose(), 691

P

PCRE escape sequence, 652, 662

pc_link_extractor(), 420

pack(), 21, 28

pc_Shm::write(), 362

packages

pc_text2html(), 422

Composer

PDO database access layer

common commands, 749

connecting to SQL databases, 315

defining/installing dependencies, 748

eliminating SQL injection with, 546

finding packages, 749

extending PDOStatement, 318

installing packages, 751

overview of, 308

finding information about, 759

PDO::errorCode(), 327

overview of, 745

PDO::exec(), 320, 324

PEAR

PDO::execute(), 320

finding packages, 757

PDO::FETCH_ constants, 317

installing packages, 760

PDO::PARAM_ constants, 323

uninstalling packages, 763

PDO::prepare(), 320, 324

upgrading packages, 762

PDO::quote(), 325

using Pyrus installer, 754

PDOStatement::errorCode(), 327

PECL, installing packages, 764

PDOStatement::lastInserId(), 330

Packagist, 749

querying SQL databases, 316

paginated results, 336

PEAR (PHP Extension and Application Reposi‐

paragraphs, counting, 676

tory)

parameters, named, 162, 162

Auth class, 500

parent classes, 180, 182, 210

780 | Index

Benchmark module, 636

preg functions

Cache_Lite package, 339

preg_match(), 649

common installer commands, 755

preg_match_all(), 649

Console_Color2 class, 738

preg_replace, 649

finding packages, 757

switching to from ereg functions, 651

installing packages, 760

preg_grep(), 658

Net_Ping package, 504

preg_match_all(), 654

overview of, 745

preg_quote(), 662

Stream_SHM module, 697

preg_replace_callback(), 664

uninstalling packages with, 763

Pretty Good Privacy (PGP), 563

upgrading packages, 762

print(), 688

using Pyrus installer, 754

printf(), 56

PECL (PHP Extension Community Library)

print_link(), 336

installing packages, 764

print_r(), 151, 547

OAuth 1.0, 458

private keyword, 186

overview of, 745

privileged users, 624

Redis key-value store, 351

profiling, 638

Xdebug, 600, 615, 632, 638

program building blocks

performance tuning

classes/objects, 179–233

accelerators, 630

functions, 157–177

avoiding regular expressions, 643

variables, 135–154

overview of, 629

program errors (see errors/error messages)

profiling with debugger extensions, 638

properties

stress-testing websites, 642

access control for, 186

timing execution by function, 632

accessing directly, 182

timing execution by section, 636

assigning values to, 181

timing execution by statement, 634

declaring, 181

timing function execution, 631

defining static, 217

timing of, 629

definition of, 179

Perl-compatible regular expressions (preg), 648

inspecting objects for, 222

photos (see images)

overriding access, 201

PHP interpreter, 594, 630

protected keyword, 186

php://input, 240

protocols, short history of, 487

phpDocumentor, 231

(see also web services)

phpinfo(), 547

prototypes, function, 158

pie charts, 515

proxy classes, 212

pinging, 504

public keyword, 186

placeholders, 322, 325, 332

PUT requests, 439, 447, 479

plain text

putenv(), 256

converting to from HTML, 423

Pyrus

converting to HTML, 422

common commands, 755

pluralization, of numbers, 50

info command, 759

polygons, drawing, 512

installing packages with, 760

polymorphism, 213

installing PEAR packages with, 754

POP3 email, 491

listing packages with, 757

popen(), 691

POSIX functions, 648, 671

Q

POST requests, 240, 278, 439, 444, 474

Predis library, 351

query strings

benefits of, 235

Index | 781

building, 239

deleting, 481

redirecting users with, 251

editing, 479

query(), 183, 316

exposing for reading, 472

(see also databases)

exposing/routing to, 468

question mark (?), 656

managing localization resources, 584

quotes, escaping for queries, 325

resource bundles, 585

resources exposing clean paths, 471

R

RESTful APIs

consuming

rad2deg(), 52

debugging raw HTTP exchanges, 454

radio buttons, validating input from, 285

fetching HTTPS URLs, 453

random numbers

fetching URLs with arbitrary headers,

generating biased, 44

450

generating predictable, 43

fetching URLs with arbitrary methods,

generating within a range, 42

446

rand_weighted(), 44

fetching URLs with cookies, 448

ranges, time, 83

fetching URLs with GET, 440

readfile(), 675

fetching URLs with POST, 444

readline(), 732

fetching URLs with timeouts, 451

rectangles, drawing, 512

making OAuth 1.0 requests, 458

recursion, 152

making OAuth 2.0 requests, 460

Redis key-value store, 351

serving

Reflection classes, 222, 233

creating resources, 474

registerPHPFunctions(), 395

deleting resources, 481

register_tick_function(), 634

editing resources, 479

regular expressions

exposing clean resource paths, 471

alternatives for optimization, 643

exposing resources for reading, 472

capturing text inside HTML tags, 659

exposing/routing to resources, 468

escaping special characters, 662

frameworks for, 467

finding all matching lines, 658

indicating errors/failures, 482

finding nth match occurrence, 654

overview of, 465

greedy vs. nongreedy matches, 656

safe vs. nonsafe methods, 466

marking up web pages with, 415

supporting multiple formats, 484

matching fewer vs. many characters, 656

round(), 38

matching words, 652

rounding numbers, 38

overview of, 647

rows

preventing text capture, 660

finding number returned by query, 324

reading records with pattern separators, 663

retrieving without a loop, 319

switching from ereg to preg, 651

RSS feeds

using PHP functions in, 664

reading, 401

validating form input with, 282

writing, 404

relational databases, 313

rtrim(), 17, 669

Relax NG, 399

remote files, 673

remote variables, 303

S

rename(), 713

safe methods, 466

required fields, 279

salts, verification with, 553

resources

schemas, validating against, 398

creating, 474

script codes, 568

definition of, 465

782 | Index

scripts, 256, 291, 432, 727

shared memory, 143, 362, 697

(see also command-line interface (CLI))

shell globbing, 326

security

shmop shared memory extension, 143

avoiding cross-site scripting, 545

shuffle(), 123, 681

detecting SSL, 562

simple difference, 126

eliminating SQL injection, 546

SimpleXML extension, 376, 388

embedded session IDs, 355

sine, 51

ensuring input filtering, 545

Site Search program, 723

generating new passwords, 551

sort(), 116, 584

global variables, 276, 301

spaces, changing to tabs, 12

hiding error messages for, 605

special characters

one-time-use URLs, 553

escaping in HTML, 291

overview of, 541

escaping in regular expressions, 662

(see also encryption; session manage‐

escaping shell metacharacters, 689

ment)

in single-quoted strings, 1

preventing session fixation, 542

in SQL, 309

protecting against form spoofing, 543

in URLs, 240

removing passwords from source code, 547

sphere_distance(), 58

security questions, 552

split_paragraphs_largefile(), 678

storing passwords, 548

spoofing, 543

verifying data with hashes, 553

spreadsheets, formatting data for, 18

Selenium Server, 622

SQL databases

semantic validation, 291

connecting to, 315

serialize(), 149, 220

eliminating SQL injection, 546

server-side errors, 483

modifying data in, 320

session IDs

overview of, 307

authentication and, 247

querying, 316

multipage forms and, 295

querying without a loop, 319

preventing hijacking of, 542

special characters in, 309

random generation of, 354

wildcard characters, 326

session management

SQLite databases

benefits of PHP for, 353

overview of, 308

caching calculated results in summary

paginated links in, 336

tables, 365

using, 313

preventing fixation, 357, 542

square brackets ([])

preventing hijacking, 356

creating a character class with, 649

storing data in shared memory, 362

form elements with multiple options and,

storing sessions in databases, 359

304

storing sessions in memcached, 358

parsing configuration files and, 684

using session tracking, 354

referencing individual bytes with, 5

session_regenerate_id(), 542

srand(), 43

session_set_save_handler(), 359

SSL

session_star(), 354

detecting, 562

setcookie(), 236, 238, 611

preventing eavesdropping with, 560

setMarker(), 637

stack traces, 599

setParameter(), 392

stair-stepped text, 668

set_error_handler(), 608

stat(), 709

sha1(), 551

statefulness, 353

shallow clones, 200

static class methods, 341

Index | 783

static declaration, 141, 217

strpos(), 5

status codes, 250

strrev(), 10

STDIN, 732

strtolower(), 16

stream-based parsers, 382

strtotime(), 77

streams feature, 441

strtoupper(), 16

Stream_SHM module, 697

str_rand(), 11

stress testing, 642

str_replace(), 12, 415

strftime(), 62

subclassing, 180, 189

strict equality check (===), 112

substr(), 6, 22

string.strip_tags, 425

substrings

strings

accessing, 5

accessing substrings, 5

extracting, 6

altering with regular expressions, 649

replacing, 7

concatenation of, 16

substr_replace(), 7

controlling case in, 14

summary tables, 365

converting arrays to, 108

symmetric difference, 126

double-quoted, 2, 16

syntactic validation, 291

downloadable CSV files, 31

System V shared memory extension, 143

dumping variable contents as, 151

encapsulating complex data types, 149

T

escape sequences, 2

expanding/compressing tabs in, 12

tabs, expanding/compressing, 12

extracting substrings, 6

tab_expand(), 13

generating comma-separated data, 18

tab_unexpand(), 13

generating fixed-width field data, 21

tags, removing HTML/PHP, 424

generating random, 11

tangent, 51

generating replacement, 664

tempfile(), 672

generating XML as, 372

tempnam(), 672, 712

initializing, 1

test environments, creating, 624

interpolating functions/expressions in, 16

text

matching words with regular expressions,

aligning with tab stops, 12

652

avoiding stair-stepped, 668

optimizing string-matching operations, 643

building dynamic images based on, 524

parsing comma-separated data, 20

capturing inside HTML tags, 659

parsing dates/times from, 77

controlling case of, 14

parsing fixed-width field data, 22

drawing as a graphic, 518

printing with commas, 109

drawing centered, 520

processing bytes individually, 9

escaping quotes for queries, 325

reading files into, 675

localization of images containing, 581

reading without echoes, 736

manipulating UTF-8, 588

removing HTML/PHP tags from, 424

preventing capture with regular expressions,

replacing substrings, 7

660

reversing by word or byte, 10

processing variable-length fields, 682

single-quoted, 1

reversing words in a string, 10

storing binary data in, 28

sorting in locale-aware order, 584

taking apart, 25

wrapping lines of, 27

trimming blanks from, 17

text messages, localizing, 570

wrapping text lines in, 27

text nodes

strip_tags(), 424

appending in DOM method, 374

784 | Index

modifying document structure with, 379,

URLs

380

building, 240

threaded message boards, 343

exposing elegant, 471

thumbnail images, 530

extracting, 420

Tidy extension, 417, 420

fetching secure HTTPS, 453

time zones

fetching with arbitrary headers, 450

calculating dates/times with, 80

fetching with arbitrary methods, 446

challenges of working with, 61

fetching with cookies, 448

timeouts, 245, 451

fetching with GET, 440

timestamps

fetching with POST, 444

epoch, 62, 66, 68, 77, 575

fetching with timeouts, 451

getting/setting for files, 708

finding fresh, 435

time_parts(), 169

finding stale, 433

Tiny Wiki program, 262

format for resources, 465

tokens

one-time-use for security, 553

bearer tokens, 460

URL poisoning, 429

in PHP parsing, 594

user authentication, 500

OAuth requests and, 458

usort(), 118

preventing form spoofing with, 543

UTF-8 character encoding, 372, 400, 587, 588

session hijacking prevention with, 356

touch(), 708

V

transparencies, 527

tree-based parsing, 379

validate (), 241, 246

trigonometric functions

validate_form(), 299

calculating, 51

validation

converting radians to degrees, 52

importance of, 275

trim(), 17

of checkboxes, 287

TrueType fonts, 519, 523

of credit cards, 289, 290

tuning (see performance tuning)

of dates/times, 289

type hints, 163, 226

of drop-down menus, 284

of email addresses, 283

U

of numbers, 281

of radio buttons, 285

ucfirst(), 14

of required fields, 279

ucwords(), 14

of users, 501

union, computing, 126

of XML documents, 371, 398

uniqid(), 299, 329

syntactic vs. semantic, 291

unique IDs, 82, 299, 329

using filters, 281, 283

unit tests

using regular expressions, 282

applying to web pages, 622

values

writing, 619

accessing in functions, 158

writing suites of, 621

assigning multiple, 94

Unix epoch, 62

assigning to properties, 181

unlink(), 713

avoiding accidental assignment of, 137

unpack(), 22, 29

calling functions based on, 172

unserialize(), 220

cloning, 198

unset(), 102, 135, 175, 185

constant vs. nonconstant, 181

UPDATE, 320, 324, 330

eliminating duplicates in arrays, 123

uploading files, 292

ensuring type in functions, 163

uppercase, 14

establishing default, 138

Index | 785

evaluating to false, 135

extracting links from HTML files, 420

finding in arrays, 111

finding fresh links, 435

finding position in arrays, 113

finding stale links, 433

ommitting selected, 170

integrating with JavaScript, 429

passing by reference, 161

marking up web pages, 414

reading cookie values, 238

overview of, 413

retaining in variables, 141

removing HTML/PHP tags, 424

returning by reference, 167

responding to Ajax requests, 428

returning multiple, 169

web pages

setting default for function parameters, 159

applying unit tests to, 622

storing in anonymous arrays, 98

highlighting specific words, 414

swapping, 139

performance tuning, 642

variables

updating without reloading, 429

== vs. =, 137

web programming fundamentals

accessing global, 175

benefits of PHP, 235

accessing member, 182

buffering output to browsers, 253, 612

benefits of, 135

building query strings, 239

calling functions based on, 172

communicating within Apache, 257

checking for numbers in, 36

compressing web output, 255

creating dynamic names, 140

deleting cookies, 238

dumping contents as strings, 151

flushing output to browsers, 252

encapsulating complex data types, 149

HTTP Basic/Digest authentication, 241

establishing default, 138

HTTP Range feature, 265

exchanging values, 139

overview of, 235

external (see environment variables)

reading cookie values, 238

global, 276, 301

reading environment variables, 255

loading file contents into, 675

reading HTTP headers, 248

passing to functions, 161

reading POST request bodies, 240

reading configuration variables, 602

redirecting to mobile optimized sites, 258

remote, 303

redirecting users, 251

retaining values in, 141

sending HTTP status codes, 250

set vs. unset, 135

setting cookies, 236

setting in Apache, 257

setting environment variables, 256

sharing, 143

using cookie authentication, 245

static, 141

website account deactivator, 259

variant codes, 568

wiki systems, 262

var_dump(), 151

writing HTTP headers, 249

var_export(), 151

web server directory listing, 719

vertical bar (|), 650

web services

virtual hosts, 256, 547

checking host status, 504

DNS contact information, 506

W

DNS lookups, 502

getting/putting files with FTP, 495

wakeUp(), 220

looking up addresses with LDAP, 498

watermarks, 527

overview of, 487

web automation

reading IMAP/POP3 email, 491

benefits of PHP for, 413

sending mail, 488

cleaning up nonstandard HTML, 416

sending MIME email, 490

converting HTML to plain text, 423

user authentication with LDAP, 500

converting plain text to HTML, 422

786 | Index

website account deactivators, 259

reading RSS/Atom feeds, 401

WEEK(), 75

setting XSLT parameters from PHP, 392

WEEKDAY(), 75

SimpleXML extension, 376

well-formed XML, 371, 374

transforming with XSLT, 390

whereis program, 231

validation of, 371, 398

whitespace

vs. HTML, 369

in XML, 370

well-formed, 371, 374

removing, 17, 612, 669

writing Atom feeds, 407

whitespace metacharacter (\s), 680

writing RSS feeds, 404

Whois servers, 507

XML Reader extension, 381

wikis, Tiny Wiki program, 262

XML Schema, 399

word character (\w), 653

XMLHTTPRequest, 428

word-boundary assertion (\b), 680

XMLReader extension, 381

words, processing every, 680

XPath, 388

wordwrap(), 27

XSL (eXtensible Stylesheet Language), 391

XSLT (eXtensible Stylesheet Language Transfor‐

X

mations)

calling PHP functions, 394

XAMPP project, 624

setting parameters from PHP, 392

Xdebug, 600, 615, 632, 638

transforming XML documents with, 391

XHTML documents, generating, 421

XSLTProcessor::registerPHPFunctions(), 394

XML

XSLTProcessor::setParameter(), 392

document restrictions, 370

extracting information using XPath, 387

generating as a string, 372

Y

generating with DOM, 373

Y2K issues, 62

handling content encoding, 372, 400

overview of, 369

Z

parsing basic douments, 376

parsing complex documents, 376

Zend Engine 2 (ZE2), 179

parsing large documents, 381

Zend OPcache accelerator, 630

PHP extensions for, 370

Zetacomponent excMailComposer, 488

Index | 787

About the Authors

David Sklar is an independent technology consultant. In addition to PHP Cookbook, he is the author of Learning PHP 5 (O’Reilly), Essential PHP Tools (Apress), and a scintillating blog. David lives in New York City and has a degree in Computer Science from Yale University.

Adam Trachtenberg is the Director of the LinkedIn Developer Network. He’s the author

of Upgrading to PHP 5 and PHP Cookbook (O’Reilly). He was previously the Director for Platform and Services for eBay. Adam lives in Mountain View, California, and has

a BA in mathematics and an MBA from Columbia University.

Colophon

The animal on the cover of PHP Cookbook, Third Edition, is a Galapagos land iguana

(Conolophus subcristatus). Once abundant in the Galapagos Islands, this iguana proved

tasty to the settlers of the early 1800s, and domestic animals later introduced on the

islands played further havoc with the reptile’s home and food supply. Today there are

no iguanas left on Santiago Island and very few left on the other islands.

Distantly related to the green iguana of the South American continent, Galapagos land

iguanas can be over three feet long, with males weighing up to 30 pounds. Their tough,

scaly skin is yellow with scattered patches of white, black, brown, and rust. These lizards

resemble mythical creatures of the past-dragons with long tails, clawed feet, and spiny

crests. In reality, however, they are harmless.

Land iguanas live in the drier areas of the islands and in the morning are found basking

in the sun. During midday, however, they seek the shade of cactus, rocks, and trees. To

conserve body heat at night, they sleep in burrows dug in the ground.

These reptiles are omnivores, but they generally depend on low-growing plants and

shrubs, as well as the fallen fruits and pads of cactus trees. These plants provide most

of the moisture they need; however, they will drink fresh water whenever it’s available.

Depending on their size, land iguanas reach maturity between 8 and 15 years of age.

They congregate and mate during specific periods, which vary from island to island.

The females then migrate to suitable areas to nest. After digging a burrow, the female

lays 2 to 20 eggs in the nest. She then defends the covered nest site to prevent other

females from nesting in the same spot.

Young iguanas hatch 85 to 110 days later and take about a week to dig their way out of

the nest. Normally, if hatchlings survive the first year when food is often scarce and

native predators such as hawks, egrets, herons, and snakes are a danger, they can live

for more than 60 years. In reality, predation by feral cats is far worse because the young

must survive and grow for at least three to four years before becoming large enough

that cats can’t kill them.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The

cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion

Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s

Ubuntu Mono.

Document Outline

	Cover

	Copyright

	Table of Contents

	Preface

	Who This Book Is For

	What Is in This Book

	Other Resources

	Websites

	Books

	Conventions Used in This Book

	Programming Conventions

	Typesetting Conventions

	Comments and Questions

	Acknowledgments

	David Sklar

	Adam Trachtenberg

	Chapter 1. Strings

	1.0 Introduction

	1.1 Accessing Substrings

	Problem

	Solution

	Discussion

	See Also

	1.2 Extracting Substrings

	Problem

	Solution

	Discussion

	See Also

	1.3 Replacing Substrings

	Problem

	Solution

	Discussion

	See Also

	1.4 Processing a String One Byte at a Time

	Problem

	Solution

	Discussion

	See Also

	1.5 Reversing a String by Word or Byte

	Problem

	Solution

	Discussion

	See Also

	1.6 Generating a Random String

	Problem

	Solution

	Discussion

	See Also

	1.7 Expanding and Compressing Tabs

	Problem

	Solution

	Discussion

	See Also

	1.8 Controlling Case

	Problem

	Solution

	Discussion

	See Also

	1.9 Interpolating Functions and Expressions Within Strings

	Problem

	Solution

	Discussion

	See Also

	1.10 Trimming Blanks from a String

	Problem

	Solution

	Discussion

	See Also

	1.11 Generating Comma-Separated Data

	Problem

	Solution

	Discussion

	See Also

	1.12 Parsing Comma-Separated Data

	Problem

	Solution

	Discussion

	See Also

	1.13 Generating Fixed-Width Field Data Records

	Problem

	Solution

	Discussion

	See Also

	1.14 Parsing Fixed-Width Field Data Records

	Problem

	Solution

	Discussion

	See Also

	1.15 Taking Strings Apart

	Problem

	Solution

	Discussion

	See Also

	1.16 Wrapping Text at a Certain Line Length

	Problem

	Solution

	Discussion

	See Also

	1.17 Storing Binary Data in Strings

	Problem

	Solution

	Discussion

	See Also

	1.18 Program: Downloadable CSV File

	Chapter 2. Numbers

	2.0 Introduction

	2.1 Checking Whether a Variable Contains a Valid Number

	Problem

	Solution

	Discussion

	See Also

	2.2 Comparing Floating-Point Numbers

	Problem

	Solution

	Discussion

	See Also

	2.3 Rounding Floating-Point Numbers

	Problem

	Solution

	Discussion

	See Also

	2.4 Operating on a Series of Integers

	Problem

	Solution

	Discussion

	See Also

	2.5 Generating Random Numbers Within a Range

	Problem

	Solution

	Discussion

	See Also

	2.6 Generating Predictable Random Numbers

	Problem

	Solution

	Discussion

	See Also

	2.7 Generating Biased Random Numbers

	Problem

	Solution

	Discussion

	See Also

	2.8 Taking Logarithms

	Problem

	Solution

	Discussion

	See Also

	2.9 Calculating Exponents

	Problem

	Solution

	Discussion

	See Also

	2.10 Formatting Numbers

	Problem

	Solution

	Discussion

	See Also

	2.11 Formatting Monetary Values

	Problem

	Solution

	Discussion

	See Also

	2.12 Printing Correct Plurals

	Problem

	Solution

	Discussion

	See Also

	2.13 Calculating Trigonometric Functions

	Problem

	Solution

	Discussion

	See Also

	2.14 Doing Trigonometry in Degrees, Not Radians

	Problem

	Solution

	Discussion

	See Also

	2.15 Handling Very Large or Very Small Numbers

	Problem

	Solution

	Discussion

	See Also

	2.16 Converting Between Bases

	Problem

	Solution

	Discussion

	See Also

	2.17 Calculating Using Numbers in Bases Other Than Decimal

	Problem

	Solution

	Discussion

	See Also

	2.18 Finding the Distance Between Two Places

	Problem

	Solution

	Discussion

	See Also

	Chapter 3. Dates and Times

	3.0 Introduction

	3.1 Finding the Current Date and Time

	Problem

	Solution

	Discussion

	See Also

	3.2 Converting Time and Date Parts to an Epoch Timestamp

	Problem

	Solution

	Discussion

	See Also

	3.3 Converting an Epoch Timestamp to Time and Date Parts

	Problem

	Solution

	Discussion

	See Also

	3.4 Printing a Date or Time in a Specified Format

	Problem

	Solution

	Discussion

	See Also

	3.5 Finding the Difference of Two Dates

	Problem

	Solution

	Discussion

	See Also

	3.6 Finding the Day in a Week, Month, or Year

	Problem

	Solution

	Discussion

	See Also

	3.7 Validating a Date

	Problem

	Solution

	Discussion

	See Also

	3.8 Parsing Dates and Times from Strings

	Problem

	Solution

	Discussion

	See Also

	3.9 Adding to or Subtracting from a Date

	Problem

	Solution

	Discussion

	See Also

	3.10 Calculating Time with Time Zones and Daylight Saving Time

	Problem

	Solution

	Discussion

	See Also

	3.11 Generating a High-Precision Time

	Problem

	Solution

	Discussion

	See Also

	3.12 Generating Time Ranges

	Problem

	Solution

	Discussion

	See Also

	3.13 Using Non-Gregorian Calendars

	Problem

	Solution

	Discussion

	See Also

	3.14 Program: Calendar

	Chapter 4. Arrays

	4.0 Introduction

	4.1 Specifying an Array Not Beginning at Element 0

	Problem

	Solution

	Discussion

	See Also

	4.2 Storing Multiple Elements per Key in an Array

	Problem

	Solution

	Discussion

	See Also

	4.3 Initializing an Array to a Range of Integers

	Problem

	Solution

	Discussion

	See Also

	4.4 Iterating Through an Array

	Problem

	Solution

	Discussion

	See Also

	4.5 Deleting Elements from an Array

	Problem

	Solution

	Discussion

	See Also

	4.6 Changing Array Size

	Problem

	Solution

	Discussion

	See Also

	4.7 Appending One Array to Another

	Problem

	Solution

	Discussion

	See Also

	4.8 Turning an Array into a String

	Problem

	Solution

	Discussion

	See Also

	4.9 Printing an Array with Commas

	Problem

	Solution

	Discussion

	See Also

	4.10 Checking if a Key Is in an Array

	Problem

	Solution

	Discussion

	See Also

	4.11 Checking if an Element Is in an Array

	Problem

	Solution

	Discussion

	See Also

	4.12 Finding the Position of a Value in an Array

	Problem

	Solution

	Discussion

	See Also

	4.13 Finding Elements That Pass a Certain Test

	Problem

	Solution

	Discussion

	See Also

	4.14 Finding the Largest or Smallest Valued Element in an Array

	Problem

	Solution

	Discussion

	See Also

	4.15 Reversing an Array

	Problem

	Solution

	Discussion

	See Also

	4.16 Sorting an Array

	Problem

	Solution

	Discussion

	See Also

	4.17 Sorting an Array by a Computable Field

	Problem

	Solution

	Discussion

	See Also

	4.18 Sorting Multiple Arrays

	Problem

	Solution

	Discussion

	See Also

	4.19 Sorting an Array Using a Method Instead of a Function

	Problem

	Solution

	Discussion

	See Also

	4.20 Randomizing an Array

	Problem

	Solution

	Discussion

	See Also

	4.21 Removing Duplicate Elements from an Array

	Problem

	Solution

	Discussion

	See Also

	4.22 Applying a Function to Each Element in an Array

	Problem

	Solution

	Discussion

	See Also

	4.23 Finding the Union, Intersection, or Difference of Two Arrays

	Problem

	Solution

	Discussion

	See Also

	4.24 Iterating Efficiently over Large or Expensive Datasets

	Problem

	Solution

	Discussion

	See Also

	4.25 Accessing an Object Using Array Syntax

	Problem

	Solution

	Discussion

	See Also

	Chapter 5. Variables

	5.0 Introduction

	5.1 Avoiding == Versus = Confusion

	Problem

	Solution

	Discussion

	See Also

	5.2 Establishing a Default Value

	Problem

	Solution

	Discussion

	See Also

	5.3 Exchanging Values Without Using Temporary Variables

	Problem

	Solution

	Discussion

	See Also

	5.4 Creating a Dynamic Variable Name

	Problem

	Solution

	Discussion

	See Also

	5.5 Persisting a Local Variable’s Value Across Function Invocations

	Problem

	Solution

	Discussion

	See Also

	5.6 Sharing Variables Between Processes

	Problem

	Solution

	Discussion

	See Also

	5.7 Encapsulating Complex Data Types in a String

	Problem

	Solution

	Discussion

	See Also

	5.8 Dumping Variable Contents as Strings

	Problem

	Solution

	Discussion

	See Also

	Chapter 6. Functions

	6.0 Introduction

	6.1 Accessing Function Parameters

	Problem

	Solution

	Discussion

	See Also

	6.2 Setting Default Values for Function Parameters

	Problem

	Solution

	Discussion

	See Also

	6.3 Passing Values by Reference

	Problem

	Solution

	Discussion

	See Also

	6.4 Using Named Parameters

	Problem

	Solution

	Discussion

	See Also

	6.5 Enforcing Types of Function Arguments

	Problem

	Solution

	Discussion

	See Also

	6.6 Creating Functions That Take a Variable Number of Arguments

	Problem

	Solution

	Discussion

	See Also

	6.7 Returning Values by Reference

	Problem

	Solution

	Discussion

	See Also

	6.8 Returning More Than One Value

	Problem

	Solution

	Discussion

	See Also

	6.9 Skipping Selected Return Values

	Problem

	Solution

	Discussion

	See Also

	6.10 Returning Failure

	Problem

	Solution

	Discussion

	See Also

	6.11 Calling Variable Functions

	Problem

	Solution

	Discussion

	See Also

	6.12 Accessing a Global Variable Inside a Function

	Problem

	Solution

	Discussion

	See Also

	6.13 Creating Dynamic Functions

	Problem

	Solution

	Discussion

	See Also

	Chapter 7. Classes and Objects

	7.0 Introduction

	7.1 Instantiating Objects

	Problem

	Solution

	Discussion

	See Also

	7.2 Defining Object Constructors

	Problem

	Solution

	Discussion

	See Also

	7.3 Defining Object Destructors

	Problem

	Solution

	Discussion

	See Also

	7.4 Implementing Access Control

	Problem

	Solution

	Discussion

	7.5 Preventing Changes to Classes and Methods

	Problem

	Solution

	Discussion

	7.6 Defining Object Stringification

	Problem

	Solution

	Discussion

	7.7 Requiring Multiple Classes to Behave Similarly

	Problem

	Solution

	Discussion

	See Also

	7.8 Creating Abstract Base Classes

	Problem

	Solution

	Discussion

	7.9 Assigning Object References

	Problem

	Solution

	Discussion

	See Also

	7.10 Cloning Objects

	Problem

	Solution

	Discussion

	See Also

	7.11 Overriding Property Accesses

	Problem

	Solution

	Discussion

	See Also

	7.12 Calling Methods on an Object Returned by Another Method

	Problem

	Solution

	Discussion

	See Also

	7.13 Aggregating Objects

	Problem

	Solution

	Discussion

	See Also

	7.14 Accessing Overridden Methods

	Problem

	Solution

	Discussion

	See Also

	7.15 Creating Methods Dynamically

	Problem

	See Also

	7.16 Using Method Polymorphism

	Problem

	Solution

	Discussion

	See Also

	7.17 Defining Class Constants

	Problem

	Solution

	Discussion

	See Also

	7.18 Defining Static Properties and Methods

	Problem

	Solution

	Discussion

	See Also

	7.19 Controlling Object Serialization

	Problem

	Solution

	Discussion

	See Also

	7.20 Introspecting Objects

	Problem

	Solution

	Discussion

	See Also

	7.21 Checking If an Object Is an Instance of a Specific Class

	Problem

	Solution

	Discussion

	See Also

	7.22 Autoloading Class Files upon Object Instantiation

	Problem

	Solution

	Discussion

	See Also

	7.23 Instantiating an Object Dynamically

	Problem

	Solution

	Discussion

	See Also

	7.24 Program: whereis

	Chapter 8. Web Fundamentals

	8.0 Introduction

	8.1 Setting Cookies

	Problem

	Solution

	Discussion

	See Also

	8.2 Reading Cookie Values

	Problem

	Solution

	Discussion

	See Also

	8.3 Deleting Cookies

	Problem

	Solution

	Discussion

	See Also

	8.4 Building a Query String

	Problem

	Solution

	Discussion

	See Also

	8.5 Reading the POST Request Body

	Problem

	Solution

	Discussion

	See Also

	8.6 Using HTTP Basic or Digest Authentication

	Problem

	Solution

	Discussion

	See Also

	8.7 Using Cookie Authentication

	Problem

	Solution

	Discussion

	See Also

	8.8 Reading an HTTP Header

	Problem

	Solution

	Discussion

	See Also

	8.9 Writing an HTTP Header

	Problem

	Solution

	Discussion

	See Also

	8.10 Sending a Specific HTTP Status Code

	Problem

	Solution

	Discussion

	See Also

	8.11 Redirecting to a Different Location

	Problem

	Solution

	Discussion

	See Also

	8.12 Flushing Output to the Browser

	Problem

	Solution

	Discussion

	See Also

	8.13 Buffering Output to the Browser

	Problem

	Solution

	Discussion

	See Also

	8.14 Compressing Web Output

	Problem

	Solution

	Discussion

	See Also

	8.15 Reading Environment Variables

	Problem

	Solution

	Discussion

	See Also

	8.16 Setting Environment Variables

	Problem

	Solution

	Discussion

	See Also

	8.17 Communicating Within Apache

	Problem

	Solution

	Discussion

	See Also

	8.18 Redirecting Mobile Browsers to a Mobile Optimized Site

	Problem

	Solution

	Discussion

	See Also

	8.19 Program: Website Account (De)activator

	8.20 Program: Tiny Wiki

	See Also

	8.21 Program: HTTP Range

	Chapter 9. Forms

	9.0 Introduction

	9.1 Processing Form Input

	Problem

	Solution

	Discussion

	See Also

	9.2 Validating Form Input: Required Fields

	Problem

	Solution

	Discussion

	See Also

	9.3 Validating Form Input: Numbers

	Problem

	Solution

	Discussion

	See Also

	9.4 Validating Form Input: Email Addresses

	Problem

	Solution

	Discussion

	See Also

	9.5 Validating Form Input: Drop-Down Menus

	Problem

	Solution

	Discussion

	See Also

	9.6 Validating Form Input: Radio Buttons

	Problem

	Solution

	Discussion

	See Also

	9.7 Validating Form Input: Checkboxes

	Problem

	Solution

	Discussion

	See Also

	9.8 Validating Form Input: Dates and Times

	Problem

	Solution

	Discussion

	See Also

	9.9 Validating Form Input: Credit Cards

	Problem

	Solution

	Discussion

	See Also

	9.10 Preventing Cross-Site Scripting

	Problem

	Solution

	Discussion

	See Also

	9.11 Processing Uploaded Files

	Problem

	Solution

	Discussion

	See Also

	9.12 Working with Multipage Forms

	Problem

	Solution

	Discussion

	See Also

	9.13 Redisplaying Forms with Inline Error Messages

	Problem

	Solution

	Discussion

	See Also

	9.14 Guarding Against Multiple Submissions of the Same Form

	Problem

	Solution

	Discussion

	See Also

	9.15 Preventing Global Variable Injection

	Problem

	Solution

	Discussion

	See Also

	9.16 Handling Remote Variables with Periods in Their Names

	Problem

	Solution

	Discussion

	See Also

	9.17 Using Form Elements with Multiple Options

	Problem

	Solution

	Discussion

	See Also

	9.18 Creating Drop-Down Menus Based on the Current Date

	Problem

	Solution

	Discussion

	See Also

	Chapter 10. Database Access

	10.0 Introduction

	10.1 Using DBM Databases

	Problem

	Solution

	Discussion

	See Also

	10.2 Using an SQLite Database

	Problem

	Solution

	Discussion

	See Also

	10.3 Connecting to an SQL Database

	Problem

	Solution

	Discussion

	See Also

	10.4 Querying an SQL Database

	Problem

	Solution

	Discussion

	See Also

	10.5 Retrieving Rows Without a Loop

	Problem

	Solution

	Discussion

	See Also

	10.6 Modifying Data in an SQL Database

	Problem

	Solution

	Discussion

	See Also

	10.7 Repeating Queries Efficiently

	Problem

	Solution

	Discussion

	See Also

	10.8 Finding the Number of Rows Returned by a Query

	Problem

	Solution

	Discussion

	See Also

	10.9 Escaping Quotes

	Problem

	Solution

	Discussion

	See Also

	10.10 Logging Debugging Information and Errors

	Problem

	Solution

	Discussion

	See Also

	10.11 Creating Unique Identifiers

	Problem

	Solution

	Discussion

	See Also

	10.12 Building Queries Programmatically

	Problem

	Solution

	Discussion

	See Also

	10.13 Making Paginated Links for a Series of Records

	Problem

	Solution

	Discussion

	See Also

	10.14 Caching Queries and Results

	Problem

	Solution

	Discussion

	See Also

	10.15 Accessing a Database Connection Anywhere in Your Program

	Problem

	Solution

	Discussion

	See Also

	10.16 Program: Storing a Threaded Message Board

	10.17 Using Redis

	Problem

	Solution

	Discussion

	See Also

	Chapter 11. Sessions and Data Persistence

	11.0 Introduction

	11.1 Using Session Tracking

	Problem

	Solution

	Discussion

	See Also

	11.2 Preventing Session Hijacking

	Problem

	Solution

	Discussion

	See Also

	11.3 Preventing Session Fixation

	Problem

	Solution

	Discussion

	See Also

	11.4 Storing Sessons in Memcached

	Problem

	Solution

	See Also

	11.5 Storing Sessions in a Database

	Problem

	Solution

	Discussion

	See Also

	11.6 Storing Arbitrary Data in Shared Memory

	Problem

	Solution

	Discussion

	See Also

	11.7 Caching Calculated Results in Summary Tables

	Problem

	Solution

	Discussion

	See Also

	Chapter 12. XML

	12.0 Introduction

	12.1 Generating XML as a String

	Problem

	Solution

	Discussion

	See Also

	12.2 Generating XML with DOM

	Problem

	Solution

	Discussion

	See Also

	12.3 Parsing Basic XML Documents

	Problem

	Solution

	Discussion

	See Also

	12.4 Parsing Complex XML Documents

	Problem

	Solution

	Discussion

	See Also

	12.5 Parsing Large XML Documents

	Problem

	Solution

	Discussion

	See Also

	12.6 Extracting Information Using XPath

	Problem

	Solution

	Discussion

	See Also

	12.7 Transforming XML with XSLT

	Problem

	Solution

	Discussion

	See Also

	12.8 Setting XSLT Parameters from PHP

	Problem

	Solution

	Discussion

	See Also

	12.9 Calling PHP Functions from XSLT Stylesheets

	Problem

	Solution

	Discussion

	See Also

	12.10 Validating XML Documents

	Problem

	Solution

	Discussion

	See Also

	12.11 Handling Content Encoding

	Problem

	Solution

	Discussion

	See Also

	12.12 Reading RSS and Atom Feeds

	Problem

	Solution

	Discussion

	See Also

	12.13 Writing RSS Feeds

	Problem

	Solution

	Discussion

	12.14 Writing Atom Feeds

	Problem

	Solution

	Discussion

	See Also

	Chapter 13. Web Automation

	13.0 Introduction

	13.1 Marking Up a Web Page

	Problem

	Solution

	Discussion

	See Also

	13.2 Cleaning Up Broken or Nonstandard HTML

	Problem

	Solution

	Discussion

	See Also

	13.3 Extracting Links from an HTML File

	Problem

	Solution

	Discussion

	See Also

	13.4 Converting Plain Text to HTML

	Problem

	Solution

	Discussion

	See Also

	13.5 Converting HTML to Plain Text

	Problem

	Solution

	Discussion

	See Also

	13.6 Removing HTML and PHP Tags

	Problem

	Solution

	Discussion

	See Also

	13.7 Responding to an Ajax Request

	Problem

	Solution

	Discussion

	See Also

	13.8 Integrating with JavaScript

	Problem

	Solution

	Discussion

	See Also

	13.9 Program: Finding Stale Links

	13.10 Program: Finding Fresh Links

	Chapter 14. Consuming RESTful APIs

	14.0 Introduction

	14.1 Fetching a URL with the GET Method

	Problem

	Solution

	Discussion

	See Also

	14.2 Fetching a URL with the POST Method and Form Data

	Problem

	Solution

	Discussion

	See Also

	14.3 Fetching a URL with an Arbitrary Method and POST Body

	Problem

	Solution

	Discussion

	See Also

	14.4 Fetching a URL with Cookies

	Problem

	Solution

	Discussion

	See Also

	14.5 Fetching a URL with Arbitrary Headers

	Problem

	Solution

	Discussion

	See Also

	14.6 Fetching a URL with a Timeout

	Problem

	Solution

	Discussion

	See Also

	14.7 Fetching an HTTPS URL

	Problem

	Solution

	Discussion

	See Also

	14.8 Debugging the Raw HTTP Exchange

	Problem

	Solution

	Discussion

	See Also

	14.9 Making an OAuth 1.0 Request

	Problem

	Solution

	Discussion

	See Also

	14.10 Making an OAuth 2.0 Request

	Problem

	Solution

	Discussion

	See Also

	Chapter 15. Serving RESTful APIs

	15.0 Introduction

	15.1 Exposing and Routing to a Resource

	Problem

	Solution

	Discussion

	See Also

	15.2 Exposing Clean Resource Paths

	Problem

	Solution

	Discussion

	See Also

	15.3 Exposing a Resource for Reading

	Problem

	Solution

	Discussion

	See Also

	15.4 Creating a Resource

	Problem

	Solution

	Discussion

	See Also

	15.5 Editing a Resource

	Problem

	Solution

	Discussion

	See Also

	15.6 Deleting a Resource

	Problem

	Solution

	Discussion

	See Also

	15.7 Indicating Errors and Failures

	Problem

	Solution

	Discussion

	See Also

	15.8 Supporting Multiple Formats

	Problem

	Solution

	Discussion

	See Also

	Chapter 16. Internet Services

	16.0 Introduction

	16.1 Sending Mail

	Problem

	Solution

	Discussion

	See Also

	16.2 Sending MIME Mail

	Problem

	Solution

	Discussion

	See Also

	16.3 Reading Mail with IMAP or POP3

	Problem

	Solution

	Discussion

	See Also

	16.4 Getting and Putting Files with FTP

	Problem

	Solution

	Discussion

	See Also

	16.5 Looking Up Addresses with LDAP

	Problem

	Solution

	Discussion

	See Also

	16.6 Using LDAP for User Authentication

	Problem

	Solution

	Discussion

	See Also

	16.7 Performing DNS Lookups

	Problem

	Solution

	Discussion

	See Also

	16.8 Checking If a Host Is Alive

	Problem

	Solution

	Discussion

	See Also

	16.9 Getting Information About a Domain Name

	Problem

	Solution

	Discussion

	See Also

	Chapter 17. Graphics

	17.0 Introduction

	17.1 Drawing Lines, Rectangles, and Polygons

	Problem

	Solution

	Discussion

	See Also

	17.2 Drawing Arcs, Ellipses, and Circles

	Problem

	Solution

	Discussion

	See Also

	17.3 Drawing with Patterned Lines

	Problem

	Solution

	Discussion

	See Also

	17.4 Drawing Text

	Problem

	Solution

	Discussion

	See Also

	17.5 Drawing Centered Text

	Problem

	Solution

	Discussion

	See Also

	17.6 Building Dynamic Images

	Problem

	Solution

	Discussion

	See Also

	17.7 Getting and Setting a Transparent Color

	Problem

	Solution

	Discussion

	See Also

	17.8 Overlaying Watermarks

	Problem

	Solution

	Discussion

	See Also

	17.9 Creating Thumbnail Images

	Problem

	Solution

	Discussion

	See Also

	17.10 Reading EXIF Data

	Problem

	Solution

	Discussion

	See Also

	17.11 Serving Images Securely

	Problem

	Solution

	Discussion

	See Also

	17.12 Program: Generating Bar Charts from Poll Results

	Chapter 18. Security and Encryption

	18.0 Introduction

	18.1 Preventing Session Fixation

	Problem

	Solution

	Discussion

	See Also

	18.2 Protecting Against Form Spoofing

	Problem

	Solution

	Discussion

	18.3 Ensuring Input Is Filtered

	Problem

	Solution

	Discussion

	See Also

	18.4 Avoiding Cross-Site Scripting

	Problem

	Solution

	Discussion

	See Also

	18.5 Eliminating SQL Injection

	Problem

	Solution

	Discussion

	See Also

	18.6 Keeping Passwords Out of Your Site Files

	Problem

	Solution

	Discussion

	See Also

	18.7 Storing Passwords

	Problem

	Solution

	Discussion

	See Also

	18.8 Dealing with Lost Passwords

	Problem

	Solution

	Discussion

	See Also

	18.9 Verifying Data with Hashes

	Problem

	Solution

	Discussion

	See Also

	18.10 Encrypting and Decrypting Data

	Problem

	Solution

	Discussion

	See Also

	18.11 Storing Encrypted Data in a File or Database

	Problem

	Solution

	Discussion

	See Also

	18.12 Sharing Encrypted Data with Another Website

	Problem

	Solution

	Discussion

	See Also

	18.13 Detecting SSL

	Problem

	Solution

	Discussion

	See Also

	18.14 Encrypting Email with GPG

	Problem

	Solution

	Discussion

	See Also

	Chapter 19. Internationalization and Localization

	19.0 Introduction

	19.1 Determining the User’s Locale

	Problem

	Solution

	Discussion

	See Also

	19.2 Localizing Text Messages

	Problem

	Solution

	Discussion

	See Also

	19.3 Localizing Dates and Times

	Problem

	Solution

	Discussion

	See Also

	19.4 Localizing Numbers

	Problem

	Solution

	Discussion

	See Also

	19.5 Localizing Currency Values

	Problem

	Solution

	Discussion

	See Also

	19.6 Localizing Images

	Problem

	Solution

	Discussion

	See Also

	19.7 Localizing Included Files

	Problem

	Solution

	Discussion

	See Also

	19.8 Sorting in a Locale-Aware Order

	Problem

	Solution

	Discussion

	See Also

	19.9 Managing Localization Resources

	Problem

	Solution

	Discussion

	See Also

	19.10 Setting the Character Encoding of Outgoing Data

	Problem

	Solution

	Discussion

	See Also

	19.11 Setting the Character Encoding of Incoming Data

	Problem

	Solution

	Discussion

	See Also

	19.12 Manipulating UTF-8 Text

	Problem

	Solution

	Discussion

	See Also

	Chapter 20. Error Handling

	20.0 Introduction

	20.1 Finding and Fixing Parse Errors

	Problem

	Solution

	Discussion

	See Also

	20.2 Creating Your Own Exception Classes

	Problem

	Solution

	Discussion

	See Also

	20.3 Printing a Stack Trace

	Problem

	Solution

	Discussion

	See Also

	20.4 Reading Configuration Variables

	Problem

	Solution

	Discussion

	See Also

	20.5 Setting Configuration Variables

	Problem

	Solution

	Discussion

	See Also

	20.6 Hiding Error Messages from Users

	Problem

	Solution

	Discussion

	See Also

	20.7 Tuning Error Handling

	Problem

	Solution

	Discussion

	See Also

	20.8 Using a Custom Error Handler

	Problem

	Solution

	Discussion

	See Also

	20.9 Logging Errors

	Problem

	Solution

	Discussion

	See Also

	20.10 Eliminating “headers already sent” Errors

	Problem

	Solution

	Discussion

	See Also

	20.11 Logging Debugging Information

	Problem

	Solution

	Discussion

	See Also

	Chapter 21. Software Engineering

	21.0 Introduction

	21.1 Using a Debugger Extension

	Problem

	Solution

	Discussion

	See Also

	21.2 Writing a Unit Test

	Problem

	Solution

	Discussion

	See Also

	21.3 Writing a Unit Test Suite

	Problem

	Solution

	Discussion

	See Also

	21.4 Applying a Unit Test to a Web Page

	Problem

	Solution

	Discussion

	See Also

	21.5 Setting Up a Test Environment

	Problem

	Solution

	Discussion

	See Also

	21.6 Using the Built-in Web Server

	Problem

	Solution

	Discussion

	See Also

	Chapter 22. Performance Tuning

	22.0 Introduction

	22.1 Using an Accelerator

	Problem

	Solution

	Discussion

	See Also

	22.2 Timing Function Execution

	Problem

	Solution

	Discussion

	See Also

	22.3 Timing Program Execution by Function

	Problem

	Solution

	Discussion

	See Also

	22.4 Timing Program Execution by Statement

	Problem

	Solution

	Discussion

	See Also

	22.5 Timing Program Execution by Section

	Problem

	Solution

	Discussion

	See Also

	22.6 Profiling with a Debugger Extension

	Problem

	Solution

	Discussion

	See Also

	22.7 Stress-Testing Your Website

	Problem

	Solution

	Discussion

	See Also

	22.8 Avoiding Regular Expressions

	Problem

	Solution

	Discussion

	See Also

	Chapter 23. Regular Expressions

	23.0 Introduction

	23.1 Switching from ereg to preg

	Problem

	Solution

	Discussion

	See Also

	23.2 Matching Words

	Problem

	Solution

	Discussion

	See Also

	23.3 Finding the nth Occurrence of a Match

	Problem

	Solution

	Discussion

	See Also

	23.4 Choosing Greedy or Nongreedy Matches

	Problem

	Solution

	Discussion

	See Also

	23.5 Finding All Lines in a File That Match a Pattern

	Problem

	Solution

	Discussion

	See Also

	23.6 Capturing Text Inside HTML Tags

	Problem

	Solution

	Discussion

	See Also

	23.7 Preventing Parentheses from Capturing Text

	Problem

	Solution

	Discussion

	See Also

	23.8 Escaping Special Characters in a Regular Expression

	Problem

	Solution

	Discussion

	See Also

	23.9 Reading Records with a Pattern Separator

	Problem

	Solution

	Discussion

	See Also

	23.10 Using a PHP Function in a Regular Expression

	Problem

	Solution

	Discussion

	See Also

	Chapter 24. Files

	24.0 Introduction

	24.1 Creating or Opening a Local File

	Problem

	Solution

	Discussion

	See Also

	24.2 Creating a Temporary File

	Problem

	Solution

	Discussion

	See Also

	24.3 Opening a Remote File

	Problem

	Solution

	Discussion

	See Also

	24.4 Reading from Standard Input

	Problem

	Solution

	Discussion

	See Also

	24.5 Reading a File into a String

	Problem

	Solution

	Discussion

	See Also

	24.6 Counting Lines, Paragraphs, or Records in a File

	Problem

	Solution

	Discussion

	See Also

	24.7 Processing Every Word in a File

	Problem

	Solution

	Discussion

	See Also

	24.8 Picking a Random Line from a File

	Problem

	Solution

	Discussion

	See Also

	24.9 Randomizing All Lines in a File

	Problem

	Solution

	Discussion

	See Also

	24.10 Processing Variable-Length Text Fields

	Problem

	Solution

	Discussion

	See Also

	24.11 Reading Configuration Files

	Problem

	Solution

	Discussion

	See Also

	24.12 Modifying a File in Place Without a Temporary File

	Problem

	Solution

	Discussion

	See Also

	24.13 Flushing Output to a File

	Problem

	Solution

	Discussion

	See Also

	24.14 Writing to Standard Output

	Problem

	Solution

	Discussion

	See Also

	24.15 Writing to Many Filehandles Simultaneously

	Problem

	Solution

	Discussion

	See Also

	24.16 Escaping Shell Metacharacters

	Problem

	Solution

	Discussion

	See Also

	24.17 Passing Input to a Program

	Problem

	Solution

	Discussion

	See Also

	24.18 Reading Standard Output from a Program

	Problem

	Solution

	Discussion

	See Also

	24.19 Reading Standard Error from a Program

	Problem

	Solution

	Discussion

	See Also

	24.20 Locking a File

	Problem

	Solution

	Discussion

	See Also

	24.21 Reading and Writing Custom File Types

	Problem

	Solution

	Discussion

	See Also

	24.22 Reading and Writing Compressed Files

	Problem

	Solution

	Discussion

	See Also

	Chapter 25. Directories

	25.0 Introduction

	25.1 Getting and Setting File Timestamps

	Problem

	Solution

	Discussion

	See Also

	25.2 Getting File Information

	Problem

	Solution

	Discussion

	See Also

	25.3 Changing File Permissions or Ownership

	Problem

	Solution

	Discussion

	See Also

	25.4 Splitting a Filename into Its Component Parts

	Problem

	Solution

	Discussion

	See Also

	25.5 Deleting a File

	Problem

	Solution

	Discussion

	See Also

	25.6 Copying or Moving a File

	Problem

	Solution

	Discussion

	See Also

	25.7 Processing All Files in a Directory

	Problem

	Solution

	Discussion

	See Also

	25.8 Getting a List of Filenames Matching a Pattern

	Problem

	Solution

	Discussion

	See Also

	25.9 Processing All Files in a Directory Recursively

	Problem

	Solution

	Discussion

	See Also

	25.10 Making New Directories

	Problem

	Solution

	Discussion

	See Also

	25.11 Removing a Directory and Its Contents

	Problem

	Solution

	Discussion

	See Also

	25.12 Program: Web Server Directory Listing

	25.13 Program: Site Search

	Chapter 26. Command-Line PHP

	26.0 Introduction

	26.1 Parsing Program Arguments

	Problem

	Solution

	Discussion

	See Also

	26.2 Parsing Program Arguments with getopt

	Problem

	Solution

	Discussion

	See Also

	26.3 Reading from the Keyboard

	Problem

	Solution

	Discussion

	See Also

	26.4 Running PHP Code on Every Line of an Input File

	Problem

	Solution

	Discussion

	See Also

	26.5 Reading Passwords

	Problem

	Solution

	Discussion

	See Also

	26.6 Colorizing Console Output

	Problem

	Solution

	Discussion

	See Also

	26.7 Program: DOM Explorer

	Chapter 27. Packages

	27.0 Introduction

	27.1 Defining and Installing Composer Dependencies

	Problem

	Solution

	Discussion

	See Also

	27.2 Finding Composer Packages

	Problem

	Solution

	Discussion

	See Also

	27.3 Installing Composer Packages

	Problem

	Solution

	Discussion

	See Also

	27.4 Using the PEAR Installer

	Problem

	Solution

	Discussion

	See Also

	27.5 Finding PEAR Packages

	Problem

	Solution

	Discussion

	See Also

	27.6 Finding Information About a Package

	Problem

	Solution

	Discussion

	See Also

	27.7 Installing PEAR Packages

	Problem

	Solution

	Discussion

	See Also

	27.8 Upgrading PEAR Packages

	Problem

	Solution

	Discussion

	See Also

	27.9 Uninstalling PEAR Packages

	Problem

	Solution

	Discussion

	See Also

	27.10 Installing PECL Packages

	Problem

	Solution

	Discussion

	See Also

	Index

	About the Authors

index-619_1.png
00 . NetBeans IDE 6.8

Q- Search (% +1)

index-563_1.png
What a piece of work
g7

Nable in’reason

14,07

Infinite in faculty

3517
In form, in moving,
hou express and
adnirable

9. 6%
In action how 1ike.
an angel

index-642_1.png
BE-E- Q% 5B &% AU 00 HaH

o5 = adsceiany
Brine ey
</boar>
<meats

o
> superglobals "

Osa integer 15

OO oo 12

-

index-641_1.png
NetBeans IDE 6.8

et Bispcamior Content-Typ” contente"saxiads chassorso1T>

function alice(sbom {

60 ookt 3y

index-664_1.png
{Users/atrachte/Source/ php-cookbook/ 1234000000702/ performance/ cachegrind.out. factorial]_php. 1388986935 /Us... "

P
(Tvpes ETN AlCalers | Call iap | Sowc Cods

e 103 725 i facoral ot o)

- it 267 50 8 (i) Gacionaiohe)

(Pars

index-650_1.png
[} localhost:9876/ISK JPY

€ > C [localhost:9876/ISK/JPY

ISK to JPY: 0.8208
JPY to ISK: 12183

index-666_1.png
OO0 D webgrind o rsersraac,

€ = € [} localhost:8000/webgrindindex.php

IUsersfatrachte/Sourcelphp-cookbook/1 234000000702/performance factoral1.php.
cacnogrindout_facirl_onp 1388986935 © 2014.0105 234215

2aeren uncsonscaodin 14 mlseconds(s, 1 shown)

(Showcatcagh|
(openo)

Funcion ocstoncount ¢ MSHERHINE] Tt ke cont &
o - oo 0 £ 2o Tese.ns

o com o

socomas s g

carm ¢ caum &

Vaomgs s 10271 5

=ry s wanp
Younavenewestvrson.

‘Copyright©2008:2011 Jacob Gfinger Joakin ygAr. webgrnt homanaga

index-665_1.png
Users/atrachte/Source) php-cookbook/ 1234000000702 /performance/ cachegrind.out. factorial2.php. 1388987191 [/Us.

A R« IO P+ R —
oo Fia ot

| factoriat

— [o Groupion) <) Troes Al Callrs_Calle ap _ Sowce Gode
130 w658 O 8 iman) oo 1250 man) Gactriaz ohe)

S e e 59 mfacel 0 o

49 8 ol (ctorii2 ohe)

Furs_Caees [NCIEETI Al Calles _CalerMap_ Machine Code |

cover.jpeg
OREILLY

Cookbook

SOLUTIONS & EXAMPLES FOR PHP PROGR.

David Sklar & Adam Trachtenberg

index-553_1.png

index-550_1.png
Sample Button Page

C' [localhost:8000/d...

Previous

Next

index-555_1.png

index-540_1.png

index-542_1.png

index-541_1.png
&~

index-543_2.png
0000 dHd 980T T

index-543_1.png
Pack ny hax uith Five dozen liuer Jjugs.
Pack my box with five dozen liquor jugs.

Pack my box with five dozen liguor jugs.
Pack my box with five dozen liquor jugs.

index-547_1.png
Pack my box uith Five dozen liguor jugs.
Pack ny box with five dozen Liquor jugs.
Pack my box with five dozen liguor jugs.
Pack my box with five dozen liquor jugs.

index-544_1.png
Eoelle PERI

index-535_1.png

index-449_1.png

index-538_2.png

index-538_1.png

index-362_1.png
[php.cookbook:9876

& = C [php.cookbook:9876

Aries, Ram (1)

Taurus, Bull (2)

Gemini, Twins (3)

Cancer, Crab (4)

Leo, Lion (5)

<<Prev|1-516-101 11-12 | Next>>
(Displaying 1 -5 of 12)

index-359_2.png
[php.cookbookis876

€ - € [) php.cookbook:9876

Aries
Taurus
Gemini

index-427_1.png
8,08 /T reas-rssLiumi
¢ > e

PHP 5.5.0 final has been released!
PHP 5.4.17 relea
PHP Released - PHP 5.3 Reaching End of Life
PHP now available

PHP 5.4.19 and PHP 5.5.3 Released!

PHP 5.5.4 has been released

PHP 5.4.20 released
PHP released

PHP 5.4.21 released

PHP 5.5.6 has been released
Fwd: PHP 5328 released
Fwd: PHP 5.4.23 released
PHP 5.4.24 Released

PHP is released

PHP 5.4.25 Released

PHP 5.5.9 is available

PHP 5.5.10 is released

PHP 5.4.26 Released

PHP 5.4.27 Released

index-369_1.png
1) php.cookbook 9876 7cmc =

€ el

Message List

‘Why Do Fools Fall In Love? by Frankie Lymon @ 1955-10-20 12:20 (740 bytes)
'Re: Why Do Fools Fall In Love? by Beach Boys @ 1964-02-03 14:09 (1479 bytes)

Re: Why Do Fools Fall In Love? by Diana Ross @ 1981-05-10 19:32 (2112 bytes)

Re: Why Do Fools Fall In Love? by Joni Mitchell @ 1980-09-14 22:45 (393 bytes)
by Baha Men @ 2000-07-25 10:53 (490 bytes)

Who Let the Dogs Out?
Re: Who Let the Dogs Qut? by Asta @ 2000-07-25 11
LLet the Dogs Out! by Scooby Doo @ 2000-07-29 04:33 (872 bytes)

‘Start a New Thread

index-448_1.png

index-428_1.png
© 00/ [read-rssahtm
€ cla

« title: news.php.net: php.announce
« link: hp/inews.php.nevgroup php?group=php.announce
« tagline:

index-784_1.png
7

© (1 pearphp net/packageHTTP2

%)
pear&‘

Lit Packages | Searc Packages | Satsts | Chamnets
Top Love : HTTE

Package Information: HTTP2

[T ———
» Summary » License
» Current Release

» Bug Summary
o open bugs
Report 5 new bug to HTIP2

11 (eable) was released on 01310°23 (Crangeog)
Easy Instanl
"Nok sure? Get more info.

pesr tnatall w2
Pyrus Instan
"oy PEARZ' Instller, Pyrs.

Shp pycus.phar nstall pesc/mrTE

» Description

e FTTP coss s 5 cass Wi SOUC s Tor Gomg
miscelaneous HTTP relaed stuff ke Gae formating.
Tanguage negotiton or KT redirection.
» Maintainers » More Information
+ ichaer Wainer (WsnTst (235) — Browse the sourca e
£ Prilippe Jousions (Wisniat) lead, inactive) © RSS rolaase fosd
P

index-82_1.png

index-774_1.png
£00) munsin - g~

€ 5 C B s Ipackagistongpackages oz quzze &

T
Packagist
The PHP package archivist.

Search packages.

gquzzle/guzzle % CERTIET %) 9 (0 (P) (Xmwey

(o’ 8 PHP HTTP oy anramawor fo buig RESTA wod s clris

vt 12200 rata
Mestaor misowiog s i 63531 ot
Homepage: guzeprory Todoy: 1421 nsta
Caroncat e g comigzipaze

Sorve: Mpsipubcomuziepazetesipizzel

s, s g comuzaguazeissios

dev-guzzied wues ommc Eren
Poquirs Roquies (0w =

provdes conticts Reptaces
dev-master / 3.8.X-deV wawen wross soeasos e e

index-743_1.png
8.0.0)/ Tiocavost-aaceri. x

€ - € [localhost/~atrachte/dir.php

druxr-xr-x atrachte
druxr-xz-x oot
—rw-r--r-- atrachte
—rw-r--r-- atrachte
—rw-r--r-- atrachte
druxr-xr-x atrachte
—rw-r--r-- atrachte

238 Dec
204 Dec
1078 Dec
1465 Dec
1540 Dec
68 Dec
57 Dec

08
o8
o8
o8
o8
o8
o8

17100 .
16149
16159 favicon.ico
16159 home . gif
17100 index.png
16157 more.
16159 up.aif

index-160_1.png

index-226_1.png

index-1_1.jpg
OREILLY

David Sklar & Adam Trachtenberg

index-26_1.png

index-25_1.png

index-351_1.png

index-2_1.jpg
OREILLY

PHP Cookbook

Want to understand acertain PHP programming techrique? Or leamhow €T
10 accompish a particlr tas? This cookbook s he st plce to ook
With more than 350 code-rich recipes revised for PHP 54.and 55, this

cipes in PHP
ook make it an

third edition provides updated solutions for generating dynamic wep ESSential companion
content-—everything from using basc data types to querying databases, for anyone using PHP?
and fom callng RESTIul APl 0 testing and securng your ste. Ao Gt

Each recipe includes code solutions that you can freely use, along with
3 discussion of how and why the work Whether youre an experienced
PHP programmes or coming to PH from ancther anguage, this book isan
ideal anthe:fob resource.

Youllfind recipes t help you with:

= Basic datatypes: trings, numbers,arrays, and dates and times

1= Program building blocks: varables, functions, classes, and objects

= Web programming: cookies,forms,sessions, and
authentication

= Database access using PDO, SQLite, and other extensions

= RESTHul AP clents and srvers,incuding HTTR XML and Outh

= Key concepts: email,regular expressions, and graphics creation

1= Designing robust applications: security and encryption, eror
handiing, debugging and testing, and performance tuning.

= Files, drectories, and PHP's Command Line Interface.

1= Libraries and package managers such as Composer and PECL

David SKla .1 ndependent technology consullnt I 363100 to wig pre-
Vs ections of PAP Cookbook, he's 150 the author of Leamig PHP' (ORelly)
and Essencol P Tols (Apress)

Adam Trachtenbergs the Ditor of the Linkedi Develeper etk He'sthe
authorof Upgrading t PHP 5 (Ol and previous ections of PHP Cookbook:

e Twitter: @reilymedia
facebook.com/oreilly

usssas sz

ISEN: 978-1-449-36375-8

WA i

)

index-359_1.png
1 ohpcooksook 876 1
& C [php.cookbook 9876/ Tmd=e... 17

€ 5 C) phpcookbook 9576/ rcmd-ad 77| =

sign
symbo:
planet:
element:
sart_month:

