

About This E-Book

EPUB is an open, industry-standard format for e-books. However, support for EPUB and its many features varies across reading devices and applications. Use your device or app settings to customize the presentation to your liking. Settings that you can customize often include font, font size, single or double column, landscape or portrait mode, and figures that you can click or tap to enlarge. For additional information about the settings and features on your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the e-book in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

Julie C. Meloni

SamsTeachYourself

PHP, MySQL & JavaScript

All in One

SIXTH EDITION

[image: Images]

Sams Teach Yourself PHP, MySQL & JavaScript All in One, Sixth Edition

Copyright © 2018 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33770-3

ISBN-10: 0-672-33770-3

Library of Congress Control Number: 2017911865

Printed in the United States of America

01 17

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Pearson cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an “as is” basis. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the CD or programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor

Mark Taber

Managing Editor

Sandra Schroeder

Project Editor

Mandie Frank

Copy Editor

Bart Reed

Indexer

Erika Millen

Proofreader

Abby Manheim

Technical Editor

Timothy Boronczyk

Editorial Assistant

Vanessa Evans

Designer

Chuti Prasertsith

Compositor

codeMantra

Contents at a Glance

Introduction

Part I: Web Application Basics

CHAPTER 1 Understanding How the Web Works

2 Structuring HTML and Using Cascading Style Sheets

3 Understanding the CSS Box Model and Positioning

4 Introducing JavaScript

5 Introducing PHP

Part II: Getting Started with Dynamic Websites

CHAPTER 6 Understanding Dynamic Websites and HTML5 Applications

7 JavaScript Fundamentals: Variables, Strings, and Arrays

8 JavaScript Fundamentals: Functions, Objects, and Flow Control

9 Understanding JavaScript Event Handling

10 The Basics of Using jQuery

Part III: Taking Your Web Applications to the Next Level

CHAPTER 11 AJAX: Remote Scripting

12 PHP Fundamentals: Variables, Strings, and Arrays

13 PHP Fundamentals: Functions, Objects, and Flow Control

14 Working with Cookies and User Sessions

15 Working with Web-Based Forms

Part IV: Integrating a Database into Your Applications

CHAPTER 16 Understanding the Database Design Process

17 Learning Basic SQL Commands

18 Interacting with MySQL Using PHP

Part V: Getting Started with Application Development

CHAPTER 19 Creating a Simple Discussion Forum

20 Creating an Online Storefront

21 Creating a Simple Calendar

22 Managing Web Applications

Appendixes

A Installation QuickStart Guide with XAMPP

B Installing and Configuring MySQL

C Installing and Configuring Apache

D Installing and Configuring PHP

Index

Table of Contents

Introduction

Part I: Web Application Basics

CHAPTER 1: Understanding How the Web Works

A Brief History of HTML and the World Wide Web

Creating Web Content

Understanding Web Content Delivery

Selecting a Web Hosting Provider

Testing with Multiple Web Browsers

Creating a Sample File

Using FTP to Transfer Files

Understanding Where to Place Files on the Web Server

Summary

Q&A

Workshop

CHAPTER 2: Structuring HTML and Using Cascading Style Sheets

Getting Started with a Simple Web Page

HTML Tags Every Web Page Must Have

Using Hyperlinks in Web Pages

Organizing a Page with Paragraphs and Line Breaks

Organizing Your Content with Headings

Understanding Semantic Elements

How CSS Works

A Basic Style Sheet

A CSS Style Primer

Using Style Classes

Using Style IDs

Internal Style Sheets and Inline Styles

Summary

Q&A

Workshop

CHAPTER 3: Understanding the CSS Box Model and Positioning

The CSS Box Model

The Whole Scoop on Positioning

Controlling the Way Things Stack Up

Managing the Flow of Text

Understanding Fixed Layouts

Understanding Fluid Layouts

Creating a Fixed/Fluid Hybrid Layout

Considering a Responsive Web Design

Summary

Q&A

Workshop

CHAPTER 4: Introducing JavaScript

Learning Web Scripting Basics

How JavaScript Fits into a Web Page

Exploring JavaScript’s Capabilities

Basic JavaScript Language Concepts

JavaScript Syntax Rules

Using Comments

Best Practices for JavaScript

Understanding JSON

Using the JavaScript Console to Debug JavaScript

Summary

Q&A

Workshop

CHAPTER 5: Introducing PHP

How PHP Works with a Web Server

The Basics of PHP Scripts

Code Blocks and Browser Output

Summary

Q&A

Workshop

Part II: Getting Started with Dynamic Websites

CHAPTER 6: Understanding Dynamic Websites and HTML5 Applications

Refresher on the Different Types of Scripting

Displaying Random Content on the Client Side

Understanding the Document Object Model

Using window Objects

Working with the document Object

Accessing Browser History

Working with the location Object

More About the DOM Structure

Working with DOM Nodes

Creating Positionable Elements (Layers)

Hiding and Showing Objects

Modifying Text Within a Page

Adding Text to a Page

Changing Images Based on User Interaction

Thinking Ahead to Developing HTML5 Applications

Summary

Q&A

Workshop

CHAPTER 7: JavaScript Fundamentals: Variables, Strings, and Arrays

Using Variables

Understanding Expressions and Operators

Data Types in JavaScript

Converting Between Data Types

Using String Objects

Working with Substrings

Using Numeric Arrays

Using String Arrays

Sorting a Numeric Array

Summary

Q&A

Workshop

CHAPTER 8: JavaScript Fundamentals: Functions, Objects, and Flow Control

Using Functions

Introducing Objects

Using Objects to Simplify Scripting

Extending Built-in Objects

Using the Math Object

Working with Math Methods

Working with Dates

The if Statement

Using Shorthand Conditional Expressions

Testing Multiple Conditions with if and else

Using Multiple Conditions with switch

Using for Loops

Using while Loops

Using do…while Loops

Working with Loops

Looping Through Object Properties

Summary

Q&A

Workshop

CHAPTER 9: Understanding JavaScript Event Handling

Understanding Event Handlers

Using Mouse Events

Using Keyboard Events

Using the load and unload Events

Using click to Change a <div>'s Appearance

Summary

Q&A

Workshop

CHAPTER 10: The Basics of Using jQuery

Using Third-Party JavaScript Libraries

jQuery Arrives on the Scene

Preparing to Use jQuery

Becoming Familiar with the $().ready Handler

Selecting DOM and CSS Content

Manipulating HTML Content

Putting the Pieces Together to Create a jQuery Animation

Handling Events with jQuery

Summary

Q&A

Workshop

Part III: Taking Your Web Applications to the Next Level

CHAPTER 11: AJAX: Remote Scripting

Introducing AJAX

Using XMLHttpRequest

Creating a Simple AJAX Library

Creating an AJAX Quiz Using the Library

Debugging AJAX-Based Applications

Using jQuery’s Built-in Functions for AJAX

Summary

Q&A

Workshop

CHAPTER 12: PHP Fundamentals: Variables, Strings, and Arrays

Variables

Data Types

Using Expressions and Operators

Constants

Understanding Arrays

Creating Arrays

Some Array-Related Constructs and Functions

Summary

Q&A

Workshop

CHAPTER 13: PHP Fundamentals: Functions, Objects, and Flow Control

Calling Functions

Defining a Function

Returning Values from User-Defined Functions

Understanding Variable Scope

Saving State Between Function Calls with the static Statement

More About Arguments

Testing for the Existence of a Function

Creating an Object

Object Inheritance

Switching Flow

Implementing Loops

Summary

Q&A

Workshop

CHAPTER 14: Working with Cookies and User Sessions

Introducing Cookies

Setting a Cookie

Deleting a Cookie

Overview of Server-Side Sessions

Working with Session Variables

Destroying Sessions and Unsetting Session Variables

Using Sessions in an Environment with Registered Users

Summary

Q&A

Workshop

CHAPTER 15: Working with Web-Based Forms

How HTML Forms Work

Creating a Form

Accepting Text Input

Naming Each Piece of Form Data

Labeling Each Piece of Form Data

Grouping Form Elements

Exploring Form Input Controls

Using HTML5 Form Validation

Submitting Form Data

Accessing Form Elements with JavaScript

Accessing Form Elements with PHP

Using Hidden Fields to Save State in Dynamic Forms

Sending Mail on Form Submission

Summary

Q&A

Workshop

Part IV: Integrating a Database into Your Applications

CHAPTER 16: Understanding the Database Design Process

The Importance of Good Database Design

Types of Table Relationships

Understanding Normalization

Following the Design Process

Summary

Q&A

Workshop

CHAPTER 17: Learning Basic SQL Commands

Learning the MySQL Data Types

Learning the Table-Creation Syntax

Using the INSERT Statement

Using the SELECT Statement

Using WHERE in Your Queries

Selecting from Multiple Tables

Using the UPDATE Statement to Modify Records

Using the REPLACE Statement

Using the DELETE Statement

Frequently Used String Functions in MySQL

Using Date and Time Functions in MySQL

Summary

Q&A

Workshop

CHAPTER 18: Interacting with MySQL Using PHP

MySQL or MySQLi?

Connecting to MySQL with PHP

Working with MySQL Data

Summary

Q&A

Workshop

Part V: Getting Started with Application Development

CHAPTER 19: Creating a Simple Discussion Forum

Designing the Database Tables

Creating an Include File for Common Functions

Creating the Input Forms and Scripts

Displaying the Topic List

Displaying the Posts in a Topic

Adding Posts to a Topic

Modifying the Forum Display with JavaScript

Summary

Q&A

Workshop

CHAPTER 20: Creating an Online Storefront

Planning and Creating the Database Tables

Displaying Categories of Items

Displaying Items

Using JavaScript with an Online Storefront

Summary

Q&A

Workshop

CHAPTER 21: Creating a Simple Calendar

Building a Simple Display Calendar

Creating the Calendar in JavaScript

Summary

Q&A

Workshop

CHAPTER 22: Managing Web Applications

Understanding Some Best Practices in Web Application Development

Writing Maintainable Code

Implementing Version Control in Your Work

Understanding the Value and Use of Code Frameworks

Summary

Q&A

Workshop

Appendix A: Installation QuickStart Guide with XAMPP

Using Third-Party Installation Packages

Installing XAMPP on Linux/UNIX

Installing XAMPP on Windows

Installing XAMPP on Mac OS X

Securing XAMPP

Troubleshooting

Appendix B: Installing and Configuring MySQL

Current and Future Versions of MySQL

How to Get MySQL

Installing MySQL on Linux/UNIX

Installing MySQL on Mac OS X

Installing MySQL on Windows

Troubleshooting Your Installation

Basic Security Guidelines

Introducing the MySQL Privilege System

Appendix C: Installing and Configuring Apache

Current Versions of Apache

Choosing the Appropriate Installation Method

Installing Apache on Linux/UNIX

Installing Apache on Mac OS X

Installing Apache on Windows

Apache Configuration File Structure

Apache Log Files

Apache-Related Commands

Starting Apache for the First Time

Troubleshooting

Appendix D: Installing and Configuring PHP

Current and Future Versions of PHP

Building PHP on Linux/UNIX with Apache

Installing PHP on Mac OS X

Installing PHP on Windows

php.ini Basics

Testing Your Installation

Getting Installation Help

Index

About the Author

Julie C. Meloni is a technical consultant who has been developing web-based applications since the Web first saw the light of day. She has authored numerous books and articles on web-based programming and scripting languages and database topics, and you can find translations of her work in 18 different languages. She barely maintains a blog at thickbook.com, and can typically be found camping in national parks or cozying up to craft cocktail bars in and around Washington, D.C.

Acknowledgments

The Apache Software Foundation, the PHP Group, and MySQL AB deserve much more recognition than they ever get for creating these super products that drive the vast majority of the Web.

Accessing the Free Web Edition

Your purchase of this book in any format, print or electronic, includes access to the corresponding Web Edition, which provides several special online-only features to help you learn:

[image: Images] The complete text of the book

[image: Images] Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any modern web browser that supports HTML5.

To get access to the Web Edition of Sams Teach Yourself PHP, MySQL & JavaScript All in One, Sixth Edition, all you need to do is register this book:

1. Go to www.informit.com/register.

2. Sign in or create a new account.

3. Enter ISBN: 9780672337703.

4. Answer the questions as proof of purchase.

The Web Edition will appear under the Digital Purchases tab on your Account page. Click the Launch link to access the product.

Introduction

Welcome to Sams Teach Yourself PHP, MySQL & JavaScript All in One. This book takes the most useful parts of Sams Teach Yourself HTML, CSS & JavaScript All in One (Second Edition) and Sams Teach Yourself PHP, MySQL & Apache All in One (Fifth Edition), refreshes the content for the inevitable changes in technology that happen every day, and provides you with a foundation for “full stack” web application development.

This foundation is provided by example; this book scaffolds your understanding of HTML, CSS, JavaScript, and PHP (plus database interactivity with MySQL) by showing you code that builds upon other code, explaining the details of the code, and providing you with sample output—what it might look like on your screen.

The goal of this book is not to make you an expert in any one of these technologies but instead to give you a solid foundation in the skills you need to create modern, standards-compliant web applications. The following are of particular note:

[image: Images] Every example in this book is validated HTML5 and CSS3.

[image: Images] All the examples in the book have been tested for compatibility with the latest version of every major web browser. That includes Apple Safari, Google Chrome, Microsoft Internet Explorer, Mozilla Firefox, and Opera. You’ll learn from the start to be compatible with the past, yet ready for the future.

[image: Images] All of the PHP code runs beautifully with PHP 7, but is backward compatible to PHP 5.6.x, which is still in use by thousands of web hosting providers.

Attention to many of these essentials are what made the many editions of the previous books bestsellers, and this updated edition is no different. A solid foundation is key to your future development no matter if you choose to specialize in HTML and CSS, JavaScript, PHP, or all of the above.

As always, it is important to remember that this book should be a first step—and by no means your only step—toward a more advanced understanding of technical development. It takes 10,000 hours of practice to become an expert in something, which is so much longer than you’ll spend reading this book.

Who Should Read This Book?

This book is geared toward individuals who possess a general understanding of the concepts of the World Wide Web, meaning that there is a thing called the World Wide Web and people connect to sites on it using web browsers. That’s it—no other knowledge is assumed.

The chapters that delve into programming with PHP assume no previous knowledge of the language. However, if you have experience with other programming languages, you will find the going much easier because of your familiarity with such programming elements as variables, control structures, functions, objects, and the like. Similarly, if you have worked with databases other than MySQL, you already possess a solid foundation for working through the MySQL-related lessons.

How This Book Is Organized

This book is divided into five parts, corresponding to particular topic groups. You should read the chapters within each part one right after another, with each chapter building on the information found in those before it:

[image: Images] Part I, “Web Application Basics,” takes you from understanding communication on the Web to writing basic PHP scripts, with stops along the way to provide a foundation in HTML, CSS, and JavaScript. Even if you are familiar with one or more of these technologies at a basic level, you should still skim these chapters as a refresher. Much of the rest of the book builds on the lessons in these initial chapters.

[image: Images] Part II, “Getting Started with Dynamic Websites,” is almost fully devoted to the use and syntax of JavaScript, which provides the dynamism in dynamic websites; where HTML and CSS often just sit there looking pretty, JavaScript makes the thing go…at least until you throw PHP and databases in the mix.

[image: Images] Part III, “Taking Your Web Applications to the Next Level,” moves beyond the front end and into the back end of your applications. You’ll learn the basics of the PHP language, including structural elements such as arrays and objects, and you’ll learn how to wield cookies and user sessions to your advantage. This is also the part of the book where you learn more than you (probably) ever wanted to know about forms.

[image: Images] Part IV, “Integrating a Database into Your Applications,” contains chapters devoted to working with databases in general, such as database normalization, as well as using PHP to connect to and work with MySQL. Included is a basic SQL primer, which also includes MySQL-specific functions and other information.

[image: Images] Part V, “Getting Started with Application Development,” consists of chapters devoted to performing a particular task using PHP and MySQL, integrating all the knowledge you gained throughout the book. Projects include creating a discussion forum, a basic online storefront, and a simple calendar.

At the end of each chapter, a few quiz questions test how well you’ve learned the material. Additional exercises provide another way to apply the information learned in the chapter and guide you toward using this newfound knowledge in the next chapter.

About the Book’s Source Code

All the code that appears in listings throughout the chapters is also available on GitHub at https://github.com/jcmeloni/PMJAiO. You may also download the source code bundle from the author’s website at http://www.thickbook.com/.

Typing the code on your own provides useful experience in making typos, causing errors, and performing the sometimes mind-numbing task of tracking down errant semicolons. However, if you want to skip that lesson and just upload the working code to your website, feel free!

Conventions Used in This Book

This book uses different typefaces to differentiate between code and plain English and to help you identify important concepts. Throughout the chapters, code, commands, and text you type or see onscreen appear in a computer typeface. New terms appear in italics at the point in the text where they are defined. In addition, icons accompany special blocks of information:

NOTE

A Note presents an interesting piece of information related to the current topic.

TIP

A Tip offers advice or teaches an easier method for performing a task.

CAUTION

A Caution warns you about potential pitfalls and explains how to avoid them.

Q&A, Quiz, and Exercises

Every chapter ends with a short question-and-answer session that addresses the kind of “dumb questions” everyone wishes they dared to ask. A brief but complete quiz lets you test yourself to be sure you understand everything presented in the chapter. Finally, one or two optional exercises give you a chance to practice your new skills before you move on.

Part I: Web Application Basics

CHAPTER 1
Understanding How the Web Works

What You’ll Learn in This Chapter:

[image: Images] A very brief history of the World Wide Web

[image: Images] What is meant by the term web page, and why that term doesn’t always reflect all the content involved

[image: Images] How content gets from your personal computer to someone else’s web browser

[image: Images] How to select a web hosting provider

[image: Images] How different web browsers and device types can affect your content

[image: Images] How to transfer files to your web server using FTP

[image: Images] Where files should be placed on a web server

[image: Images] How to distribute web content without a web server

Before you learn the intricacies of HTML (Hypertext Markup Language), CSS (Cascading Style Sheets), and JavaScript—not to mention the back-end programming language PHP—it is important to gain a solid understanding of the technologies that help transform these plain-text files to the rich multimedia displays you see on your computer, tablet, or smartphone when browsing the World Wide Web.

For example, a file containing markup and client-side code (HTML, CSS, and JavaScript) is useless without a web browser to view it, and no one besides yourself will see your content unless a web server is involved—this is especially true when server-side technologies such as PHP are put into the mix. Web servers make your content available to others who, in turn, use their web browsers to navigate to an address and wait for the server to send information to them. You will be intimately involved in this publishing process because you must create files and then put them on a web server to make the content available in the first place, and you must ensure that your content will appear to the end user as you intended.

A Brief History of HTML and the World Wide Web

Once upon a time, back when there weren’t any footprints on the moon, some farsighted folks decided to see whether they could connect several major computer networks. I’ll spare you the names and stories (there are plenty of both), but the eventual result was the “mother of all networks,” which we call the Internet.

Until 1990, accessing information through the Internet was a rather technical affair. It was so hard, in fact, that even Ph.D.-holding physicists were often frustrated when trying to exchange data and documents. One such physicist, the now-famous (and knighted) Sir Tim Berners-Lee, cooked up a way to easily cross-reference text on the Internet through hypertext links.

This wasn’t a new idea, but his simple Hypertext Markup Language (HTML) managed to thrive while more ambitious hypertext projects floundered. Hypertext originally meant text stored in electronic form with cross-reference links between pages. It is now a broader term that refers to just about any object (text, images, files, and so on) that can be linked to other objects. Hypertext Markup Language is a language for describing how text, graphics, and files containing other information are organized and linked.

By 1993, only 100 or so computers throughout the world were equipped to serve up HTML pages. Those interlinked pages were dubbed the World Wide Web (WWW), and several web browser programs had been written to enable people to view web content. Because of the growing popularity of the Web, a few programmers soon wrote web browsers that could view graphical images along with text. From that point forward, the continued development of web browser software and the standardization of web technologies including HTML, CSS, and JavaScript have led us to the world we live in today, one in which more than a billion websites serve trillions (or more) of text and multimedia files.

NOTE

For more information on the history of the World Wide Web, see the Wikipedia article on this topic: http://en.wikipedia.org/wiki/History_of_the_Web.

These few paragraphs really are a brief history of what has been a remarkable period. Today’s college students have never known a time in which the World Wide Web didn’t exist, and the idea of always-on information and ubiquitous computing will shape all aspects of our lives moving forward. Instead of seeing dynamic web content creation and management as a set of skills possessed by only a few technically oriented folks (okay, call them geeks, if you will), by the end of this book, you will see that these are skills that anyone can master, regardless of inherent geekiness.

Creating Web Content

You might have noticed the use of the term web content rather than web pages—that was intentional. Although we talk of “visiting a web page,” what we really mean is something like “looking at all the text and the images at one address on our computer.” The text that we read and the images that we see are rendered by our web browsers, which are given certain instructions found in individual files.

Those files contain text that is marked up with, or surrounded by, HTML codes that tell the browser how to display the text—as a heading, as a paragraph, in a bulleted list, and so on. Some HTML markup tells the browser to display an image or video file rather than plain text, which brings me back to this point: Different types of content are sent to your web browser, so simply saying web page doesn’t begin to cover it. Here we use the term web content instead, to cover the full range of text, image, audio, video, and other media found online.

In later chapters, you’ll learn the basics of linking to or creating the various types of multimedia web content found in websites, and for creating dynamic content from server-side scripts using PHP. All you need to remember at this point is that you are in control of the content a user sees when visiting your website. Beginning with the file that contains text to display or code that tells the server to send a graphic along to the user’s web browser, you have to plan, design, and implement all the pieces that will eventually make up your web presence. As you will learn throughout this book, it is not a difficult process as long as you understand all the little steps along the way.

In its most fundamental form, web content begins with a simple text file containing HTML markup. In this book, you’ll learn about and compose standards-compliant HTML5 markup. One of the many benefits of writing standards-compliant code is that, in the future, you will not have to worry about having to go back to your code to fundamentally alter it so that it works on multiple types of browsers and devices. Instead, your code will (likely) always work as intended for as long as web browsers adhere to standards and the backwards compatibility to previous standards (which is hopefully a long time).

Understanding Web Content Delivery

Several processes occur, in many different locations, to eventually produce web content that you can see. These processes occur very quickly—on the order of milliseconds—and happen behind the scenes. In other words, although we might think all we are doing is opening a web browser, typing in a web address, and instantaneously seeing the content we requested, technology in the background is working hard on our behalf. Figure 1.1 shows the basic interaction between a browser and a server.

[image: Images]

FIGURE 1.1
A browser request and a server response.

However, the process involves several steps—and potentially several trips between the browser and the server—before you see the entire content of the site you requested.

Suppose you want to do a Google search, so you dutifully type www.google.com in the address bar or select the Google bookmark from your bookmarks list. Almost immediately, your browser shows you something like what’s shown in Figure 1.2.

[image: Images]

FIGURE 1.2
Visiting www.google.com.

Figure 1.2 shows a website that contains text plus one image (the Google logo). A simple version of the processes that occurred to retrieve that text and image from a web server and display it on your screen follows:

1. Your web browser sends a request for the index.html file located at the http://www.google.com address. The index.html file does not have to be part of the address that you type in the address bar; you’ll learn more about the index.html file farther along in this chapter.

2. After receiving the request for a specific file, the web server process looks in its directory contents for the specific file, opens it, and sends the content of that file back to your web browser.

3. The web browser receives the content of the index.html file, which is text marked up with HTML codes, and renders the content based on these HTML codes. While rendering the content, the browser happens upon the HTML code for the Google logo, which you can see in Figure 1.2. The HTML code looks something like this:

Click here to view code image

<img alt="Google" height="92" width="272" id="hplogo" src="/images/branding/

googlelogo/2x/googlelogo_color_272x92dp.png">

The HTML code for the image is an tag, and it also provides attributes that tell the browser the file source location (src), width (width), and height (height) necessary to display the logo. You’ll learn more about attributes throughout later lessons.

4. The browser looks at the src attribute in the tag to find the source location. In this case, the image googlelogo_color_272x92dp.png can be found in a subdirectory of the images directory at the same web address (www.google.com) from which the browser retrieved the HTML file.

5. The browser requests the file at the web address http://www.google.com/images/branding/googlelogo/2x/googlelogo_color_272x92dp.png.

6. The web server interprets that request, finds the file, and sends the contents of that file to the web browser that requested it.

7. The web browser displays the image on your monitor.

As you can see in the description of the web content delivery process, web browsers do more than simply act as picture frames through which you can view content. Browsers assemble the web content components and arrange those parts according to the HTML commands in the file.

You can also view web content locally, or on your own hard drive, without the need for a web server. The process of content retrieval and display is the same as the process listed in the previous steps, in that a browser looks for and interprets the codes and content of an HTML file, but the trip is shorter: The browser looks for files on your own computer’s hard drive rather than on a remote machine. A web server would be needed to interpret any server-based programming language embedded in the files, but that is outside the scope of this book. In fact, you could work through all the HTML, CSS, and JavaScript lessons in this book without having a web server to call your own, but then nobody but you could view your masterpieces.

Selecting a Web Hosting Provider

Despite my just telling you that you can work through all the HTML, CSS, and JavaScript lessons in this book without having a web server, having a web server is the recommended method for continuing. Although the appendixes describe how to install a full-blown web server and database on your local machine for personal development, invariably you will want your static or dynamic websites to be visible to the public. Don’t worry—obtaining a hosting provider is usually a quick, painless, and relatively inexpensive process. In fact, you can get your own domain name and a year of web hosting for just slightly more than the cost of the book you are reading now.

If you type web hosting provider in your search engine of choice, you will get millions of hits and an endless list of sponsored search results (also known as ads). Not this many web hosting providers exist in the world, although it might seem otherwise. Even if you are looking at a managed list of hosting providers, it can be overwhelming—especially if all you are looking for is a place to host a simple website for yourself or your company or organization.

You’ll want to narrow your search when looking for a provider and choose one that best meets your needs. Some selection criteria for a web hosting provider follow:

[image: Images] Reliability/server “uptime”—If you have an online presence, you want to make sure people can actually get there consistently.

[image: Images] Customer service—Look for multiple methods for contacting customer service (phone, email, chat), as well as online documentation for common issues.

[image: Images] Server space—Does the hosting package include enough server space to hold all the multimedia files (images, audio, video) you plan to include in your website (if any)?

[image: Images] Bandwidth—Does the hosting package include enough bandwidth that all the people visiting your site and downloading files can do so without your having to pay extra?

[image: Images] Domain name purchase and management—Does the package include a custom domain name, or must you purchase and maintain your domain name separately from your hosting account?

[image: Images] Price—Do not overpay for hosting. If you see a wide range of prices offered, you should immediately wonder, “What’s the difference?” Often the difference has little to do with the quality of the service and everything to do with company overhead and what the company thinks it can get away with charging people. A good rule of thumb is that if you are paying more than $75 per year for a basic hosting package and domain name, you are probably paying too much.

Here are three reliable web hosting providers whose basic packages contain plenty of server space and bandwidth (as well as domain names and extra benefits) at a relatively low cost. If you don’t go with any of these web hosting providers, you can at least use their basic package descriptions as a guideline as you shop around.

NOTE

The author has used all these providers (and then some) over the years and has no problem recommending any of them; predominantly, she uses DailyRazor as a web hosting provider, especially for advanced development environments.

[image: Images] A Small Orange (http://www.asmallorange.com)—The Tiny and Small hosting packages are perfect starting places for any new web content publisher.

[image: Images] DailyRazor (http://www.dailyrazor.com)—Even its personal-sized hosting package is full-featured and reliable.

[image: Images] Lunarpages (http://www.lunarpages.com)—The Starter hosting package is suitable for many personal and small business websites.

One feature of a good hosting provider is that it offers a “control panel” for you to manage aspects of your account. Figure 1.3 shows the control panel for my own hosting account at DailyRazor. Many web hosting providers offer this particular control panel software, or some control panel that is similar in design—clearly labeled icons leading to tasks you can perform to configure and manage your account.

[image: Images]

FIGURE 1.3
A sample control panel.

You might never need to use your control panel, but having it available to you simplifies the installation of databases and other software, the viewing of web statistics, and the addition of email addresses (among many other features). If you can follow instructions, you can manage your own web server—no special training required.

Testing with Multiple Web Browsers

Now that we’ve just discussed the process of web content delivery and the acquisition of a web server, it might seem a little strange to step back and talk about testing your websites with multiple web browsers. However, before you go off and learn all about creating websites with HTML and CSS, do so with this very important statement in mind: Every visitor to your website will potentially use hardware and software configurations that are different from your own. From their device types (desktop, laptop, tablet, smartphone) to their screen resolutions, browser types, browser window sizes, and speed of connections—you cannot control any aspect of what your visitors use when they view your site. So just as you’re setting up your web hosting environment and getting ready to work, think about downloading several web browsers so that you have a local test suite of tools available to you. Let me explain why this is important.

Although all web browsers process and handle information in the same general way, some specific differences among them result in things not always looking the same in different browsers. Even users of the same version of the same web browser can alter how a page appears by choosing different display options and/or changing the size of their viewing windows. All the major web browsers allow users to override the background and fonts the web page author specifies with those of their own choosing. Screen resolution, window size, and optional toolbars can also change how much of a page someone sees when it first appears on the screen. You can ensure only that you write standards-compliant HTML and CSS.

NOTE

In Chapter 3, “Understanding the CSS Box Model and Positioning,” you’ll learn a little bit about the concept of responsive web design, in which the design of a site shifts and changes automatically depending on the user’s behavior and viewing environment (screen size, device, and so on).

Do not, under any circumstances, spend hours on end-designing something that looks perfect only on your own computer—unless you are willing to be disappointed when you look at it on your friend’s computer, on a computer in the local library, or on your iPhone.

You should always test your websites with as many of these web browsers as possible, on standard, portable, and mobile devices:

[image: Images] Apple Safari (http://www.apple.com/safari/) for Mac

[image: Images] Google Chrome (http://www.google.com/chrome) for Mac, Windows, and Linux/UNIX

[image: Images] Microsoft Internet Explorer (http://www.microsoft.com/ie) and Microsoft Edge (https://www.microsoft.com/microsoft-edge) for Windows

[image: Images] Mozilla Firefox (http://www.mozilla.com/firefox/) for Mac, Windows, and Linux/UNIX

Now that you have a development environment set up, or at least some idea of the type you’d like to set up in the future, let’s move on to creating a test file.

Creating a Sample File

Before we begin, take a look at Listing 1.1. This listing represents a simple piece of web content—a few lines of HTML that print “Hello World! Welcome to My Web Server.” in large, bold letters on two lines centered within the browser window. You’ll learn more about the HTML and CSS used within this file as you move forward in this book.

LISTING 1.1 Our Sample HTML File

Click here to view code image

<!DOCTYPE html>

<html>

 <head>

 <title>Hello World!</title>

 </head>

 <body>

 <h1 style="text-align: center">Hello World!

 Welcome to My Web Server.</h1>

 </body>

</html>

To make use of this content, open a text editor of your choice, such as Notepad (on Windows) or TextEdit (on a Mac). Do not use WordPad, Microsoft Word, or other full-featured word processing software because those programs create different sorts of files from the plain-text files we use for web content.

Type the content that you see in Listing 1.1 and then save the file using sample.html as the filename. Be sure your editor does not change the extension you give it; the .html extension tells the web server that your file is, indeed, full of HTML. When the file contents are sent to the web browser that requests it, the browser will also know from it is HTML and will render it appropriately.

Now that you have a sample HTML file to use—and hopefully somewhere to put it, such as a web hosting account—let’s get to publishing your web content.

Using FTP to Transfer Files

As you’ve learned so far, you have to put your web content on a web server to make it accessible to others. This process typically occurs by using the File Transfer Protocol (FTP). To use FTP, you need an FTP client—a program used to transfer files from your computer to a web server.

FTP clients require three pieces of information to connect to your web server; this information will have been sent to you by your hosting provider after you set up your account:

[image: Images] The hostname, or address, to which you will connect

[image: Images] Your account username

[image: Images] Your account password

When you have this information, you are ready to use an FTP client to transfer content to your web server.

Selecting an FTP Client

Regardless of the FTP client you use, FTP clients generally use the same type of interface. Figure 1.4 shows an example of FireFTP, which is an FTP client used with the Firefox web browser. The directory listing of the local machine (your computer) appears on the left of your screen, and the directory listing of the remote machine (the web server) appears on the right. Typically, you will see right-arrow and left-arrow buttons, as shown in Figure 1.4. The right arrow sends selected files from your computer to your web server; the left arrow sends files from the web server to your computer. Many FTP clients also enable you to simply select files and then drag and drop those files to the target machines.

Many FTP clients are freely available to you, but you can also transfer files via the web-based file management tool that is likely part of your web server’s control panel. However, that method of file transfer typically introduces more steps into the process and isn’t nearly as streamlined (or simple) as the process of installing an FTP client on your own machine.

Here are some popular free FTP clients:

[image: Images] Classic FTP (http://www.nchsoftware.com/classic/) for Mac and Windows

[image: Images] Cyberduck (http://cyberduck.ch) for Mac

[image: Images] Fetch (http://fetchsoftworks.com) for Mac

[image: Images] FileZilla (http://filezilla-project.org) for all platforms

[image: Images] FireFTP (http://fireftp.mozdev.org) Firefox extension for all platforms

[image: Images]

FIGURE 1.4
The FireFTP interface.

When you have selected an FTP client and installed it on your computer, you are ready to upload and download files from your web server. In the next section, you'll see how this process works using the sample file in Listing 1.1.

Using an FTP Client

The following steps show how to use Classic FTP to connect to your web server and transfer a file. However, all FTP clients use similar, if not identical, interfaces. If you understand the following steps, you should be able to use any FTP client. (Remember, you first need the hostname, the account username, and the account password.)

1. Start the Classic FTP program and click the Connect button. You are prompted to fill out information for the site to which you want to connect, as shown in Figure 1.5.

2. Fill in each of the items shown in Figure 1.5 as described here:

[image: Images] The FTP Server is the FTP address of the web server to which you need to send your content. Your hosting provider will have given you this address. It probably is yourdomain.com, but check the information you received when you signed up for service.

[image: Images] Complete the User Name field and the Password field using the information your hosting provider gave you.

[image: Images]

FIGURE 1.5
Connecting to a new site in Classic FTP.

3. You can switch to the Advanced tab and modify the following optional items, shown in Figure 1.6:

[image: Images] The Site Label is the name you’ll use to refer to your own site. Nobody else will see this name, so enter whatever you want.

[image: Images] You can change the values for Initial Remote Directory on First Connection and Initial Local Directory on First Connection, but you might want to wait until you have become accustomed to using the client and have established a workflow.

4. When you’re finished with the settings, click Add Site to save them. You can then click Connect to establish a connection with the web server.

You will see a dialog box indicating that Classic FTP is attempting to connect to the web server. Upon a successful connection, you will see an interface like the one in Figure 1.7, showing the contents of the local directory on the left and the contents of your web server on the right.

[image: Images]

FIGURE 1.6
The advanced connection options in Classic FTP.

5. You are now almost ready to transfer files to your web server. All that remains is to change directories to what is called the document root of your web server. The document root of your web server is the directory that is designated as the top-level directory for your web content—the starting point of the directory structure, which you’ll learn more about later in this chapter. Often, this directory is named public_html, www (because www has been created as an alias for public_html), or htdocs. You do not have to create this directory; your hosting provider will have created it for you.

Double-click the document root directory name to open it. The display shown on the right of the FTP client interface changes to show the contents of this directory (it will probably be empty at this point, unless your web hosting provider has put placeholder files in that directory on your behalf).

[image: Images]

FIGURE 1.7
A successful connection to a remote web server via Classic FTP.

6. The goal is to transfer the sample.html file you created earlier from your computer to the web server. Find the file in the directory listing on the left of the FTP client interface (navigate if you have to) and click it once to highlight the filename.

7. Click the right-arrow button in the middle of the client interface to send the file to the web server. When the file transfer completes, the right side of the client interface refreshes to show you that the file has made it to its destination.

8. Click the Disconnect button to close the connection, and then exit the Classic FTP program.

These steps are conceptually similar to the steps you take anytime you want to send files to your web server via FTP. You can also use your FTP client to create subdirectories on the remote web server. To create a subdirectory using Classic FTP, click the Remote menu and then click New Folder. Different FTP clients have different interface options to achieve the same goal.

Understanding Where to Place Files on the Web Server

An important aspect of maintaining web content is determining how you will organize that content—not only for the user to find, but also for you to maintain on your server. Putting files in directories helps you manage those files.

Naming and organizing directories on your web server, and developing rules for file maintenance, is completely up to you. However, maintaining a well-organized server makes your management of its content more efficient in the long run.

Basic File Management

As you browse the Web, you might have noticed that URLs change as you navigate through websites. For instance, if you’re looking at a company’s website and you click on graphical navigation leading to the company’s products or services, the URL probably changes from

http://www.companyname.com/

to

http://www.companyname.com/products/

or

http://www.companyname.com/services/

In the preceding section, I used the term document root without really explaining what that is all about. The document root of a web server is essentially the trailing slash in the full URL. For instance, if your domain is yourdomain.com and your URL is http://www.yourdomain.com/, the document root is the directory represented by the trailing slash (/). The document root is the starting point of the directory structure you create on your web server; it is the place where the web server begins looking for files requested by the web browser.

If you put the sample.html file in your document root as previously directed, you will be able to access it via a web browser at the following URL:

http://www.yourdomain.com/sample.html

If you entered this URL into your web browser, you would see the rendered sample.html file, as shown in Figure 1.8.

However, if you created a new directory within the document root and put the sample.html file in that directory, the file would be accessed at this URL:

http://www.yourdomain.com/newdirectory/sample.html

[image: Images]

FIGURE 1.8
The sample.html file accessed via a web browser.

If you put the sample.html file in the directory you originally saw upon connecting to your server—that is, you did not change directories and place the file in the document root—the sample.html file would not be accessible from your web server at any URL. The file will still be on the machine that you know as your web server, but because the file is not in the document root—where the server software knows to start looking for files—it will never be accessible to anyone via a web browser.

The bottom line? Always navigate to the document root of your web server before you start transferring files.

This is especially true with graphics and other multimedia files. A common directory on web servers is called images, where, as you can imagine, all the image assets are placed for retrieval. Other popular directories include css for style sheet files (if you are using more than one) and js for JavaScript files. Alternatively, if you know that you will have an area on your website where visitors can download many types of files, you might simply call that directory downloads.

Whether it’s a ZIP file containing your art portfolio or an Excel spreadsheet with sales numbers, it’s often useful to publish a file on the Internet that isn’t simply a web page. To make available on the Web a file that isn’t an HTML file, just upload the file to your website as if it were an HTML file, following the instructions earlier in this chapter for uploading. After the file is uploaded to the web server, you can create a link to it (as you’ll learn in Chapter 2, “Structuring HTML and Using Cascading Style Sheets”). In other words, your web server can serve much more than HTML.

Here’s a sample of the HTML code you will learn more about later in this book. The following code would be used for a file named artfolio.zip, located in the downloads directory of your website, and with link text that reads Download my art portfolio!:

Click here to view code image

Download my art portfolio!

Using an Index Page

When you think of an index, you probably think of the section in the back of a book that tells you where to look for various keywords and topics. The index file in a web server directory can serve that purpose—if you design it that way. In fact, that’s where the name originates.

The index.html file (or just index file, as it’s usually referred to) is the name you give to the page you want people to see as the default file when they navigate to a specific directory in your website.

Another function of the index page is that users who visit a directory on your site that has an index page but who do not specify that page will still land on the main page for that section of your site—or for the site itself.

For instance, you can type either of the following URLs and land on Apple’s iPhone informational page:

http://www.apple.com/iphone/

http://www.apple.com/iphone/index.html

Had there been no index.html page in the iphone directory, the results would depend on the configuration of the web server. If the server is configured to disallow directory browsing, the user would have seen a “Directory Listing Denied” message when attempting to access the URL without a specified page name. However, if the server is configured to allow directory browsing, the user would have seen a list of the files in that directory.

Your hosting provider will already have determined these server configuration options. If your hosting provider enables you to modify server settings via a control panel, you can change these settings so that your server responds to requests based on your own requirements.

Not only is the index file used in subdirectories, but it’s used in the top-level directory (or document root) of your website as well. The first page of your website—or home page or main page, or however you like to refer to the web content you want users to see when they first visit your domain—should be named index.html and placed in the document root of your web server. This ensures that when users type http://www.yourdomain.com/ into their web browsers, the server responds with the content you intended them to see (instead of “Directory Listing Denied” or some other unintended consequence).

Summary

This chapter introduced you to the concept of using HTML to mark up text files to produce web content. You also learned that there is more to web content than just the “page”—web content also includes image, audio, and video files. All this content lives on a web server—a remote machine often far from your own computer. On your computer or other device, you use a web browser to request, retrieve, and eventually display web content on your screen.

You learned the criteria to consider when determining whether a web hosting provider fits your needs. After you have selected a web hosting provider, you can begin to transfer files to your web server, which you also learned how to do, using an FTP client. You also learned a bit about web server directory structures and file management, as well as the very important purpose of the index.html file in a given web server directory. In addition, you learned that you can distribute web content on removable media, and you learned how to go about structuring the files and directories to achieve the goal of viewing content without using a remote web server.

Finally, you learned the importance of testing your work in multiple browsers after you’ve placed it on a web server. Writing valid, standards-compliant HTML and CSS helps ensure that your site looks reasonably similar for all visitors, but you still shouldn’t design without receiving input from potential users outside your development team—it is even more important to get input from others when you are a design team of one!

Q&A

Q. I’ve looked at the HTML source of some web sites on the Internet, and it looks frighteningly difficult to learn. Do I have to think like a computer programmer to learn this stuff?

A. Although complex HTML pages can indeed look daunting, learning HTML is much easier than learning actual programming languages—we’re saving that for later on in this book, and you’ll do just fine with it as well. HTML is a markup language rather than a programming language; you mark up text so that the browser can render the text a certain way. That’s a completely different set of thought processes than developing a computer program. You really don’t need any experience or skill as a computer programmer to be a successful web content author.

One of the reasons the HTML behind many commercial websites looks complicated is that it was likely created by a visual web design tool—a “what you see is what you get” (WYSIWYG) editor that uses whatever markup its software developer told it to use in certain circumstances—as opposed to being hand-coded (where you are completely in control of the resulting markup). In this book, you are taught fundamental coding from the ground up, which typically results in clean, easy-to-read source code. Visual web design tools have a knack for making code difficult to read and for producing code that is convoluted and not standards compliant.

Q. Running all the tests you recommend would take longer than creating my pages! Can’t I get away with less testing?

A. If your pages aren’t intended to make money or provide an important service, it’s probably not a big deal if they look funny to some users or produce errors once in a while. In that case, just test each page with a couple different browsers and call it a day. However, if you need to project a professional image, there is no substitute for rigorous testing.

Q. Seriously, who cares how I organize my web content?

A. Believe it or not, the organization of your web content does matter to search engines and potential visitors to your site. But overall, having an organized web server directory structure helps you keep track of content that you are likely to update frequently. For instance, if you have a dedicated directory for images or multimedia, you know exactly where to look for a file you want to update—no need to hunt through directories containing other content.

Workshop

The Workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. How many files would you need to store on a web server to produce a single web page with some text and two images on it?

2. What are some of the features to look for in a web hosting provider?

3. What three pieces of information do you need in order to connect to your web server via FTP?

4. What is the purpose of the index.html file?

5. Does your website have to include a directory structure?

Answers

1. You would need three: one for the web page itself, which includes the text and the HTML markup, and one for each of the two images.

2. Look for reliability, customer service, web space and bandwidth, domain name service, site-management extras, and price.

3. You need the hostname, your account username, and your account password.

4. The index.html file is typically the default file for a directory within a web server. It enables users to access http://www.yourdomain.com/somedirectory/ without using a trailing filename and still end up in the appropriate place.

5. No. Using a directory structure for file organization is completely up to you, although using one is highly recommended because it simplifies content maintenance.

Exercises

[image: Images] Get your web hosting in order—are you going to move through the lessons in this book by viewing files locally on your own computer, or are you going to use a web hosting provider? Note that most web hosting providers will have you up and running the same day you purchase your hosting plan.

[image: Images] If you are using an external hosting provider, then using your FTP client, create a subdirectory within the document root of your website. Paste the contents of the sample.html file into another file named index.html, change the text between the <title> and </title> tags to something new, and change the text between the <h1> and </h1> tags to something new. Save the file and upload it to the new subdirectory. Use your web browser to navigate to the new directory on your web server and see that the content in the index.html file appears. Then, using your FTP client, delete the index.html file from the remote subdirectory. Return to that URL with your web browser, reload the page, and see how the server responds without the index.html file in place.

[image: Images] Using the same set of files created in the preceding exercise, place these files on a removable media device such as a USB drive. Use your browser to navigate this local version of your sample website, and think about the instructions you would have to distribute with this removable media so that others could use it.

CHAPTER 2
Structuring HTML and Using Cascading Style Sheets

What You’ll Learn in This Chapter:

[image: Images] How to create a simple web page in HTML

[image: Images] How to include the HTML tags that every web page must have

[image: Images] How to use links within your web pages

[image: Images] How to organize a page with paragraphs and line breaks

[image: Images] How to organize your content with headings

[image: Images] How to use the semantic elements of HTML5

[image: Images] How to begin using basic CSS

In the first chapter, you got a basic idea of the process behind creating web content and viewing it online (or locally, if you do not yet have a web hosting provider). In this chapter, we get down to the business of explaining the various elements that must appear in an HTML file so that it is displayed appropriately in your web browser.

In general, this chapter provides an overview of HTML basics and gives some practical tips to help you make the most of your time as a web developer. You’ll begin to dive a bit deeper into the theory behind it all as you learn about the HTML5 elements that enable you to enhance the semantics—the meaning—of the information that you provide in your marked-up text. You’ll take a closer look at six elements that are fundamental to solid semantic structuring of your documents: <header>, <section>, <article>, <nav>, <aside>, and <footer>. Finally, you’ll learn the basics of fine-tuning the display of your web content using Cascading Style Sheets (CSS), which enable you to set a number of formatting characteristics, including exact typeface controls, letter and line spacing, and margins and page borders, just to name a few.

Throughout the remainder of this book, you will see HTML tags and CSS styles used appropriately in the code samples, so this chapter makes sure that you have a good grasp of their meaning before we continue.

Getting Started with a Simple Web Page

In the first chapter, you learned that a web page is just a text file that is marked up by (or surrounded by) HTML code that provides guidelines to a browser for displaying the content. To create these text files, use a plain-text editor such as Notepad on Windows or TextEdit on a Mac—do not use WordPad, Microsoft Word, or other full-featured word-processing software because those create different sorts of files than the plain-text files used for web content.

CAUTION

I’ll reiterate this point because it is very important to both the outcome and the learning process itself: Do not create your first HTML file with Microsoft Word or any other word processor, even if you can save your file as HTML, because most of these programs will write your HTML for you in strange ways, potentially leaving you totally confused.

Additionally, I recommend that you not use a graphical, what-you-see-is-what-you-get (WYSIWYG) editor such as Adobe Dreamweaver. You’ll likely find it easier and more educational to start with a simple text editor that forces you to type the code yourself as you’re learning HTML and CSS.

Before you begin working, you should start with some text that you want to put on a web page:

1. Find (or write) a few paragraphs of text about yourself, your family, your company, your pets, or some other subject that holds your interest.

2. Save this text as plain, standard ASCII text. Notepad (on Windows) and most simple text editors always save files as plain text, but if you’re using another program, you might need to choose this file type as an option (after selecting File, Save As).

As you go through this chapter, you will add HTML markup (called tags) to the text file, thus turning it into content that is best viewed in a web browser.

When you save files containing HTML tags, always give them a name ending in .html. This is important—if you forget to type the .html at the end of the filename when you save the file, most text editors will give it some other extension (such as .txt). If that happens, you might not be able to find the file when you try to look at it with a web browser; if you find it, it certainly won’t display properly. In other words, web browsers expect a web page file to have a file extension of .html and to be in plain-text format.

When visiting websites, you might also encounter pages with a file extension of .htm, which is another acceptable file extension to use. You might find other file extensions used on the Web, such as .jsp (Java Server Pages), .aspx (Microsoft Active Server Pages), and .php (PHP: Hypertext Preprocessor). These files also contain HTML in addition to the programming language—although the programming code in those files is executed on the server side and all you would see on the client side is the HTML output. If you looked at the source files, you would likely see some intricate weaving of programming and markup codes. You’ll learn more about this process in later chapters as you learn to integrate PHP into your websites.

Listing 2.1 shows an example of text you can type and save to create a simple HTML page. If you opened this file with your web browser, you would see the page shown in Figure 2.1. Every web page you create must include a <!DOCTYPE> declaration, as well as <html></html>, <head></head>, <title></title>, and <body></body> tag pairs.

LISTING 2.1 The <html>, <head>, <title>, and <body> Tags

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>The First Web Page</title>

 </head>

 <body>

 <p>

 In the beginning, Tim created the HyperText Markup Language. The

 Internet was without form and void, and text was upon the face of

 the monitor and the Hands of Tim were moving over the face of the

 keyboard. And Tim said, Let there be links; and there were links.

 And Tim saw that the links were good; and Tim separated the links

 from the text. Tim called the links Anchors, and the text He

 called Other Stuff. And the whole thing together was the first

 Web Page.

 </p>

 </body>

</html>

[image: Images]

FIGURE 2.1
When you save the text in Listing 2.1 as an HTML file and view it with a web browser, only the actual title and body text are displayed.

In Listing 2.1, as in every HTML page, the words starting with < and ending with > are actually coded commands. These coded commands are called HTML tags because they “tag” pieces of text and tell the web browser what kind of text it is. This allows the web browser to display the text appropriately.

The first line in the document is the document type declaration; you are declaring that it is HTML (specifically, HTML5) because html is the value used to declare a document as HTML5 in the <!DOCTYPE> tag.

[image: Images] TRY IT YOURSELF

Creating and Viewing a Basic Web Page

Before you learn the meaning of the HTML tags used in Listing 2.1, you might want to see exactly how I went about creating and viewing the document itself. Follow these steps:

1. Type all the text in Listing 2.1, including the HTML tags, in Windows Notepad (or use Macintosh TextEdit or another text editor of your choice).

2. Select File, Save As. Be sure to select plain text (or ASCII text) as the file type.

3. Name the file firstpage.html.

4. Choose the folder on your hard drive where you want to keep your web pages—and remember which folder you choose! Click the Save or OK button to save the file.

5. Now start your favorite web browser. (Leave Notepad running, too, so you can easily switch between viewing and editing your page.)

In Internet Explorer, select File, Open and click Browse. If you’re using Firefox, select File, Open File. Navigate to the appropriate folder and select the firstpage.html file. Some browsers and operating systems also enable you to drag and drop the firstpage.html file onto the browser window to view it.

Voila! You should see the page shown in Figure 2.1.

If you have obtained a web hosting account, you could use FTP at this point to transfer the firstpage.html file to the web server. In fact, from this chapter forward, the instructions assume that you have a hosting provider and are comfortable sending files back and forth via FTP; if that is not the case, you should review the first chapter before moving on. Alternatively, if you are consciously choosing to work with files locally (without a web host), be prepared to adjust the instructions to suit your particular needs (such as ignoring the commands “transfer the files” and “type in the URL”).

NOTE

You don’t need to be connected to the Internet to view a web page stored on your own computer. By default, your web browser probably tries to connect to the Internet every time you start it, which makes sense most of the time. However, this can be a hassle if you’re developing pages locally on your hard drive (offline) and you keep getting errors about a page not being found. If you have a full-time web connection via a cable modem, DSL, or Wi-Fi, this is a moot point because the browser will never complain about being offline. Otherwise, the appropriate action depends on your breed of browser; check the options under your browser’s Tools menu.

HTML Tags Every Web Page Must Have

The time has come for the secret language of HTML tags to be revealed to you. When you understand this language, you will have creative powers far beyond those of other humans. Don’t tell the other humans, but it’s really pretty easy.

The first line of code is the document type declaration; in HTML5, this is simply <!DOCTYPE html>.

This declaration identifies the document as being HTML5, which then ensures that web browsers know what to expect and can prepare to render content in HTML5.

Many HTML tags have two parts: an opening tag, which indicates where a piece of text begins, and a closing tag, which indicates where the piece of text ends. Closing tags start with a forward slash (/) just after the < symbol.

Another type of tag, or element, is the empty element, which is different in that it doesn’t include a pair of matching opening and closing tags. Instead, an empty element consists of a single tag that starts with the < symbol and ends with the > symbol. You may see some empty elements end with />, which is no longer required in HTML5 but did exist in previous versions of HTML.

Following is a quick summary of these three types of tags, just to make sure you understand the role each plays:

[image: Images] An opening tag is an HTML tag that indicates the start of an HTML command; the text affected by the command appears after the opening tag. Opening tags always begin with < and end with >, as in <html>.

[image: Images] A closing tag is an HTML tag that indicates the end of an HTML command; the text affected by the command appears before the closing tag. Closing tags always begin with </ and end with >, as in </html>.

[image: Images] An empty tag or empty element is an HTML tag that issues an HTML command without enclosing any text in the page. Examples include
 for line breaks and for images.

NOTE

You no doubt noticed in Listing 2.1 that there is some extra code associated with the <html> tag. This code consists of the language attribute (lang), which is used to specify additional information related to the tag. In this case, it specifies that the language of the text within the HTML is English. If you are writing in a different language, replace the en (for English) with the language identifier relevant to you.

For example, the <body> tag in Listing 2.1 tells the web browser where the actual body text of the page begins, and </body> indicates where it ends. Everything between the <body> and </body> tags appears in the main display area of the web browser window, as shown in Figure 2.1.

The very top of the browser window (refer to Figure 2.1) shows title text, which is any text that is located between <title> and </title>. The title text also identifies the page on the browser’s Bookmarks or Favorites menu, depending on which browser you use. It’s important to provide titles for your pages so that visitors to the page can properly bookmark them for future reference; search engines also use titles to provide a link to search results.

You will use the <body> and <title> tag pairs in every HTML page you create because every web page needs a title and body text. You will also use the <html> and <head> tag pairs, which are the other two tags shown in Listing 2.1. Putting <html> at the very beginning of a document simply indicates that the document is a web page. The </html> at the end indicates that the web page is over.

Within a page, there is a head section and a body section. Each section is identified by <head> and <body> tags. The idea is that information in the head of the page somehow describes the page but isn’t actually displayed by a web browser. Information placed in the body, however, is displayed by a web browser. The <head> tag always appears near the beginning of the HTML code for a page, just after the opening <html> tag.

TIP

You might find it convenient to create and save a bare-bones page (also known as a skeleton page, or template) with just the DOCTYPE and opening and closing <html>, <head>, <title>, and <body> tags, similar to the document in Listing 2.1. You can then open that document as a starting point whenever you want to make a new web page and save yourself the trouble of typing all those obligatory tags every time.

The <title> tag pair used to identify the title of a page appears within the head of the page, which means it is placed after the opening <head> tag and before the closing </head> tag. In upcoming lessons, you’ll learn about some other advanced header information that can go between <head> and </head>, such as style sheet rules for formatting the page.

The <p></p> tag pair in Listing 2.1 encloses a paragraph of text. You should enclose your chunks of text in the appropriate container elements whenever possible; you’ll learn more about container elements as you move forward in your lessons.

Using Hyperlinks in Web Pages

There is no rule that says you have to include links in your web content, but you would be hard-pressed to find a website that doesn’t include at least one link either to another page on the same domain (for example, yourdomain.com), another domain, or even the same page. Links are all over the web, but it is important to understand a little bit of the “under the hood” details of links.

When files are part of the same domain, you can link to them by simply providing the name of the file in the href attribute of the <a> tag. An attribute is an extra piece of information associated with a tag that provides further details about the tag. For example, the href attribute of the <a> tag identifies the address of the page to which you are linking.

When you have more than a few pages, or when you start to have an organizational structure to the content in your site, you should put your files into directories (or folders, if you will) whose names reflect the content within them. For example, all your images could be in an images directory, company information could be in an about directory, and so on. Regardless of how you organize your documents within your own web server, you can use relative addresses, which include only enough information to find one page from another. A relative address describes the path from one web page to another, instead of a full (or absolute) Internet address which includes the full protocol (http or https) and the domain name (like www.yourdomain.com).

As you recall from Chapter 1, “Understanding How the Web Works,” the document root of your web server is the directory designated as the top-level directory for your web content. In web addresses, that document root is represented by the forward slash (/). All subsequent levels of directories are separated by the same type of forward slash. Here’s an example:

Click here to view code image

/directory/subdirectory/subsubdirectory/

CAUTION

The forward slash (/) is always used to separate directories in HTML. Don’t use the backslash (\, which is normally used in Windows) to separate your directories. Remember, everything on the Web moves forward, so use forward slashes.

Suppose you are creating a page named zoo.html in your document root, and you want to include a link to pages named african.html and asian.html in the elephants subdirectory. The links would look like the following:

Click here to view code image

Learn about African elephants.

Learn about Asian elephants.

Linking Within a Page Using Anchors

The <a> tag—the tag responsible for hyperlinks on the Web—got its name from the word anchor, because a link serves as a designation for a spot in a web page. The <a> tag can be used to mark a spot on a page as an anchor, enabling you to create a link that points to that exact spot. For example, the top of a page could be marked as:

The <a> tag normally uses the href attribute to specify a hyperlinked target. The <a href> is what you click, and <a id> is where you go when you click there. In this example, the <a> tag is still specifying a target, but no actual link is created that you can see. Instead, the <a> tag gives a name to the specific point on the page where the tag occurs. The tag must be included and a unique name must be assigned to the id attribute, but no text between <a> and is necessary.

To link to this location, you would use the following:

Click here to view code image

Go to Top of Page

Linking to External Web Content

The only difference between linking to pages within your own site and linking to external web content is that when linking outside your site, you need to include the full address to that content. The full address includes the http:// before the domain name and then the full pathname to the file (for example, an HTML file, an image file, or a multimedia file).

For example, to include a link to Google from within one of your own web pages, you would use this type of absolute addressing in your <a> link:

Click here to view code image

Go to Google

CAUTION

As you might know, you can leave out the http:// at the front of any address when typing it into most web browsers. However, you cannot leave that part out when you type an Internet address into an <a href> link on a web page.

You can apply what you learned in previous sections to creating links to named anchors on other pages. Linked anchors are not limited to the same page. You can link to a named anchor on another page by including the address or filename followed by # and the anchor name. For example, the following link would take you to an anchor named photos within the african.html page inside the elephants directory on the (fictional) domain www.takeme2thezoo.com:

Click here to view code image

Check out the African Elephant Photos!

If you are linking from another page already on the www.takeme2thezoo.com domain (because you are, in fact, the site maintainer), your link might simply be as follows:

Click here to view code image

Check out the

African Elephant Photos!

The http:// and the domain name would not be necessary in that instance, as you have already learned.

CAUTION

Be sure to include the # symbol only in <a href> link tags. Don’t put the # symbol in the <a id> tag; links to that name won’t work in that case.

Linking to an Email Address

In addition to linking between pages and between parts of a single page, the <a> tag enables you to link to email addresses. This is the simplest way to enable your web page visitors to talk back to you. Of course, you could just provide visitors with your email address and trust them to type it into whatever email programs they use, but that increases the likelihood for errors. By providing a clickable link to your email address, you make it almost completely effortless for them to send you messages and eliminate the chance for typos.

An HTML link to an email address looks like the following:

Click here to view code image

Send me an

email message.

The words Send me an email message will appear just like any other <a> link.

Having taken this brief foray into the world of hyperlinks, let’s get back to content organization and display.

Organizing a Page with Paragraphs and Line Breaks

When a web browser displays HTML pages, it pays no attention to line endings or the number of spaces between words in the underlying text file itself. For example, the top version of the poem in Figure 2.2 appears with a single space between all words, even though that’s not how it’s shown in Listing 2.2. This is because extra whitespace in HTML code is automatically reduced to a single space when rendered by the web browser. Additionally, when the text reaches the edge of the browser window, it automatically wraps to the next line, no matter where the line breaks were in the original HTML file.

[image: Images]

FIGURE 2.2
When the HTML in Listing 2.2 is viewed as a web page, line and paragraph breaks appear only where there are
 and <p> tags.

LISTING 2.2 HTML Containing Paragraph and Line Breaks

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>The Advertising Agency Song</title>

 </head>

 <body>

 <p>

 When your client's hopping mad,

 put his picture in the ad.

 If he still should prove refractory,

 add a picture of his factory.

 </p>

 <hr>

 <p>

 When your client's hopping mad,

 put his picture in the ad.

 </p>

 <p>

 If he still should prove refractory,

 add a picture of his factory.

 </p>

 </body>

</html>

You must use HTML tags if you want to control where line and paragraph breaks actually appear. When text is enclosed within the <p></p> container tags, a line break is assumed after the closing tag. In later chapters, you’ll learn to control the height of the line break using CSS. The
 tag forces a line break within a paragraph. Unlike the other tags you’ve seen so far,
 doesn’t require a closing </br> tag—this is one of those empty elements discussed earlier.

The poem in Listing 2.2 and Figure 2.2 shows the
 and <p> tags used to separate the lines and verses of an advertising agency song. You might have also noticed the <hr> tag in the listing, which causes a horizontal rule line to appear on the page (see Figure 2.2). Inserting a horizontal rule with the <hr> tag also causes a line break, even if you don’t include a
 tag along with it. Like
, the <hr> horizontal rule tag is an empty element and, therefore, never gets a closing </hr> tag.

[image: Images] TRY IT YOURSELF

Formatting Text in HTML

Try your hand at formatting a passage of text as proper HTML:

1. Add <html><head><title> My Title </title></head><body> to the beginning of the text (using your own title for your page instead of My Title). Also include the boilerplate code at the top of the page that takes care of meeting the requirements of standard HTML.

2. Add </body></html> to the very end of the text.

3. Add a <p> tag at the beginning of each paragraph and a </p> tag at the end of each paragraph.

4. Use
 tags anywhere you want single-spaced line breaks.

5. Use <hr> to draw horizontal rules separating major sections of text, or wherever you’d like to see a line across the page.

6. Save the file as mypage.html (using your own filename instead of mypage).

CAUTION

If you are using a word processor to create the web page, be sure to save the HTML file in plain text or ASCII format.

7. Open the file in a web browser to see your web content. (Send the file via FTP to your web hosting account, if you have one.)

8. If something doesn’t look right, go back to the text editor to make corrections and save the file again (and send it to your web hosting account, if applicable). You then need to click Reload/Refresh in the browser to see the changes you made.

Organizing Your Content with Headings

When you browse web pages on the Internet, you’ll notice that many of them have a heading at the top that appears larger and bolder than the rest of the text. Listing 2.3 is sample code and text for a simple web page containing an example of a heading as compared to normal paragraph text. Any text between the <h1> and </h1> tags will appear as a large heading. Additionally, <h2> and <h3> make progressively smaller headings, all the way down to <h6>.

LISTING 2.3 Using Heading Tags

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>My Widgets</title>

 </head>

 <body>

 <h1>My Widgets</h1>

 <p>My widgets are the best in the land. Continue reading to

 learn more about my widgets.</p>

 <h2>Widget Features</h2>

 <p>If I had any features to discuss, you can bet I'd do

 it here.</p>

 <h3>Pricing</h3>

 <p>Here, I would talk about my widget pricing.</p>

 <h3>Comparisons</h3>

 <p>Here, I would talk about how my widgets compare to my

 competitor's widgets.</p>

 </body>

</html>

NOTE

By now, you’ve probably caught on to the fact that HTML code is often indented by its author to reveal the relationship between different parts of the HTML document, as well as for simple ease of reading. This indentation is entirely voluntary—you could just as easily run all the tags together with no spaces or line breaks, and they would still look fine when viewed in a browser. The indentations are for you so that you can quickly look at a page full of code and understand how it fits together. Indenting your code is another good web design habit and ultimately makes your pages easier to maintain, both for yourself and for anyone else who might pick up where you leave off.

As you can see in Figure 2.3, the HTML that creates headings couldn’t be simpler. In this example, the phrase “My Widgets” is given the highest level of heading, and is prominently displayed, by surrounding it with the <h1></h1> tag pair. For a slightly smaller (level 2) heading—for information that is of lesser importance than the title—use the <h2> and </h2> tags around your text. For content that should appear even less prominently than a level 2 heading, use the <h3> and </h3> tags around your text.

However, bear in mind that your headings should follow a content hierarchy; use only one level 1 heading, have one (or more) level 2 headings after the level 1 heading, use level 3 headings only after level 2 headings, and so on. Do not fall into the trap of assigning headings to content just to make that content display a certain way, such as by skipping headings. Instead, ensure that you are categorizing your content appropriately (as a main heading, a secondary heading, and so on) while using display styles to make that text render a particular way in a web browser.

You can also use <h4>, <h5>, and <h6> tags to make progressively less important headings. By default, web browsers seldom show a noticeable difference between these headings and the <h3> headings—although you can control that with your own CSS. Also, content usually isn’t displayed in such a manner that you’d need six levels of headings to show the content hierarchy.

It’s important to remember the difference between a title and a heading. These two words are often interchangeable in day-to-day English, but when you’re talking HTML, <title> gives the entire page an identifying name that isn’t displayed on the page itself; it’s displayed only on the browser window’s title bar. The heading tags, on the other hand, cause some text on the page to be displayed with visual emphasis. There can be only one <title> per page, and it must appear within the <head> and </head> tags; on the other hand, you can have as many <h1>, <h2>, and <h3> headings as you want, in any order that suits your fancy. However, as I mentioned before, you should use the heading tags to keep tight control over content hierarchy (logic dictates only one <h1> heading); do not use headings as a way to achieve a particular look, because that’s what CSS is for.

[image: Images]

FIGURE 2.3
Using three levels of headings shows the hierarchy of content on this sample product page.

CAUTION

Don’t forget that anything placed in the head of a web page is not intended to be viewed on the page, whereas everything in the body of the page is intended for viewing.

Peeking at Other Designers’ Pages

Given the visual and sometimes audio pizzazz present in many popular web pages, you probably realize that the simple pages described in this lesson are only the tip of the HTML iceberg. Now that you know the basics, you might surprise yourself with how much of the rest you can pick up just by looking at other people’s pages on the Internet. You can see the HTML for any page by right-clicking and selecting View Source in any web browser.

Don’t worry if you aren’t yet able to decipher what some HTML tags do or exactly how to use them yourself. You’ll find out about all those things as you move forward in the book. However, sneaking a preview now will show you the tags that you do know in action and give you a taste of what you’ll soon be able to do with your web pages.

Understanding Semantic Elements

HTML5 includes tags that enable you to enhance the semantics—the meaning—of the information you provide in your marked-up text. Instead of simply using HTML as a presentation language, as was the practice in the very early days when for bold and <i> for italics was the norm, modern HTML has as one of its goals the separation of presentation and meaning. While using CSS to provide guidelines for presentation, composers of HTML can provide meaningful names within their markup for individual elements, not only through the use of IDs and class names (which you’ll learn about later in this chapter), but also through the use of semantic elements.

Some of the semantic elements available in HTML5 follow:

[image: Images] <header></header>—This might seem counterintuitive, but you can use multiple <header> tags within a single page. The <header> tag should be used as a container for introductory information, so it might be used only once in your page (likely at the top), but you also might use it several times if your page content is broken into sections. Any container element can have a <header> element; just make sure that you’re using it to include introductory information about the element it is contained within.

[image: Images] <footer></footer>—The <footer> tag is used to contain additional information about its containing element (page or section), such as copyright and author information or links to related resources.

[image: Images] <nav></nav>—If your site has navigational elements, such as links to other sections within a site or even within the page itself, these links go in a <nav> tag. A <nav> tag typically is found in the first instance of a <header> tag, just because people tend to put navigation at the top and consider it introductory information—but that is not a requirement. You can put your <nav> element anywhere (as long as it includes navigation), and you can have as many on a page as you need (often no more than two, but you might feel otherwise).

[image: Images] <section></section>—The <section> tag contains anything that relates thematically; it can also contain a <header> tag for introductory information and possibly a <footer> tag for other related information. You can think of a <section> as carrying more meaning than a standard <p> (paragraph) or <div> (division) tag, which typically conveys no meaning at all; the use of <section> conveys a relationship between the content elements it contains.

[image: Images] <article></article>—An <article> tag is like a <section> tag, in that it can contain a <header>, a <footer>, and other container elements such as paragraphs and divisions. But the additional meaning carried with the <article> tag is that it is, well, like an article in a newspaper or some other publication. Use this tag around blog posts, news articles, reviews, and other items that fit this description. One key difference between an <article> and a <section> is that an <article> is a standalone body of work, whereas a <section> is a thematic grouping of information.

[image: Images] <aside></aside>—Use the <aside> tag to indicate secondary information; if the <aside> tag is within a <section> or an <article>, the relationship will be to those containers; otherwise, the secondary relationship will be to the overall page or site itself. It might make sense to think of the <aside> as a sidebar—either for all the content on the page or for an article or other thematic container of information.

These semantic elements will become clearer as you practice using them. In general, using semantic elements is a good idea because they provide additional meaning not only for you and other designers and programmers reading and working with your markup, but also for machines. Web browsers and screen readers will respond to your semantic elements by using them to determine the structure of your document; screen readers will report a deeper meaning to users, thus increasing the accessibility of your material.

One of the best ways to understand the HTML5 semantic elements is to see them in action, but that can be a little difficult when the primary purpose of these elements is to provide meaning rather than design. That’s not to say that you can’t add design to these elements—you most certainly can. But the “action” of the semantic elements is to hold content and provide meaning through doing so, as in Figure 2.4, which shows a common use of semantic elements for a basic web page.

[image: Images]

FIGURE 2.4
Showing basic semantic elements in a web page.

Initially, you might think, “Of course, that makes total sense, with the header at the top and the footer at the bottom,” and feel quite good about yourself for understanding semantic elements at first glance—and you should! A second glance should then raise some questions: What if you want your navigation to be horizontal under your header? Does an aside have to be (literally) on the side? What if you don’t want any asides? What’s with the use of <header> and <footer> again within the main body section? And that’s just to name a few! Something else you might wonder about is where the <article> element fits in; it isn’t shown in this example but will be used later in this chapter.

This is the time when conceptualizing the page—and specifically the page you want to create—comes into play. If you understand the content you want to mark up and you understand that you can use any, all, or none of the semantic elements and still create a valid HTML document, then you can begin to organize the content of your page in the way that makes the most sense for it and for you (and, hopefully, for your readers).

NOTE

Although you do not need to use semantic elements to create a valid HTML document, even a minimal set is recommended so that web browsers and screen readers can determine the structure of your document. Screen readers are capable of reporting a deeper meaning to users, thus increasing the accessibility of your material.

(If this note were marked up in an HTML document, it would use the <aside> element.)

Let’s take a look at the elements used in Figure 2.4 before moving on to a second example and then a deeper exploration of the individual elements themselves. In Figure 2.4, you see a <header> at the top of the page and a <footer> at the bottom—straightforward, as already mentioned. The use of a <nav> element on the left side of the page matches a common display area for navigation, and the <aside> element on the right side of the page matches a common display area for secondary notes, pull quotes, helper text, and “for more information” links about the content. In Figure 2.5, you’ll see some of these elements shifted around, so don’t worry—Figure 2.4 is not some immutable example of semantic markup.

Something you might be surprised to see in Figure 2.5 is the <header> and <footer> inside the <section> element. As you’ll learn shortly, the role of the <header> element is to introduce a second example and then a deeper exploration of the individual elements themselves. In Figure 2.4, you see a <header> at the top of the page and a <footer> at the bottom—straightforward, as already mentioned. The use of a <nav> element on the left side of the page matches the content that comes after it, and the <header> element itself does not convey any level in a document outline. Therefore, you can use as many as you need to mark up your content appropriately; a <header> at the beginning of the page might contain introductory information about the page as a whole, and the <header> element within the <section> element might just as easily and appropriately contain introductory information about the content within it. The same is true for the multiple appearances of the <footer> element in this example.

[image: Images]

FIGURE 2.5
Using nested semantic elements to add more meaning to the content.

Let’s move on to Figure 2.5, which shifts around the <nav> element and also introduces the use of the <article> element.

In Figure 2.5, the <header> and <nav> elements at the beginning of the page, and the <footer> element at the bottom of the page, should make perfect sense to you. And, although we haven’t talked about the <article> element yet, if you think about it as a container element that has sections (<section>s, even!), with each of those sections having its own heading, then the chunk of semantic elements in the middle of the figure should make sense, too. As you can see, there’s no single way to conceptualize a page; you should conceptualize content, and that content will be different on each page in a web site.

If you marked up some content in the structure shown in Figure 2.5, it might look like Listing 2.4.

LISTING 2.4 Semantic Markup of Basic Content

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Semantic Example</title>

 </head>

 <body>

 <header>

 <h1>SITE OR PAGE LOGO GOES HERE</h1>

 </header>

 <nav>

 SITE OR PAGE NAV GOES HERE.

 </nav>

 <article>

 <header>

 <h2>Article Heading</h2>

 </header>

 <section>

 <header>

 <h3>Section 1 Heading</h3>

 </header>

 <p>Section 1 content here.</p>

 </section>

 <section>

 <header>

 <h3>Section 2 Heading</h3>

 </header>

 <p>Section 2 content here.</p>

 </section>

 <footer>

 <p>Article footer goes here.</p>

 </footer>

 </article>

 <footer>

 SITE OR PAGE FOOTER HERE

 </footer>

 </body>

</html>

If you opened this HTML document in your web browser, you would see something like what’s shown in Figure 2.6—a completely unstyled document, but one that has semantic meaning (even if no one can “see” it).

[image: Images]

FIGURE 2.6
The output of Listing 2.4.

Just because there is no visible styling doesn’t mean the meaning is lost; as noted earlier in this section, machines can interpret the structure of the document as provided for through the semantic elements. You can see the outline of this basic document in Figure 2.7, which shows the output of this file after examination by the HTML5 Outline tool at http://gsnedders.html5.org/outliner/.

TIP

Using the HTML5 Outline tool is a good way to check that you’ve created your headers, footers, and sections; if you examine your document and see “untitled section” anywhere, and those untitled sections do not match up with a <nav> or <aside> element (which has more relaxed guidelines about containing headers), then you have some additional work to do.

Now that you’ve seen some examples of conceptualizing the information represented in your documents, you’re better prepared to start marking up those documents. The sections that follow take a look at the semantic elements individually.

[image: Images]

FIGURE 2.7
The outline of this document follows the semantic markup.

Using <header> in Multiple Ways

At the most basic level, the <header> element contains introductory information. That information might take the form of an actual <h1> (or other level) element, or it might simply be a logo image or text contained within a <p> or <div> element. The meaning of the content should be introductory in nature, to warrant its inclusion within a <header></header> tag pair.

As you’ve seen in the examples so far in this lesson, a common placement of a <header> element is at the beginning of a page. When it’s used in this way, containing a logo or an <h1>-level title makes sense, such as here:

Click here to view code image

<header>

</header>

Or even here:

Click here to view code image

<header>

 <h1>The finest widgets are made here!</h1>

</header>

Both snippets are valid uses of <header> because the information contained within them is introductory to the page overall.

As you’ve also seen in this chapter, you are not limited to only one <header>. You can go crazy with your <header> elements, as long as they are acting as containers for introductory information—Listing 2.4 showed the use of <header> elements for several <section> elements within an <article>, and this is a perfectly valid use of the element:

Click here to view code image

<section>

 <header>

 <h3>Section 1 Heading</h3>

 </header>

 <p>Section 1 content here.</p>

</section>

<section>

 <header>

 <h3>Section 2 Heading</h3>

 </header>

 <p>Section 2 content here.</p>

</section>

The <header> element can contain any other element in the flow content category, of which it is also a member. This means that a <header> could contain a <section> element, if you wanted, and be perfectly valid markup. However, when you are conceptualizing your content, think about whether that sort of nesting makes sense before you go off and do it.

NOTE

In general, flow content elements are elements that contain text, images, or other multimedia embedded content; HTML elements fall into multiple categories.

If you want to learn more about the categorization of elements into content models, see http://www.w3.org/TR/2011/WD-html5-20110525/content-models.html.

The only exceptions to the permitted content within <header> are that the <header> element cannot contain other <header> elements and it cannot contain a <footer> element. Similarly, the <header> element cannot be contained within a <footer> element.

Understanding the <section> Element

The <section> element has a simple definition: It is a “generic section of a document” that is also a “thematic grouping of content, typically with a heading.” That sounds pretty simple to me, and probably does to you as well. So you might be surprised to find that if you type “difference between section and article in HTML5” in your search engine of choice, you’ll find tens of thousands of entries talking about the differences because the definitions trip people up all the time. We first discuss the <section> element and then cover the <article> element—and hopefully avoid any of the misunderstandings that seem to plague new web developers.

In Listing 2.4, you saw a straightforward example of using <section> within an <article> (repeated here). In this example, you can easily imagine that the <section>s contain a “thematic grouping of content,” which is supported by the fact that they each have a heading:

Click here to view code image

<article>

 <header>

 <h2>Article Heading</h2>

 </header>

 <section>

 <header>

 <h3>Section 1 Heading</h3>

 </header>

 <p>Section 1 content here.</p>

 </section>

 <section>

 <header>

 <h3>Section 2 Heading</h3>

 </header>

 <p>Section 2 content here.</p>

 </section>

 <footer>

 <p>Article footer goes here.</p>

 </footer>

</article>

But here’s an example of a perfectly valid use of <section> with no <article> element in sight:

Click here to view code image

<section>

 <header>

 <h1>Super Heading</h1>

 </header>

 <p>Super content!</p>

</section>

So what’s a developer to do? Let’s say you have some generic content that you know you want to divide into sections with their own headings. In that case, use <section>. If you need to only visually delineate chunks of content (such as with paragraph breaks) that do not require additional headings, then <section> isn’t for you—use <p> or <div> instead.

Because the <section> element can contain any other flow content element, and can be contained within any other flow content element (except the <address> element, discussed later in this chapter), it’s easy to see why, without other limitations and with generic guidelines for use, the <section> element is sometimes misunderstood.

Using <article> Appropriately

Personally, I believe that a lot of the misunderstanding regarding the use of <section> versus <article> has to do with the name of the <article> element. When I think of an article, I think specifically about an article in a newspaper or a magazine. I don’t naturally think “any standalone body of work,” which is how the <article> element is commonly defined. The HTML5 recommended specification defines it as “a complete, or self-contained, composition in a document, page, application, or site and that is, in principle, independently distributable or reusable,” such as “a forum post, a magazine or newspaper article, a blog entry, a user-submitted comment, an interactive widget or gadget, or any other independent item of content.”

In other words, an <article> element could be used to contain the entire page of a website (whether or not it is an article in a publication), an actual article in a publication, a blog post anywhere and everywhere, part of a threaded discussion in a forum, a comment on a blog post, and as a container that displays the current weather in your city. It’s no wonder there are tens of thousands of results for a search on “difference between section and article in HTML5.”

A good rule of thumb when you’re trying to figure out when to use <article> and when to use <section> is simply to answer the following question: Does this content make sense on its own? If so, then no matter what the content seems to be to you (for example, a static web page, not an article in the New York Times), start by using the <article> element. If you find yourself breaking it up, do so in <section>s. And if you find yourself thinking that your “article” is, in fact, part of a greater whole, then change the <article> tags to <section> tags, find the beginning of the document, and surround it from there with the more appropriately placed <article> tag at a higher level.

Implementing the <nav> Element

The <nav> element seems so simple (<nav> implies navigation), and it ultimately is—but it can also be used incorrectly. In this section, you’ll learn some basic uses, and also some incorrect uses to avoid. If your site has any navigational elements at all, either sitewide or within a long page of content, you have a valid use for the <nav> element.

For that sitewide navigation, you typically find a <nav> element within the primary <header> element; you are not required to put it there, but if you want your navigational content to be introductory (and omnipresent in your template), you can easily make a case for your primary <nav> element to appear within the primary <header>. More important, that is valid HTML (as is <nav> outside a <header>) because a <nav> element can appear within any flow content, as well as contain any flow content.

The following code snippet shows the main navigational links of a website, placed within a <header> element:

Click here to view code image

<header>

 <h1>The finest widgets are made here!</h1>

 <nav>

 About Us

 Products

 Support

 Press

 </nav>

</header>

You are not limited to a single <nav> element in your documents, which is good for site developers who create templates that include both primary and secondary navigation. For example, you might see horizontal primary navigation at the top of a page (often contained within a <header> element), and then vertical navigation in the left column of a page, representing the secondary pages within the main section. In that case, you simply use a second <nav> element, not contained within the <header>, placed and styled differently to delineate the two types visually in addition to semantically.

Remember, the <nav> element is used for major navigational content—primary and secondary navigation both count, as does the inclusion of tables of contents within a page. For good and useful semantic use of the <nav> element, do not simply apply it to every link that allows a user to navigate anywhere. Note that I said “good and useful” semantic use, not necessarily “valid” use—it’s true that you could apply <nav> to any list of links, and it would be valid according to the HTML specification because links are flow content. But it wouldn’t be particularly useful—it wouldn’t add meaning—to surround a list of links to social media sharing tools with the <nav> element.

When to Use <aside>

As you’ll see by the number of tips and notes from me throughout this book, I’m a big fan of the type of content that is most appropriately marked up within the <aside> element. The <aside> element is meant to contain any content that is tangentially related to the content around it—additional explanation, links to related resources, pull quotes, helper text, and so on. You might think of the <aside> element as a sidebar, but be careful not to think of it only as a visual sidebar, or a column on the side of a page where you can stick anything and everything you want, whether or not it’s related to the content or site at hand.

In Figure 2.8, you can see how content in an <aside> is used to create a pull quote, or a content excerpt that is specifically set aside to call attention to it. The <aside>, in this case, is used to highlight an important section of the text, but it could also have been used to define a term or link to related documents.

[image: Images]

FIGURE 2.8
Using <aside> to create meaningful pull quotes.

When determining whether to use the <aside> element, think about the content you want to add. Is it related directly to the content in which the <aside> would be contained, such as a definition of terms used in an article or a list of related links for the article? If your answer is an easy yes, that’s great! Use <aside> to your heart’s content. If you’re thinking of including an <aside> outside a containing element that is itself full of content, just make sure that the content of the <aside> is reasonably related to your site overall and that you’re not just using the <aside> element for visual effect.

Using <footer> Effectively

The counterpart to the <header> element, the <footer> element, contains additional information about its containing element. The most common use of the <footer> element is to contain copyright information at the bottom of a page, such as here:

Click here to view code image

<footer>

 <p>© 2017 Acme Widgets, LLC. All Rights Reserved.</p>

</footer>

Similar to the <header> element, the <footer> element can contain any other element in the flow content category, of which it is also a member, with the exception of other <footer> or <header> elements. Additionally, a <footer> element cannot be contained within an <address> element, but a <footer> element can contain an <address> element—in fact, a <footer> element is a common location for an <address> element to reside in.

Placing useful <address> content within a <footer> element is one of the most effective uses of the <footer> element (not to mention the <address> element) because it provides specific contextual information about the page or section of the page to which it refers. The following snippet shows a use of <address> within <footer>:

Click here to view code image

<footer>

 <p>© 2017 Acme Widgets, LLC. All Rights Reserved.</p>

 <p>Copyright Issues? Contact:</p>

 <address>

 Our Lawyer

 123 Main Street

 Somewhere, CA 95128

 lawyer@example.com

 </address>

</footer>

As with the <header> element, you are not limited to only one <footer>. You can use as many <footer> elements as you need, as long as they are containers for additional information about the containing element—Listing 2.4 showed the use of <footer> elements for both a page and an <article>, both of which are valid.

How CSS Works

In the preceding sections, you learned the basics of HTML, including how to set up a skeletal HTML template for all your web content, use hyperlinks, and generally organize your content. In this section, you’ll learn the basics of fine-tuning the visual display of your web content using Cascading Style Sheets (CSS).

The concept behind style sheets is simple: You create a style sheet document that specifies the fonts, colors, spacing, and other characteristics that establish a unique look for a website. You then link every page that should have that look to the style sheet instead of specifying all those styles repeatedly in each separate document. Therefore, when you decide to change your official corporate typeface or color scheme, you can modify all your web pages at once just by changing one or two entries in your style sheet—you don’t have to change them in all your static web files. So a style sheet is a grouping of formatting instructions that control the appearance of several HTML pages at once.

Style sheets enable you to set a great number of formatting characteristics, including exact typeface controls, letter and line spacing, and margins and page borders, just to name a few. Style sheets also enable you to specify sizes and other measurements in familiar units, such as inches, millimeters, points, and picas. In addition, you can use style sheets to precisely position graphics and text anywhere on a web page, either at specific coordinates or relative to other items on the page.

In short, style sheets bring a sophisticated level of display to the Web—and they do so, if you’ll pardon the expression, with style.

NOTE

If you have three or more web pages that share (or should share) similar formatting and fonts, you might want to create a style sheet for them as you read this chapter. Even if you choose not to create a complete style sheet, you’ll find it helpful to apply styles to individual HTML elements directly within a web page.

A style rule is a formatting instruction that can be applied to an element on a web page, such as a paragraph of text or a link. Style rules consist of one or more style properties and their associated values. An internal style sheet is placed directly within a web page, whereas an external style sheet exists in a separate document and is simply linked to a web page via a special tag—more on this tag in a moment.

The cascading part of the name Cascading Style Sheets refers to the manner in which style sheet rules are applied to elements in an HTML document. More specifically, styles in a CSS style sheet form a hierarchy in which more specific styles override more general styles. It is the responsibility of CSS to determine the precedence of style rules according to this hierarchy, which establishes a cascading effect. If that sounds a bit confusing, just think of the cascading mechanism in CSS as being similar to genetic inheritance, in which general traits are passed from parents to a child, but more specific traits are entirely unique to the child. Base-style rules are applied throughout a style sheet but can be overridden by more specific style rules.

NOTE

You might notice that I use the term element a fair amount in this chapter (and I do in the rest of the book, for that matter). An element is simply a piece of information (content) in a web page, such as an image, a paragraph, or a link. Tags are used to mark up elements, and you can think of an element as a tag, complete with descriptive information (attributes, text, images, and so on) within the tag.

A quick example should clear things up. Take a look at the following code to see whether you can tell what’s going on with the color of the text:

Click here to view code image

<div style="color:green">

 This text is green.

 <p style="color:blue">This text is blue.</p>

 <p>This text is still green.</p>

</div>

In the preceding example, the color green is applied to the <div> tag via the color style property. Therefore, the text in the <div> tag is colored green. Because both <p> tags are children of the <div> tag, the green text style cascades down to them. However, the first <p> tag overrides the color style and changes it to blue. The end result is that the first line (not surrounded by a paragraph tag) is green, the first official paragraph is blue, and the second official paragraph retains the cascaded green color.

If you made it through that description on your own and came out on the other end unscathed, congratulations—that’s half the battle. Understanding CSS isn’t like understanding rocket science—the more you practice, the more it will become clear. The real trick is developing the aesthetic design sense that you can then apply to your online presence through CSS.

Like many web technologies, CSS has evolved over the years. The original version of CSS, known as Cascading Style Sheets Level 1 (CSS1), was created in 1996. The later CSS2 standard was created in 1998, and CSS2 is still in use today; all modern web browsers support CSS2. The latest version of CSS is CSS3, which builds on the strong foundation laid by its predecessors but adds advanced functionality to enhance the online experience. In the following sections you’ll learn core CSS, and throughout the rest of the book when CSS is discussed or used, I’ll refer to CSS3.

The rest of this chapter explains the basics of putting CSS to good use, but it’s not a reference for all things CSS. Nor is the rest of this book, which will show plenty of examples of basic CSS in use as you learn to build dynamic web applications. However, you can find a developer-oriented guide to CSS at https://developer.mozilla.org/en-US/docs/Web/CSS that gets into excruciating detail regarding everything you can do with CSS. This guide can be an invaluable reference to you as you continue on your web development journey.

A Basic Style Sheet

Despite their power, style sheets are simple to create. Consider the web pages shown in Figures 2.9 and 2.10. These pages share several visual properties that can be put into a common style sheet:

[image: Images] They use a large, bold Verdana font for the headings and a normal-size and normal-weight Verdana font for the body text.

[image: Images] They use an image named logo.gif floating within the content and on the right side of the page.

[image: Images] All text is black except for subheadings, which are purple.

[image: Images] They have margins on the left side and at the top.

[image: Images] They include vertical space between lines of text.

[image: Images] They include a footer that is centered and in small print.

[image: Images]

FIGURE 2.9
This page uses a style sheet to fine-tune the appearance and spacing of the text and images.

[image: Images]

FIGURE 2.10
This page uses the same style sheet as the one in Figure 2.9, thus maintaining a consistent look and feel.

Listing 2.5 shows the CSS used in a style sheet to specify these properties.

LISTING 2.5 A Single External Style Sheet

Click here to view code image

body {

 font-size: 10pt;

 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;

 color: black;

 line-height: 14pt;

 padding-left: 5pt;

 padding-right: 5pt;

 padding-top: 5pt;

}

h1 {

 font: 14pt Verdana, Geneva, Arial, Helvetica, sans-serif;

 font-weight: bold;

 line-height: 20pt;

}

p.subheader {

 font-weight: bold;

 color: #593d87;

}

img {

 padding: 3pt;

 float: right;

}

a {

 text-decoration: none;

}

a:link, a:visited {

 color: #8094d6;

}

a:hover, a:active {

 color: #FF9933;

}

footer {

 font-size: 9pt;

 font-style: italic;

 line-height: 12pt;

 text-align: center;

 padding-top: 30pt;

}

This might initially appear to be a lot of code, but if you look closely, you’ll see that there isn’t a lot of information on each line of code. It’s fairly standard to place individual style rules on their own line, to help make style sheets more readable, but that is a personal preference; you could put all the rules on one line as long as you kept using the semicolon to separate each rule (more on that in a bit). Speaking of code readability, perhaps the first thing you noticed about this style sheet code is that it doesn’t look anything like normal HTML code. CSS uses a syntax all its own to specify style sheets.

Of course, the listing includes some familiar HTML tags (although not all tags require an entry in the style sheet). As you might guess, body, h1, p, img, a, and footer in the style sheet refer to the corresponding tags in the HTML documents to which the style sheet will be applied. The curly braces after each tag name describe how all content within that tag should appear.

In this case, the style sheet says that all body text should be rendered at a size of 10 points, in the Verdana font (if possible), and with the color black, with 14 points between lines. If the user does not have the Verdana font installed, the list of fonts in the style sheet represents the order in which the browser should search for fonts to use: Geneva, then Arial, and then Helvetica. If the user has none of those fonts, the browser uses whatever default sans-serif font is available. Additionally, the page should have left, right, and top padding of 5 points each.

Any text within an <h1> tag should be rendered in boldface Verdana at a size of 14 points. Moving on, any paragraph that uses only the <p> tag inherits all the styles indicated by the body element. However, if the <p> tag uses a special class named subheader, the text appears bold and in the color #593d87 (a purple color).

The pt after each measurement in Listing 2.5 means points (there are 72 points in an inch). If you prefer, you can specify any style sheet measurement in inches (in), centimeters (cm), pixels (px), or “widths of a letter m,” which are called ems (em).

You might have noticed that each style rule in the listing ends with a semicolon (;). Semicolons are used to separate style rules from each other. It is therefore customary to end each style rule with a semicolon so that you can easily add another style rule after it. Review the remainder of the style sheet in Listing 2.5 to see the presentation formatting applied to additional tags.

NOTE

You can specify font sizes as large as you like with style sheets, although some display devices and printers do not correctly handle fonts larger than 200 points.

To link this style sheet to HTML documents, include a <link> tag in the <head> section of each document. Listing 2.6 shows the HTML code for the page shown in Figure 2.9. It contains the following <link> tag:

Click here to view code image

<link rel="stylesheet" type="text/css" href="styles.css">

This assumes that the style sheet is stored under the name styles.css in the same folder as the HTML document. As long as the web browser supports style sheets—and all modern browsers do—the properties specified in the style sheet will apply to the content in the page without the need for any special HTML formatting code. This meets one of the goals of HTML, which is to provide a separation between the content in a web page and the specific formatting required to display that content.

LISTING 2.6 HTML Code for the Page Shown in Figure 2.9

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>About BAWSI</title>

 <link rel="stylesheet" type="text/css" href="styles.css">

 </head>

 <body>

 <section>

 <header>

 <h1>About BAWSI</h1>

 </header>

 <p>The Bay Area Women's

 Sports Initiative (BAWSI) is a public benefit, nonprofit

 corporation with a mission to create programs and partnerships

 through which women athletes bring health, hope and wholeness to

 our community. Founded in 2005 by Olympic and World Cup soccer

 stars Brandi Chastain and Julie Foudy and Marlene Bjornsrud,

 former general manager of the San Jose CyberRays women's

 professional soccer team, BAWSI provides a meaningful path for

 women athletes to become a more visible and valued part of the

 Bay Area sports culture.</p>

 <p class="subheader">BAWSI's History</p>

 <p>The concept of BAWSI was inspired by one of the most

 spectacular achievements in women's sports history and born out

 of one its biggest disappointments… </p>

 <p>[continue reading]</p>

 </section>

 <footer>

 Copyright © 2005-2017 BAWSI (www.bawsi.org).

 All rights reserved. Used with permission.

 </footer>

 </body>

</html>

TIP

In most web browsers, you can view the style rules in a style sheet by opening the .css file and choosing Notepad or another text editor as the helper application to view the file. (To determine the name of the .css file, look at the HTML source of any web page that links to it.) To edit your own style sheets, just use a text editor.

The code in Listing 2.6 is interesting because it contains no formatting of any kind. In other words, nothing in the HTML code dictates how the text and images are to be displayed—no colors, no fonts, nothing. Yet the page is carefully formatted and rendered to the screen, thanks to the link to the external style sheet, styles.css. The real benefit to this approach is that you can easily create a site with multiple pages that maintains a consistent look and feel. And you have the benefit of isolating the visual style of the page to a single document (the style sheet) so that one change impacts all pages.

NOTE

Not every browser’s support of CSS is flawless. To find out how major browsers compare to each other in terms of CSS support, take a look at these websites: http://www.quirksmode.org/css/contents.html and http://caniuse.com.

[image: Images] TRY IT YOURSELF

Create a Style Sheet of Your Own

Starting from scratch, create a new text document called mystyles.css and add some style rules for the following basic HTML tags: <body>, <p>, <h1>, and <h2>. After creating your style sheet, make a new HTML file that contains these basic tags. Play around with different style rules and see for yourself how simple it is to change entire blocks of text in paragraphs with one simple change in a style sheet file.

A CSS Style Primer

You now have a basic knowledge of CSS style sheets and how they are based on style rules that describe the appearance of information in web pages. The next few sections of this chapter provide a quick overview of some of the most important style properties and enable you to get started using CSS in your own style sheets.

CSS includes various style properties that are used to control fonts, colors, alignment, and margins, to name just a few. The style properties in CSS can be generally grouped into two major categories:

[image: Images] Layout properties, which consist of properties that affect the positioning of elements on a web page, such as margins, padding, and alignment

[image: Images] Formatting properties, which consist of properties that affect the visual display of elements within a website, such as the font type, size, and color

Basic Layout Properties

CSS layout properties determine how content is placed on a web page. One of the most important layout properties is the display property, which describes how an element is displayed with respect to other elements. The display property has four basic values:

[image: Images] block—The element is displayed on a new line, as in a new paragraph.

[image: Images] list-item—The element is displayed on a new line with a list-item mark (bullet) next to it.

[image: Images] inline—The element is displayed inline with the current paragraph.

[image: Images] none—The element is not displayed; it is hidden.

NOTE

The display property relies on a concept known as relative positioning, which means that elements are positioned relative to the location of other elements on a page. CSS also supports absolute positioning, which enables you to place an element at an exact location on a page, independent of other elements. You’ll learn more about both of these types of positioning in Chapter 3, “Understanding the CSS Box Model and Positioning.”

Understanding the display property is easier if you visualize each element on a web page occupying a rectangular area when displayed—the display property controls the manner in which this rectangular area is displayed. For example, the block value results in the element being placed on a new line by itself, whereas the inline value places the element next to the content just before it. The display property is one of the few style properties that can be applied in most style rules. Following is an example of how to set the display property:

display: block;

You control the size of the rectangular area for an element with the width and height properties. As with many size-related CSS properties, width and height property values can be specified in several different units of measurement:

[image: Images] in—Inches

[image: Images] cm—Centimeters

[image: Images] mm—Millimeters

[image: Images] %—Percentage

[image: Images] px—Pixels

[image: Images] pt—Points

You can mix and match units however you choose within a style sheet, but it’s generally a good idea to be consistent across a set of similar style properties. For example, you might want to stick with points for font properties and pixels for dimensions. Following is an example of setting the width of an element using pixel units:

width: 200px;

Basic Formatting Properties

CSS formatting properties are used to control the appearance of content on a web page, as opposed to controlling the physical positioning of the content. One of the most popular formatting properties is the border property, which establishes a visible boundary around an element with a box or partial box. Note that a border is always present in that space is always left for it, but the border does not appear in a way that you can see unless you give it properties that make it visible (like a color). The following border properties provide a means of describing the borders of an element:

[image: Images] border-width—The width of the border edge

[image: Images] border-color—The color of the border edge

[image: Images] border-style—The style of the border edge

[image: Images] border-left—The left side of the border

[image: Images] border-right—The right side of the border

[image: Images] border-top—The top of the border

[image: Images] border-bottom—The bottom of the border

[image: Images] border—All the border sides

The border-width property establishes the width of the border edge. It is often expressed in pixels, as the following code demonstrates:

border-width: 5px;

Not surprisingly, the border-color and border-style properties set the border color and style. Following is an example of how these two properties are set:

border-color: blue;

border-style: dotted;

The border-style property can be set to any of the following basic values:

[image: Images] solid—A single-line border

[image: Images] double—A double-line border

[image: Images] dashed—A dashed border

[image: Images] dotted—A dotted border

[image: Images] groove—A border with a groove appearance

[image: Images] ridge—A border with a ridge appearance

[image: Images] inset—A border with an inset appearance

[image: Images] outset—A border with an outset appearance

[image: Images] none—No border

[image: Images] hidden—Effectively the same as none in that no border is displayed, but if two elements are next to each other with collapsed space between them, hidden ensures that a collapsed visible border does not show within the area of the element with a hidden border.

The default value of the border-style property is none, which is why elements don’t have a border unless you set the border property to a different style. Although solid is the most common border style, you will also see the other styles in use.

The border-left, border-right, border-top, and border-bottom properties enable you to set the border for each side of an element individually. If you want a border to appear the same on all four sides, you can use the single border property by itself, which expects the following styles separated by a space: border-width, border-style, and border-color. Following is an example of using the border property to set a border that consists of two (double) red lines that are a total of 10 pixels in width:

border: 10px double red;

Whereas the color of an element’s border is set with the border-color property, the color of the inner region of an element is set using the color and background-color properties. The color property sets the color of text in an element (foreground), and the background-color property sets the color of the background behind the text. Following is an example of setting both color properties to predefined colors:

color: black;

background-color: orange;

You can also assign custom colors to these properties by specifying the colors in hexadecimal or as RGB (Red, Green, Blue) decimal values:

background-color: #999999;

color: rgb(0,0,255);

You can also control the alignment and indentation of web page content without too much trouble. This is accomplished with the text-align and text-indent properties, as the following code demonstrates:

text-align: center;

text-indent: 12px;

When you have an element properly aligned and indented, you might be interested in setting its font. The following basic font properties set the various parameters associated with fonts:

[image: Images] font-family—The family of the font

[image: Images] font-size—The size of the font

[image: Images] font-style—The style of the font (normal or italic)

[image: Images] font-weight—The weight of the font (normal, lighter, bold, bolder, and so on)

The font-family property specifies a prioritized list of font family names. A prioritized list is used instead of a single value to provide alternatives in case a font isn’t available on a given system. The font-size property specifies the size of the font using a unit of measurement, often in points. Finally, the font-style property sets the style of the font, and the font-weight property sets the weight of the font. Following is an example of setting these font properties:

Click here to view code image

font-family: Arial, sans-serif;

font-size: 36pt;

font-style: italic;

font-weight: normal;

Now that you know a whole lot more about style properties and how they work, refer to Listing 2.5 and see whether it makes a bit more sense. Here’s a recap of the style properties used in that style sheet, which you can use as a guide for understanding how it works:

[image: Images] font—Lets you set many font properties at once. You can specify a list of font names separated by commas; if the first is not available, the next is tried, and so on. You can also include the words bold and/or italic and a font size. Alternatively, you can set each of these font properties separately with font-family, font-size, font-weight, and font-style.

[image: Images] line-height—Also known in the publishing world as leading. This sets the height of each line of text, usually in points.

[image: Images] color—Sets the text color using the standard color names or hexadecimal color codes.

[image: Images] text-decoration—Is useful for turning off link underlining; simply set it to none. The values of underline, italic, and line-through are also supported.

[image: Images] text-align—Aligns text to the left, right, or center, along with justifying the text with a value of justify.

[image: Images] padding—Adds padding to the left, right, top, and bottom of an element; this padding can be in measurement units or a percentage of the page width. Use padding-left and padding-right if you want to add padding to the left and right of the element independently. Use padding-top or padding-bottom to add padding to the top or bottom of the element, as appropriate. You’ll learn a bit more about these style properties in Chapter 3.

Using Style Classes

Whenever you want some of the text on your pages to look different from the other text, you can create what amounts to a custom-built HTML tag. Each type of specially formatted text you define is called a style class, which is a custom set of formatting specifications that can be applied to any element in a web page.

Before showing you a style class, I need to take a quick step back and clarify some CSS terminology. First off, a CSS style property is a specific style that you can assign a value, such as color or font-size. You associate a style property and its respective value with elements on a web page by using a selector. A selector is used to identify tags on a page to which you apply styles. Following is an example of a selector, a property, and a value all included in a basic style rule:

h1 { font: 36pt Courier; }

In this code, h1 is the selector, font is the style property, and 36pt Courier is the value. The selector is important because it means that the font setting will be applied to all h1 elements in the web page. But maybe you want to differentiate between some of the h1 elements—what then? The answer lies in style classes.

Suppose you want two different kinds of <h1> headings for use in your documents. You create a style class for each one by putting the following CSS code in a style sheet:

Click here to view code image

h1.silly { font: 36pt 'Comic Sans'; }

h1.serious { font: 36pt Arial; }

Notice that these selectors include a period (.) after h1, followed by a descriptive class name. To choose between the two style classes, use the class attribute, like this:

Click here to view code image

<h1 class="silly">Marvin's Munchies Inc. </h1>

<p>Text about Marvin's Munchies goes here. </p>

Or you could use this:

Click here to view code image

<h1 class="serious">MMI Investor Information</h1>

<p>Text for business investors goes here.</p>

When referencing a style class in HTML code, simply specify the class name in the class attribute of an element. In the preceding example, the words Marvin's Munchies Inc. would appear in a 36-point Comic Sans font, assuming that you included a <link> to the style sheet at the top of the web page and that the user has the Comic Sans font installed. The words MMI Investor Information would appear in the 36-point Arial font instead. You can see another example of classes in action in Listing 2.5; look for the specialtext <p> class.

What if you want to create a style class that can be applied to any element instead of just headings or some other particular tag? In your CSS, simply use a period (.) followed by any style class name you make up and any style specifications you choose. That class can specify any number of font, spacing, and margin settings all at once. Wherever you want to apply your custom tag in a page, just use an HTML tag plus the class attribute, followed by the class name you created.

For example, the style sheet in Listing 2.5 includes the following style class specification:

p.specialtext {

 font-weight: bold;

 color: #593d87;

}

This style class is applied in Listing 2.6 with the following tag:

<p class="specialtext">

TIP

You might have noticed a change in the coding style when a style rule includes multiple properties. For style rules with a single style, you’ll commonly see the property placed on the same line as the rule, like this:

Click here to view code image

p.specialtext { font-weight: bold; }

However, when a style rule contains multiple style properties, it’s much easier to read and understand the code if you list the properties one per line, like this:

p.specialtext {

 font-weight: bold;

 color: #593d87;

}

Everything between that tag and the closing </p> tag in Listing 2.6 appears in bold purple text.

If no element selector were present in your style sheet, meaning that the rule looked like this:

.specialtext {

 font-weight: bold;

 color: #593d87;

}

Then any element could refer to specialtext and have the text rendered as bold purple, not just a <p> element.

What makes style classes so valuable is how they isolate style code from web pages, effectively enabling you to focus your HTML code on the actual content in a page, not on how it is going to appear on the screen. Then you can focus on how the content is rendered to the screen by fine-tuning the style sheet. You might be surprised by how a relatively small amount of code in a style sheet can have significant effects across an entire website. This makes your pages much easier to maintain and manipulate.

Using Style IDs

When you create custom style classes, you can use those classes as many times as you like—they are not unique. However, in some instances, you want precise control over unique elements for layout or formatting purposes (or both). In such instances, look to IDs instead of classes.

A style ID is a custom set of formatting specifications that can be applied to only one element in a web page. You can use IDs across a set of pages, but only once per time within each page.

For example, suppose you have a title within the body of all your pages. Each page has only one title, but all the pages themselves include one instance of that title. Following is an example of a selector with an ID indicated, plus a property and a value:

Click here to view code image

p#title {font: 24pt Verdana, Geneva, Arial, sans-serif}

Notice that this selector includes a hash mark, or pound sign (#), after p, followed by a descriptive ID name. When referencing a style ID in HTML code, simply specify the ID name in the id attribute of an element, like so:

Click here to view code image

<p id="title">Some Title Goes Here</p>

Everything between the opening and closing <p> tags will appear in 24-point Verdana text—but only once on any given page. You often see style IDs used to define specific parts of a page for layout purposes, such as a header area, footer area, main body area, and so on. These types of areas in a page appear only once per page, so using an ID rather than a class is the appropriate choice.

Internal Style Sheets and Inline Styles

In some situations, you want to specify styles that will be used in only one web page. You can enclose a style sheet between <style> and </style> tags and include it directly in an HTML document. Style sheets used in this manner must appear in the <head> of an HTML document. No <link> tag is needed, and you cannot refer to that style sheet from any other page (unless you copy it into the beginning of that document too). This kind of style sheet is known as an internal style sheet, as you learned earlier in the chapter.

Listing 2.7 shows an example of how you might specify an internal style sheet.

LISTING 2.7 A Web Page with an Internal Style Sheet

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Some Page</title>

 <style type="text/css">

 footer {

 font-size: 9pt;

 line-height: 12pt;

 text-align: center;

 }

 </style>

 </head>

 <body>

 …

 <footer>

 Copyright 2017 Acme Products, Inc.

 </footer>

 </body>

</html>

In the listing code, the footer style class is specified in an internal style sheet that appears in the head of the page. The style class is now available for use within the body of this page, and only within this page. In fact, it is used in the body of the page to style the copyright notice.

Internal style sheets are handy if you want to create a style rule that is used multiple times within a single page. However, in some instances, you might need to apply a unique style to one particular element. This calls for an inline style rule, which enables you to specify a style for only a small part of a page, such as an individual element. For example, you can create and apply a style rule within a <p>, <div>, or tag via the style attribute. This type of style is known as an inline style because it is specified right there in the middle of the HTML code.

NOTE

The and tags are dummy tags that do nothing in and of themselves except specify a range of content to apply any style attributes that you add. The only difference between <div> and is that <div> is a block element and, therefore, forces a line break, whereas is an inline element and doesn’t force a break. Therefore, you should use to modify the style of any portion of text that is to appear in the middle of a sentence or paragraph without any line break.

Here’s how a sample style attribute might look:

Click here to view code image

<p style="color:green">

 This text is green, but this text is

 red.

 Back to green again, but…

</p>

<p>

 …now the green is over, and we're back to the default color

 for this page.

</p>

This code makes use of the tag to show how to apply the color style property in an inline style rule. In fact, both the <p> tag and the tag in this example use the color property as an inline style. What’s important to understand is that the color:red style property overrides the color:green style property for the text between the and tags. Then, in the second paragraph, neither of the color styles applies because it is a completely new paragraph that adheres to the default color of the entire page.

CAUTION

Using inline styles isn’t considered a best practice when used beyond page-level debugging or beyond trying out new things in a controlled setting. The best practice of all is having your pages link to a centrally maintained style sheet so that changes are immediately reflected in all pages that use it.

Validate Your Style Sheets

Just as it is important to validate your HTML markup, it is important to validate your style sheet. You can find a specific validation tool for CSS at http://jigsaw.w3.org/css-validator/. You can point the tool to a web address, upload a file, or paste content into the form field provided. The ultimate goal is a result like the one in Figure 2.11: valid!

[image: Images]

FIGURE 2.11
The W3C CSS Validator shows there are no errors in the style sheet contents of Listing 2.5.

Summary

This chapter introduced the basics of what web pages are and how they work. You learned that coded HTML commands are included in a text file, and you saw that typing HTML text yourself is better than using a graphical editor to create HTML commands for you—especially when you’re learning HTML.

You were introduced to the most basic and important HTML tags. By adding these coded commands to any plain-text document, you can quickly transform it into a bona fide web page. You learned that the first step in creating a web page is to put a few obligatory HTML tags at the beginning and end, including adding a title for the page. You can then mark where paragraphs and lines end and add horizontal rules and headings, if you want them. You also got a taste of some of the semantic tags in HTML5, which are used to provide additional meaning by delineating the types of content your pages contain (not just the content itself). Table 2.1 summarizes the basic HTML tags introduced in this chapter.

Beyond HTML, you learned that a style sheet can control the appearance of many HTML pages at once. It can also give you extremely precise control over the typography, spacing, and positioning of HTML elements. You also learned that, by adding a style attribute to almost any HTML tag, you can control the style of any part of an HTML page without referring to a separate style sheet document.

You learned about three main approaches to including style sheets in your website: a separate style sheet file with the extension .css that is linked to in the <head> of your documents, a collection of style rules placed in the head of the document within the <style> tag, and rules placed directly in an HTML tag via the style attribute (although the latter is not a best practice for long-term use). Table 2.2 summarizes tags with attributes discussed in this chapter.

TABLE 2.1 HTML Tags Covered in this Chapter

	Tag

	Function

	<html>…</html>

	Encloses the entire HTML document.

	<head>…</head>

	Encloses the head of the HTML document. Used within the <html> tag pair.

	<title>…</title>

	Indicates the title of the document. Used within the <head> tag pair.

	<body>…</body>

	Encloses the body of the HTML document. Used within the <html> tag pair.

	<p>…</p>

	Encloses a paragraph; skips a line between paragraphs.

	

	Indicates a line break.

	<hr>

	Displays a horizontal rule line.

	<h1>…</h1>

	Encloses a first-level heading.

	<h2>…</h2>

	Encloses a second-level heading.

	<h3>…</h3>

	Encloses a third-level heading.

	<h4>…</h4>

	Encloses a fourth-level heading.

	<h5>…</h5>

	Encloses a fifth-level heading.

	<h6>…</h6>

	Encloses a sixth-level heading.

	<header>…</header>

	Contains introductory information.

	<footer>…</footer>

	Contains supplementary material for its containing element (commonly a copyright notice or author information).

	<nav>…</nav>

	Contains navigational elements.

	<section>…</section>

	Contains thematically similar content, such as a chapter of a book or a section of a page.

	<article>…</article>

	Contains content that is a standalone body of work, such as a news article.

	<aside>…</aside>

	Contains secondary information for its containing element.

	<address>…</address>

	Contains address information related to its nearest <article> or <body> element, often contained within a <footer> element.

TABLE 2.2 HTML Tags with Attributes Covered in This Chapter

	Tag/Attributes

	Function

	Tag

	

	<a>

	Indicates a hyperlink to a position in the current document or to another document.

	Attributes

	

	href="url"

	The address of the linked content.

	Tag

	

	<style>…</style>

	Allows an internal style sheet to be included within a document. Used between <head> and </head>.

	Attribute

	

	type="contenttype"

	The Internet content type. (Always "text/css" for a CSS style sheet.)

	Tag

	

	<link>

	Links to an external style sheet (or other document type). Used in the <head> section of the document.

	Attributes

	

	href="url"

	The address of the style sheet.

	type="contenttype"

	The Internet content type. (Always "text/css" for a CSS style sheet.)

	rel="stylesheet"

	The relationship to a referenced document. (Always "stylesheet" for style sheets.)

	Tag

	

	…

	Does nothing but provide a place to put style or other attributes. (Similar to <div>…</div>, but does not cause a line break.)

	Attribute

	

	style="style"

	Includes inline style specifications. (Can be used in , <div>, <body>, and most other HTML tags.)

Q&A

Q. I’ve created a web page, but when I open the file in my web browser, I see all the text, including the HTML tags. Sometimes I even see weird gobbledygook characters at the top of the page. What did I do wrong?

A.	You didn’t save the file as plain text. Try saving the file again, being careful to save it as Text Only or ASCII Text. If you can’t quite figure out how to get your word processor to do that, don’t stress. Just type your HTML files in Notepad or TextEdit instead, and everything should work just fine. (Also, always make sure that the filename of your web page ends in .html or .htm.)

Q. I’ve seen web pages on the Internet that don’t have <!DOCTYPE> or <html> tags at the beginning. You said pages always have to start with these tags. What’s the deal?

A.	Many web browsers will forgive you if you forget to include the <!DOCTYPE> or <html> tag and will display the page correctly anyway. However, it’s a very good idea to include it because some software does need it to identify the page as valid HTML. Besides, you want your pages to be bona fide HTML pages so that they conform to the latest web standards.

Q.	Do I have to use semantic markup at all? Didn’t you say throughout this lesson that pages are valid with or without it?

A. True, none of these elements is required for a valid HTML document. You don’t have to use any of them, but I urge you to think beyond the use of markup for visual display only and think about it for semantic meaning as well. Visual display is meaningless to screen readers, but semantic elements convey a ton of information through these machines.

Q. Say I link a style sheet to my page that says all text should be blue, but there’s a tag in the page somewhere. Will that text display as blue or red?

A.	Red. Local inline styles always take precedence over external style sheets. Any style specifications you put between <style> and </style> tags at the top of a page also take precedence over external style sheets (but not over inline styles later in the same page). This is the cascading effect of style sheets that I mentioned earlier in the chapter. You can think of cascading style effects as starting with an external style sheet, which is overridden by an internal style sheet, which is overridden by inline styles.

Q. Can I link more than one style sheet to a single page?

A. Sure. For example, you might have a sheet for formatting (text, fonts, colors, and so on) and another one for layout (margins, padding, alignment, and so on). Just be sure to include a <link> for both. Technically, the CSS standard requires web browsers to give the user the option to choose between style sheets when multiple sheets are presented via multiple <link> tags. However, in practice, all major web browsers simply include every style sheet unless it has a rel="alternate" attribute. The preferred technique for linking in multiple style sheets involves using the special @import command. The following is an example of importing multiple style sheets with @import:

@import url(styles1.css);

@import url(styles2.css);

Similar to the <link> tag, the @import command must be placed in the head of a web page.

Workshop

The Workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. Which five tags does every HTML5 page require?

2. Which of the semantic elements discussed in this chapter is appropriate for containing the definition of a word used in an article?

3. Do you have to use an <h1>, <h2>, <h3>, <h4>, <h5>, or <h6> element within a <header> element?

4. How many different <nav> elements can you have in a single page?

5. How many different ways are there to ensure that style rules can be applied to your content?

Answers

1. Every HTML page requires <html>, <head>, <title>, and <body> (along with their closing tags, </html>, </head>, </title>, and </body>, respectively), plus <!DOCTYPE html> on the very first line.

2. The <aside> element is appropriate for this situation.

3. No. The <header> element can contain any other flow content besides another <header> element or a <footer> element. However, a heading element (<h1> through <h6>) is not required in a <header> element.

4. You can have as many <nav> elements as you need. The trick is to “need” only a few (perhaps for primary and secondary navigation only); otherwise, the meaning is lost.

5. Three: externally, internally, and inline.

Exercises

[image: Images] Even if your main goal in reading this book is to create web content for your business, you might want to make a personal web page just for practice. Type a few paragraphs to introduce yourself to the world, and use the HTML tags you learned in this chapter to make them into a web page.

[image: Images] Throughout the book, you’ll be following along with the code examples and making pages of your own. Take a moment now to set up a basic document template containing the document type declaration and tags for the core HTML document structure. That way, you can be ready to copy and paste that information whenever you need it.

[image: Images] Develop a standard style sheet for your website, and link it into all your pages. (Use internal style sheets and/or inline styles for pages that need to deviate from it.) If you work for a corporation, chances are it has already developed font and style specifications for printed materials. Get a copy of those specifications and follow them for company web pages too.

CHAPTER 3
Understanding the CSS Box Model and Positioning

What You’ll Learn in This Chapter:

[image: Images] How to conceptualize the CSS box model

[image: Images] How to position your elements

[image: Images] How to control the way elements stack up

[image: Images] How to manage the flow of text

[image: Images] How fixed layouts work

[image: Images] How fluid layouts work

[image: Images] How to create a fixed/fluid hybrid layout

[image: Images] How to think about and begin to implement a responsive design

In the preceding chapter, you learned a lot about the basic structure and syntax of HTML and CSS. In this chapter, you’ll take that knowledge one step further and learn about the CSS box model, which is the guiding force behind the layout of elements on your screen—be it a desktop or mobile display.

It’s important to spend some time focusing on and practicing working with the box model, because if you have a good handle on how the box model works, you won’t tear your hair out when you create a design and then realize that the elements don’t line up or that they seem a little “off.” You’ll know that, in almost all cases, something—the margin, the padding, the border—just needs a little tweaking.

You’ll also learn more about CSS positioning, including stacking elements on top of each other in a three-dimensional way (instead of a vertical way), as well as controlling the flow of text around elements using the float property. You’ll then build on this information and learn about the types of overall page layouts: fixed and fluid (also referred to as liquid). But it’s also possible to use a combination of the two, with some elements fixed and others fluid. We end the chapter with a brief mention of responsive web design, which is an important topic upon which entire books have been written.

The CSS Box Model

Every element in HTML is considered a “box,” whether it is a paragraph, a <div>, an image, or anything else. Boxes have consistent properties, whether we see them or not, and whether the style sheet specifies them or not. They’re always present, and as designers, we have to keep their presence in mind when creating a layout.

Figure 3.1 is a diagram of the box model. The box model describes the way in which every HTML block-level element has the potential for a border, padding, and margin and, specifically, how the border, padding, and margin are applied. In other words, all elements have some padding between the content and the border of the element. Additionally, the border might or might not be visible, but there is space for it, just as there is a margin between the border of the element and any other content outside the element.

[image: Images]

FIGURE 3.1
Every element in HTML is represented by the CSS box model.

Here’s yet another explanation of the box model, going from the outside inward:

[image: Images] The margin is the area outside the element. It never has color; it is always transparent.

[image: Images] The border extends around the element, on the outer edge of any padding. The border can be of several types, widths, and colors.

[image: Images] The padding exists around the content and inherits the background color of the content area.

[image: Images] The content is surrounded by padding.

Here’s where the tricky part comes in: To know the true height and width of an element, you have to take all the elements of the box model into account. Think back to the example from the preceding chapter: Despite the specific indication that a <div> should be 250 pixels wide and 100 pixels high, that <div> had to grow larger to accommodate the padding in use.

You already know how to set the width and height of an element using the width and height properties. The following example shows how to define a <div> that is 250 pixels wide and 100 pixels high, with a red background and a black single-pixel border:

div {

 width: 250px;

 height: 100px;

 background-color: #ff0000;

 border: 1px solid #000000;

}

Figure 3.2 shows this simple <div>.

[image: Images]

FIGURE 3.2
This is a simple styled <div>.

If we define a second element with these same properties, but also add margin and padding properties of a certain size, we begin to see how the size of the element changes. This is because of the box model.

The second <div> is defined as follows, just adding 10 pixels of margin and 10 pixels of padding to the element:

div#d2 {

 width: 250px;

 height: 100px;

 background-color: #ff0000;

 border: 5px solid #000000;

 margin: 10px;

 padding: 10px;

}

The second <div>, shown in Figure 3.3, is defined as the same height and width as the first one, but the overall height and width of the entire box surrounding the element itself is much larger when margins and padding are put in play.

[image: Images]

FIGURE 3.3
This is supposed to be another simple <div>, but the box model affects the size of the second <div>.

The total width of an element is the sum of the following:

Click here to view code image

width + padding-left + padding-right + border-left + border-right +

margin-left + margin-right

The total height of an element is the sum of the following:

Click here to view code image

height + padding-top + padding-bottom + border-top + border-bottom +

margin-top + margin-bottom

Therefore, the second <div> has an actual width of 300 (250 + 10 + 10 + 5 + 5 + 10 + 10) and an actual height of 150 (100 + 10 + 10 + 5 + 5 + 10 + 10).

By now, you can begin to see how the box model affects your design. Let’s say that you have only 250 pixels of horizontal space, but you would like 10 pixels of margin, 10 pixels of padding, and 5 pixels of border on all sides. To accommodate what you would like with what you have room to display, you must specify the width of your <div> as only 200 pixels so that 200 + 10 + 10 + 5 + 5 + 10 + 10 adds up to that 250 pixels of available horizontal space.

The mathematics of the model are important as well. In dynamically driven sites or sites in which user interactions drive the client-side display (such as through JavaScript events), your server-side or client-side code could draw and redraw container elements on the fly. In other words, your code will produce the numbers, but you have to provide the boundaries.

Now that you’ve been introduced to the way of the box model, keep it in mind throughout the rest of the work you do in this book and in your web design. Among other things, it will affect element positioning and content flow, which are the two topics we tackle next.

The Whole Scoop on Positioning

Relative positioning is the default type of positioning HTML uses. You can think of relative positioning as being akin to laying out checkers on a checkerboard: The checkers are arranged from left to right, and when you get to the edge of the board, you move on to the next row. Elements that are styled with the block value for the display style property are automatically placed on a new row, whereas inline elements are placed on the same row immediately next to the element preceding them. As an example, <p> and <div> tags are considered block elements, whereas the tag is considered an inline element.

The other type of positioning CSS supports is known as absolute positioning because it enables you to set the exact position of HTML content on a page. Although absolute positioning gives you the freedom to spell out exactly where an element is to appear, the position is still relative to any parent elements that appear on the page. In other words, absolute positioning enables you to specify the exact location of an element’s rectangular area with respect to its parent’s area, which is very different from relative positioning.

With the freedom of placing elements anywhere you want on a page, you can run into the problem of overlap, when an element takes up space another element is using. Nothing is stopping you from specifying the absolute locations of elements so that they overlap. In this case, CSS relies on the z-index of each element to determine which element is on the top and which is on the bottom. You’ll learn more about the z-index of elements later in this lesson. For now, let’s look at exactly how you control whether a style rule uses relative or absolute positioning.

The type of positioning (relative or absolute) a particular style rule uses is determined by the position property, which is capable of having one of the following four values:

[image: Images] static—The default positioning according to the normal flow of the content

[image: Images] relative—The element is positioned relative to its normal position, using offset properties discussed below

[image: Images] absolute—The element is positioned relative to its nearest ancestor element, or according to the normal flow of the page if no ancestor is present

[image: Images] fixed—The element is fixed relative to the viewport—this type of positioning is used for images that scroll along with the page (as an example)

After specifying the type of positioning, you provide the specific position using the following properties:

[image: Images] left—The left position offset

[image: Images] right—The right position offset

[image: Images] top—The top position offset

[image: Images] bottom—The bottom position offset

You might think that these position properties make sense only for absolute positioning, but they actually apply to relative and fixed positioning as well. For example, under relative positioning, the position of an element is specified as an offset relative to the original position of the element. So if you set the left property of an element to 25px, the left side of the element shifts over 25 pixels from its original (relative) position. An absolute position, on the other hand, is specified relative to the ancestor element to which the style is applied. So if you set the left property of an element to 25px under absolute positioning, the left side of the element appears 25 pixels to the right of the ancestor element’s left edge. On the other hand, using the right property with the same value positions the element so that its right side is 25 pixels to the right of the ancestor’s right edge.

Let’s return to the color-blocks example to see how positioning works. In Listing 3.1, the four color blocks have relative positioning specified. As you can see in Figure 3.4, the blocks are positioned vertically.

LISTING 3.1 Showing Relative Positioning with Four Color Blocks

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Positioning the Color Blocks</title>

 <style type="text/css">

 div {

 position: relative;

 width: 250px;

 height: 100px;

 border: 5px solid #000;

 color: black;

 font-weight: bold;

 text-align: center;

 }

 div#d1 {

 background-color: #ff0000;

 }

 div#d2 {

 background-color: #00ff00;

 }

 div#d3 {

 background-color: #0000ff;

 }

 div#d4 {

 background-color: #ffff00;

 }

 </style>

 </head>

 <body>

 <div id="d1">DIV #1</div>

 <div id="d2">DIV #2</div>

 <div id="d3">DIV #3</div>

 <div id="d4">DIV #4</div>

 </body>

</html>

The style sheet entry for the <div> element itself sets the position style property for the <div> element to relative. Because the remaining style rules are inherited from the <div> style rule, they inherit its relative positioning. In fact, the only difference between the other style rules is that they have different background colors.

Notice in Figure 3.4 that the <div> elements are displayed one after the next, which is what you would expect with relative positioning. But to make things more interesting, which is what we’re here to do, you can change the positioning to absolute and explicitly specify the placement of the colors. In Listing 3.2, the style sheet entries are changed to use absolute positioning to arrange the color blocks.

[image: Images]

FIGURE 3.4
The color blocks are positioned vertically, with one on top of the other.

LISTING 3.2 Using Absolute Positioning of the Color Blocks

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Positioning the Color Blocks</title>

 <style type="text/css">

 div {

 position: absolute;

 width: 250px;

 height: 100px;

 border: 5px solid #000;

 color: black;

 font-weight: bold;

 text-align: center;

 }

 div#d1 {

 background-color: #ff0000;

 left: 0px;

 top: 0px;

 }

 div#d2 {

 background-color: #00ff00;

 left: 75px;

 top: 25px;

 }

 div#d3 {

 background-color: #0000ff;

 left: 150px;

 top: 50px;

 }

 div#d4 {

 background-color: #ffff00;

 left: 225px;

 top: 75px;

 }

 </style>

 </head>

 <body>

 <div id="d1">DIV #1</div>

 <div id="d2">DIV #2</div>

 <div id="d3">DIV #3</div>

 <div id="d4">DIV #4</div>

 </body>

</html>

[image: Images]

FIGURE 3.5
The color blocks are displayed using absolute positioning.

This style sheet sets the position property to absolute, which is necessary for the style sheet to use absolute positioning. Additionally, the left and top properties are set for each of the inherited <div> style rules. However, the position of each of these rules is set so that the elements are displayed overlapping each other, as Figure 3.5 shows.

Now we’re talking layout! Figure 3.5 shows how absolute positioning enables you to place elements exactly where you want them. It also reveals how easy it is to arrange elements so that they overlap. You might be curious about how a web browser knows which elements to draw on top when they overlap. The next section covers how you can control stacking order.

Controlling the Way Things Stack Up

In certain situations, you want to carefully control the manner in which elements overlap each other on a web page. The z-index style property enables you to set the order of elements with respect to how they stack on top of each other. The name z-index might sound a little strange, but it refers to the notion of a third dimension (Z) that points into the computer screen, in addition to the two dimensions that go across (X) and down (Y) the screen. Another way to think of the z-index is to consider the relative position of a single magazine within a stack of magazines. A magazine nearer the top of the stack has a higher z-index than a magazine lower in the stack. Similarly, an overlapped element with a higher value for its z-index is displayed on top of an element with a lower value for its z-index.

The z-index property is used to set a numeric value that indicates the relative z-index of a style rule. The number assigned to z-index has meaning only with respect to other style rules in a style sheet, which means that setting the z-index property for a single rule doesn’t mean much. On the other hand, if you set z-index for several style rules that apply to overlapped elements, the elements with higher z-index values appear on top of elements with lower z-index values.

NOTE

Regardless of the z-index value you set for a style rule, an element displayed with the rule will always appear on top of its parent.

Listing 3.3 contains another version of the color-blocks style sheet and HTML that uses z-index settings to alter the natural overlap of elements.

LISTING 3.3 Using z-index to Alter the Display of Elements in the Color-Blocks Example

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Positioning the Color Blocks</title>

 <style type="text/css">

 div {

 position: absolute;

 width: 250px;

 height: 100px;

 border: 5px solid #000;

 color: black;

 font-weight: bold;

 text-align: center;

 }

 div#d1 {

 background-color: #ff0000;

 left: 0px;

 top: 0px;

 z-index: 0;

 }

 div#d2 {

 background-color: #00ff00;

 left: 75px;

 top: 25px;

 z-index: 3;

 }

 div#d3 {

 background-color: #0000ff;

 left: 150px;

 top: 50px;

 z-index: 2;

 }

 div#d4 {

 background-color: #ffff00;

 left: 225px;

 top: 75px;

 z-index: 1;

 }

 </style>

 </head>

 <body>

 <div id="d1">DIV #1</div>

 <div id="d2">DIV #2</div>

 <div id="d3">DIV #3</div>

 <div id="d4">DIV #4</div>

 </body>

</html>

The only change in this code from what you saw in Listing 3.2 is the addition of the z-index property in each of the numbered div style classes. Notice that the first numbered div has a z-index setting of 0, which should make it the lowest element in terms of the z-index, whereas the second div has the highest z-index. Figure 3.6 shows the color-blocks page as displayed with this style sheet, which clearly shows how the z-index affects the displayed content and makes it possible to carefully control the overlap of elements.

[image: Images]

FIGURE 3.6
Using z-index to alter the display of the color blocks.

Although the examples show color blocks that are simple <div> elements, the z-index style property can affect any HTML content, including images.

Managing the Flow of Text

Now that you’ve seen some examples of placing elements relative to other elements or placing them absolutely, it’s time to revisit the flow of content around elements. The conceptual current line is an invisible line used to place elements on a page. This line has to do with the flow of elements on a page; it comes into play as elements are arranged next to each other across and down the page. Part of the flow of elements is the flow of text on a page. When you mix text with other elements (such as images), it’s important to control how the text flows around those other elements.

Following are some style properties that give you control over text flow:

[image: Images] float—Determines how text flows around an element

[image: Images] clear—Stops the flow of text around an element

[image: Images] overflow—Controls the overflow of text when an element is too small to contain all the text

The float property controls how text flows around an element. It can be set to either left or right. These values determine where to position an element with respect to flowing text. So setting an image’s float property to left positions the image to the left of flowing text.

As you learned in the preceding chapter, you can prevent text from flowing next to an element by using the clear property, which you can set to none, left, right, or both. The default value for the clear property is none, indicating that text is to flow with no special considerations for the element. The left value causes text to stop flowing around an element until the left side of the page is free of the element. Likewise, the right value means that text is not to flow around the right side of the element. The both value indicates that text isn’t to flow around either side of the element.

The overflow property handles overflow text, which is text that doesn’t fit within its rectangular area; this can happen if you set the width and height of an element too small. The overflow property can be set to visible, hidden, or scroll. The visible setting automatically enlarges the element so that the overflow text fits within it; this is the default setting for the property. The hidden value leaves the element the same size, allowing the overflow text to remain hidden from view. Perhaps the most interesting value is scroll, which adds scrollbars to the element so that you can move around and see the text.

Understanding Fixed Layouts

A fixed layout, or fixed-width layout, is just that: a layout in which the body of the page is set to a specific width. That width is typically controlled by a master “wrapper” element that contains all the content. The width property of a wrapper element, such as a <div>, is set in the style sheet entry if the <div> was given an ID value such as main or wrapper (although the name is up to you).

When you’re creating a fixed-width layout, the most important decision is determining the minimum screen resolution you want to accommodate. For many years, 800×600 was the “lowest common denominator” for web designers, resulting in a typical fixed width of approximately 760 pixels. However, the number of people using 800×600 screen resolution for non-mobile browsers is now less than 4%. Given that, many web designers consider 1,024×768 the current minimum screen resolution, so if they create fixed-width layouts, the fixed width typically is somewhere between 800 and 1,000 pixels wide.

CAUTION

Remember, the web browser window contains nonviewable areas, including the scrollbar. So if you are targeting a 1,024-pixel-wide screen resolution, you really can’t use all 1,024 of those pixels.

A main reason for creating a fixed-width layout is so that you can have precise control over the appearance of the content area. However, if users visit your fixed-width site with smaller or much larger screen sizes or resolutions than the size or resolution you had in mind while you designed it, they will encounter scrollbars (if their size or resolution is smaller) or a large amount of empty space (if their size or resolution is greater). Finding fixed-width layouts is difficult among the most popular websites these days because site designers know they need to cater to the largest possible audience (and therefore make no assumptions about browser size). However, fixed-width layouts still have wide adoption, especially by site administrators using a content management system with a strict template.

The following figures show one such site, for San Jose State University (university websites commonly use a strict template and content management system, so this was an easy example to find); it has a wrapper element fixed at 960 pixels wide. In Figure 3.7, the browser window is a shade under 900 pixels wide. On the right side of the image, important content is cut off (and at the bottom of the figure, a horizontal scrollbar displays in the browser).

[image: Images]

FIGURE 3.7
A fixed-width example with a smaller screen size.

However, Figure 3.8 shows how this site looks when the browser window is more than 1,300 pixels wide: You see a lot of empty space (or “real estate”) on both sides of the main body content, which some consider aesthetically displeasing.

[image: Images]

FIGURE 3.8
A fixed-width example with a larger screen size.

Besides the decision to create a fixed-width layout in the first place is the task of determining whether to place the fixed-width content flush left or center it. Placing the content flush left produces extra space on the right side only; centering the content area creates extra space on both sides. However, centering at least provides balance, whereas a flush-left design could end up looking like a small rectangle shoved in the corner of the browser, depending on the size and resolution of a user’s monitor.

Understanding Fluid Layouts

A fluid layout—also called a liquid layout—is one in which the body of the page does not use a specified width in pixels, although it might be enclosed in a master “wrapper” element that uses a percentage width. The idea behind the fluid layout is that it can be perfectly usable and still retain the overall design aesthetic even if the user has a very small or very wide screen.

Figures 3.9, 3.10, and 3.11 show three examples of a fluid layout in action.

In Figure 3.9, the browser window is approximately 745 pixels wide. This example shows a reasonable minimum screen width before a horizontal scrollbar appears. In fact, the scrollbar does not appear until the browser is 735 pixels wide. On the other hand, Figure 3.10 shows a very small browser window (less than 600 pixels wide).

[image: Images]

FIGURE 3.9
A fluid layout as viewed in a relatively small screen.

In Figure 3.10, you can see a horizontal scrollbar; in the header area of the page content, the logo graphic is beginning to take over the text and appear on top of it. But the bulk of the page is still quite usable. The informational content on the left side of the page is still legible and is sharing the available space with the input form on the right side.

Figure 3.11 shows how this same page looks in a very wide screen. In Figure 3.11, the browser window is approximately 1,200 pixels wide. There is plenty of room for all the content on the page to spread out. This fluid layout is achieved because all the design elements have a percentage width specified (instead of a fixed width). Thus, the layout makes use of all the available browser real estate.

The fluid layout approach might seem like the best approach at first glance—after all, who wouldn’t want to take advantage of all the screen real estate available? But there’s a fine line between taking advantage of space and not allowing the content to breathe. Too much content is overwhelming; not enough content in an open space is underwhelming.

[image: Images]

FIGURE 3.10
A fluid layout as viewed in a very small screen.

[image: Images]

FIGURE 3.11
A fluid layout as viewed in a wide screen.

The pure fluid layout can be impressive, but it requires a significant amount of testing to ensure that it is usable in a wide range of browsers at varying screen resolutions. You might not have the time and effort to produce such a design; in that case, a reasonable compromise is the fixed/fluid hybrid layout, or a fully responsive design, as you’ll learn about later in this chapter.

Creating a Fixed/Fluid Hybrid Layout

A fixed/fluid hybrid layout is one that contains elements of both types of layouts. For example, you could have a fluid layout that includes fixed-width content areas either within the body area or as anchor elements (such as a left-side column or as a top navigation strip). You can even create a fixed content area that acts like a frame, in which a content area remains fixed even as users scroll through the content.

Starting with a Basic Layout Structure

In this example, you’ll learn to create a template that is fluid but with two fixed-width columns on either side of the main body area (which is a third column, if you think about it, only much wider than the others). The template also has a delineated header and footer area. Listing 3.4 shows the basic HTML structure for this layout.

LISTING 3.4 Basic Fixed/Fluid Hybrid Layout Structure

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Sample Layout</title>

 <link href="layout.css" rel="stylesheet" type="text/css">

 </head>

 <body>

 <header>HEADER</header>

 <div id="wrapper">

 <div id="content_area">CONTENT</div>

 <div id="left_side">LEFT SIDE</div>

 <div id="right_side">RIGHT SIDE</div>

 </div>

 <footer>FOOTER</footer>

 </body>

</html>

First, note that the style sheet for this layout is linked to with the <link> tag instead of included in the template. Because a template is used for more than one page, you want to be able to control the display elements of the template in the most organized way possible. This means you need to change the definitions of those elements in only one place—the style sheet.

Next, notice that the basic HTML is just that: extremely basic. Truth be told, this basic HTML structure can be used for a fixed layout, a fluid layout, or the fixed/fluid hybrid you see here because all the actual styling that makes a layout fixed, fluid, or hybrid happens in the style sheet.

With the HTML structure in Listing 3.4, you actually have an identification of the content areas you want to include in your site. This planning is crucial to any development; you have to know what you want to include before you even think about the type of layout you are going to use, let alone the specific styles that will be applied to that layout.

NOTE

I am using elements with named identifiers in this example instead of the semantic elements such as <section> or <nav> because I’m illustrating the point in the simplest way possible without being prescriptive to the content itself. However, if you know that the <div> on the left side is going to hold navigation, you should use the <nav> tag instead of a <div> element with an id something like left_side—but this type of naming can become problematic as depending on repositioning that content might not end up displaying on the left side of anything, so best to name based on purpose rather than appearance.

At this stage, the layout.css file includes only this entry:

body {

 margin: 0;

 padding: 0;

}

Using a 0 value for margin and padding allows the entire page to be usable for element placement.

If you look at the HTML in Listing 3.4 and say to yourself, “But those <div> elements will just stack on top of each other without any styles,” you are correct. As shown in Figure 3.12, there is no layout to speak of.

[image: Images]

FIGURE 3.12
A basic HTML template with no styles applied to the container elements.

Defining Two Columns in a Fixed/Fluid Hybrid Layout

We can start with the easy things to get some styles and actual layout in there. Because this layout is supposed to be fluid, we know that whatever we put in the header and footer areas will extend the width of the browser window, regardless of how narrow or wide the window might be.

Adding the following code to the style sheet gives the header and footer area each a width of 100% as well as the same background color and text color:

header, footer {

 float: left;

 width: 100%;

 background-color: #7152f4;

 color: #ffffff;

}

Now things get a little trickier. We have to define the two fixed columns on either side of the page, plus the column in the middle. In the HTML we’re using here, note that a <div> element, called wrapper, surrounds both. This element is defined in the style sheet as follows:

#wrapper {

 float: left;

 padding-left: 200px;

 padding-right: 125px;

}

The two padding definitions essentially reserve space for the two fixed-width columns on the left and right of the page. The column on the left will be 200 pixels wide, the column on the right will be 125 pixels wide, and each will have a different background color. But we also have to position the items relative to where they would be placed if the HTML remained unstyled (see Figure 3.12). This means adding position: relative to the style sheet entries for each of these columns. Additionally, we indicate that the <div> elements should float to the left.

But in the case of the <div> element left_side, we also indicate that we want the rightmost margin edge to be 200 pixels in from the edge (this is in addition to the column being defined as 200 pixels wide). We also want the margin on the left side to be a full negative margin; this will pull it into place (as you will soon see). The <div> element right_side does not include a value for right, but it does include a negative margin on the right side:

#left_side {

 position: relative;

 float: left;

 width: 200px;

 background-color: #52f471;

 right: 200px;

 margin-left: -100%;

}

#right_side {

 position: relative;

 float: left;

 width: 125px;

 background-color: #f452d5;

 margin-right: -125px;

}

At this point, let’s also define the content area so that it has a white background, takes up 100% of the available area, and floats to the left relative to its position:

#content_area {

 position: relative;

 float: left;

 background-color: #ffffff;

 width: 100%;

}

At this point, the basic layout should look something like Figure 3.13, with the areas clearly delineated.

[image: Images]

FIGURE 3.13
A basic HTML template after some styles have been put in place.

However, there’s a problem with this template if the window is resized below a certain width. Because the left column is 200 pixels wide and the right column is 125 pixels wide, and we want at least some text in the content area, you can imagine that this page will break if the window is only 350 to 400 pixels wide. We address this issue in the next section.

Setting the Minimum Width of a Layout

Although users won’t likely visit your site with a desktop browser that displays less than 400 pixels wide, the example serves its purpose within the confines of this lesson. You can extrapolate and apply this information broadly: Even in fixed/fluid hybrid sites, at some point, your layout will break down unless you do something about it.

One of those “somethings” is to use the min-width CSS property. The min-width property sets the minimum width of an element, not including padding, borders, and margins. Figure 3.14 shows what happens when min-width is applied to the <body> element.

[image: Images]

FIGURE 3.14
A basic HTML template resized to around 400 pixels, with a minimum width applied.

Figure 3.14 shows a small portion of the right column after the screen has been scrolled to the right, but the point is that the layout does not break apart when resized below a minimum width. In this case, the minimum width is 525 pixels:

body {

 margin: 0;

 padding: 0;

 min-width: 525px;

}

The horizontal scrollbar appears in this example because the browser window itself is less than 500 pixels wide. The scrollbar disappears when the window is slightly larger than 525 pixels wide.

Handling Column Height in a Fixed/Fluid Hybrid Layout

This example is all well and good except for one problem: It has no content. When content is added to the various elements, more problems arise. As Figure 3.15 shows, the columns become as tall as necessary for the content they contain.

[image: Images]

FIGURE 3.15
Columns are only as tall as their content.

NOTE

Because we have moved beyond the basic layout example, I also took the liberty to remove the background and text color properties for the header and footer, which is why the example no longer shows white text on a very dark background. Additionally, I’ve centered the text in the <footer> element, which now has a light gray background.

Because you cannot count on a user’s browser being a specific height, or the content always being the same length, you might think this poses a problem with the fixed/fluid hybrid layout. Not so. If you think a little outside the box, you can apply a few more styles to bring all the pieces together.

First, add the following declarations in the style sheet entries for the left_side, right_side, and content_area IDs:

margin-bottom: -2000px;

padding-bottom: 2000px;

These declarations add a ridiculous amount of padding and assign a too-large margin to the bottom of all three elements. You must also add position:relative to the footer element definitions in the style sheet so that the footer is visible despite this padding.

At this point, the page looks as shown in Figure 3.16—still not what we want, but closer.

[image: Images]

FIGURE 3.16
Color fields are now visible, despite the amount of content in the columns.

To clip off all that extra color, add the following to the style sheet for the wrapper ID:

overflow: hidden;

Figure 3.17 shows the final result: a fixed-width/fluid hybrid layout with the necessary column spacing. I also took the liberty of styling the navigational links and adjusting the margin around the welcome message; you can see the complete style sheet in Listing 3.6.

[image: Images]

FIGURE 3.17
Congratulations! It’s a fixed-width/fluid hybrid layout (although you’ll want to do something about those colors!).

The full HTML code appears in Listing 3.5, and Listing 3.6 shows the final style sheet.

LISTING 3.5 Basic Fixed/Fluid Hybrid Layout Structure (with Content)

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Sample Layout</title>

 <link href="layout.css" rel="stylesheet" type="text/css">

 </head>

 <body>

 <header><img src="acmewidgets.jpg" alt="ACME Widgets

 LLC"/></header>

 <div id="wrapper">

 <div id="content_area">

 <h1>Welcome to ACME Widgets!</h1>

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.

 Nam tincidunt posuere malesuada. Suspendisse ac felis ac ante

 tincidunt ullamcorper. Nulla vitae ligula vitae mi rhoncus

 adipiscing. Etiam congue felis id ante semper at imperdiet

 massa tempor. Nullam hendrerit fermentum ligula, sit amet

 pellentesque purus faucibus in. Sed molestie lacus mauris,

 ultrices accumsan sem. Phasellus facilisis malesuada sem, nec

 ornare ipsum dictum consectetur.</p>

 <p>Nulla libero nisl, consectetur eget accumsan vel, interdum

 vitae enim vitae nulla feugiat dignissim ut sit amet odio.

 Nunc non enim id sem faucibus congue. Integer ac mi in justo

 euismod sodales. Aenean imperdiet vestibulum auctor. Sed

 ullamcorper congue ipsum, eget vulputate sem scelerisque in.

 Donec ornare vestibulum congue. Etiam sapien nulla, rutrum

 mattis mattis ut, pellentesque eget augue. Proin nisl mauris,

 suscipit quis elementum ac, vestibulum quis lacus. Ut eget

 justo vitae urna varius sodales. </p>

 </div>

 <div id="left_side">

 Mission

 History

 Executive Team

 Contact Us

 </div>

 <div id="right_side">

 <p>SPECIAL WIDGET DEAL!</p>

 <p>Buy three widgets and get a fourth for free. Act now!</p>

 </div>

 </div>

 <footer>Copyright information usually goes here in the

 footer.</footer>

 </body>

</html>

LISTING 3.6 Full Style Sheet for Fixed/Fluid Hybrid Layout

Click here to view code image

body {

 margin: 0;

 padding: 0;

 min-width: 525px;

}

header {

 float: left;

 width: 100%;

}

footer {

 position: relative;

 float: left;

 width: 100%;

 background-color: #cccccc;

 text-align: center;

 font-style: italic;

}

#wrapper {

 float: left;

 padding-left: 200px;

 padding-right: 125px;

 overflow: hidden;

}

#left_side {

 position: relative;

 float: left;

 width: 200px;

 background-color: #52f471;

 right: 200px;

 margin-left: -100%;

 margin-bottom: -2000px;

 padding-bottom: 2000px;

}

#right_side {

 position: relative;

 float: left;

 width: 125px;

 background-color: #f452d5;

 margin-right: -125px;

 margin-bottom: -2000px;

 padding-bottom: 2000px;

}

#content_area {

 position: relative;

 float: left;

 background-color: #ffffff;

 width: 100%;

 margin-bottom: -2000px;

 padding-bottom: 2000px;

}

h1 {

 margin: 0;

}

#left_side ul {

 list-style: none;

 margin: 12px 0px 0px 12px;

 padding: 0px;

}

#left_side li a:link, #nav li a:visited {

 font-size: 12pt;

 font-weight: bold;

 padding: 3px 0px 3px 3px;

 color: #000000;

 text-decoration: none;

 display: block;

}

#left_side li a:hover, #nav li a:active {

 font-size: 12pt;

 font-weight: bold;

 padding: 3px 0px 3px 3px;

 color: #ffffff;

 text-decoration: none;

 display: block;

}

Considering a Responsive Web Design

In 2010, web designer Ethan Marcotte coined the term responsive web design to refer to a web design approach that builds on the basics of fluid design you just learned a bit about. The goal of a responsive web design is that content is easy to view, read, and navigate, regardless of the device type and size on which you are viewing it. In other words, a designer who sets out to create a responsive website is doing to so to ensure that the site is similarly enjoyable to and usable by audience members viewing on a large desktop display, a small smartphone, or a medium-size tablet.

The underlying structure of a responsive design is based on fluid (liquid) grid layouts, much as you learned about earlier in this chapter, but with a few modifications and additions. First, those grid layouts should always be in relative units rather than absolute ones. In other words, designers should use percentages rather than pixels to define container elements.

Second—and this is something we have not discussed previously—all images should be flexible. By this, I mean that instead of using a specific height and width for each image, we use relative percentages so that the images always display within the (relatively sized) element that contains them.

Finally, until you get a handle on intricate creations of style sheets for multiple uses, spend some time developing specific style sheets for each media type, and use media queries to employ these different rules based on the type. As you advance in your work and understanding of responsive design—well beyond the scope of this book—you will learn to progressively enhance your layouts in more meaningful ways.

Remember, you can specify a link to a style sheet like the following:

Click here to view code image

<link rel="stylesheet" type="text/css"

 media="screen and (max-device-width: 480px)"

 href="wee.css">

In this example, the media attribute contains a type and a query: The type is screen and the query portion is (max-device-width: 480px). This means that if the device attempting to render the display is one with a screen and the horizontal resolution (device width) is less than 480 pixels wide—as with a smartphone—then load the style sheet called wee.css and render the display using the rules found within it.

Of course, a few short paragraphs in this book cannot do justice to the entirety of responsive web design. I highly recommend reading Marcotte’s book Responsive Web Design (http://www.abookapart.com/products/responsive-web-design) after you have firmly grounded yourself in the basics of HTML5 and CSS3 that are discussed and used throughout this book. Additionally, several of the HTML and CSS frameworks discussed in Chapter 22, “Managing Web Applications,” take advantage of principles of responsive design, and that makes a great starting point for building up a responsive site and tinkering with the fluid grid, image resizing, and media queries that make it so.

Summary

This chapter began with an important discussion about the CSS box model and how to calculate the width and height of elements when taking margins, padding, and borders into consideration. The lesson continued by tackling absolute positioning of elements, and you learned about positioning using z-index. You then learned about a few nifty style properties that enable you to control the flow of text on a page.

Next, you saw some practical examples of the three main types of layouts: fixed, fluid, and a fixed/fluid hybrid. In the third section of the lesson, you saw an extended example that walked you through the process of creating a fixed/fluid hybrid layout in which the HTML and CSS all validate properly. Remember, the most important part of creating a layout is figuring out the sections of content you think you might need to account for in the design.

Finally, you were introduced to the concept of responsive web design, which itself is a book-length topic. Given the brief information you learned here, such as using a fluid grid layout, responsive images, and media queries, you have some basic concepts to begin testing on your own.

Q&A

Q. How would I determine when to use relative positioning and when to use absolute positioning?

A. Although there are no set guidelines regarding the usage of relative versus absolute positioning, the general idea is that absolute positioning is required only when you want to exert a finer degree of control over how content is positioned. This has to do with the fact that absolute positioning enables you to position content down to the exact pixel, whereas relative positioning is much less predictable in terms of how it positions content. This isn’t to say that relative positioning can’t do a good job of positioning elements on a page; it just means that absolute positioning is more exact. Of course, this also makes absolute positioning potentially more susceptible to changes in screen size, which you can’t really control.

Q. If I don’t specify the z-index of two elements that overlap each other, how do I know which element will appear on top?

A.	If the z-index property isn’t set for overlapping elements, the element that appears later in the web page will appear on top. The easy way to remember this is to think of a web browser drawing each element on a page as it reads it from the HTML document; elements read later in the document are drawn on top of those that were read earlier.

Q. I’ve heard about something called an elastic layout. How does that differ from the fluid layout?

A. An elastic layout is a layout whose content areas resize when the user resizes the text. Elastic layouts use ems, which are inherently proportional to text and font size. An em is a typographical unit of measurement equal to the point size of the current font. When ems are used in an elastic layout, if a user forces the text size to increase or decrease in size using Ctrl and the mouse scroll wheel, the areas containing the text increase or decrease proportionally.

Q. You’ve spent a lot of time talking about fluid layouts and hybrid layouts—are they better than a purely fixed layout?

A. Better is a subjective term; in this book, the concern is with standards-compliant code. Most designers will tell you that fluid layouts take longer to create (and perfect), but the usability enhancements are worth it, especially when it leads to a responsive design. When might the time not be worth it? If your client does not have an opinion and is paying you a flat rate instead of an hourly rate. In that case, you are working only to showcase your own skills (that might be worth it to you, however).

Workshop

The Workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What’s the difference between relative positioning and absolute positioning?

2. Which CSS style property controls the manner in which elements overlap each other?

3. What does min-width do?

Answers

1. In relative positioning, content is displayed according to the flow of a page, with each element physically appearing after the element preceding it in the HTML code. Absolute positioning, on the other hand, enables you to set the exact position of content on a page.

2. The z-index style property controls the manner in which elements overlap each other.

3.	The min-width property sets the minimum width of an element, not including padding, borders, and margins.

Exercises

[image: Images] Practice working with the intricacies of the CSS box model by creating a series of elements with different margins, padding, and borders, and see how these properties affect their height and width.

[image: Images] Figure 3.17 shows the finished fixed/fluid hybrid layout, but notice a few areas for improvement: There isn’t any space around the text in the right-side column, there aren’t any margins between the body text and either column, the footer strip is a little sparse, and so on. Take some time to fix these design elements.

[image: Images] Using the code you fixed in the preceding exercise, try to make it responsive, using only the brief information you learned in this chapter. Just converting container elements to relative sizes should go a long way toward making the template viewable on your smartphone or other small device, but a media query and alternative style sheet certainly wouldn’t hurt, either.

CHAPTER 4
Introducing JavaScript

What You’ll Learn in This Chapter:

[image: Images] What web scripting is and what it’s good for

[image: Images] How scripting and programming are different (and similar)

[image: Images] What JavaScript is and where it came from

[image: Images] How to include JavaScript statements in a web page

[image: Images] What JavaScript can do for your web pages

[image: Images] Beginning and ending scripts

[image: Images] Formatting JavaScript statements

[image: Images] How a script can display a result

[image: Images] Including a script within a web document

[image: Images] Testing a script in your browser

[image: Images] Moving scripts into separate files

[image: Images] Basic syntax rules for avoiding JavaScript errors

[image: Images] What JSON is and how it can be used

[image: Images] Dealing with errors in scripts

The World Wide Web (WWW) began as a text-only medium—the first browsers didn’t even support images within web pages. The Web has come a long way since those early days. Today’s websites include a wealth of visual and interactive features in addition to useful content: graphics, sounds, animation, and video. Using a web scripting language such as JavaScript is one of the easiest ways to spice up a web page and to interact with users in new ways. In fact, using JavaScript is the next step in taking the static HTML you’ve learned about in the chapters so far and turning it into something dynamic.

The first part of this chapter introduces the concept of web scripting and the JavaScript language. As the chapter moves ahead, you’ll learn how to include JavaScript commands directly in your HTML documents, and how your scripts will be executed when the page is viewed in a browser. You will work with a simple script, edit it, and test it in your browser, all the while learning the basic tasks involved in creating and using JavaScript scripts.

Learning Web Scripting Basics

You already know how to use one type of computer language: HTML. You use HTML tags to describe how you want your document formatted, and the browser obeys your commands and shows the formatted document to the user. But because HTML is a simple text markup language, it can’t respond to the user, make decisions, or automate repetitive tasks. Interactive tasks such as these require a more sophisticated language: a programming language or a scripting language.

Whereas many programming languages are complex, scripting languages are generally simple. They have a simple syntax, can perform tasks with a minimum of commands, and are easy to learn. JavaScript is a web scripting language that enables you to combine scripting with HTML to create interactive web pages.

Here are a few of the things you can do with JavaScript:

[image: Images] Display messages to the user as part of a web page, in the browser’s status line, or in alert boxes.

[image: Images] Validate the contents of a form and make calculations (for example, an order form can automatically display a running total as you enter item quantities).

[image: Images] Animate images or create images that change when you move the mouse over them.

[image: Images] Create ad banners that interact with the user, rather than simply displaying a graphic.

[image: Images] Detect features supported by browsers and perform advanced functions only on browsers that support those features.

[image: Images] Detect installed plug-ins and notify the user if a plug-in is required

[image: Images] Modify all or part of a web page without requiring the user to reload it

[image: Images] Display or interact with data retrieved from a remote server

Scripts and Programs

A movie or a play follows a script—a list of actions (or lines) for the actors to perform. A web script provides the same type of instructions for the web browser. A script in JavaScript can range from a single line to a full-scale application. (In either case, JavaScript scripts usually run within a browser.)

Some programming languages must be compiled, or translated, into machine code before they can be executed. JavaScript, on the other hand, is an interpreted language: The browser executes each line of script as it comes to it.

There is one main advantage to interpreted languages: Writing or changing a script is very simple. Changing a JavaScript script is as easy as changing a typical HTML document, and the change is enacted as soon as you reload the document in the browser.

How JavaScript Fits into a Web Page

Using the <script> tag, you can add a short script (in this case, just one line) to a web document, as shown in Listing 4.1. The <script> tag tells the browser to start treating the text as a script, and the closing </script> tag tells the browser to return to HTML mode. In most cases, you can’t use JavaScript statements in an HTML document except within <script> tags. The exception is event handlers, which are described later in this chapter.

LISTING 4.1 A Simple HTML Document with a Simple Script

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>A Spectacular Time!</title>

 </head>

 <body>

 <h1>It is a Spectacular Time!</h1>

 <p>What time is it, you ask?</p>

 <p>Well, indeed it is:

 <script type="text/javascript">

 var currentTime = new Date();

 document.write(currentTime);

 </script>

 </p>

 </body>

</html>

JavaScript’s document.write method, which you’ll learn more about later, sends output as part of the web document. In this case, it displays the current date and time, as shown in Figure 4.1.

In this example, we placed the script within the body of the HTML document. There are actually four places where you might place scripts:

[image: Images] In the body of the page—In this case, the script’s output is displayed as part of the HTML document when the browser loads the page.

[image: Images] In the header of the page between the <head> tags—Scripts in the header should not be used to create output within the <head> section of an HTML document because that would likely result in poorly formed and invalid HTML documents, but these scripts can be referred to by other scripts here and elsewhere. The <head> section is often used for functions—groups of JavaScript statements that can be used as a single unit. You will learn more about functions in Chapter 9, “Understanding JavaScript Event Handling.”

[image: Images] Within an HTML tag, such as <body> or <form>—This is called an event handler, and it enables the script to work with HTML elements. When using JavaScript in event handlers, you don’t need to use the <script> tag. You’ll learn more about event handlers in Chapter 9.

[image: Images] In a separate file entirely—JavaScript supports the use of files that can be included by specifying a file in the <script> tag. Although the .js extension is a convention, scripts can actually have any file extension, or none.

[image: Images]

FIGURE 4.1
Using document.write to display the current date.

Using Separate JavaScript Files

When you create more complicated scripts, you’ll quickly find that your HTML documents become large and confusing. To avoid this problem, you can use one or more external JavaScript files. These are files with the .js extension that contain JavaScript statements.

External scripts are supported by all modern browsers. To use an external script, you specify its filename in the <script> tag, like so—and don’t forget to close the <script> tag using </script>:

Click here to view code image

<script type="text/javascript" src="filename.js"></script>

Because you’ll be placing the JavaScript statements in a separate file, you don’t need anything between the opening and closing <script> tags—in fact, anything between them will be ignored by the browser.

You can create the .js file using a text editor. It should contain one or more JavaScript statements, and only JavaScript—don’t include <script> tags, other HTML tags, or HTML comments. Save the .js file in the same directory as the HTML documents that refer to it.

TIP

External JavaScript files have a distinct advantage: You can link to the same .js file from two or more HTML documents. Because the browser stores this file in its cache, the time it takes your web pages to display is reduced.

Using Basic JavaScript Events

Many of the useful things you can do with JavaScript involve interacting with the user, and that means responding to events—for example, a link or a button being clicked. You can define event handlers within HTML tags to tell the browser how to respond to an event. For example, Listing 4.2 defines a button that displays a message when clicked.

LISTING 4.2 A Simple Event Handler

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Event Test</title>

 </head>

 <body>

 <h1>Event Test</h1>

 <button type="button"

 onclick="alert('You clicked the button.');">

 Click Me!</button>

 </body>

</html>

In various places throughout this book, you’ll learn more about JavaScript’s event model and how to create simple and complex event handlers—in some cases, invoking PHP scripts for even greater dynamic experiences as you’ll learn in Chapter 11, “AJAX: Getting Started with Remote Scripting”.

Exploring JavaScript’s Capabilities

If you’ve spent any time browsing the Web, you’ve undoubtedly seen lots of examples of JavaScript, even if you were not aware that JavaScript was powering your interactions. Here are some brief descriptions of typical applications for JavaScript.

Validating Forms

Form validation is a common use of JavaScript, although the form validation features of HTML5 have stolen a lot of JavaScript’s thunder here. A simple script can read values the user types into a form and make sure they’re in the right format, such as with ZIP Codes, phone numbers, and email addresses. This type of client-side validation enables users to fix common errors without waiting for a response from the web server telling them that their form submission was invalid.

Special Effects

One of the earliest, and admittedly most annoying, uses of JavaScript was to create attention-getting special effects—for example, scrolling a message in the browser’s status line or flashing the background color of a page.

These techniques have fortunately fallen out of style, but thanks to the W3C DOM and the latest browsers, some more impressive effects are possible with JavaScript—for example, creating objects that can be dragged and dropped on a page, or creating fading transitions between images in a slideshow. Additionally, some developers use HTML5, CSS3, and JavaScript in tandem to create fully functioning interactive games.

Remote Scripting (AJAX)

For a long time, one of the greatest limitations of JavaScript was that there was no way for it to communicate with a web server. For example, you could use JavaScript to verify that a phone number had the right number of digits, but you could not use JavaScript to look up the user’s location in a database based on the number.

However, now your scripts can get data from a server without loading a page or sending data back to be saved. These features are collectively known as AJAX (Asynchronous JavaScript and XML), or remote scripting. You’ll learn how to develop AJAX scripts in Chapter 11.

You’ve seen AJAX in action if you’ve used Google’s Gmail mail application, Facebook, or any online news site that allows you to comment on stories, vote for favorites, or participate in a poll (among many other things). All of these use remote scripting to present you with a dynamic user interface that interacts with a server in the background.

Basic JavaScript Language Concepts

As you build on your knowledge, there are a few foundational concepts you should know that form the basic building blocks of JavaScript.

Statements

Statements are the basic units of programs, be it a JavaScript or PHP program (or any other language). A statement is a section of code that performs a single action. For example, the following four statements create a new Date object and then assign the values for the current hour, minutes, and seconds into variables called hours, mins, and secs, respectively. You can then use these variables elsewhere in your JavaScript code.

now = new Date();

hours = now.getHours();

mins = now.getMinutes();

secs = now.getSeconds();

Although a statement is typically a single line of JavaScript, this is not a rule—it’s possible (and fairly common) to break a statement across multiple lines, or to include more than one statement in a single line.

A semicolon marks the end of a statement, but you can also omit the semicolon if you start a new line after the statement—if that is your coding style. In other words, these are three valid JavaScript statements:

hours = now.getHours()

mins = now.getMinutes()

secs = now.getSeconds()

However, if you combine statements into a single line, you must use semicolons to separate them. For example, the following line is valid:

Click here to view code image

hours = now.getHours(); mins = now.getMinutes(); secs = now.getSeconds();

But this line is invalid:

Click here to view code image

hours = now.getHours() mins = now.getMinutes() secs = now.getSeconds();

Again, your style is always up to you but I personally recommend always using semicolons to end statements.

Combining Tasks with Functions

Functions are groups of JavaScript statements that are treated as a single unit—this is a term you’ll use in PHP as well. A statement that uses a function is referred to as a function call. For example, you might create a function called alertMe, which produces an alert when called, like so:

Click here to view code image

function alertMe() {

 alert("I am alerting you!");

}

When this function is called, a JavaScript alert pops up and the text I am alerting you! is displayed.

Functions can take arguments—the expression inside the parentheses—to tell them what to do. Additionally, a function can return a value to a waiting variable. For example, the following function call prompts the user for a response and stores it in the text variable:

Click here to view code image

text = prompt("Enter some text.")

Creating your own functions is useful for two main reasons: First, you can separate logical portions of your script to make it easier to understand. Second, and more important, you can use the function several times or with different data to avoid repeating script statements.

NOTE

Entire chapters of this book are devoted to learning how to create and use functions both in JavaScript and in PHP.

Variables

Variables are containers that can store a number, a string of text, or another value. For example, the following statement creates a variable called food and assigns it the value cheese:

var food = "cheese";

JavaScript variables can contain numbers, text strings, and other values. You’ll learn more about variables in much greater detail in Chapter 7, “JavaScript Fundamentals: Variables, Strings, and Arrays,” and in the context of PHP in Chapter 12, “PHP Fundamentals: Variables, Strings, and Arrays.”

Objects

JavaScript also supports objects. Like variables, objects can store data—but they can store two or more pieces of data at once. As you’ll learn throughout the JavaScript-specific chapters of this book, using built-in objects and their methods is fundamental to JavaScript—it’s one of the ways the language works, by providing a predetermined set of actions you can perform. For example, the document.write functionality you saw earlier in this chapter is actually a situation in which you use the write method of the document object to output text to the browser for eventual rendering.

The data stored in an object is called a property of the object. For example, you could use objects to store information about people in an address book. The properties of each person object might include a name, an address, and a telephone number.

You’ll want to become intimately familiar with object-related syntax, because you will see objects quite a lot, even if you don’t build your own. You’ll definitely find yourself using built-in objects, and objects will very likely form a large part of any JavaScript libraries you import for use. JavaScript uses periods to separate object names and property names. For example, for a person object called Bob, the properties might include Bob.address and Bob.phone.

Objects can also include methods. These are functions that work with the object’s data. For example, our person object for the address book might include a display() method to display the person’s information. In JavaScript terminology, the statement Bob.display() would display Bob’s details.

Don’t worry if this sounds confusing—you’ll be exploring objects in much more detail later in this book both in the context of learning JavaScript fundamentals and PHP fundamentals. For now, you just need to know the basics, which are that JavaScript supports three kinds of objects:

[image: Images] Built-in objects are built in to the JavaScript language. You’ve already encountered one of these: Date. Other built-in objects include Array, String, Math, Boolean, Number, and RegExp.

[image: Images] DOM (Document Object Model) objects represent various components of the browser and the current HTML document. For example, the alert() function you used earlier in this chapter is actually a method of the window object.

[image: Images] Custom objects are objects you create yourself. For example, you could create a Person object, as mentioned earlier in this section.

Conditionals

Although you can use event handlers to notify your script (and potentially the user) when something happens, you might need to check certain conditions yourself as your script runs. For example, you might want to validate on your own that a user entered a valid email address in a web form.

JavaScript supports conditional statements, which enable you to answer questions like this. A typical conditional uses the if keyword, as in this example:

Click here to view code image

if (count == 1) {

 alert("The countdown has reached 1.");

}

This compares the variable count with the constant 1 and displays an alert message to the user if they are the same. It is quite likely you will use one or more conditional statements like this in most of your scripts, and more space is devoted to this concept in Chapter 8, “JavaScript Fundamentals: Functions, Objects, and Flow Control.”

Loops

Another useful feature of JavaScript—and most other programming languages—is the capability to create loops, or groups of statements that repeat a certain number of times. For example, these statements display the same alert 10 times, greatly annoying the user but showing how loops work:

Click here to view code image

for (i=1; i<=10; i++) {

 alert("Yes, it's yet another alert!");

}

The for statement is one of several statements JavaScript uses for loops. This is the sort of thing computers are supposed to be good at—performing repetitive tasks. You will use loops in many of your scripts, in much more useful ways than this example, as you’ll see in Chapter 8.

Event Handlers

As mentioned previously, not all scripts are located within <script> tags. You can also use scripts as event handlers. Although this might sound like a complex programming term, it actually means exactly what it says: Event handlers are scripts that handle events. You learned a little bit about events already, but not to the extent you’ll read about now or learn in Chapter 9, “Understanding JavaScript Event Handling.”

In real life, an event is something that happens to you. For example, the things you write on your calendar are scheduled events, such as “Dentist appointment” and “Fred’s birthday.” You also encounter unscheduled events in your life, such as a traffic ticket and an unexpected visit from relatives.

Whether events are scheduled or unscheduled, you probably have normal ways of handling them. Your event handlers might include things such as When Fred’s birthday arrives, send him a present and When relatives visit unexpectedly, turn off the lights and pretend nobody is home.

Event handlers in JavaScript are similar: They tell the browser what to do when a certain event occurs. The events JavaScript deals with aren’t as exciting as the ones you deal with—they include such events as When the mouse button is pressed and When this page is finished loading. Nevertheless, they’re a very useful part of JavaScript’s environment.

Many events (such as mouse clicks, which you’ve seen previously) are caused by the user. Rather than doing things in a set order, your script can respond to the user’s actions. Other events don’t involve the user directly—for example, an event can be triggered when an HTML document finishes loading.

Each event handler is associated with a particular browser object, and you can specify the event handler in the tag that defines the object. For example, images and text links have an event, onmouseover, that happens when the mouse pointer moves over the object. Here is a typical HTML image tag with an event handler:

Click here to view code image

You specify the event handler as an attribute within the HTML tag and include the JavaScript statement to handle the event within the quotation marks. This is an ideal use for functions because function names are short and to the point and can refer to a whole series of statements.

[image: Images] TRY IT YOURSELF

Using an Event Handler

Here’s a simple example of an event handler that will give you some practice setting up an event and working with JavaScript without using <script> tags. Listing 4.3 shows an HTML document that includes a simple event handler.

LISTING 4.3 An HTML Document with a Simple Event Handler

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Simple Event Handler Example</title>

 </head>

 <body>

 <h1>Simple Event Handler Example</h1>

 <p><a href="http://www.google.com/"

 onclick="alert('A-ha! An Event!');">Go to Google

 </p>

 </body>

</html>

The event handler is defined with the following onclick attribute within the <a> tag that defines a link:

Click here to view code image

onclick="alert('A-ha! An Event!');"

This event handler uses the DOM’s built-in alert method of the window object to display a message when you click the link; after you click OK to dismiss the alert, your browser will continue on to the URL. In more complex scripts, you will usually define your own functions to act as event handlers.

You’ll use other event handlers throughout this book, leading up to a more comprehensive lesson in Chapter 9.

After you click the OK button to dismiss the alert, the browser follows the link defined in the <a> tag. Your event handler could also stop the browser from following the link, as you will learn in Chapter 9.

Which Script Runs First?

You are not limited to a single script within a web document: one or more sets of <script> tags, external JavaScript files, and any number of event handlers can be used within a single document. With all of these scripts, you might wonder how the browser knows which to execute first. Fortunately, this is done in a logical fashion:

[image: Images] Sets of <script> tags within the <head> element of an HTML document are handled first, whether they include embedded code or refer to a JavaScript file. Because scripts in the <head> element will not create output in the web page, it’s a good place to define functions for use later.

[image: Images] Sets of <script> tags within the <body> section of the HTML document are executed after those in the <head> section, while the web page loads and displays. If there are two or more scripts in the body, they are executed in order.

[image: Images] Event handlers are executed when their events happen. For example, the onload event handler is executed when the body of a web page loads. Because the <head> section is loaded before any events, you can define functions there and use them in event handlers.

JavaScript Syntax Rules

JavaScript is a simple language, but you do need to be careful to use its syntax—the rules that define how you use the language—correctly. The rest of this book covers many aspects of JavaScript syntax, but there are a few basic rules you can begin to keep in mind now, throughout the chapters in this book, and then when you are working on your own.

Case Sensitivity

Almost everything in JavaScript is case sensitive: You cannot use lowercase and capital letters interchangeably. Here are a few general rules:

[image: Images] JavaScript keywords, such as for and if, are always lowercase.

[image: Images] Built-in objects such as Math and Date are capitalized.

[image: Images] DOM object names are usually lowercase, but their methods are often a combination of capitals and lowercase. Usually capitals are used for all but the first word, as in setAttribute and getElementById.

When in doubt, follow the exact case used in this book or another JavaScript reference. If you use the wrong case, the browser will usually display an error message.

Variable, Object, and Function Names

When you define your own variables, objects, or functions, you can choose their names. Names can include uppercase letters, lowercase letters, numbers, and the underscore (_) character. Names must begin with a letter or an underscore.

You can choose whether to use capitals or lowercase in your variable names, but remember that JavaScript is case sensitive: score, Score, and SCORE would be considered three different variables. Be sure to use the same name each time you refer to a variable.

Reserved Words

One more rule for variable names: They must not be reserved words. These include the words that make up the JavaScript language, such as if and for, DOM object names such as window and document, and built-in object names such as Math and Date.

A list of JavaScript reserved words can be found at https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Reserved_Words.

Spacing

Blank space (known as whitespace by programmers) is mostly ignored by JavaScript. You can usually include spaces and tabs within a line, or blank lines, without causing an error, although if your statements are not clearly terminated or bracketed you may get into a sticky situation. Overall, whitespace often makes the script more readable, so do not hesitate to use it.

Using Comments

JavaScript comments enable you to include documentation within your script. Brief documentation is useful if someone else needs to understand the script, or even if you try to understand it after returning to your code after a long break. To include comments in a JavaScript program, begin a line with two slashes, as in this example:

// this is a comment.

You can also begin a comment with two slashes in the middle of a line, which is useful for documenting a script. In this case, everything on the line after the slashes is treated as a comment and ignored by the JavaScript. For example, the following line is a valid JavaScript statement followed by a comment explaining what is going on in the code:

Click here to view code image

a = a + 1; // add 1 to the value of the variable a

JavaScript also supports C-style comments, which begin with /* and end with */. These comments can extend across more than one line, as the following example demonstrates:

Click here to view code image

/* This script includes a variety

of features, including this comment. */

Because JavaScript statements within a comment are ignored, this type of comment is often used for commenting out sections of code. If you have some lines of JavaScript that you want to temporarily take out of the picture while you debug a script, you can add /* at the beginning of the section and */ at the end.

Best Practices for JavaScript

Now that you’ve learned some of the very basic rules for writing valid JavaScript, it’s also a good idea to follow a few best practices. The following practices are not required, but you’ll save yourself and others some headaches if you begin to integrate them into your development process:

[image: Images] Use comments liberally. These make your code easier for others to understand, and also easier for you to understand when you edit it later. Comments are also useful for marking the major divisions of a script.

[image: Images] Use a semicolon at the end of each statement, and use only one statement per line. Although you learned in this chapter that semicolons are not necessary to end a statement (if you use a new line), using semicolons and only one statement per line will make your scripts easier to read and also easier to debug.

[image: Images] Use separate JavaScript files whenever possible. Separating large chunks of JavaScript makes debugging easier, and also encourages you to write modular scripts that can be reused.

[image: Images] Avoid being browser-specific. As you learn more about JavaScript, you’ll learn some features that work in only one browser. Avoid them unless absolutely necessary, and always test your code in more than one browser.

[image: Images] Keep JavaScript optional. Don’t use JavaScript to perform an essential function on your site—for example, the primary navigation links. Whenever possible, users without JavaScript should be able to use your site, although it might not be quite as attractive or convenient. This strategy is known as progressive enhancement.

There are many more best practices involving more advanced aspects of JavaScript. You’ll learn about them not only as you progress through the chapters, but also over time and as you collaborate with others on web development projects.

Understanding JSON

Although JSON, or JavaScript Object Notation, is not a part of the core JavaScript language, it is in fact a common way to structure and store information either used by or created by JavaScript-based functionality on the client side. Now is a good time to familiarize yourself with JSON (pronounced “Jason”) and some of its uses.

JSON-encoded data is expressed as a sequence of parameter and value pairs, with each pair using a colon to separate parameter from value. These “parameter”:“value” pairs are themselves separated by commas, as shown here:

Click here to view code image

"param1":"value1", "param2":"value2", "param3":"value3"

Finally, the whole sequence is enclosed between curly braces to form a JSON object; the following example creates a variable called yourJSONObject:

var yourJSONObject = {

 "param1":"value1",

 "param2":"value2",

 "param3":"value3"

}

Note that there is no comma after the final parameter—doing so would be a syntax error since no additional parameter follows.

JSON objects can have properties accessed directly using the usual dot notation, such as this:

Click here to view code image

alert(yourJSONObject.param1); // alerts 'value1'

More generally, though, JSON is a general-purpose syntax for exchanging data in a string format. It is then easy to convert the JSON object into a string by a process known as serialization; serialized data is convenient for storage or transmission around networks. You’ll see some uses of serialized JSON objects as this book progresses.

One of the most common uses of JSON these days is as a data interchange format used by application programming interfaces (APIs) and other data feeds consumed by a front-end application that uses JavaScript to parse this data. This increased use of JSON in place of other data formats such as XML has come about because JSON is

[image: Images] Easy to read for both people and computers

[image: Images] Simple in concept, with a JSON object being nothing more than a series of “parameter”:“value” pairs enclosed by curly braces

[image: Images] Largely self-describing

[image: Images] Fast to create and parse

[image: Images] No special interpreters or other additional packages are necessary

Using the JavaScript Console to Debug JavaScript

As you develop more complex JavaScript applications, you’re going to run into errors from time to time. JavaScript errors are usually caused by mistyped JavaScript statements.

To see an example of a JavaScript error message, modify the statement you added in the preceding section. We’ll use a common error: omitting one of the parentheses. Change the last document.write statement in Listing 4.1 to read as follows:

document.write(currentTime;

Save your HTML document again and load the document into the browser. Depending on the browser version you’re using, one of two things will happen: Either an error message will be displayed or the script will simply fail to execute.

If an error message is displayed, you’re halfway to fixing the problem by adding the missing parenthesis. If no error was displayed, you should configure your browser to display error messages so that you can diagnose future problems:

[image: Images] In Firefox, you can select the Developer option, then Browser Console from the main menu.

[image: Images] In Chrome, select More Tools, Developer Tools from the main menu. A console displays in the bottom of the browser window. The console is shown in Figure 4.2, displaying the error message you created in this example.

[image: Images] In Microsoft Edge, select F12 Developer Tools from the main menu.

The error we get in this case is Uncaught SyntaxError and it points to line 15. In this case, clicking the name of the script takes you directly to the highlighted line containing the error, as shown in Figure 4.3.

Most modern browsers contain JavaScript debugging tools such as the one you just witnessed. These tools will be incredibly useful to you as you begin your journey in web application development.

[image: Images]

FIGURE 4.2
Showing an error in the JavaScript console in Chrome.

[image: Images]

FIGURE 4.3
Chrome helpfully points out the offending line.

Summary

In this chapter, you learned what web scripting is and what JavaScript is. You also learned how to insert a script into an HTML document or refer to an external JavaScript file, what sorts of things JavaScript can do, and how JavaScript differs from other web languages. You also wrote a simple JavaScript program and tested it using a web browser.

In the process of writing this script, you have used some of JavaScript’s basic features: variables, the document.write statement, and functions for working with dates and times. You were also introduced to the concept of JavaScript functions, objects, event handlers, conditions, and loops.

Additionally, you learned how to use JavaScript comments to make your script easier to read, and we looked at a simple example of an event handler. Finally, you were introduced to JSON, a data interchange format that is commonly used by JavaScript-based applications, and what happens when a JavaScript program runs into an error (and how to debug it).

Now that you’ve learned a bit of JavaScript syntax, you’re ready to build on that in future chapters. But before that, take a moment in the next chapter to learn a similar set of basic information about a server-side scripting language: PHP.

Q&A

Q. Do I need to test my JavaScript on more than one browser?

A. In an ideal world, any script you write that follows the standards for JavaScript will work in all browsers, and 98% of the time (give or take) that’s true in the real world. But browsers do have their quirks, and you should test your scripts in Chrome, Internet Explorer, and Firefox at a minimum.

Q. When I try to run my script, the browser displays the actual script in the browser window instead of executing it. What did I do wrong?

A. This is most likely caused by one of three errors. First, you might be missing the beginning or ending <script> tags. Check them, and then also verify that the first reads <script type="text/javascript">. Finally, your file might have been saved with a .txt extension, causing the browser to treat it as a text file. Rename it to .htm or .html to fix the problem.

Q. I’ve heard the term object-oriented applied to languages such as C++ and Java. If JavaScript supports objects, is it an object-oriented language?

A. Yes, although it might not fit some people’s strict definitions. JavaScript objects do not support all the features that languages such as C++ and Java support, although the latest versions of JavaScript have added more object-oriented features.

Workshop

The Workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. When a user views a page containing a JavaScript program, which machine actually executes the script?

A. The user’s machine running a web browser

B. The web server

C. A central machine deep within Netscape’s corporate offices

2. What software do you use to create and edit JavaScript programs?

A. A browser

B. A text editor

C. A pencil and a piece of paper

3. What are variables used for in JavaScript programs?

A. Storing numbers, dates, or other values

B. Varying randomly

C. Causing high-school algebra flashbacks

4. What should appear at the very end of a JavaScript script embedded in an HTML file?

A. The <script type="text/javascript"> tag

B. The </script> tag

C. The END statement

5. Which of the following is executed first by a browser?

A. A script in the <head> section

B. A script in the <body> section

C. An event handler for a button

Answers

1. A. JavaScript programs execute on the web browser. (There is actually a server-side version of JavaScript, but that’s another story.)

2. B. Any text editor can be used to create scripts. You can also use a word processor if you’re careful to save the document as a text file with the .html or .htm extension.

3. A. Variables are used to store numbers, dates, or other values.

4. B. Your script should end with the </script> tag.

5. A. Scripts defined in the <head> section of an HTML document are executed first by the browser.

Exercises

[image: Images] Examine the simple time display script you created and comment the code to explain everything that is happening all along the way. Verify that the script still runs properly.

[image: Images] Use the techniques you learned in this chapter to create a script that displays the current date and time in an alert box when the user clicks a link.

CHAPTER 5
Introducing PHP

What You’ll Learn in This Chapter:

[image: Images] How PHP works with the web server as a “server-side” language

[image: Images] How to include PHP code in a web page

[image: Images] Beginning and ending PHP scripts

[image: Images] How to use HTML, JavaScript, and PHP in the same file

In the first four chapters of this book, you worked with client-side or front-end languages: HTML and JavaScript. In this chapter, you’ll learn a bit about PHP, which is a server-side scripting language that operates on a web server. You’ll learn how to include PHP code into your HTML documents and how these scripts are executed when you refer to a page in your web browser that accesses a remote web server. This is a short chapter that is meant to be a bridge between the front end functionality you just learned about, and the backend functionality that you’ll pick up again in Part III of this book.

How PHP Works with a Web Server

Often, when a user submits a request to a web server for a web page, the server reads a simple HTML file (that may or may not include JavaScript) and sends its contents back to the browser in response. If the request is for a PHP file, or for an HTML document that includes PHP code, and the server supports PHP, then the server looks for PHP code in the document, executes it, and includes the output of that code in the page in place of the PHP code. Here’s a simple example:

Click here to view code image

<!DOCTYPE html>

<html>

 <head>

 <title>There's PHP in Here</title>

 </head>

 <body>

 <?php echo "Howdy!"; ?>

 </body>

</html>

If this page is requested from a web server that supports PHP, the HTML sent to the browser will look like this:

Click here to view code image

<!DOCTYPE html>

<html>

 <head>

 <title>There's PHP in Here</title>

 </head>

 <body>

 Howdy!

 </body>

</html>

When the user requests the page, the web server determines that it is a PHP page rather than a regular HTML page. If a web server supports PHP, it usually treats any files with the extension .php as PHP pages. Assuming this page is called something like howdy.php, when the web server receives the request, it scans the page looking for PHP code and then runs any code it finds. PHP code is distinguished from the rest of a page by PHP tags, which you’ll learn more about in the next section.

Whenever the server finds those tags, it treats whatever is within them as PHP code. That’s not so different from the way things work with JavaScript, where anything inside <script> tags is treated as JavaScript code.

The Basics of PHP Scripts

Let’s jump straight into the fray with the simplest PHP script possible that also produces some meaningful output. To begin, open your favorite text editor. Like HTML documents, PHP files are made up of plain text. You can create them with any text editor, and most popular HTML editors and programming IDEs (integrated development environments) provide support for PHP.

TIP

If you have an IDE or simple text editor that you enjoy using for HTML and JavaScript, it’s likely to work just fine with PHP as well.

Type in the example shown in Listing 5.1 and save the file to the document root of your web server, using a name something like test.php.

LISTING 5.1 A Simple PHP Script

<?php

 phpinfo();

?>

This script simply tells PHP to use the built-in function called phpinfo(). This function automatically generates a significant amount of detail about the configuration of PHP on your system. You can also begin to see the power of a scripting language, in which a little bit of text can go a long way toward producing something useful.

If you are not working directly on the machine that will be serving your PHP script, you need to use a File Transfer Protocol (FTP) or Secure Copy Protocol (SCP) client to upload your saved document to the server. When the document is in place on the server, you should be able to access it using your browser. If all has gone well, you should see the script’s output. Figure 5.1 shows the output from the test.php script.

[image: Images]

FIGURE 5.1
Success: the output from test.php.

Beginning and Ending a Block of PHP Statements

When writing PHP, you need to inform the PHP engine that you want it to execute your commands. If you don’t do this, the code you write will be mistaken for HTML and will be output to the browser. You can designate your code as PHP with special tags that mark the beginning and end of PHP code blocks. Table 5.1 shows the two possible PHP delimiter tags.

TABLE 5.1 PHP Start and End Tags

	Tag Style

	Start Tag

	End Tag

	Standard tags

	<?php

	?>

	Short tags

	<?

	?>

Standard tags are highly recommended and are the default expectation by the PHP engine. If you want to use short tags, you must explicitly enable short tags in your PHP configuration by making sure that the short_open_tag switch is set to On in php.ini:

short_open_tag = On;

Such a configuration change will require a restart of your web server. This is largely a matter of preference, although if you intend to include XML in your script, you should not enable the short tags (<? and ?>) and should work with the standard tags (<?php and ?>). Standard tags will be used throughout this book, but you should be aware you may run into this other type of tag if you are reading other people’s code; if you use that code, you must adjust the PHP tags before you use it.

CAUTION

The character sequence <? tells an XML parser to expect a processing instruction and is therefore often included in XML documents. If you include XML in your script and have short tags enabled, the PHP engine is likely to confuse XML processing instructions and PHP start tags. Definitely do not enable short tags if you intend to incorporate XML in your document. Again, the standard tags will really serve you best in the long run.

Let’s run through the two ways in which you can legally write the code in Listing 5.1, including using short tags if that configuration option is enabled:

<?php

 phpinfo();

?>

<?

 phpinfo();

?>

You can also put single lines of code in PHP on the same line as the PHP start and end tags:

<?php phpinfo(); ?>

Now that you know how to define a block of PHP code with PHP tag delimiters, let’s move forward.

The echo and print() Statements

The following bit of PHP code does exactly one thing—it displays "Hello!" on the screen:

<?php

 echo "Hello!";

?>

The echo statement, which is what we used here, outputs data. In most cases, anything output by echo ends up viewable in the browser. Alternatively, you could have used the print() statement in place of the echo statement. Using echo or print() is a matter of taste; when you look at other people’s scripts, you might see either used, which is why I mention both here.

Referring back to the code you have seen so far, note the only line of code in Listing 5.1 ended with a semicolon. The semicolon informs the PHP engine that you have completed a statement, and it’s probably the most important bit of coding syntax you could learn at this stage.

A statement represents an instruction to the PHP engine. Broadly, it is to PHP what a sentence is to written or spoken English. A sentence should usually end with a period; a statement should usually end with a semicolon. Exceptions to this rule include statements that enclose other statements and statements that end a block of code. In most cases, however, failure to end a statement with a semicolon will confuse the PHP engine and result in an error.

Combining HTML and PHP

The script in Listing 5.1 is pure PHP, but that does not mean you can only use PHP in PHP scripts. You can use PHP and HTML (and JavaScript too!) in the same document by simply ensuring that all of the PHP is enclosed by PHP start and end tags, as shown in Listing 5.2.

LISTING 5.2 Some PHP Embedded Inside HTML

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Some PHP Embedded Inside HTML</title>

 </head>

 <body>

 <h1><?php echo "Hello World!"; ?></h1>

 </body>

</html>

As you can see, incorporating PHP code into a predominantly HTML document is simply a matter of typing in the code because the PHP engine ignores everything outside the PHP start and end tags.

Save the contents of Listing 5.2 as helloworld.php, place it in your document root, and then view it with a browser. You should see the string Hello World! in a large, bold heading, as shown in Figure 5.2. If you were to view the document source, as shown in Figure 5.3, the listing would look exactly like a normal HTML document, because all of the processing by the PHP engine will have already taken place before the output gets to the browser for rendering.

[image: Images]

FIGURE 5.2
The output of helloworld.php as viewed in a browser.

You can include as many blocks of PHP code as you need in a single document, interspersing them with HTML however it makes sense. Although you can have multiple blocks of code in a single document, they combine to form a single continuous script as far as the PHP engine is concerned.

[image: Images]

FIGURE 5.3
The output of helloworld.php as HTML source code.

Adding Comments to PHP Code

Code that seems clear at the time you write it can seem like a hopeless tangle when you try to amend it 6 months later. Adding comments to your code as you write can save you time later on and make it easier for other programmers to work with your code.

A comment is text in a script that is ignored by the PHP engine. Comments can make code more readable or can be use to annotate a script.

Single-line comments begin with two forward slashes (//), which is the preferred style, or a single hash or pound sign (#), which you may see in other people’s code if those folks are more used to working in Perl or other languages where that comment type is more the norm. Regardless of which valid comment type you use, the PHP engine ignores all text between these marks and either the end of the line or the PHP close tag:

// this is a comment

this is another comment

Multiline comments begin with a forward slash followed by an asterisk (/*) and end with an asterisk followed by a forward slash (*/):

/*

this is a comment

none of this will

be parsed by the

PHP engine

*/

Code comments, just like HTML and JavaScript (and anything else that isn’t PHP), are ignored by the PHP engine and will not cause errors that halt the execution of your scripts.

Code Blocks and Browser Output

In the previous section, you learned that you can slip in and out of HTML mode at will using the PHP start and end tags. In later chapters, you’ll learn more about how you can present distinct output to the user according to a decision-making process you can control by using what are called flow control statements, which exist in both JavaScript and PHP. Although flow control in both languages will be discussed at length as the book moves forward, I use a basic example here to continue the lesson about mingling PHP and HTML with ease.

Imagine a script that outputs a table of values only when some condition is true, and doesn’t output anything when a condition is false. Listing 5.3 shows a simplified HTML table constructed with the code block of an if statement.

LISTING 5.3 PHP Displays Text if a Condition Is True

Click here to view code image

<!DOCTYPE html>

<html lang="en">

<head>

 <title>More PHP Embedded Inside HTML</title>

 <style type="text/css">

 table, tr, th, td {

 border: 1px solid #000;

 border-collapse: collapse;

 padding: 3px;

 }

 th {

 font-weight: bold;

 }

 </style>

 </head>

 <body>

 <?php

 $some_condition = true;

 if ($some_condition) {

 echo "<table>

 <tr><th colspan=\"3\">

 Today's Prices

 </th></tr>

 <tr><td>14.00</td><td>32.00</td><td>71.00</td></tr>

 </table>";

 }

 ?>

 </body>

</html>

If the value of $some_condition is true, the table is printed. For the sake of readability, we split the output into multiple lines surrounded by one echo statement, and we use the backslash to escape any quotation marks used in the HTML output.

Put these lines into a text file called embedcondition.php and place this file in your web server document root. When you access this script through your web browser, it should look like Figure 5.4.

[image: Images]

FIGURE 5.4
Output of embedcondition.php.

There’s nothing wrong with the way this is coded, but you may find your code more readable to slip back into HTML mode within the code block itself. Listing 5.4 does just that.

LISTING 5.4 Returning to HTML Mode Within a Code Block

Click here to view code image

<!DOCTYPE html>

<html lang="en">

<head>

 <title>More PHP Embedded Inside HTML</title>

 <style type="text/css">

 table, tr, th, td {

 border: 1px solid #000;

 border-collapse: collapse;

 padding: 3px;

 }

 th {

 font-weight: bold;

 }

 </style>

 </head>

 <body>

 <?php

 $some_condition = true;

 if ($some_condition) {

 ?>

 <table>

 <tr><th colspan="3">Today's Prices</th></tr>

 <tr><td>14.00</td><td>32.00</td><td>71.00</td></tr>

 </table>

 <?php

 }

 ?>

 </body>

</html>

The important thing to note here is that the shift to HTML mode occurs only if the condition of the if statement is fulfilled. Slipping in and out of PHP or HTML mode like this can save you from the time and effort of escaping quotation marks and wrapping output in echo statements. This approach might, however, affect the readability of the code in the long run, especially if the script grows larger.

Summary

In this chapter, you learned the concept of using PHP as a server-side scripting language, and using the phpinfo() function, you produced a list of the PHP configuration values for the server you are using. You created a simple PHP script using a text editor, and you learned about the tags you can use to begin and end blocks of PHP code.

You learned how to use the echo and print statements to send data to the browser, and you brought HTML and PHP together into the same script. You also looked at a technique for using PHP start and end tags in conjunction with conditional code blocks, as another way to embed PHP within HTML.

The first five chapters in this book lay the groundwork for creating web applications by introducing you to the idea of interactive websites and basic concepts used when developing web content with HTML, JavaScript, and PHP. The PHP language and its use on the back end of applications (the server side), as opposed to the front end (your web browser), makes it the more complex of the three. However, there are many similarities in the fundamentals and syntax of both PHP and JavaScript, such that directly after this chapter we will refocus on JavaScript for a bit before returning to PHP to build interactive and dynamic applications.

Q&A

Q. Which are the best start and end tags to use?

A. It is largely a matter of preference. For the sake of portability, the standard tags (<?php and ?>) are preferred.

Q. What editors should I avoid when creating PHP code?

A. Do not use word processors that format text for printing (Microsoft Word, for example). Even if you save files created using this type of editor in plain-text format, hidden characters are likely to creep into your code.

Q. When should I comment my code?

A. Again, this is a matter of preference. Some short scripts will be self-explanatory, even when you return to them after a long interval. For scripts of any length or complexity, you should comment your code. Comments in your code often save you time and frustration in the long run.

Workshop

The Workshop is designed to help you review what you’ve learned and begin putting your knowledge into practice.

Quiz

1. Can a person browsing your website read the source code of a PHP script you have successfully installed?

2. Is the following a valid PHP script that will run without errors? If so, what will display in the browser?

<?php echo "Hello World!" ?>

3. Is the following a valid PHP script that will run without errors? If so, what will display in the browser?

<?php

// I learned some PHP!

?>

Answers

1. No, the user will see only the output of your script.

2. No, this code will produce an error because the echo statement is not terminated by a semicolon.

3. Yes, this code will run without errors. However, it will produce nothing in the browser because the only code within the PHP start and end tags is a PHP comment, which will be ignored by the PHP engine. Therefore, no output will be rendered.

Exercises

1. Familiarize yourself with the process of creating, uploading, and running PHP scripts. In particular, create your own "Hello World" script. Add HTML code to it as well as additional blocks of PHP.

Part II: Getting Started with Dynamic Websites

CHAPTER 6
Understanding Dynamic Websites and HTML5 Applications

What You’ll Learn in This Chapter:

[image: Images] How to conceptualize different types of dynamic content

[image: Images] How to display randomized text with JavaScript

[image: Images] How the W3C DOM standard makes dynamic pages easier to control

[image: Images] The basics of the standard DOM objects: window, document, history, and location

[image: Images] How to work with DOM nodes, parents, children, and siblings

[image: Images] How to access and use the properties of DOM nodes

[image: Images] How to access and use DOM node methods

[image: Images] How to control element positioning with JavaScript

[image: Images] How to hide and show elements with JavaScript

[image: Images] How to add and modify text within a page with JavaScript

[image: Images] How to change images using JavaScript and user events

[image: Images] How to debug HTML, CSS, and JavaScript using developer tools

[image: Images] How to begin thinking ahead to putting all the pieces together to create HTML5 applications

The term dynamic means something active or something that motivates another person to become active. A dynamic website is one that incorporates interactivity into its functionality and design, but also motivates a user to take an action—read more, purchase a product, and so on. In this chapter, you’ll learn about the types of interactivity that can make a site dynamic, including information about both server-side and client-side scripting (as well as some practical examples of the latter).

This chapter will also help you better understand the Document Object Model (or DOM), which is the structured framework of a document within a web browser. Using JavaScript objects, methods, and other functionality (in addition to basic HTML), you can control the DOM to develop rich user experiences. After learning about the different technologies, you’ll use JavaScript and your knowledge of the DOM to display a random quote upon a load loading as well as swap images based on user interaction. Finally, having learned at least the keywords and the basic concept of putting the HTML, CSS, and JavaScript pieces together, you’ll be introduced to the possibilities that exist when you’re creating HTML5 applications.

Refresher on the Different Types of Scripting

In web development in general, two types of scripting exist: server side and client side. Server-side scripting refers to scripts that run on the web server, which then sends results to your web browser. If you have ever submitted a form at a website (which includes using a search engine), you have experienced the results of a server-side script. You were introduced to PHP in the previous chapter, and PHP is a server-side scripting language.

On the other hand, client-side scripting refers to scripts that run within your web browser—no interaction with a web server is required for the scripts to run. By far the most popular client-side scripting language is JavaScript, which you learned about in Chapter 4, “Introducing JavaScript.” For several years, research has shown that more than 99% of all web browsers have JavaScript enabled.

As you work through the book, we’ll focus on using JavaScript for client-side scripting and PHP for server-side scripting.

Displaying Random Content on the Client Side

In Chapter 4, you learned the basics of JavaScript, such as how it fits into a web page. As an example of doing something dynamic on the client side, this section walks you through adding random content to a web page through JavaScript. You can use JavaScript to display something different each time a page loads. Maybe you have a collection of text or images you find interesting enough to include in your pages.

I’m a sucker for a good quote. If you’re like me, or plenty of other people creating personal websites, you might find it fun to incorporate an ever-changing quote into your web pages. To create a page with a quote that changes each time the page loads, you must first gather all your quotes, along with their respective sources. You then place these quotes into a JavaScript array, which is a special type of variable in programming languages that is handy for holding lists of items.

After the quotes are loaded into an array, the JavaScript that’s used to pluck out a quote at random is relatively small. Listing 6.1 contains the complete HTML and JavaScript code for a web page that displays a random quote each time it loads.

LISTING 6.1 A Random-Quote Web Page

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Quotable Quotes</title>

 <script type="text/javascript">

 <!-- Hide the script from old browsers

 function getQuote() {

 // Create the arrays

 var quotes = new Array(4);

 var sources = new Array(4);

 // Initialize the arrays with quotes

 quotes[0] = "Optimism is the faith that leads to achievement.";

 sources[0] = "Helen Keller";

 quotes[1] = "If you don't like the road you're walking, " +

 "start paving another one.";

 sources[1] = "Dolly Parton";

 quotes[2] = "The most difficult thing is the decision to act, " +

 "the rest is merely tenacity.";

 sources[2] = "Amelia Earhart";

 quotes[3] = "What's another word for thesaurus?";

 sources[3] = "Steven Wright";

 // Get a random index into the arrays

 i = Math.floor(Math.random() * quotes.length);

 // Write out the quote as HTML

 document.write("<p style='background-color: #ffb6c1;

 text-align:center'>\"");

 document.write(quotes[i] + "\"");

 document.write("- " + sources[i] + "");

 document.write("</p>");

 }

 // Stop hiding the script -->

 </script>

 </head>

 <body>

 <h1>Quotable Quotes</h1>

 <p>Following is a random quotable quote. To see a new quote just

 reload this page.</p>

 <script type="text/javascript">

 <!-- Hide the script from old browsers

 getQuote();

 // Stop hiding the script -->

 </script>

 </body>

</html>

Although this code looks kind of long, a lot of it consists of just the four quotes available for display on the page.

The large number of lines between the first set of <script></script> tags creates a JavaScript function called getQuote(). After a function is defined, it can be called in other places in the same page, which you see later in the code. Note that if the function existed in an external file, the function could be called from all your pages.

If you look closely at the code, you will see some lines like this:

// Create the arrays

and

Click here to view code image

// Initialize the arrays with quotes

These are code comments. A developer uses these types of comments to leave notes in the code so that anyone reading it has an idea of what the code is doing in that particular place. After the first comment about creating the arrays, you can see that two arrays—initialized using the keyword var—are created—one called quotes and one called sources, each containing four elements:

var quotes = new Array(4);

var sources = new Array(4);

After the second comment (about initializing the arrays with quotes), four items are added to the arrays. Let’s look closely at one of them, the first quote by Helen Keller:

Click here to view code image

quotes[0] = "Optimism is the faith that leads to achievement.";

sources[0] = "Helen Keller";

You already know that the arrays are named quotes and sources. But the variables to which values are assigned (in this instance) are called quotes[0] and sources[0]. Because quotes and sources are arrays, each item in the array has its own position. When you’re using arrays, the first item in the array is not in slot #1—it is in slot #0. In other words, you begin counting at 0 instead of 1, which is typical in programming and is true in JavaScript as well as PHP—just file that away as an interesting and useful note for the future (or as a good trivia answer). Therefore, the text of the first quote (a value) is assigned to quotes[0] (a variable). Similarly, the text of the first source is assigned to source[0].

Text strings are enclosed in quotation marks. However, in JavaScript, a line break indicates an end of a statement, so the third quote would cause problems in the code if it were written like this:

Click here to view code image

quotes[2] = "The most difficult thing is the decision to act,

the rest is merely tenacity.";

Therefore, you see that the string is built as a series of strings enclosed in quotation marks, with a plus sign (+) connecting the strings (this plus sign is called a concatenation operator):

Click here to view code image

quotes[2] = "The most difficult thing is the decision to act, " +

"the rest is merely tenacity.";

The next chunk of code definitely looks the most like programming; this line generates a random number and assigns that value to a variable called i:

Click here to view code image

i = Math.floor(Math.random() * quotes.length);

But you can’t just pick any random number—the purpose of the random number is to determine which of the quotes and sources should be printed, and there are only four quotes. So this line of JavaScript does the following:

[image: Images] Uses Math.random() to get a random number between 0 and 1. For example, 0.5482749 might be a result of Math.random().

[image: Images] Multiplies the random number by the length of the quotes array, which is currently 4; the length of the array is the number of elements in the array. If the random number is 0.5482749 (as shown previously), multiplying that by 4 results in 2.1930996.

[image: Images] Uses Math.floor() to round the result down to the nearest whole number. In other words, 2.1930996 turns into 2; remember that we start counting elements in an array at 0, so rounding up would always mean a chance that we would refer to an element that does not exist.

[image: Images] Assigns the variable i a value of 2 (for example).

The rest of the function should look familiar, with a few exceptions. First, as you learned in Chapter 4, document.write() is used to write HTML that the browser then renders. Next, the strings are separated to clearly indicate when something needs to be handled differently, such as escaping the quotation marks with a backslash when they should be printed literally (\) or when the value of a variable is substituted. The actual quote and source that are printed are the ones that match quotes[i] and sources[i], where i is the number determined by the mathematical functions noted previously.

But the act of simply writing the function doesn’t mean that any output will be created. Further on in the HTML, you can see getQuote(); between the two <script></script> tags—that is how the function is called. Wherever that function call is made, that is where the output of the function will be placed. In this example, the output displays below a paragraph that introduces the quotation.

Figure 6.1 shows the Quotable Quotes page as it appears when loaded in a web browser. When the page reloads, there is a one-in-four chance that a different quote displays—it is random, after all!

[image: Images]

FIGURE 6.1
The Quotable Quotes page displays a random quote each time it is loaded.

Keep in mind that you can easily modify this page to include your own quotes or other text that you want to display randomly. You can also increase the number of quotes available for display by adding more entries in the quotes and sources arrays in the code. And of course, you can modify the HTML output and style it however you’d like.

If you use the Quotable Quotes page as a starting point, you can easily alter the script and create your own interesting variation on the idea. If you make mistakes along the way, so be it. The trick to getting past mistakes in script code is to be patient and carefully analyze the code you’ve entered. You can always remove code to simplify a script until you get it working, and then add new code one piece at a time to make sure each piece works.

Understanding the Document Object Model

One advantage that JavaScript has over plain HTML is that these client-side scripts can manipulate the web browser and documents (including their contents) right there in the browser after the content has been loaded. Your script can load a new page into the browser, work with parts of the browser window and the loaded document, open new windows, and even modify text within the page—all dynamically, without requiring additional page loads from a server.

To work with the browser and documents, JavaScript uses the hierarchy of parent and child objects found within the DOM. These objects are organized into a tree-like structure, and they represent all the content and components of a web document and the browser that renders it.

NOTE

The DOM is not part of JavaScript or any other programming language—rather, it’s an API (application programming interface) built into the browser.

The objects in the DOM have properties that describe the web browser or document, and methods, or built-in code that enables you to work with parts of the web browser or document. You’ll learn more about these properties and methods, and will practice referencing or using them, as this chapter moves forward.

You’ve seen DOM object notation already in this book, even if it wasn’t called out as such. When you refer to a DOM object, you use the parent object name followed by the child object name or names, separated by periods. For example, if you need to refer to a specific image loaded in your web browser, this is a child object of the document object. But that document object, in turn, is a child of the DOM’s window object. So to reference an image called logo_image, the DOM object notation would look like this:

window.document.logo_image

Using window Objects

At the top of the browser object hierarchy is the window object, which represents a browser window. You’ve already used at least one method of the window object: alert(), which displays a message in an alert box.

A user might have several windows open at a time, each with its own distinct window object, since different documents will presumably be loaded in each window. Even if the same document is loaded into two or more windows, they are considered distinct window objects because they are in fact distinct instances of the browser. However, when you reference window.document (or just document, as the window object is the default parent object so we don’t need to explicitly refer to it) in your JavaScript, the reference is interpreted to be the window currently in focus—the one actively being used.

The window object is the parent object for all the objects we will be looking at in this chapter. Figure 6.2 shows the window section of the DOM object hierarchy and a variety of its objects.

[image: Images]

FIGURE 6.2
The window section of the DOM object hierarchy, and some of its children.

Working with the document Object

Just like it sounds, the document object represents a web document. Web documents are displayed within browser windows, so it shouldn’t surprise you to learn that the document object is a child of the window object. Because the window object always represents the current window, as you learned in the preceding section, you can use window.document to refer to the current document. You can also simply refer to document, which automatically refers to the current window.

In the following sections, you will look at some of the properties and methods of the document object that will be useful in your scripting.

Getting Information About the Document

Several properties of the document object include information about the current document in general:

[image: Images] document.URL specifies the document’s URL, and you (or your code) cannot change the value of this property.

[image: Images] document.title refers to the title of the current page, defined by the HTML <title> tag. You can change the value of this property.

[image: Images] document.referrer returns the URL of the page the user was viewing before the current page—usually, the page with a link to the current page. As with document.URL, you cannot change the value of document.referrer. Note that document.referrer will be blank if a user has accessed a given URL directly.

[image: Images] document.lastModified is the date the document was last modified. This date is sent from the server along with the page.

[image: Images] document.cookie enables you to read or set a cookie used within the document.

[image: Images] document.images returns a collection of images used in the document.

As an example of a document property, Listing 6.2 shows a short HTML document that displays its last modified date using JavaScript.

LISTING 6.2 Displaying the Last Modified Date

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Displaying the Last Modified Date</title>

 </head>

 <body>

 <h1>Displaying the Last Modified Date</h1>

 <p>This page was last modified on:

 <script type="text/javascript">

 document.write(document.lastModified);

 </script>

 </p>

 </body>

</html>

Figure 6.3 shows the output of Listing 6.2.

[image: Images]

FIGURE 6.3
Viewing the last modified date of a document.

If you use JavaScript to display the value of this document property, you don’t have to remember to update the date each time you modify the page, should you choose to expose this information to the user. (You could also use the script to always print the current date instead of the last modified date, but that would be cheating.)

NOTE

You might find that the document.lastModified property doesn’t work on your web pages or returns the wrong value. The date is received from the web server, and some servers do not maintain modification dates correctly.

Writing Text in a Document

The simplest document object methods are also the ones you will use most often. In fact, you’ve used one of them already, even in the most basic examples in this book so far. The document.write method prints text as part of the HTML in a document window. An alternative statement, document. writeln, also prints text, but it includes a newline (\n) character at the end. This is handy when you want your text to be the last thing on the line in your source code.

CAUTION

Bear in mind that the newline character is displayed as a single space by the browser, except inside a <pre></pre> container. You will need to use the
 tag if you want an actual line break to be shown in the browser.

You can use these methods only within the body of the web page; you can’t use these methods to add to a page that has already loaded without reloading it. You can write new content for a document, however, as the next section explains.

NOTE

You can also directly modify the text of a web page by using more advanced features of the DOM, which you’ll learn about later in this chapter.

The document.write method can be used within a <script> tag in the body of an HTML document. You can also use it in a function, provided you include a call to the function within the body of the document, as shown in Listing 6.2.

Using Links and Anchors

Another child of the document object is the link object. There can be, and very likely are, multiple link objects in a document. Each link object includes information about a link to another location or to an anchor.

You can access link objects through the links array. Each member of the array is one of the link objects in the current page. A property of the links array, document.links.length, indicates the number of links in the page. You might use the document.links.length property in a script to first determine how many links there are, before performing additional tasks such as dynamically changing the display of a certain number of links, and so on.

Each link object (or member of the links array) has a list of properties defining the URL that is ultimately stored in the object. The href property contains the entire URL, and other properties define other, smaller portions of it. The link object uses the same property names as the location object, defined later in this chapter, so after you commit one set to memory, you will also know the other set.

You can refer to a property by indicating the link number, or position within the array, and the property name. For example, the following statement assigns the entire URL of the first link stored in the array to the variable link1:

var link1 = links[0].href;

The anchor objects are also children of the document object. Each anchor object represents an anchor in the current document—a particular location that can be jumped to directly.

As with links, you can access anchors using an array; this one is called anchors. Each element of this array is an anchor object. The document.anchors.length property gives you the number of elements in the anchors array. An example of using the anchors array to your advantage would be to use JavaScript to loop through all the anchors on a given page, to dynamically generate a table of contents at the top of the page.

Accessing Browser History

The history object is another child (property) of the window object. This object holds information about the locations (URLs) that have been visited before and after the current one, and it includes methods to go to previous or next locations.

The history object has one property you can access:

[image: Images] history.length keeps track of the length of the history list—in other words, the number of different locations that the user has visited.

The history object has three methods you can use to move through the history list:

[image: Images] history.go() opens a URL from the history list. To use this method, specify a positive or negative number in parentheses. For example, history.go(-2) is equivalent to clicking the Back button twice.

[image: Images] history.back() loads the preceding URL in the history list—equivalent to history.go(-1) or to clicking the Back button.

[image: Images] history.forward() loads the next URL in the history list, if available. This is equivalent to history.go(1) or to clicking the Forward button.

You can use the back and forward methods of the history object to add your own Back and Forward buttons to a web document. The browser already has Back and Forward buttons, of course, but sometimes it is useful (or provides a better user experience) to include your own links that serve the same purpose.

Suppose you wanted to create a script that displays Back and Forward buttons and uses these methods to navigate the browser. Here’s the code that will create the Back button:

Click here to view code image

<button type="button" onclick="history.back();">Go Back</button>

In the preceding snippet, the <button> element defines a button labeled Go Back. The onclick event handler uses the history.back() method to go to the preceding page in the browser’s history. The code for a Go Forward button is similar:

Click here to view code image

<button type="button" onclick="history.forward();">Go Forward</button>

Let’s take a look at these in the context of a complete web page. Listing 6.3 shows a complete HTML document, and Figure 6.4 shows a browser’s display of the document. After you load this document into a browser, visit other URLs and make sure the Go Back and Go Forward buttons work as expected.

LISTING 6.3 A Web Page That Uses JavaScript to Include Back and Forward Buttons

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Using Custom Go Back and Go Forward Buttons</title>

 </head>

 <body>

 <h1>Using Custom Go Back and Go Forward Buttons</h1>

 <p>Buttons on this page allow you to go back or forward in

 your history list.</p>

 <p>These buttons should be the equivalent of the back

 and forward arrow buttons in your browser's toolbar.</p>

 <div>

 <button type="button"

 onclick="history.back();">Go Back</button>

 <button type="button"

 onclick="history.forward();">Go Forward</button>

 </div>

 </body>

</html>

[image: Images]

FIGURE 6.4
Showing custom Go Back and Go Forward buttons.

Working with the location Object

Another child of the window object is the location object. This object stores information about the current URL loaded in the browser window. For example, the following JavaScript statement loads a URL into the current window by assigning a value to the href property of this object:

Click here to view code image

window.location.href="http://www.google.com";

The href property contains the entire URL of the window’s current location. Using JavaScript, you can access portions of the URL through various properties of the location object. To understand these properties a bit better, consider the following URL:

Click here to view code image

http://www.google.com:80/search?q=javascript

The following properties represent parts of the URL:

[image: Images] location.protocol is the protocol part of the URL (http in the example).

[image: Images] location.hostname is the hostname of the URL (www.google.com in the example).

[image: Images] location.port is the port number of the URL (80 in the example).

[image: Images] location.pathname is the filename part of the URL (search in the example).

[image: Images] location.search is the query portion of the URL, if any (q=javascript in the example).

Unused in this example but also accessible are the following:

[image: Images] location.host is the hostname of the URL plus the port number (www.google.com:80 in the example).

[image: Images] location.hash is the anchor name used in the URL, if any.

The link object, introduced earlier in this chapter, also uses this list of properties for accessing portions of the URL found in the link object.

CAUTION

Although the location.href property usually contains the same URL as the document.URL property described earlier in this chapter, you can’t change the document.URL property. Always use location.href to load a new page in a given window.

The location object has three methods:

[image: Images] location.assign() loads a new document when used as follows:

Click here to view code image

location.assign("http://www.google.com")

[image: Images] location.reload() reloads the current document. This is the same as using the Reload button on the browser’s toolbar. If you optionally include the true parameter when calling this method, it will ignore the browser’s cache and force a reload whether the document has changed or not.

[image: Images] location.replace() replaces the current location with a new one. This is similar to setting the location object’s properties yourself. The difference is that the replace method does not affect the browser’s history. In other words, the Back button can’t be used to go to the preceding location. This is useful for splash screens or temporary pages that it would be useless to return to.

More About the DOM Structure

Previously in this chapter, you learned how some of the most important DOM objects are organized: The window object is a parent to the document object, and so on. Whereas these objects were the only ones available in the original conception of the DOM years ago, the modern DOM adds objects under the document object for every element of a page.

To better understand the concept of a document object for every element, let’s look at the simple HTML document in Listing 6.4. This document has the usual <head> and <body> sections, plus a heading and a single paragraph of text.

LISTING 6.4 A Simple HTML Document

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>A Simple HTML Document</title>

 </head>

 <body>

 <h1>This is a Level-1 Heading.</h1>

 <p>This is a simple paragraph.</p>

 </body>

</html>

Like all HTML documents, this one is composed of various containers and their contents. The <html> tags form a container that includes the entire document, the <body> tags contain the body of the page, and so on.

In the DOM, each container within the page and its contents are represented by an object. The objects are organized into a treelike structure, with the document object itself at the root of the tree, and with individual elements such as the heading and paragraph of text at the leaves of the tree. Figure 6.5 shows a diagram of these relationships.

In the following sections, you will examine the structure of the DOM more closely.

[image: Images]

FIGURE 6.5
How the DOM represents an HTML document.

NOTE

Don’t worry if this tree structure confuses you right now; just understand you can assign IDs to elements and refer to them in your JavaScript. Further on, you will look at more complicated examples that use this newfound information about how objects are organized in the DOM.

Nodes

Each container or element in a document is called a node in the DOM. In the example in Figure 6.5, each of the objects in boxes is a node, and the lines represent the relationships between the nodes.

You will often need to refer to individual nodes in scripts. You can do this by assigning an ID, or by navigating the tree using the relationships between the nodes. You will get plenty of practice with nodes as you move forward in this book; it’s a good word to know.

Parents and Children

As you have already learned, an object can have a parent (an object that contains it) and can also have children (objects that it contains). The DOM uses the same terminology as JavaScript in this regard.

In Figure 6.5, the document object is the parent object for the other objects shown and does not have a parent itself explicitly listed, although as you learned previously, the document object is a child of the window object. The html object is the parent of the head and body objects, and the h1 and p objects are children of the body object.

Text nodes work a bit differently. The actual text in the paragraph is a node in itself and is a child of the p object, rather than being a grandchild of the body object. Similarly, the text within the <h1> tags is a child of the h1 object. Don’t worry, we’ll refer to this concept further on in the book to reinforce understanding.

Siblings

The DOM also uses another term for the organization of objects: siblings. As you might expect, this refers to objects that have the same parent—in other words, objects at the same level in the DOM object tree.

In Figure 6.5, the h1 and p objects are siblings because both are children of the body object. Similarly, the head and body objects are siblings under the html object. There’s not a lot of practical use in knowing which objects are siblings, but it is offered here as some knowledge that completes the family tree.

Working with DOM Nodes

As you’ve seen, the DOM organizes objects within a web page into a tree-like structure. Each node (object) in this tree can be accessed in JavaScript. In the next sections, you will learn how you can use the properties and methods of nodes to manage them.

NOTE

The following sections describe only the most important properties and methods of nodes, and those that are supported by current browsers. For a complete list of available properties, see the W3C’s DOM specification at http://www.w3.org/TR/DOM-Level-3-Core/.

Basic Node Properties

Previously in this book, you used the style property of nodes to change their presentation. Each node also has a number of basic properties that you can examine or set. These include the following:

[image: Images] nodeName is the name of the node (not the ID). For a node based on an HTML tag, such as <p> or <body>, the name is the tag name: p or body. For the document node, the name is a special code: #document. Similarly, text nodes have the name #text. This is a read-only value.

[image: Images] nodeType is an integer describing the node’s type, such as 1 for normal HTML tags, 3 for text nodes, and 9 for the document node. This is a read-only value.

[image: Images] nodeValue is the actual text contained within a text node. This property returns null for other types of nodes.

[image: Images] innerHTML is the HTML content of any node. You can assign a value, including the HTML tags that provide a rich display, to this property and change the DOM child objects for a node dynamically.

[image: Images] innerText is the text-only content of any node. You can assign a value to this property and change the DOM child objects for a node dynamically.

Node Relationship Properties

In addition to the basic properties described previously, each node has various properties that describe its relation to other nodes. These include the following read-only properties:

[image: Images] parentNode is the primary node of an element; for example, in a list the parentNode would be or while the childNodes would include an array of elements.

[image: Images] firstChild is the first child object for a node. For nodes that contain text, such as h1 and p, the text node containing the actual text is the first child.

[image: Images] lastChild is the node’s last child object.

[image: Images] childNodes is an array that includes all of a node’s child nodes. You can use a loop with this array to work with all the nodes under a given node.

[image: Images] previousSibling is the sibling (node at the same level) previous to the current node.

[image: Images] nextSibling is the sibling after the current node.

CAUTION

Remember that, like all JavaScript objects and properties, the node properties and functions described here are case sensitive. Be sure you type them exactly as shown.

Document Methods

The document node itself has several methods you might find useful. The document node’s methods include the following:

[image: Images] getElementById(id) returns the element with the specified id attribute.

[image: Images] getElementsByTagName(tag) returns an array of all the elements with a specified tag name. You can use the wildcard * to return an array containing all the nodes in the document.

[image: Images] createTextNode(text) creates a new text node containing the specified text, which you can then add to the document.

[image: Images] createElement(tag) creates a new HTML element for the specified tag. As with createTextNode, you need to add the element to the document after creating it. You can assign content within the element by changing its child objects or the innerHTML property.

Node Methods

Each node within a page has a number of methods available. Which of these are valid depends on the node’s position in the page, and whether it has parent or child nodes. These include the following:

[image: Images] appendChild(new) appends the specified new node after all the object’s existing nodes.

[image: Images] insertBefore(new, old) inserts the specified new child node before the specified old child node, which must already exist.

[image: Images] replaceChild(new, old) replaces the specified old child node with a new node.

[image: Images] removeChild(node) removes a child node from the object’s set of children.

[image: Images] hasChildNodes() returns a Boolean value of true if the object has one or more child nodes, or false if it has none.

[image: Images] cloneNode() creates a copy of an existing node. If a parameter of true is supplied, the copy will also include any child nodes of the original node.

Creating Positionable Elements (Layers)

Now that you understand a little more about how the DOM is structured, you should be able to start thinking about how you can control any element in a web page, such as a paragraph or an image. For example, you can use the DOM to change the position, visibility, and other attributes of an element.

Before the W3C DOM and CSS2 standards (remember, we’re now on CSS3), you could only reposition layers, or special groups of elements defined with a proprietary tag. Although you can now position any element individually, it’s still useful to work with groups of elements in many cases.

You can effectively create a layer, or a group of HTML objects that can be controlled together, using the <div> container element.

To create a layer with <div>, enclose the content of the layer between the two division tags and specify the layer’s properties in the style attribute of the <div> tag. Here’s a simple example:

Click here to view code image

<div id="layer1" style="position:absolute; left:100px; top:100px;">

This is the content of the layer.

</div>

This code defines a container with the name layer1. This is a movable container positioned 100 pixels down and 100 pixels to the right of the upper-left corner of the browser window.

NOTE

As you’ve learned previously, you can specify CSS properties such as the position property in a <style> block, in an external style sheet, or in the style attribute of an HTML tag, and then control these properties using JavaScript. The code snippet shown here uses properties in the style attribute rather than in a <style> block, just because it is a snippet of an example and not a full code listing.

You’ve already learned about the positioning properties and seen them in action in Chapter 3, “Understanding the CSS Box Model and Positioning.” The remaining examples in this chapter use HTML and CSS like what you’ve already seen in this book, but they describe JavaScript-based interactions with the DOM.

Controlling Positioning with JavaScript

Using the code snippet from the preceding section, you’ll see an example in this section of how you can control the positioning attributes of an object, using JavaScript.

Here is our sample layer (a <div>):

Click here to view code image

<div id="layer1" style="position:absolute; left:100px; top:100px;">

This is the content of the layer.

</div>

To move this layer up or down within the page using JavaScript, you can change its style.top attribute. For example, the following statements move the layer 100 pixels down from its original position:

Click here to view code image

var obj = document.getElementById("layer1");

obj.style.top = 200;

The document.getElementById() method returns the object corresponding to the layer’s <div> tag, and the second statement sets the object’s top positioning property to 200px. You can also combine these two statements, like so:

Click here to view code image

document.getElementById("layer1").style.top = 200;

This simply sets the style.top property for the layer without assigning a variable to the layer’s object.

NOTE

Some CSS properties, such as text-indent and border-color, have hyphens in their names. When you use these properties in JavaScript, you combine the hyphenated sections and use a capital letter: textIndent and borderColor.

Now let’s create an HTML document that defines a container and then combine it with a script to allow the container to be moved, hidden, or shown using buttons. Listing 6.5 shows the HTML document that defines the buttons and the container. The script itself (position.js) follows in Listing 6.6.

LISTING 6.5 The HTML Document for the Movable Container Example

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Positioning Elements with JavaScript</title>

 <script type="text/javascript" src="position.js"></script>

 <style type="text/css">

 #buttons {

 text-align: center;

 }

 #square {

 position: absolute;

 top: 150px;

 left: 100px;

 width: 200px;

 height: 200px;

 border: 2px solid black;

 padding: 10px;

 background-color: #e0e0e0;

 }

 div {

 padding: 10px;

 }

 </style>

 </head>

 <body>

 <h1>Positioning Elements</h1>

 <div id="buttons">

 <button type="button" name="left"

 onclick="pos(-1,0);">Left</button>

 <button type="button" name="right"

 onclick="pos(1,0);">Right</button>

 <button type="button" name="up"

 onclick="pos(0,-1);">Up</button>

 <button type="button" name="down"

 onclick="pos(0,1);">Down</button>

 <button type="button" name="hide"

 onclick="hideSquare();">Hide</button>

 <button type="button" name="show"

 onclick="showSquare();">Show</button>

 </div>

 <hr>

 <div id="square">

 This square is an absolutely positioned container

 that you can move using the buttons above.

 </div>

 </body>

</html>

In addition to some basic HTML, Listing 6.5 contains the following:

[image: Images] The <script> tag in the header reads a script called position.js, which is shown in Listing 6.6.

[image: Images] The <style> section is a brief style sheet that defines the properties for the movable layer. It sets the position property to absolute to indicate that it can be positioned at an exact location, sets the initial position in the top and left properties, and sets border and background-color properties to make the layer clearly visible.

[image: Images] The <button> tags define six buttons: four to move the layer left, right, up, or down, and two to control whether it is visible or hidden.

[image: Images] The <div> section defines the layer itself. The id attribute is set to the value "square". This id is used in the style sheet to refer to the layer and will also be used in your script.

If you load the HTML into a browser, you should see the buttons and the "square" layer, but the buttons won’t do anything yet. The script in Listing 6.6 adds the capability to use the actions. When you load the code in Listing 6.5 into your browser, it should look as shown in Figure 6.6.

[image: Images]

FIGURE 6.6
The movable container, ready to be moved.

Listing 6.6 shows the JavaScript variables and functions that are called in the HTML in Listing 6.5. This code is expected (by the <script> tag) to be in a file called position.js.

LISTING 6.6 The Script for the Movable Layer Example

Click here to view code image

var x=100;

var y=150;

function pos(dx,dy) {

 if (!document.getElementById) return;

 x += 30*dx;

 y += 30*dy;

 var obj = document.getElementById("square");

 obj.style.top=y + "px";

 obj.style.left=x + "px";

}

function hideSquare() {

 if (!document.getElementById) return;

 var obj = document.getElementById("square");

 obj.style.display="none";

}

function showSquare() {

 if (!document.getElementById) return;

 var obj = document.getElementById("square");

 obj.style.display="block";

}

The var statement at the beginning of the script defines two variables, x and y, that will store the current position of the container. The pos function is called by the event handlers for all four of the movement buttons.

The parameters of the pos() function, dx and dy, tell the script how the container should move: If dx is negative, a number is subtracted from x, moving the container to the left. If dx is positive, a number is added to x, moving the container to the right. Similarly, dy indicates whether to move up or down.

The pos() function begins by making sure the getElementById() function is supported, so it won’t attempt to run in older browsers. It then multiplies dx and dy by 30 (to make the movement more obvious) and applies them to x and y. Finally, it sets the top and left properties to the new position (including the “px” to indicate the unit of measurement), thus moving the container layer.

Two more functions, hideSquare() and showsquare(), hide or show the container by setting its display property to “none” (hidden) or “block” (shown).

To use this script, save it as position.js and then load the HTML document in Listing 6.6 into your browser. Figure 6.7 shows this script in action—well, after an action, that is. Figure 6.7 shows the script after the Right button has been clicked four times and the Down button five times.

[image: Images]

FIGURE 6.7
The movable container has been moved.

Hiding and Showing Objects

In the preceding example, you saw some functions that could be used to hide or show the “square.” In this section, we’ll take a closer look at hiding and showing objects within a page.

As a refresher, objects have a visibility style property that specifies whether they are currently visible within the page:

Click here to view code image

object.style.visibility="hidden"; // hides an object

object.style.visibility="visible"; // shows an object

Using this property, you can create a script that hides or shows objects in either browser. Listing 6.7 shows the HTML document for a script that allows two headings to be shown or hidden.

LISTING 6.7 Hiding and Showing Objects

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Hiding or Showing Objects</title>

 <script type="text/javascript">

 function showHide() {

 if (!document.getElementById) return;

 var heading1 = document.getElementById("heading1");

 var heading2 = document.getElementById("heading2");

 var showheading1 = document.checkboxform.checkbox1.checked;

 var showheading2 = document.checkboxform.checkbox2.checked;

 heading1.style.visibility=(showheading1) ? "visible" : "hidden";

 heading2.style.visibility=(showheading2) ? "visible" : "hidden";

 }

 </script>

 </head>

 <body>

 <h1 id="heading1">This is the first heading</h1>

 <h1 id="heading2">This is the second heading</h1>

 <p>Using the W3C DOM, you can choose whether to show or hide

 the headings on this page using the checkboxes below.</p>

 <form name="checkboxform">

 <input type="checkbox" name="checkbox1"

 onclick="showHide();" checked="checked" />

 Show first heading

 <input type="checkbox" name="checkbox2"

 onclick="showHide();" checked="checked" />

 Show second heading

 </form>

 </body>

</html>

The <h1> tags in this document define headings with IDs of head1 and head2. Inside the <form> element are two check boxes, one for each of these headings. When a check box is modified (checked or unchecked), the onclick method calls the JavaScript showHide() function to perform an action.

The showHide() function is defined within the <script> tag in the header. This function assigns the objects for the two headings to two variables named heading1 and heading2, using the getElementById() method. Next, it assigns the value of the check boxes within the form to the showheading1 and showheading2 variables. Finally, the function uses the style.visibility attributes to set the visibility of the headings.

TIP

The lines that set the visibility property might look a bit strange. The ? and : characters create conditional expressions, a shorthand way of handling if statements. You’ll learn more about these conditional expressions in Chapter 8, “JavaScript Fundamentals: Functions, Objects, and Flow Control.”

Figure 6.8 shows this example in action. In the figure, the first heading’s check box has been unchecked, so only the second heading is visible.

[image: Images]

FIGURE 6.8
The text-hiding/showing example in action.

Modifying Text Within a Page

You can also create a simple script to modify the contents of a heading within a web page (or any element, for that matter). As you learned earlier in this chapter, the nodeValue property of a text node contains its actual text, and the text node for a heading is a child of that heading. Thus, the syntax to change the text of a heading with the identifier head1 would be

Click here to view code image

var heading1 = document.getElementById("heading1");

heading1.firstChild.nodeValue = "New Text Here";

This assigns the heading’s object to the variable called heading1. The firstChild property returns the text node that is the only child of the heading, and its nodeValue property contains the heading text.

Using this technique, it’s easy to create a page that allows the heading to be changed dynamically. Listing 6.8 shows the complete HTML document for a script that does just that.

LISTING 6.8 The Complete Text-Modifying Example

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Dynamic Text in JavaScript</title>

 <script type="text/javascript">

 function changeTitle() {

 if (!document.getElementById) return;

 var newtitle = document.changeform.newtitle.value;

 var heading1 = document.getElementById("heading1");

 heading1.firstChild.nodeValue=newtitle;

 }

 </script>

 </head>

 <body>

 <h1 id="heading1">Dynamic Text in JavaScript</h1>

 <p>Using the W3C DOM, you can dynamically change the

 heading at the top of this page.</p>

 <p>Enter a new title and click the Change! button. </p>

 <form name="changeform">

 <input type="text" name="newtitle" size="40" />

 <button type="button" onclick="changeTitle();">Change!</button>

 </form>

 </body>

</html>

This example defines a form that enables the user to enter a new heading for the page. Clicking the button calls the changeTitle() function, defined in the <script> tag in the <head> element. This JavaScript function gets the value the user entered in the form, and it changes the heading’s value to the new text by assigning the value of the input to the heading1.firstChild.nodeValue property.

Figure 6.9 shows this page in action after a new title has been entered and the Change! button has been clicked.

[image: Images]

FIGURE 6.9
The heading-modification example in action.

Adding Text to a Page

You can create a script that actually adds text to a page rather than just changing existing text. To do this, you must first create a new text node. This statement creates a new text node with the text “this is a test”:

Click here to view code image

var node=document.createTextNode("this is a test");

Next, you can add this node into the document. To do this, you use the appendChild method. The text can be added to any element that can contain text, but in this example we will just use a paragraph. The following statement adds the text node defined previously to the paragraph with the identifier paragraph1:

Click here to view code image

document.getElementById("paragraph1").appendChild(node);

Listing 6.9 shows the HTML document for a complete example that uses this technique, using a form to allow the user to specify text to add to the page.

LISTING 6.9 Adding Text to a Page

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Adding Text to a Page</title>

 <script type="text/javascript">

 function addText() {

 if (!document.getElementById) return;

 var sentence=document.changeform.sentence.value;

 var node=document.createTextNode(" " + sentence);

 document.getElementById("paragraph1").appendChild(node);

 document.changeform.sentence.value="";

 }

 </script>

 </head>

 <body>

 <h1 id="heading1">Create Your Own Content</h1>

 <p id="paragraph1"> Using the W3C DOM, you can dynamically add

 sentences to this paragraph.</p>

 <p>Type a sentence and click the Add! button.</p>

 <form name="changeform">

 <input type="text" name="sentence" size="65" />

 <button type="button" onclick="addText();">Add!</button>

 </form>

 </body>

</html>

In this example, the <p> element with the ID of paragraph1 is the paragraph that will hold the added text. The <form> element is a form with a text field called sentence and an Add! button that calls the addText() function when clicked. This JavaScript function is defined in the <script> tag in the <head> element. The addText() function first assigns text typed in the text field to the sentence variable. Next, the script creates a new text node containing the value of the sentence variable and then appends the new text node to the paragraph.

Load this document into a browser to test it, and try adding several sentences by typing them and clicking the Add! button. Figure 6.10 shows this document after several sentences have been added to the paragraph.

[image: Images]

FIGURE 6.10
The text-addition example in action.

Changing Images Based on User Interaction

Chapter 4 introduced you to the concept of user interaction events and their event handlers, such as the onclick event handler when a click action is made by the user. In that chapter, you invoked changes in a window display based on user interaction; in this section, you’ll see an example of a visible type of interaction that is both practical and dynamic.

Figure 6.11 shows a page that contains one large image with some text next to it, and three small images farther down the page. If you look closely at the list of small images, you might notice that the first small image is, in fact, a smaller version of the large image that is displayed. This is a common display type for a small gallery, such as one you might see in an online catalog where an item has a description and a few alternate views of the product. Although close-up images of the details of products are important to the potential buyer, using several large images on a page becomes unwieldy from both a display and bandwidth point of view, so this type of gallery view is a popular way to display alternative images. I don’t personally have products to sell, but I do have pictures of big trees that I can use as an example, as you can see in the figure.

[image: Images]

FIGURE 6.11
An informational page with a main image and alternative images ready to click and view.

The large image on the page is called using the following tag:

Click here to view code image

<img

 id="large_photo"

 style="border: 1px solid black; margin-right: 13px;"

 src="mariposa_large_1.jpg"

 alt="large photo">

The style, src, and alt attributes should all make sense to you at this stage of the game. Additionally, as you can see, this image is given an ID of large_photo. Therefore, this image exists in the DOM as document.images['large_photo']—images are referred to by their ID. This is important because a bit of JavaScript functionality enables us to dynamically change the value of document.images['large_image'].src, which is the source (src) of the image.

The following code snippet creates the third small image in the group of three images shown at the bottom of Figure 6.11. The onclick event indicates that when the user clicks on this small image, the value of document.images['large_image'].src—the large image slot—is filled with the path to a matching large image.

Click here to view code image

<a href="#"

 onclick="document.images['large_photo'].src =

 'mariposa_large_1.jpg'">

<img

 style="border: 1px solid black; margin-right: 3px;"

 src="mariposa_small_1.jpg"

 alt="photo #1">

Figure 6.12 shows the same page, but not reloaded by the user. The slot for the large image is filled by a different image when the user clicks one of the other smaller images at the bottom of the page.

[image: Images]

FIGURE 6.12
The large image is replaced when the user clicks a smaller image.

Thinking Ahead to Developing HTML5 Applications

I’m not going to lie—there’s a pretty big difference between a basic website built with HTML, CSS, and a little JavaScript, and comprehensive applications that use some of the advanced features of HTML5 and the latest JavaScript frameworks. But it’s important to your understanding of HTML, the language of the Web, to have some idea of just how far you can extend it (it’s pretty far, as it turns out). Beyond basic markup, HTML5 extends to include APIs (application programming interfaces) for complex applications, beginning with the native integration of audio and video elements, as you learned in previous chapters, and going all the way to built-in offline storage mechanisms that allow full-blown applications to be accessed and run (and data stored on the client side) even without a network connection.

Although HTML5 is incredibly rich, the creation of highly interactive HTML5 websites and applications—including mobile applications—doesn’t happen in isolation. Interactivity comes when HTML5 is paired with a client-side language such as JavaScript, which then reaches back into the server and talks to a server-side language such as PHP (and others) through a persistent connection called a web socket. With this connection open and talking to some server-side code that is, for example, talking to a database or performing some calculation, the browser can relay a bundle of information that is additionally processed by JavaScript and finally rendered in HTML5. Be it a video game, a word processing program, or an email or Twitter client, just to name a few types of applications, the combination of the advanced features of HTML5 plus JavaScript really makes the opportunities limitless when it comes to application creation.

In this book, you’ll learn key features of technologies involved in HTML5 application creation, and the foundation you will have in standards-compliant HTML5, CSS3, JavaScript, and PHP development will serve you well once you think outside the box containing the lessons in this book.

Summary

In this chapter, you learned about the differences between server-side scripting and client-side scripting, but mostly you learned a lot about the Document Object Model (DOM), which creates a hierarchy of web browser and document objects that you can access via JavaScript. You learned how you can use the document object to work with documents, and you used the history and location objects to control the current URL displayed in the browser.

Additionally, you learned the methods and properties you can use to manage DOM objects, and you created sample scripts to hide and show elements within a page, modify existing text, and add to existing text. You also learned how to use HTML and CSS to define a positionable container, and how you can use positioning properties dynamically with JavaScript.

By applying the knowledge you’ve gained here, you can use client-side scripting to make elements on a web page respond to user interactions. Although they are simple in their construction, these types of interactions are some of the basic JavaScript-based interactions that form the foundation of web applications.

Q&A

Q. If I want to use the random-quote script from this lesson, but I want to have a library of a lot of quotes, do I have to put all the quotes in each page?

A. If you’re working entirely on the client side, you can also put these quotes in a separate document and reference it in your code. This method will work as long as each item in the array is present in the browser in some way. However, you can begin to see a bit of a tipping point between something that can be on the client side and something that is better dealt with on the server side. If you have a true library of random quotations and only one is presented at any given time, it’s probably best to store those items in a database table and use a little piece of server-side scripting to connect to that database, retrieve the text, and print it on the page.

Q. Can I avoid assigning an id attribute to every DOM object I want to handle with a script?

A. Yes. Although the scripts in this chapter typically use the id attribute for convenience, you can actually locate any object in the page by using combinations of node properties such as firstChild and nextSibling. However, keep in mind that any change you make to the HTML can change an element’s place in the DOM hierarchy, so the id attribute is a reliable recommended way to handle this.

Q. Can I change history entries or prevent the user from using the Back and Forward buttons?

A. You can’t change the history entries. Additionally, you can’t prevent the use of the Back and Forward buttons, but you can use the location.replace() method to load a series of pages that don’t appear in the history. There are a few tricks for preventing the Back button from working properly, but I don’t recommend them—that’s the sort of thing that gives JavaScript a bad reputation.

Workshop

The Workshop contains quiz questions and activities to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What does the plus sign mean in the following context?

Click here to view code image

document.write('This is a text string ' + 'that I have created.');

2.	Which of the following DOM objects never has a parent node?

A.	body

B.	div

C.	document

3. Which of the following is the correct syntax to get the DOM object for a heading with the identifier heading1?

A.	document.getElementById("heading1")

B.	document.GetElementByID("heading1")

C.	document.getElementsById("heading1")

Answers

1. The plus sign (+) joins two strings together.

2. C. The document object is the root of the DOM object tree, and has no parent object.

3. A. getElementById has a lowercase g at the beginning and a lowercase d at the end, contrary to what you might know about normal English grammar. Additionally, the name includes Element (singular) rather than Elements (plural).

Exercises

[image: Images] Modify the Back and Forward example in Listing 6.3 to include a Reload button along with the Back and Forward buttons. (This button would trigger the location.reload() method.)

[image: Images] Modify the positioning example in Listings 6.5 and 6.6 to move the square 1 pixel at a time rather than 30 at a time.

[image: Images] Add a third check box to Listing 6.7 to allow the paragraph of text to be shown or hidden. You will need to add an id attribute to the <p> tag, add a check box to the form, and add the appropriate lines to the script.

CHAPTER 7
JavaScript Fundamentals: Variables, Strings, and Arrays

What You’ll Learn in This Chapter:

[image: Images] How to name and declare variables

[image: Images] How to choose whether to use local or global variables

[image: Images] How to assign values to variables

[image: Images] How to convert between different data types

[image: Images] How to use variables and literals in expressions

[image: Images] How strings are stored in String objects

[image: Images] How to create and use String objects

[image: Images] How to create and use arrays of numbers and strings

Now that you have learned some of the fundamentals of JavaScript and the DOM (not to mention a bit of PHP), it’s time to dig into more details of the JavaScript language before moving forward to create interactive applications.

In this chapter, you’ll learn three basic tools for storing data in JavaScript: variables, which are often used to store numbers or text but can also store complex data structures as well; arrays, which are data structures that hold multiple variables. Variables, strings, and arrays are not the most exciting elements of any programming language when described individually, but as you will see throughout this book, variables, strings, and arrays are fundamental to just about every bit of complex JavaScript that you’ll develop—and for that matter, PHP as well.

Using Variables

You’ve already used a few variables as you progressed through the initial chapters of this book. You probably can also figure out how to use a few more without any help from me. Nevertheless, there are some aspects of working with variables you haven’t learned yet, and these are covered in the next few sections.

Choosing Variable Names

As a reminder, variables are named containers that can store data (for example, a number, a text string, or an object). As you learned earlier in this book, every variable has a unique name of your choosing. However, there are rules you must follow when choosing a variable name:

[image: Images] Variable names can include letters of the alphabet, both upper- and lowercase. They can also include the digits 0–9 and the underscore (_) character.

[image: Images] Variable names cannot include spaces or any other punctuation characters.

[image: Images] The first character of the variable name must be either a letter or an underscore.

[image: Images] Variable names are case sensitive—totalnum, Totalnum, and TotalNum are interpreted as separate variable names.

[image: Images] There is no official limit on the length of variable names, but they must fit on one line. Frankly, if your variable names are longer than that—or even longer than 25 or so characters—you might consider a different naming convention.

Using these rules, the following are examples of valid variable names:

total_number_of_fish

LastInvoiceNumber

temp1

a

_var39

NOTE

You can choose to use either friendly, easy-to-read names or completely cryptic ones. Do yourself a favor: Use longer (but not too long), friendly names whenever possible. Although you might remember the difference between a, b, x, and x1 right now, you might not after a few days away from the code, and someone who isn’t you most certainly won’t understand your cryptic naming convention without some documentation.

Using Local and Global Variables

Some computer languages require you to declare a variable before you use it. JavaScript includes the var keyword, which can be used to declare a variable. You can omit var in many cases; the variable is still declared the first time you assign a value to it.

To understand where to declare a variable, you will need to understand the concept of scope. A variable’s scope is the area of the script in which that variable can be used. There are two types of variables:

[image: Images] Global variables have the entire script (and other scripts in the same HTML document) as their scope. They can be used anywhere, even within functions.

[image: Images] Local variables have a single use as their scope. They can be used only within the function where they are created.

To create a global variable, you declare (and define) it in the main script, outside any functions. You can use the var keyword to declare (and define) the variable, as in this example:

var students = 25;

This statement declares (and defines) a variable called students and assigns it a value of 25. If this statement is used outside functions, it creates a global variable. The var keyword is optional in this case, so this statement is equivalent to the preceding one:

students = 25;

Before you get in the habit of omitting the var keyword, be sure you understand exactly when it’s required. It’s actually a good idea to always use the var keyword—you’ll avoid errors and make your script easier to read, and it won’t usually cause any trouble.

A local variable belongs to a particular function. Any variable you declare with the var keyword in a function is a local variable. Additionally, the variables in the function’s parameter list are always local variables.

To create a local variable within a function, you must use the var keyword. This forces JavaScript to create a local variable, even if there is a global variable with the same name. However, try to keep your variable names distinct, even if you are using them in different scopes.

You should now understand the difference between local and global variables. If you’re still a bit confused, don’t worry—if you use the var keyword every time, you’ll usually end up with the right type of variable.

Assigning Values to Variables

As you learned in Chapter 4, “Introducing JavaScript,” you use the equal sign to assign a value to a variable. For example, this statement assigns the value 40 to the variable lines:

var lines = 40;

You can use any expression to the right of the equal sign, including other variables. You have used this syntax earlier to add 1 to a variable:

lines = lines + 1;

Because incrementing or decrementing variables is quite common, JavaScript includes two types of shorthand for this syntax. The first is the += operator, which enables you to create the following shorter version of the preceding example:

lines += 1;

Similarly, you can subtract a number from a variable using the -= operator:

lines -= 1;

If you still think that’s too much to type, JavaScript also includes the increment and decrement operators, ++ and --. This statement adds 1 to the value of lines:

lines++;

Similarly, this statement subtracts 1 from the value of lines:

lines--;

You can alternatively use the ++ or -- operator before a variable name, as in ++lines. However, these are not identical. The difference is in when the increment or decrement happens:

[image: Images] If the operator is after the variable name, the increment or decrement happens after the current expression is evaluated.

[image: Images] If the operator is before the variable name, the increment or decrement happens before the current expression is evaluated.

This difference is an issue only when you use the variable in an expression and increment or decrement it in the same statement. As an example, suppose you have assigned the lines variable the value 40. The following two statements have different effects:

alert(lines++);

alert(++lines);

The first statement displays an alert with the value 40, and then increments lines to 41. The second statement first increments lines to 41, then displays an alert with the value 41.

NOTE

The increment and decrement operators are strictly for your convenience. If it makes more sense to you to stick to lines = lines + 1, do it—your script won’t suffer.

Understanding Expressions and Operators

An expression is a combination of variables and values that the JavaScript interpreter can evaluate to a single value, like 2 + 2 = 4. The characters that are used to combine these values, such as + and /, are called operators.

TIP

Along with variables and constant values, expressions can also include function calls that return results.

Using JavaScript Operators

In the basic JavaScript examples so far in this book, you’ve already used some operators, such as the + sign (addition) and the increment and decrement operators. Table 7.1 lists some of the most important (and common) operators used in JavaScript expressions.

TABLE 7.1 Common JavaScript Operators

	Operator

	Description

	Example

	+

	Concatenate (combine) strings

	message="this is" + " a test";

	+

	Add

	result = 5 + 7;

	-

	Subtract

	score = score - 1;

	*

	Multiply

	total = quantity * price;

	/

	Divide

	average = sum / 4;

	%

	Modulo (remainder)

	remainder = sum % 4;

	++

	Increment

	tries++;

	--

	Decrement

	total--;

Along with these, there are also many other operators used in conditional statements—you’ll learn about these in Chapter 8, “JavaScript Fundamentals: Functions, Objects, and Flow Control.”

Operator Precedence

When you use more than one operator in an expression, JavaScript uses rules of operator precedence to decide how to calculate the value. Table 7.1 lists the operators from lowest to highest precedence, and operators with highest precedence are evaluated first. For example, consider this statement:

result = 4 + 5 * 3;

If you try to calculate this result, there are two ways to do it. You could multiply 5 * 3 first and then add 4 (result: 19) or add 4 + 5 first and then multiply by 3 (result: 27). JavaScript solves this dilemma by following the precedence rules: Because multiplication has a higher precedence than addition, it first multiplies 5 * 3 and then adds 4, producing a result of 19.

NOTE

If you’re familiar with any other programming languages, you’ll find that the operators and precedence in JavaScript work, for the most part, the same way as those in C, C++, and Java, as well as web scripting languages such as PHP.

Sometimes operator precedence doesn’t produce the result you want. For example, consider this statement:

result = a + b + c + d / 4;

This is an attempt to average four numbers by adding them all together and then dividing by 4. However, because JavaScript gives division a higher precedence than addition, it will divide the d variable by 4 before adding the other numbers, producing an incorrect result.

You can control precedence by using parentheses. Here’s the working statement to calculate an average:

result = (a + b + c + d) / 4;

The parentheses ensure that the four variables are added first and then the sum is divided by 4.

TIP

If you’re unsure about operator precedence, you can use parentheses to make sure things work the way you expect and to make your script more readable.

Data Types in JavaScript

In some computer languages, you have to specify the type of data a variable will store (for example, a number or a string). In JavaScript, you don’t need to specify a data type in most cases. However, you should know the types of data JavaScript can deal with.

These are the basic JavaScript data types:

[image: Images] Numbers, such as 3, 25, and 1.4142138. JavaScript supports both integers and floating-point numbers.

[image: Images] Boolean, or logical values. These can have one of two values: true or false. These are useful for indicating whether a certain condition is true.

[image: Images] Strings, such as "I like cheese". These consist of one or more characters of text. (Strictly speaking, these are String objects, which you’ll learn about later in this chapter.)

[image: Images] Objects, which are collections of properties. For example, a book object contains properties such as title, author, subject, and page_count. Those properties have values, such as “The Awesomeness of Cheese”, “John Doe”, “cheese”, and 231.

[image: Images] The null value, represented by the keyword null. This is the value of an undefined variable. For example, the statement document.write(fig) will result in this value (and an error message) if the variable fig has not been previously used or defined.

Although JavaScript keeps track of the data type currently stored in each variable, it doesn’t restrict you from changing types midstream. For example, suppose you declared a variable by assigning it a value:

var total = 31;

This statement declares a variable called total and assigns it the value of 31. This is a numeric variable. Now suppose you changed the value of total:

total = "albatross";

This assigns a string value to total, replacing the numeric value. JavaScript will not display an error when this statement executes; it’s perfectly valid, although it’s probably not a very useful “total.”

NOTE

Although this feature of JavaScript is convenient and powerful, it can also make it easy to make a mistake. For example, if the total variable was later used in a mathematical calculation, the result would be invalid—but JavaScript does not warn you that you’ve made this mistake.

Converting Between Data Types

JavaScript handles conversions between data types for you whenever it can. For example, you’ve already used statements like this:

Click here to view code image

document.write("The total is " + total);

This statement prints out the message such as "The total is 40". Because the document.write function works with strings, the JavaScript interpreter automatically converts any nonstrings in the expression (in this case, the value of total) to strings before performing the function.

This works equally well with floating-point and Boolean values. However, there are some situations in which it won’t work. For example, the following statement will work fine if the value of total is 40:

average = total / 3;

However, the total variable could also contain a string; in this case, the preceding statement would result in an error.

In some situations, you might end up with a string containing a number and need to convert it to a regular numeric variable. JavaScript includes two functions for this purpose:

[image: Images] parseInt()—Converts a string to an integer number

[image: Images] parseFloat()—Converts a string to a floating-point number

Both of these functions will read a number from the beginning of the string and return a numeric version. For example, these statements convert the string "30 angry polar bears" to a number:

Click here to view code image

var stringvar = "30 angry polar bears";

var numvar = parseInt(stringvar);

After these statements execute, the numvar variable contains the number 30; the nonnumeric portion of the string is ignored.

NOTE

These functions look for a number of the appropriate type at the beginning of the string. If a valid number is not found, the function returns the special value NaN, meaning not a number.

Using String Objects

You’ve already used several strings in the brief JavaScript examples found in previous chapters. Strings store a group of text characters, and their defining variables follow typical naming conventions mentioned earlier. As a simple example, this statement assigns the string This is a test to a string variable called stringtest:

Click here to view code image

var stringtest = "This is a test";

In the following sections, you’ll learn a little more about the String object and see it in action in a full script.

Creating a String Object

JavaScript stores strings as String objects. You usually don’t need to worry about this piece of information—that your strings are in fact objects—but it will explain some of the common techniques you’ll see for working with strings, which use methods (built-in functions) of the String object.

There are two ways to create a new String object. The first is the one you’ve already used, whereas the second uses object-oriented syntax. The following two statements create the same string:

Click here to view code image

var stringtest = "This is a test";

stringtest = new String("This is a test");

The second statement uses the new keyword, which you use to create objects. This tells the browser to create a new String object containing the text This is a test and then assigns it to the variable stringtest.

Assigning a Value

You can assign a value to a string in the same way as any other variable. Both of the examples in the preceding section assigned an initial value to the string. You can also assign a value after the string has already been created. For example, the following statement replaces the contents of the stringtest variable with a new string:

Click here to view code image

var stringtest = "This is only a test.";

You can also use the concatenation operator (+) to combine the values of two strings. Listing 7.1 shows a simple example of assigning and combining the values of strings.

LISTING 7.1 Assigning Values to Strings and Combining Them

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>String Text</title>

 </head>

 <body>

 <h1>String Test</h1>

 <script type="text/javascript">

 var stringtest1 = "This is a test. ";

 var stringtest2 = "This is only a test.";

 var bothstrings = stringtest1 + stringtest2;

 alert(bothstrings);

 </script>

 </body>

</html>

This script assigns values to two string variables, stringtest1 and stringtest2, and then displays an alert with their combined value (the variable bothstrings). If you load this HTML document in a browser, your output should resemble what’s shown in Figure 7.1.

[image: Images]

FIGURE 7.1
The output of the string sample script.

In addition to using the + operator to concatenate two strings, you can use the += operator to add text to a string. For example, this statement adds a period to the current contents of a string variable named sentence:

sentence += ".";

NOTE

The plus sign (+) is also used to add numbers in JavaScript. The browser knows whether to use addition or concatenation based on the types of data you use with the plus sign. If you use it between a number and a string, the number is converted to a string and concatenated.

Calculating the String’s Length

From time to time, you might find it useful to know how many characters a string variable contains. You can do this with the length property of String objects, which you can use with any string. To use this property, type the string’s name followed by .length.

For example, stringtest.length refers to the length of the stringtest string. Here is an example of this property:

Click here to view code image

var stringtest = "This is a test.";

document.write(stringtest.length);

The first statement assigns the string This is a test. to the stringtest variable. The second statement displays the length of the string—in this case, 15 characters. The length property is a read-only property, so you cannot assign a value to it to change a string’s length.

NOTE

Remember that although stringtest refers to a string variable, the value of stringtest.length is a number and can be used in any numeric expression.

Converting the String’s Case

Two methods of the String object enable you to convert the contents of a string to all uppercase or all lowercase:

[image: Images] toUpperCase()—Converts all characters in the string to uppercase

[image: Images] toLowerCase()—Converts all characters in the string to lowercase

For example, the following statement displays the value of the stringtest string variable in lowercase:

Click here to view code image

document.write(stringtest.toLowerCase());

Assuming that this variable contained the text is This Is A Test, the result would be the following string:

this is a test

Note that the statement doesn’t change the value of the stringtest variable. These methods return the upper- or lowercase version of the string, but they don’t change the string itself. If you want to change the string’s value, you can use a statement like this:

Click here to view code image

stringtest = stringtest.toLowerCase();

Working with Substrings

In the short examples so far, you’ve worked only with entire strings. Like most programming languages, JavaScript also enables you to work with substrings, or portions of a string. You can use the substring method to retrieve a portion of a string, or the charAt method to get a single character. These are explained in the following sections.

Using Part of a String

The substring method returns a string consisting of a portion of the original string between two index values, which you must specify in parentheses. For example, the following statement displays the fourth through sixth characters of the stringtest string:

Click here to view code image

document.write(stringtest.substring(3,6));

At this point, you’re probably wondering where the 3 and the 6 come from. There are three things you need to understand about using index parameters, regardless of when you’re using them:

[image: Images] Indexing starts with 0 for the first character of the string, so the fourth character is actually index 3.

[image: Images] The second index is noninclusive. A second index of 6 includes up to index 5 (the sixth character).

[image: Images] You can specify the two indexes in either order. The smaller one will be assumed to be the first index. In the previous example, (6,3) would have produced the same result. Of course, there is rarely a reason to use the reverse order.

As another example, suppose you defined a string called alpha to hold an uppercase version of the alphabet:

Click here to view code image

var alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

The following are examples of the substring() method using the alpha string:

[image: Images] alpha.substring(0,4) returns ABCD.

[image: Images] alpha.substring(10,12) returns KL.

[image: Images] alpha.substring(12,10) also returns KL. Because 10 is the smaller of the two values, it’s is used as the first index.

[image: Images] alpha.substring(6,7) returns G.

[image: Images] alpha.substring(24,26) returns YZ.

[image: Images] alpha.substring(0,26) returns the entire alphabet.

[image: Images] alpha.substring(6,6) returns the null value, an empty string. This is true whenever the two index values are the same.

Getting a Single Character

The charAt method is a simple way to grab a single character from a specified position within a string. To use this method, specify the character’s index, or position, in parentheses. As you’ve learned, the index begins at 0 for the first character. Here are a few examples of using the charAt method on the alpha string:

[image: Images] alpha.charAt(0) returns A.

[image: Images] alpha.charAt(12) returns M.

[image: Images] alpha.charAt(25) returns Z.

[image: Images] alpha.charAt(27) returns an empty string because there is no character at that position.

Finding a Substring

Another use for substrings is to find a string within another string. One way to do this is with the indexOf method. To use this method, add indexOf to the string you want to search and then specify the string to search for in the parentheses. This example searches for “this” in the stringtest string and assigns the result to a variable called location:

Click here to view code image

var location = stringtest.indexOf("this");

CAUTION

As with most JavaScript methods and property names, indexOf is case sensitive. Make sure you type it exactly as shown here when you use it in scripts.

The value returned in the location variable is an index into the string, similar to the first index in the substring method. The first character of the string is index 0.

You can specify an optional second parameter in this method, to indicate the index value to begin the search. For example, this statement searches for the word fish in the moretext string, starting with the 20th character:

Click here to view code image

var newlocation = moretext.indexOf("fish",19);

NOTE

One use for the second parameter of this method is to search for multiple occurrences of a string. After finding the first occurrence, you search starting with that location for the second one, and so on.

A second method, lastIndexOf(), works the same way but finds the last occurrence of the string. It searches the string backward, starting with the last character. For example, this statement finds the last occurrence of Fred in the names string:

Click here to view code image

var namelocation = names.lastIndexOf("Fred");

As with indexOf(), you can specify a location to search from as the second parameter. In this case, the string will be searched backward starting at that location.

Using Numeric Arrays

An array is a numbered group of data items that you can treat as a single unit. For example, you might use an array called scores to store several scores for a game. Arrays can contain strings, numbers, objects, or other types of data. Each item in an array is called an element of the array.

Creating a Numeric Array

Unlike most other types of JavaScript variables, you typically need to declare an array before you use it. The following example creates an array with four elements:

scores = new Array(4);

To assign a value to the array, you use an index in brackets. As you’ve seen earlier in this chapter, indexes begin with 0, so the elements of the array in this example would be numbered 0 to 3. These statements assign values to the four elements of the array:

scores[0] = 39;

scores[1] = 40;

scores[2] = 100;

scores[3] = 49;

You can also declare an array and specify values for elements at the same time. This statement creates the same scores array in a single line:

Click here to view code image

scores = new Array(39,40,100,49);

You can also use a shorthand syntax to declare an array and specify its contents. The following statement is an alternative way to create the scores array:

scores = [39,40,100,49];

TIP

Remember to use parentheses when declaring an array with the new keyword, as in a = new Array(3,4,5), and use brackets when declaring an array without new, as in a = [3,4,5]. Otherwise, you’ll run into JavaScript errors.

Understanding Array Length

Like strings, arrays have a length property. This tells you the number of elements in the array. If you specified the length when creating the array, this value becomes the length property’s value. For example, these statements would print the number 30:

Click here to view code image

scores = new Array(30);

document.write(scores.length);

You can declare an array without a specific length as well as change the length later by assigning values to elements or changing the length property. For example, these statements create a new array and assign values to two of its elements:

test = new Array();

test[0]=21;

test[5]=22;

In this example, because the largest index number assigned so far is 5, the array has a length property of 6—remember, elements are numbered starting at 0.

Accessing Array Elements

You can read the contents of an array using the same notation you used when assigning values. For example, the following statements would display the values of the first three elements of the scores array:

Click here to view code image

scoredisplay = "Scores: " + scores[0] + ", " + scores[1] +

 ", " + scores[2];

document.write(scoredisplay);

TIP

Looking at this example, you might imagine it would be inconvenient to display all the elements of a large array. This is an ideal job for loops, which enable you to perform the same statements several times with different values. You’ll learn all about loops in Chapter 8.

Using String Arrays

So far, you’ve used arrays of numbers. JavaScript also enables you to use string arrays, or arrays of strings. This is a powerful feature that enables you to work with a large number of strings at the same time.

Creating a String Array

You declare a string array in the same way as a numeric array—in fact, JavaScript does not make a distinction between them:

names = new Array(30);

You can then assign string values to the array elements:

names[0] = "John H. Watson";

names[1] = "Sherlock Holmes";

As with numeric arrays, you can also specify a string array’s contents when you create it. Either of the following statements would create the same string array as the preceding example:

Click here to view code image

names = new Array("John H. Watson", "Sherlock Holmes");

names = ["John H. Watson", "Sherlock Holmes"];

You can use string array elements anywhere you would use a string. You can even use the string methods introduced earlier. For example, the following statement prints the first four characters of the first element of the names array, resulting in John:

Click here to view code image

document.write(names[0].substring(0,4));

Splitting a String

JavaScript includes a string method called split, which splits a string into its component parts. To use this method, specify the string to split and a character to divide the parts:

Click here to view code image

name = "John Q. Public";

parts = name.split(" ");

In this example, the name string contains the name John Q. Public. The split method in the second statement splits the name string at each space, resulting in three strings. These are stored in a string array called parts. After the sample statements execute, the elements of parts contain the following:

[image: Images] parts[0] = "John"

[image: Images] parts[1] = "Q."

[image: Images] parts[2] = "Public"

JavaScript also includes an array method, join, that performs the opposite function. This statement reassembles the parts array into a string:

fullname = parts.join(" ");

The value in the parentheses specifies a character to separate the parts of the array. In this case, a space is used, resulting in the final string John Q. Public. If you do not specify a character, commas are used.

Sorting a String Array

JavaScript also includes a sort method for arrays that returns an alphabetically sorted version of the array. For example, the following statements initialize an array of four names and sort it:

Click here to view code image

names[0] = "Public, John Q.";

names[1] = "Doe, Jane";

names[2] = "Duck, Daisy";

names[3] = "Mouse, Mickey";

sortednames = names.sort();

The last statement sorts the names array and stores the result in a new array, sortednames.

Sorting a Numeric Array

Because the sort method sorts alphabetically, it won’t work with a numeric array—at least not the way you’d expect. If an array contains the numbers 4, 10, 30, and 200, for example, it would sort them as 10, 200, 30, 4—not even close. Fortunately, there’s a solution: You can specify a function in the sort method’s parameters, and that function is used to compare the numbers. The following code sorts a numeric array correctly:

Click here to view code image

function numbercompare(a,b) {

 return a-b;

}

numbers = new Array(30, 10, 200, 4);

sortednumbers = numbers.sort(numbercompare);

This example defines a simple function, numbercompare, that subtracts the two numbers. After you specify this function in the sort method, the array is sorted in the correct numeric order: 4, 10, 30, 200.

NOTE

JavaScript expects the comparison function to return a negative number if a belongs before b, 0 if they are the same, or a positive number if a belongs after b. This is why a-b is all you need for the function to sort numerically.

[image: Images] TRY IT YOURSELF

Sorting and Displaying Names

To gain more experience working with JavaScript’s string and array features, you can create a script that enables the user to enter a list of names and then displays the list in sorted form.

Because this will be a larger script, you will create separate HTML and JavaScript files. First, the sort.html file will contain the HTML structure and form fields for the script to work with. Listing 7.2 shows the HTML document.

LISTING 7.2 The HTML Document for the Sorting Example

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Array Sorting Example</title>

 <script type="text/javascript" src="sort.js"></script>

 </head>

 <body>

 <h1>Sorting String Arrays</h1>

 <p>Enter two or more names in the field below,

 and the sorted list of names will appear in the

 textarea.</p>

 <form name="theform">

 Name:

 <input type="text" name="newname" size="20">

 <input type="button" name="addname" value="Add"

 onclick="SortNames();">

 <h2>Sorted Names</h2>

 <textarea cols="60" rows="10" name="sorted">

 The sorted names will appear here.

 </textarea>

 </form>

 </body>

</html>

Because the script will be in a separate document, the <script> tag in the header of this document uses the src attribute to include a JavaScript file called sort.js. You will create this file next.

This document defines a form named theform, a text field named newname, an addname button, and a text area named sorted. Your script will use these form fields as its user interface.

Listing 7.3 provides the JavaScript necessary for the sorting process.

LISTING 7.3 The JavaScript File for the Sorting Example

Click here to view code image

// initialize the counter and the array

var numbernames=0;

var names = new Array();

function SortNames() {

 // Get the name from the text field

 thename=document.theform.newname.value;

 // Add the name to the array

 names[numbernames]=thename;

 // Increment the counter

 numbernames++;

 // Sort the array

 names.sort();

 document.theform.sorted.value=names.join("\n");

}

The script begins by defining two variables with the var keyword: numbernames is a counter that increments as each name is added, and the names array stores the names.

When you type a name into the text field and click the button, the onclick event handler calls the SortNames function. This function stores the text field value in a variable, thename, and then adds the name to the names array using numbernames as the index. It then increments numbernames to prepare for the next name.

The final section of the script sorts the names and displays them. First, the sort() method is used to sort the names array. Next, the join() method is used to combine the names, separating them with line breaks, and display them in the text area.

To test the script, save it as sort.js and then load the sort.html file you created previously into a browser. You can then add some names and test the script. Figure 7.2 shows the result after several names have been sorted.

[image: Images]

FIGURE 7.2
The output of the name-sorting example.

Summary

In this chapter, the lessons focused on variables and how JavaScript handles them. You learned how to name variables, how to declare them, and the differences between local and global variables. You also explored the data types supported by JavaScript and how to convert between them.

You also learned about JavaScript’s more complex variable types—strings and arrays—and looked at the features that enable you to perform operations on them, such as converting strings to uppercase and sorting arrays. Not only is all of the information in this chapter useful as foundational JavaScript knowledge, but the topics covered are conceptually similar to those you’ll learn and practice in the foundational PHP chapters later in this book.

In the next chapter, you’ll continue your foundational JavaScript education by learning more about three additional key features: functions, objects, and flow control.

Q&A

Q. What is the importance of the var keyword? Should I always use it to declare variables?

A. You only need to use var to define a local variable in a function. However, if you’re unsure at all, it’s always safe to use var. Using it consistently will help you keep your scripts organized and error free.

Q. Is there any reason I would want to use the var keyword to create a local variable with the same name as a global one?

A. Not on purpose. The main reason to use var is to avoid conflicts with global variables you might not know about. For example, you might add a global variable in the future, or you might add another script to the page that uses a similar variable name. This is more of an issue with large, complex scripts.

Q. What good are Boolean variables?

A. Often in scripts you’ll need a variable to indicate whether something has happened—for example, whether a phone number the user has entered is in the right format. Boolean variables are ideal for this; they’re also useful in working with conditions, as you’ll see in Chapter 8.

Q. Can I store other types of data in an array? For example, can I have an array of dates?

A. Absolutely. JavaScript enables you to store any data type in an array.

Q. What about two-dimensional arrays?

A. These are arrays with two indexes (such as columns and rows). JavaScript does not directly support this type of array, but you can use objects to store more complex data.

Workshop

The Workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. Which of the following is not a valid JavaScript variable name?

A. 2names

B.	first_and_last_names

C.	FirstAndLast

2.	If the statement var fig=2 appears in a function, which type of variable does it declare?

A.	A global variable

B.	A local variable

C.	A constant variable

3.	If the string test contains the value The eagle has landed., what would be the value of test.length?

A.	4

B.	21

C.	The

4.	Using the same sample string, which of these statements would return the word eagle?

A.	test.substring(4,9)

B.	test.substring(5,9)

C.	test.substring("eagle")

5.	What will be the result of the JavaScript expression 31 + " angry polar bears"?

A.	An error message

B.	32

C.	“31 angry polar bears”

Answers

1. A. 2names is an invalid JavaScript variable name because it begins with a number. The others are valid, although they’re probably not ideal choices for names.

2. B. Because the variable is declared in a function, it is a local variable. The var keyword ensures that a local variable is created.

3. B. The length of the string is 21 characters.

4. A. The correct statement is test.substring(4,9). Remember that the indexes start with 0 and that the second index is noninclusive.

5. C. JavaScript converts the whole expression to the string "31 angry polar bears". (No offense to polar bears, who are seldom angry and rarely seen in groups this large.)

Exercises

[image: Images] Modify the sorting example in Listing 7.3 to convert the names to all uppercase before sorting and displaying them.

[image: Images] Modify Listing 7.3 to display a numbered list of names in the textarea.

CHAPTER 8
JavaScript Fundamentals: Functions, Objects, and Flow Control

What You’ll Learn in This Chapter:

[image: Images] How to define, call, and return values from functions

[image: Images] How to define custom objects

[image: Images] How to use object properties and values

[image: Images] How to define and use object methods

[image: Images] How to use objects to store data and related functions

[image: Images] How to use the Math object’s methods

[image: Images] How to use with to work with objects

[image: Images] How to use the Date object to work with dates

[image: Images] How to test conditions with the if statement

[image: Images] How to use comparison operators to compare values

[image: Images] How to use logical operators to combine conditions

[image: Images] How to use alternative conditions with else

[image: Images] How to create expressions with conditional operators

[image: Images] How to test for multiple conditions

[image: Images] How to perform repeated statements with the for loop

[image: Images] How to use while and do…while loops

[image: Images] How to create infinite loops (and why you shouldn’t)

[image: Images] How to escape from loops and continue loops

[image: Images] How to loop through object properties

In this chapter, you’ll learn about several key JavaScript concepts that you’ll use in your future JavaScript endeavors. First, you’ll learn the details of creating and using functions, which enable you to group any number of statements into a single block. Functions are useful for creating reusable sections of code, and you can create functions that accept parameters and return values for later use.

Whereas functions enable you to group sections of code, objects enable you to group data—you can use objects to combine related data items and functions for working with the data. You’ll learn how to define and use objects and their methods, and you’ll work specifically with two more useful objects built in to JavaScript: Math and Date.

Finally, you’ll learn about flow control. Statements in a JavaScript program generally execute in the order in which they appear, one after the other. Because this order isn’t always practical, most programming languages provide flow control statements that let you control the order in which code is executed. Functions are one type of flow control—although a function might be defined first in your code, its statements can be executed anywhere in the script. You’ll look at two other types of flow control in JavaScript: conditions, which allow a choice of different options depending on values that are tested, and loops, which allow statements to repeat based on certain conditions.

Using Functions

The JavaScript scripts you’ve seen so far in this book have generally been simple lists of instructions. The browser begins with the first statement after the <script> tag and follows each instruction in order until it reaches the closing </script> tag (or encounters an error).

Although this is a straightforward approach for short scripts, it can be confusing to read a longer script written in this fashion. To make it easier for you to organize your scripts, JavaScript supports functions. In this section, you will learn how to define and use functions.

Defining a Function

Functions are groups of JavaScript statements that can be treated as a single unit. To use a function, you must first define it. Here is a simple example of a function definition:

function greet() {

 alert("Greetings!");

}

This snippet defines a function that displays an alert message to the user. This begins with the function keyword followed by the name you’re giving to the function—in this case, the function’s name is greet. Notice the parentheses after the function’s name. As you’ll learn in short order, the space between them is not always empty as it is here.

The first and last lines of the function include curly braces (that is, { and }). You use these curly braces to enclose all the statements within the function. The browser uses the curly braces to determine where the function begins and ends.

Between the braces is the core JavaScript code of the function. This particular function contains a single line that invokes the JavaScript alert method, which displays an alert message to the user. The message contains the text “Greetings!”

CAUTION

Function names are case sensitive. If you define a function such as greet with a lowercase letter, be sure you use the identical name when you call the function. That is to say, if you define the function with the name greet but you attempt to call the function using Greet, it will not work.

Now, about those parentheses. The greet function shown earlier always does the same thing: Each time you use it, it displays the same message in the alert pop-up window.

To make this (or any) function more flexible, you can add parameters. These are variables that are received by the function each time it is called. For example, you can add a parameter called who that tells the function the name of the person to greet, based on the value of that parameter, called the argument, when the function is called. Here is the modified greet function:

Click here to view code image

function greet(who) {

 alert("Greetings, " + who + "!");

}

To call this function and see its behavior in action, you need to include it in an HTML document. Traditionally, the best place for a function definition is within the <head> section of the document. Because the statements in the <head> section are executed first, this ensures that the function is defined before it is used.

Listing 8.1 shows the greet function embedded in the header section of an HTML document, but not yet called into action.

LISTING 8.1 The greet Function in an HTML Document

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Functions</title>

 <script type="text/javascript">

 function greet(who) {

 alert("Greetings, " + who + "!");

 }

 </script>

 </head>

 <body>

 <p>This is the body of the page.</p>

 </body>

</html>

Calling the Function

You have now defined a function and placed it in an HTML document. However, if you load Listing 8.1 into a browser, you’ll notice that it does absolutely nothing besides display the text “This is the body of the page.” This lack of action is because the function is defined—ready to be used—but we haven’t used it yet.

Making use of a function is referred to as calling the function. To call a function, use the function’s name as a statement in a script or as an action associated with an event. To call a function, you need to include the parentheses and the values for the function’s parameters, if any. For example, here’s a statement that calls the greet function:

greet("Fred");

This tells the JavaScript interpreter to go ahead and start processing the first statement in the greet function. Calling the function in this manner, with an argument within the parentheses, passes the value of "Fred" to the function. This value of "Fred" is then assigned to the who variable inside the function.

TIP

Functions can have more than one parameter. To define a function with multiple parameters, list a variable name for each parameter, separated by commas. To call the function, specify values for each parameter separated by commas.

Listing 8.2 shows a complete HTML document that includes the function definition and a few buttons within the page that call the function as an action associated with an event. To demonstrate the usefulness of functions, we’ll call it twice to greet two different people—using two different parameters.

LISTING 8.2 The Complete Function Example

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Functions</title>

 <script type="text/javascript">

 function greet(who) {

 alert("Greetings, " + who + "!");

 }

 </script>

 </head>

 <body>

 <h1>Function Example</h1>

 <p>Who are you?</p>

 <button type="button" onclick="greet('Fred');">I am Fred</button>

 <button type="button" onclick="greet('Ethel');">I am Ethel</button>

 </body>

</html>

This listing includes two buttons, each of which calls the greet function a bit differently—with a different parameter associated with the call from each button.

Now that you have a script that actually does something, try loading it into a browser. If you click one of the buttons, you should see something like the screen in Figure 8.1, which shows the alert that appears when one of the buttons is clicked (I am Ethel, in this case).

[image: Images]

FIGURE 8.1
The output of the greet function example, with one button clicked.

Returning a Value

The function you created in the preceding example displays a message to the user in an alert pop-up, but functions can also return a value to the script that called them. This enables you to use functions to calculate values. As an example, let’s create a function that averages four numbers.

As usual, your function should begin with the function keyword, the function’s name, and the parameters it accepts. We will use the variable names a, b, c, and d for the four numbers to average. Here is the first line of the function:

function average(a,b,c,d) {

NOTE

I’ve also included the opening brace ({) on the first line of the function. This is a common style, but you can also place the brace on the next line or on a line by itself.

Next, the function needs to calculate the average of the four parameters. You can calculate this by adding them and then dividing by the number of parameters (in this case, 4). Thus, here is the next line of the function:

Click here to view code image

var result = (a + b + c + d) / 4;

This statement creates a variable called result and calculates the value assigned to result by adding the four numbers and then dividing by 4. (The parentheses are necessary to tell JavaScript to be absolutely sure to perform the addition before the division.)

To send this result back to the script that called the function, you use the return keyword. Here is the last part of the function:

return result;

}

Listing 8.3 shows the complete average function in an HTML document. This HTML document also includes a small script in the <body> section that calls the average function and displays the result.

LISTING 8.3 The average Function in an HTML Document

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Function Example: Average</title>

 <script type="text/javascript">

 function average(a,b,c,d) {

 var result = (a + b + c + d) / 4;

 return result;

 }

 </script>

 </head>

 <body>

 <h1>Function Example: Average</h1>

 <p>The following is the result of the function call.</p>

 <script type="text/javascript">

 var score = average(3,4,5,6);

 document.write("The average is: " + score);

 </script>

 </body>

</html>

If you open the script in Listing 8.3 in your web browser, you will see something like the result displayed in Figure 8.2, which shows the average printed on the screen, courtesy of the document.write method.

[image: Images]

FIGURE 8.2
The output of the average function example.

You can use a variable with the function call, as shown in this listing. This statement averages the numbers 3, 4, 5, and 6 and stores the result in a variable called score:

var score = average(3,4,5,6);

TIP

You can also use the function call directly in an expression. For example, you could use the alert statement to display the result of the function alert(average(1,2,3,4)).

Introducing Objects

In the preceding chapter, you learned how to use variables to represent different kinds of data in JavaScript. JavaScript also supports objects, or data structures that can store multiple data items and functions; objects were mentioned briefly in that chapter as well. Whereas a variable can have only one value at a time, an object can contain multiple values, which enables you to group related data items into a single object.

In this chapter, you’ll learn how to define and use your own objects. You’ve already worked with some of them, including the following:

[image: Images] DOM objects—These objects enable your scripts to interact with elements of the web browser and web documents. You learned about these in Chapter 6, “Understanding Dynamic Websites and HTML5 Applications.”

[image: Images] Built-in objects—These include strings and arrays, which you learned about in Chapter 7, “JavaScript Fundamentals: Variables, Strings, and Arrays.”

The syntax for working with all three types of objects—DOM objects, built-in objects, and custom objects—is the same, so even if you don’t end up creating your own objects, you should have a good understanding of JavaScript’s object terminology and syntax.

Creating Objects

When you created an array in the preceding chapter, you used the following JavaScript statement:

var scores = new Array(4);

The new keyword tells the JavaScript interpreter to use built-in functionality to create an object of the Array type. Objects have one or more properties—essentially, properties are variables, with values, that are stored within the object. For example, in Chapter 6, you learned you can use the location.href property to give you the URL of the current document because the value (the URL) is assigned to that property, just as a value is assigned to a variable. The href property is one of the properties of the location object in the DOM.

You’ve also used the length property of String objects, as in the following example from the preceding chapter:

Click here to view code image

var stringtest = "This is a test.";

document.write(stringtest.length);

To reiterate, as with variables, each object property has a value. To read a property’s value, you simply reference the object name and property name, separated by a period, in any expression—the example you just saw uses stringtest.length. You can change a property’s value using the = operator, just as you can change the assignment of a value to a variable. The following example sends the browser to a new URL by assigning a new variable to the location.href property:

Click here to view code image

location.href = "http://www.google.com";

NOTE

The value of an object property can be another object. This is referred to as a child object.

Understanding Methods

Along with properties, each object can have one or more methods. These are functions that work with the object’s data. For example, the following JavaScript statement reloads the current document, as you learned in Chapter 6:

location.reload();

When you use the reload() method, you’re using a method of the location object. Like other functions, methods can accept arguments in parentheses and can return values. Each object type in JavaScript has its own list of built-in methods. For example, a list of built-in methods for the Array object can be found at https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype#Methods.

Using Objects to Simplify Scripting

Although JavaScript’s variables and arrays are versatile ways to store data, sometimes you need a more complicated structure, which is when objects are useful. For example, suppose you are creating a script to work with a business card database that contains names, addresses, and phone numbers for various people.

If you were using regular variables, you would need several separate variables for each person in the database: a name variable, an address variable, and so on. This would be very confusing, not to mention quite lengthy to define.

Arrays would improve things, but only slightly. You could have a names array, an addresses array, and a phone number array. Each person in the database would have an entry in each array. This would be more convenient than many, many individually named variables, but still not perfect.

With objects, you can make the variables that store the database as logical as the physical business cards they are supposed to represent. Each person could be represented by a new Card object, which would contain properties for name, address, and phone number. You can even add methods to the object to display or work with the information, which is where the real power of using objects comes into play.

In the following sections, you’ll use JavaScript to create a Card object and some properties and methods. Later in this chapter, you’ll use the Card object in a script that will be used to display information for several members of this data store you’ve created through the use of objects.

Defining an Object

The first step in creating an object is to name it and its properties. We’ve already decided to call the object a Card object. Each object will have the following properties:

[image: Images] name

[image: Images] email

[image: Images] address

[image: Images] phone

The first step in using this object in a JavaScript program is to create a function to make new Card objects. This function is called the constructor for an object. Here is the constructor function for the Card object:

Click here to view code image

function Card(name,email,address,phone) {

 this.name = name;

 this.email = email;

 this.address = address;

 this.phone = phone;

}

The constructor is a simple function that accepts parameters to initialize a new object and assigns them to the corresponding properties. You can think of it like setting up a template for the object. The Card function in particular accepts several parameters from any statement that calls the function, and then it assigns these parameters as properties of an object. Because the function is called Card, the object created is a Card object.

Notice the this keyword. You’ll use it any time you create an object definition. Use this to refer to the current object—the one that is being created by the function.

Defining an Object Method

Next, you will create a method to work with the Card object. Because all Card objects will have the same properties, it might be handy to have a function that prints the properties in a neat format. Let’s call this function printCard.

Your printCard function will be used as a method for Card objects, so you don’t need to ask for parameters. Instead, you can use the this keyword again to refer to the current object’s properties. Here is a function definition for the printCard() function:

Click here to view code image

function printCard() {

 var name_line = "Name: " + this.name + "
\n";

 var email_line = "Email: " + this.email + "
\n";

 var address_line = "Address: " + this.address + "
\n";

 var phone_line = "Phone: " + this.phone + "<hr/>\n";

 document.write(name_line, email_line, address_line, phone_line);

}

This function simply reads the properties from the current object (this), prints each one with a label string before it, and then creates a new line.

You now have a function that prints a card, but it isn’t officially a method of the Card object. The last thing you need to do is make printCard part of the function definition for Card objects. Here is the modified function definition:

Click here to view code image

function Card(name,email,address,phone) {

 this.name = name;

 this.email = email;

 this.address = address;

 this.phone = phone;

 this.printCard = printCard;

}

The added statement looks just like another property definition, but it refers to the printCard function. This new method will now work so long as printCard has its own function definition elsewhere in your script. Methods are essentially properties that define a function rather than a simple value.

TIP

The previous example uses lowercase names such as address for properties and a mixed-case name (printCard) for the method. You can use any case for property and method names, but this is one way to make it clear that printCard is a method rather than an ordinary property.

Creating an Object Instance

Now let’s use the object definition and method you just created. To use an object definition, you create a new object using the new keyword. This is the same keyword you’ve already used to create Date and Array objects.

The following statement creates a new Card object called tom:

Click here to view code image

var tom = new Card("Tom Jones", "tom@jones.com",

 "123 Elm Street, Sometown ST 77777",

 "555-555-9876");

As you can see, creating an object is easy. All you do is call the Card() function (the object definition) and enter the required attributes in the same order as you defined originally (in this case, the parameters: name, email, address, phone).

After this statement executes, you will have a new object to hold Tom’s information. This new object, now named tom, is called an instance of the Card object. Just as there can be several string variables in a program, there can be several instances of an object you define.

Rather than specifying all the information for a card with the new keyword, you can assign the data after the fact. For example, the following script creates an empty Card object called holmes and then assigns its properties:

Click here to view code image

var holmes = new Card();

holmes.name = "Sherlock Holmes";

holmes.email = "sherlock@holmes.com";

holmes.address = "221B Baker Street";

holmes.phone = "555-555-3456";

After you’ve created an instance of the Card object using either of these methods, you can use the printCard() method to display its information. For example, this statement displays the properties of the tom card:

tom.printCard();

[image: Images] TRY IT YOURSELF

Storing Data in Objects

Now you’ve created a new object to store business cards and a method to print them. As a final demonstration of objects, properties, functions, and methods, you will now use this object in a web page to display data for several cards.

Your script will need to include the function definition for printCard, along with the function definition for the Card object. You will then create three cards and print them in the body of the document. We will use separate HTML and JavaScript files for this example. Listing 8.4 shows the complete script.

LISTING 8.4 A Sample Script that Uses the Card Object

Click here to view code image

// define the functions

function printCard() {

 var nameLine = "Name: " + this.name + "
";

 var emailLine = "Email: " + this.email + "
";

 var addressLine = "Address: " + this.address + "
";

 var phoneLine = "Phone: " + this.phone + "<hr>";

 document.write(nameLine, emailLine, addressLine, phoneLine);

}

function Card(name,email,address,phone) {

 this.name = name;

 this.email = email;

 this.address = address;

 this.phone = phone;

 this.printCard = printCard;

}

// Create the objects

var sue = new Card("Sue Suthers", "sue@suthers.com", "123 Elm Street,

 Yourtown ST 99999", "555-555-9876");

var fred = new Card("Fred Fanboy", "fred@fanboy.com", "233 Oak Lane,

 Sometown ST 99399", "555-555-4444");

var jimbo = new Card("Jimbo Jones", "jimbo@jones.com", "233 Walnut Circle,

 Anotherville ST 88999", "555-555-1344");

// Now print them

sue.printCard();

fred.printCard();

jimbo.printCard();

Notice that the printCard() function has been modified slightly to make things look good with the labels in boldface. To prepare to use this script, save it as cards.js. Next, you’ll need to include the cards.js script in a simple HTML document. Listing 8.5 shows the HTML document for this example.

LISTING 8.5 The HTML File for the Card Object Example

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>JavaScript Business Cards</title>

 </head>

 <body>

 <h1>JavaScript Business Cards</h1>

 <p>External script output coming up…</p>

 <script type="text/javascript" src="cards.js"></script>

 <p>External script output has ended.</p>

 </body>

</html>

To test the complete script, save this HTML document in the same directory as the cards.js file you created earlier and then load the HTML document into a browser. The browser’s display of this example is shown in Figure 8.3.

[image: Images]

FIGURE 8.3
Displaying the output of the business card example.

Extending Built-in Objects

JavaScript includes a feature that enables you to extend the definitions of built-in objects. For example, if you think the String object doesn’t quite fit your needs, you can extend it by adding a new property or method. This might be very useful if you are creating a large script that uses many strings and manipulates those strings in unique ways, but you should use this sparingly and only if you have a really good reason.

You can add both properties and methods to an existing object by using the prototype keyword. (A prototype is another name for an object’s definition, or constructor function.) The prototype keyword enables you to change the definition of an object outside its constructor function.

As an example, let’s add a method to the String object definition. You will create a method called heading, which converts a string into an HTML heading. The following statement defines a string called myTitle:

Click here to view code image

var myTitle = "Fred's Home Page";

This statement would output the contents of the myTitle string as an HTML level 1 heading:

Click here to view code image

document.write(myTitle.heading(1));

Listing 8.6 adds a heading method to the String object definition that will display the string as a heading, and then it displays three headings using the new method.

LISTING 8.6 Adding a Method to the String Object

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Test of Heading Method</title>

 </head>

 <body>

 <script type="text/javascript">

 function addHeading(level) {

 var html = "h" + level;

 var text = this.toString();

 var opentag = "<" + html + ">";

 var closetag = "</" + html + ">";

 return opentag + text + closetag;

 }

 String.prototype.heading = addHeading;

 document.write("This is a heading 1".heading(1));

 document.write("This is a heading 2".heading(2));

 document.write("This is a heading 3".heading(3));

 </script>

 </body>

</html>

First, you define the addHeading() function, which will serve as the new string method. It accepts a number to specify the heading level. The opentag and closetag variables are used to store the HTML “begin heading tag” and “end heading tag” tags, such as <h1> and </h1>.

After the function is defined, use the prototype keyword to add it as a method of the String object. You can then use this method on any String object or, in fact, any JavaScript string. This is demonstrated by the last three statements, which display quoted text strings as level 1, 2, and 3 headings.

If you load this document into a browser, it should look something like what’s shown in Figure 8.4.

[image: Images]

FIGURE 8.4
Displaying the dynamic heading example.

Using the Math Object

The Math object is a built-in JavaScript object that includes math constants and functions. You’ll never need to create a Math object because it exists automatically in any JavaScript program. The Math object’s properties represent mathematical constants, and its methods are mathematical functions. If you’re working with numbers in any way in your JavaScript, the Math object will be your new best friend.

Rounding and Truncating

Three of the most useful methods of the Math object enable you to round decimal values up and down:

[image: Images] Math.ceil() rounds a number up to the next integer.

[image: Images] Math.floor() rounds a number down to the next integer.

[image: Images] Math.round() rounds a number to the nearest integer.

All of these methods take the number to be rounded as their only parameter. You might notice one thing missing: the capability to round to a decimal place, such as for dollar amounts. Fortunately, you can easily simulate this, as is shown in this simple function that rounds numbers to two decimal places:

Click here to view code image

function round(num) {

 return Math.round(num * 100) / 100;

}

The function shown here multiplies the value by 100 to move the decimal and then rounds the number to the nearest integer. Finally, the value is divided by 100 to restore the decimal to its original position.

Generating Random Numbers

One of the most commonly used methods of the Math object is the Math.random() method, which generates a random number. This method doesn’t require any parameters. The number it returns is a random decimal number between 0 and 1.

You’ll usually want a random number between 1 and some predetermined value. You can do this with a general-purpose random number function. The following function generates random numbers between 1 and the parameter you send it:

Click here to view code image

function rand(num) {

 return Math.floor(Math.random() * num) + 1;

}

This function multiplies a random number by the value specified in the num parameter and then converts it to an integer between 1 and the number by using the Math.floor() method.

Other Math Methods

The Math object includes many methods beyond those you’ve looked at here. For example, Math.sin() and Math.cos() calculate sines and cosines. The Math object also includes properties for various mathematical constants, such as Math.PI. You can see a list of all the built-in methods you can use with the Math object at https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math#Methods.

Working with Math Methods

The Math.random method generates a random number between 0 and 1. However, it’s very difficult for a computer to generate a truly random number. (It’s also hard for a human being to do so—that’s why dice were invented.) Today’s computers do reasonably well at generating random numbers, but just how good is JavaScript’s Math.random function? One way to test it is to generate many random numbers and calculate the average of all of them.

In theory, the average of all generated numbers should be somewhere near 0.5, or halfway between 0 and 1. The more random values you generate, the closer the average should get to this middle ground. To really do this test, let’s create a script that tests JavaScript’s random number function by generating 5,000 random numbers and calculating their average.

This example will use a for loop, which you’ll learn more about in the next chapter, but this is a simple enough example that you should be able to follow along. In this case, the for loop will generate the random numbers. You may be surprised how fast JavaScript can do this.

To begin your script, initialize a variable called total. This variable will store a running total of all the random values, so it’s important that it starts at 0:

var total = 0;

Next, begin a loop that will execute 5,000 times. Use a for loop because you want it to execute for a fixed number of times (in this case, 5,000):

for (i=0; i<=5000; i++) {

Within the for loop, you will need to create a random number and add its value to the total variable. Here are the statements that do this and continue with the next iteration of the loop:

 var num = Math.random();

 total += num;

}

Depending on the speed of your computer, it might take a few seconds to generate those 5,000 random numbers. Just to be sure something is happening, let’s have the script display a status message after each 1,000 numbers:

Click here to view code image

if (i % 1000 == 0) {

 document.write("Generated " + i + " numbers…
");

}

NOTE

The % symbol in the previous code is the modulo operator, which gives you the remainder after dividing one number by another. Here it is used to find even multiples of 1,000.

The final part of your script will calculate the average by dividing the value of the total variable by 5,000. Let’s also round the average to three decimal places, for fun:

Click here to view code image

var average = total / 5000;

average = Math.round(average * 1000) / 1000;

document.write("<p>Average of 5000 numbers is: " + average + "</p>");

To test this script and see just how random those numbers are, combine the complete script with an HTML document and <script> tags. Listing 8.7 shows the complete random number testing script.

LISTING 8.7 A Script to Test JavaScript’s Random Number Function

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Math Example</title>

 </head>

 <body>

 <h1>Math Example</h1>

 <p>How random are JavaScript's random numbers?

 Let's generate 5000 of them and find out.</p>

 <script type="text/javascript">

 var total = 0;

 for (i=0; i<=5000; i++) {

 var num = Math.random();

 total += num;

 if (i % 1000 == 0) {

 document.write("Generated " + i + " numbers…
");

 }

 }

 var average = total / 5000;

 average = Math.round(average * 1000) / 1000;

 document.write("<p>Average of 5000 numbers is: " + average + "</p>");

 </script>

 </body>

</html>

To test the script, load the HTML document into a browser. After a short delay, you should see a result. If it’s close to 0.5, the numbers are reasonably random. My result was 0.501, as shown in Figure 8.5. If you reload the page, you’ll likely get different results, but they should all be around 0.5.

NOTE

The average you’ve used here is called an arithmetic mean. This type of average isn’t a perfect way to test randomness. Actually, all it tests is the distribution of the numbers above and below 0.5. For example, if the numbers turned out to be 2,500 0.4’s and 2,500 0.6’s, the average would be a perfect 0.5—but they wouldn’t be very random numbers. (Thankfully, JavaScript’s random numbers don’t have this problem.)

[image: Images]

FIGURE 8.5
The random number testing script in action.

Working with Dates

The Date object is a built-in JavaScript object that enables you to work more easily with dates and times. You can create a Date object any time you need to store a date, and you can use the Date object’s methods to work with the date. The Date object has no properties of its own. To set or obtain values from a Date object, use the methods described in the next section.

NOTE

JavaScript dates are stored as the number of milliseconds since midnight, January 1, 1970. This date is called the epoch. Dates before 1970 weren’t allowed in early versions but are now represented by negative numbers.

Creating a Date Object

You can create a Date object using the new keyword. You can also optionally specify the date to store in the object when you create it. You can use any of the following formats:

Click here to view code image

birthday = new Date();

birthday = new Date("April 8, 2017 08:00:00");

birthday = new Date(4,8, 2017);

birthday = new Date(4,8,2017, 8, 0, 0);

You can choose any of these formats, depending on which values you want to set. If you use no parameters, as in the first example, the current date is stored in the object. You can then set the values using the set methods, described in the next section.

Setting Date Values

Various set methods enable you to set components of a Date object to values:

[image: Images] setDate() sets the day of the month.

[image: Images] setMonth() sets the month. JavaScript numbers the months from 0 to 11, starting with January (0).

[image: Images] setFullYear() sets the year.

[image: Images] setTime() sets the time (and the date) by specifying the number of milliseconds since January 1, 1970.

[image: Images] setHours(), setMinutes(), and setSeconds() set the time.

As an example, the following statement sets the year of a Date object called holiday to 2017:

holiday.setFullYear(2017);

Reading Date Values

You can use the get methods to get values from a Date object. This is the only way to obtain these values because they are not available as properties. Here are the available get methods for dates:

[image: Images] getDate() gets the day of the month.

[image: Images] getMonth() gets the month.

[image: Images] getFullYear() gets the year.

[image: Images] getTime() gets the time (and the date) as the number of milliseconds since January 1, 1970.

[image: Images] getHours(), getMinutes(), getSeconds(), and getMilliseconds() get the components of the time.

NOTE

Along with setFullYear and getFullYear, which require four-digit years, JavaScript includes setYear and getYear methods, which use two-digit year values.

Working with Time Zones

Finally, a few functions are available to help your Date objects work with local time values and time zones:

[image: Images] The getTimeZoneOffset() function gives you the local time zone’s offset from UTC (Coordinated Universal Time, based on the old Greenwich Mean Time standard). In this case, local refers to the location of the browser. (Of course, this works only if the user has set his or her system clock accurately.)

[image: Images] The toUTCString() function converts the date object’s time value to text, using UTC.

[image: Images] The toLocalString() function converts the date object’s time value to text, using local time.

Along with these basic functions, JavaScript includes UTC versions of several of the functions described previously. These are identical to the regular commands, but they work with UTC instead of local time:

[image: Images] The getUTCDate() function gets the day of the month in UTC time.

[image: Images] The getUTCDay() function gets the day of the week in UTC time.

[image: Images] The getUTCFullYear() function gets the four-digit year in UTC time.

[image: Images] The getUTCMonth() function returns the month of the year in UTC time.

[image: Images] The getUTCHours(), getUTCMinutes(), getUTCSeconds(), and getUTCMilliseconds() functions return the components of the time in UTC.

[image: Images] The setUTCDate(), setUTCFullYear(), setUTCMonth(), setUTCHours(), setUTCMinutes(), setUTCSeconds(), and setUTCMilliseconds() functions set the time in UTC.

Converting Between Date Formats

Two special methods of the Date object enable you to convert between date formats. Instead of using these methods with a Date object you created, you use them with the built-in object Date itself. These include the following:

[image: Images] The Date.parse() method converts a date string, such as April 8, 2017, to a Date object (number of milliseconds since 1/1/1970).

[image: Images] The Date.UTC() method does the opposite. It converts a Date object value (number of milliseconds) to a UTC (GMT) time.

The if Statement

No matter if you’re using functions, built-in objects, or objects of your own creation, one of the most important features of any computer language is the capability to flow through a series of statements that might change based on the values of variables or input from the user. An example of flow control is the use of the if statement.

The if statement is the main conditional statement in JavaScript. This statement means much the same in JavaScript as it does in English—for example, here is a typical conditional statement in English:

If the phone rings, answer it.

This statement consists of two parts: a condition (If the phone rings) and an action (answer it). The if statement in JavaScript works much the same way. Here is an example of a basic if statement:

Click here to view code image

if (a == 1) alert("I found a 1!");

This statement includes a condition (if a equals 1) and an action (display a message). This statement checks the variable a and, if it has a value of 1, displays an alert message. Otherwise, it does nothing.

If you use an if statement like the preceding example (that is, all on one line), you can use only a single statement as the action. However, you can also use multiple statements for the action by enclosing the entire if statement in curly braces ({}), as shown here:

if (a == 1) {

 alert("I found a 1!");

 a = 0;

}

This block of statements checks the variable a once again. If the value of the variable matches 1, it displays a message and sets a back to 0.

It’s up to you, as a matter of personal style, whether you use the curly braces for single statements within flow control structures. Some people (such as me) find it easier to read if all the flow control structures are clearly delineated through the use of curly braces no matter their length, and other developers are perfectly happy using a mix of single-line conditional statements and statements within braces. It doesn’t really matter which you use; just try to use them consistently for easier ongoing maintenance, and follow any practices dictated by your team or project.

Conditional Operators

The action part of an if statement can include any JavaScript statement, but the condition part of the statement uses its own syntax. This is called a conditional expression.

A conditional expression usually includes two values to be compared (in the preceding example, the values were a and 1). These values can be variables, constants, or even expressions in themselves.

NOTE

Either side of the conditional expression can be a variable, a constant, or an expression. You can compare a variable and a value, or two variables. (You can also compare two constants, but there’s usually no reason to.)

Between the two values to be compared is a conditional operator. This operator tells JavaScript how to compare the two values. For instance, the == operator that you saw in the preceding section is used to test whether the two values are equal.

Various conditional operators are available:

[image: Images] ==—Is equal to

[image: Images] !=—Is not equal to

[image: Images] <—Is less than

[image: Images] >—Is greater than

[image: Images] >=—Is greater than or equal to

[image: Images] <=—Is less than or equal to

[image: Images] ===—Is equal to, both in value and type

CAUTION

Be sure not to confuse the equality operator (==) with the assignment operator (=), even though they both might be read or referred to as “equals.” Remember to use = when assigning a value to a variable, and use == when comparing values. Confusing these two is one of the most common mistakes in programming (JavaScript or otherwise).

Combining Conditions with Logical Operators

Often, you’ll want to check a variable for more than one possible value, or check more than one variable at once. JavaScript includes logical operators, also known as Boolean operators, for this purpose. For example, the following two statements check different conditions and use the same action:

Click here to view code image

if (phone == "") alert("error!");

if (email == "") alert("error!");

Using a logical operator, you can combine them into a single statement:

Click here to view code image

if ((phone == "") || (email == "")) alert("Something Is Missing!");

This statement uses the logical Or operator (||) to combine the conditions. Translated into English, this would be, “If the phone number is blank or the email address is blank, display an error message.”

An additional logical operator is the And operator, &&. Consider this statement:

Click here to view code image

if ((phone == "") && (email == "")) alert("Both Values Are Missing!");

In this case, the error message will be displayed only if both the email address and phone number variables are blank.

TIP

If the JavaScript interpreter discovers the answer to a conditional expression before reaching the end, it does not evaluate the rest of the condition. For example, if the first of two conditions separated by the || operator is true, the second is not evaluated because the condition (one or the other) has already been met. You can take advantage of operators to improve the speed of your scripts.

A third logical operator is the exclamation mark (!), which means Not. It can be used to invert an expression—in other words, a true expression would become false, and a false one would become true. For example, here’s a statement that uses the Not operator:

Click here to view code image

if (!phone == "") alert("phone is OK");

In this statement, the ! (Not) operator inverts the condition, so the action of the if statement is executed only if the phone number variable is not blank. You could also use the != (Not equal) operator to simplify this statement:

Click here to view code image

if (phone != "") alert("phone is OK");

Both of the preceding statements will alert you if the phone variable has a value assigned to it (if is not blank, or null).

TIP

Logical operators are powerful, but it’s easy to accidentally create an impossible condition with them. For example, the condition ((a < 10) && (a > 20)) might look correct at first glance. However, if you read it out loud, you get “If a is less than 10 and a is greater than 20”—an impossibility in our universe. In this case, Or (||) should have been used to make a meaningful condition.

The else Keyword

An additional feature of the if statement is the else keyword. Much like its English-language counterpart, else tells the JavaScript interpreter what to do if the condition in the if statement isn’t met. The following is a simple example of the else keyword in action:

Click here to view code image

if (a == 1) {

 alert("Found a 1!");

 a = 0;

} else {

 alert("Incorrect value: " + a);

}

This snippet displays a message and resets the variable a if the condition is met. If the condition is not met (if a is not 1), a different message is displayed courtesy of the else statement.

NOTE

Like the if statement, else can be followed either by a single action statement or by a number of statements enclosed in braces.

Using Shorthand Conditional Expressions

In addition to the if statement, JavaScript provides a shorthand type of conditional expression that you can use to make quick decisions. This uses a peculiar syntax that is also found in other languages, such as C. A conditional expression can look like this:

Click here to view code image

variable = (condition) ? (value if true) : (value if false);

This construction ends up assigning one of two values to the variable: one value if the condition is true, and another value if it is false. Here is an example of a conditional expression:

Click here to view code image

value = (a == 1) ? 1 : 0;

This statement might look confusing, but it is equivalent to the following if statement:

if (a == 1) {

 value = 1;

} else {

 value = 0;

}

In other words, the value directly after the question mark (?) will be used if the condition is true, and the value directly after the colon (:) will be used if the condition is false. The colon and what follows represent the else portion of the statement, were it written as an if…else statement, and, like the else portion of the if statement, it is optional.

These shorthand expressions can be used anywhere JavaScript expects a value. They provide a quick way to make simple decisions about values. As an example, here’s a quick way to display a grammatically correct message about a variable:

Click here to view code image

document.write("Found " + counter +

 ((counter == 1) ? " word." : " words."));

This prints the message Found 1 word. if the counter variable has a value of 1, and Found 2 words. if its value is 2 or greater. You might, in fact, find that conditional expressions are not quicker or easier for you to use, and that is perfectly fine. You should, however, know what they look like and how to read them, should you encounter them in someone else’s code in the future.

Testing Multiple Conditions with if and else

You now have all the pieces necessary to create a script using if and else statements to control flow. We’ll use that knowledge here as you create a script that uses conditions to display a greeting that depends on the time: “Good morning,” “Good afternoon,” “Good evening,” or “Good day.” To accomplish this task, you can use a combination of several if statements; this is rather verbose to emphasize the logic:

Click here to view code image

if (hour_of_day < 10) {

 document.write("Good morning.");

} else if ((hour_of_day >= 14) && (hour_of_day <= 17)) {

 document.write("Good afternoon.");

} else if (hour_of_day >= 17) {

 document.write("Good evening.");

} else {

 document.write("Good day.");

}

The first statement checks the hour_of_day variable for a value less than 10—in other words, it checks whether the current time is before 10:00 a.m. If so, it displays the greeting “Good morning.”

The second statement checks whether the time is between 2:00 p.m. and 5:00 p.m. and, if so, displays “Good afternoon.” This statement uses else if to indicate that this condition will be tested only if the preceding one failed—if it’s morning, there’s no need to check whether it’s afternoon. Similarly, the third statement checks for times after 5:00 p.m. and displays “Good evening.”

The final statement uses a simple else, meaning it will be executed if none of the previous conditions matched. This covers the times between 10:00 a.m. and 2:00 p.m. (neglected by the other statements) and displays “Good day.”

The HTML File

To try this example in a browser, you’ll need an HTML file. We will keep the JavaScript code separate, so Listing 8.8 is the complete HTML file. Save it as timegreet.html but don’t load it into the browser until you’ve prepared the JavaScript file in the next section.

LISTING 8.8 The HTML File for the Time and Greeting Example

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Time Greet Example</title>

 </head>

 <body>

 <h1>Current Date and Time</h1>

 <script type="text/javascript" src="timegreet.js" > </script>

 </body>

</html>

The JavaScript File

Listing 8.9 shows the complete JavaScript file for the time-greeting example. This uses the built-in Date object functions to find the current date and store it in hour_of_day, minute_of_hour, and seconds_of_minute variables. Next, document.write statements display the current time, and the if and else statements introduced earlier display an appropriate greeting.

LISTING 8.9 A Script to Display the Current Time and a Greeting

Click here to view code image

// Get the current date

now = new Date();

// Delineate hours, minutes, seconds

hour_of_day = now.getHours();

minute_of_hour = now.getMinutes();

seconds_of_minute = now.getSeconds();

// Display the time

document.write("<h2>");

document.write(hour_of_day + ":" + minute_of_hour +

 ":" + seconds_of_minute);

document.write("</h2>");

// Display a greeting

document.write("<p>");

if (hour_of_day < 10) {

 document.write("Good morning.");

} else if ((hour_of_day >= 14) && (hour_of_day <= 17)) {

 document.write("Good afternoon.");

} else if (hour_of_day >= 17) {

 document.write("Good evening.");

} else {

 document.write("Good day.");

}

document.write("</p>");

To try this example, save this file as timegreet.js and then load the timegreet.html file into your browser. Figure 8.6 shows the results of this script.

[image: Images]

FIGURE 8.6
The output of the time-greeting example.

Using Multiple Conditions with switch

In Listing 8.9, you used several if…else statements in a row to test for different conditions. Here is another example of this technique:

Click here to view code image

if (button == "next") {

 window.location = "next.html";

} else if (button == "previous") {

 window.location = "previous.html";

} else if (button == "home") {

 window.location = "home.html";

} else if (button == "back") {

 window.location = "menu.html";

}

Although this construction is a logical way of doing things, this method can get messy if each if statement has its own block of code with several statements in it. As one alternative, JavaScript includes the switch statement, which enables you to combine several tests of the same variable or expression into a single block of statements. The following shows the same example converted to use switch:

Click here to view code image

switch (button) {

 case "next":

 window.location = "next.html";

 break;

 case "previous":

 window.location = "previous.html";

 break;

 case "home":

 window.location = "home.html";

 break;

 case "back":

 window.location = "menu.html";

 break;

 default:

 window.alert("Wrong button.");

}

The switch statement has several components:

[image: Images] The initial switch statement. This statement includes the value to test (in this case, button) in parentheses.

[image: Images] Braces ({ and }) enclose the contents of the switch statement, similar to a function or an if statement.

[image: Images] One or more case statements. Each of these statements specifies a value to compare with the value specified in the switch statement. If the values match, the statements after the case statement are executed. Otherwise, the next case is tried.

[image: Images] The break statement is used to end each case. This skips to the end of the switch. If break is not included, statements in multiple cases might be executed whether or not they match; always include a break to avoid what’s known as fall through.

[image: Images] Optionally, the default case can be included and followed by one or more statements that are executed if none of the other cases was matched.

NOTE

You can use multiple statements after each case statement within the switch structure, and not just the single-line statements shown here. You don’t need to enclose them in braces. If the case matches, the JavaScript interpreter executes statements until it encounters a break or the next case.

One of the main benefits of using a switch statement instead of an if…else statement is readability—in one glance you know that all the conditional tests are for the same expression, and therefore you can focus on understanding the desired outcome of the conditional tests. But using a switch statement is purely optional—you might find you prefer if…else statements, and there’s nothing wrong with that. Any efficiency gains in using a switch statement instead of an if…else statement will not be noticeable to human eyes, if any is even present at all. The bottom line is this: Use what you like.

Using for Loops

The for keyword is the first tool to consider for creating loops, much as you saw in the preceding chapter during the random-number example. A for loop typically uses a variable (called a counter or an index) to keep track of how many times the loop has executed, and it stops when the counter reaches a certain number. A basic for statement looks like this:

Click here to view code image

for (somevar = 1; somevar < 10; somevar++) {

 // more code

}

There are three parameters to the for loop, each separated by semicolons:

[image: Images] The first parameter (somevar = 1 in the example) specifies a variable and assigns an initial value to it. This is called the initial expression because it sets up the initial state for the loop.

[image: Images] The second parameter (somevar < 10 in the example) is a condition that must remain true to keep the loop running. This is called the condition of the loop.

[image: Images] The third parameter (somevar++ in the example) is a statement that executes with each iteration of the loop. This is called the increment expression because it is typically used to increment the counter. The increment expression executes at the end of each loop iteration. Increment is just an example here—any operation can be performed.

After the three parameters are specified, a left brace ({) is used to signal the beginning of a block. A right brace (}) is used at the end of the block. All the statements between the braces will be executed with each iteration of the loop.

The parameters for a for loop might sound a bit confusing, but after you’re used to them, you’ll use for loops frequently. Here is a simple example of this type of loop:

Click here to view code image

for (i=0; i<10; i++) {

 document.write("This is line " + i + "
");

}

These statements define a loop that uses the variable i, initializes it with a value of 0, and loops as long as the value of i is less than 10. The increment expression, i++, adds 1 to the value of i with each iteration of the loop. Because this happens at the end of the loop, the output will be nine lines of text.

When a loop includes only a single statement between the braces, as in this example, you can omit the braces if you want. The following statement defines the same loop without braces:

Click here to view code image

for (i=0; i<10; i++)

 document.write("This is line " + i + "
");

TIP

It’s a good style convention to use braces with all loops, regardless of whether they contain one statement or many statements. This makes it easy to add statements to the loop later without causing syntax errors.

The loop in this example contains a document.write statement that will be repeatedly executed. To see just what this loop does, you can add it to a <script> section of an HTML document, as shown in Listing 8.10.

LISTING 8.10 A Loop Using the for Keyword

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Using a for Loop</title>

 </head>

 <body>

 <h1>Using a for loop</h1>

 <p>The following is the output of the for loop:</p>

 <script type="text/javascript">

 for (i=1;i<10;i++) {

 document.write("This is line " + i + "
");

 }

 </script>

 </body>

</html>

This example displays a message containing the current value of the loop’s counter during each iteration. The output of Listing 8.10 is shown in Figure 8.7.

[image: Images]

FIGURE 8.7
The results of the for loop example.

Notice that the loop was executed only nine times. This is because the conditional is i<10, and i is less than 10. When the counter (i) is incremented to 10, the expression is no longer true. If you want the loop to count to 10, you will have to change the conditional; either i<=10 or i<11 will work fine.

The for loop is traditionally used to count from one number to another, but you can use just about any statement for the initialization, condition, and increment. However, there’s usually a better way to do other types of loops with the while keyword, described in the next section.

Using while Loops

Another keyword for loops in JavaScript is while. Unlike for loops, while loops don’t necessarily use a variable to count. Instead, they continue to execute as long as a condition is true. In fact, if the condition starts out as false, the statements won’t execute at all.

The while statement includes the condition in parentheses, and it is followed by a block of statements within braces, just like a for loop. Here is a simple while loop:

while (total < 10) {

 n++;

 total += values[n];

}

This loop uses a counter, n, to iterate through the values array. Rather than stopping at a certain count, however, it stops when the total of the values reaches 10.

You might have thought that you could have done the same thing with a for loop, and you’d be correct:

Click here to view code image

for (n = 0; total < 10; n++) {

 total += values[n];

}

As a matter of fact, the for loop is nothing more than a special kind of while loop that handles an initialization and an increment for you all in one line. You can generally use while for any loop. However, it’s best to choose whichever type of loop makes the most sense for the job, or takes the least amount of typing.

Using do…while Loops

JavaScript, like many other programming languages, includes a third type of loop: the do…while loop. This type of loop is similar to an ordinary while loop, with one difference: The condition is tested at the end of the loop rather than the beginning. Here is a typical do…while loop:

do {

 n++;

 total += values[n];

}

while (total < 10);

As you’ve probably noticed, this is basically an upside-down version of the previous while example. There is one difference: With the do loop, the condition is tested at the end of the loop. This means that the statements in the loop will always be executed at least once, even if the condition is never true.

NOTE

As with the for and while loops, the do loop can include a single statement without braces, or a number of statements enclosed in braces.

Working with Loops

Although you can use simple for and while loops for straightforward tasks, there are some considerations you should make when using more complicated loops. In the next sections, we’ll look at infinite loops (to be avoided!) and the break and continue statements, which give you more control over the execution of your loops.

Creating an Infinite Loop

The for and while loops give you quite a bit of control over the loop. In some cases, this can cause problems if you’re not careful. For example, look at the following loop code:

while (i < 10) {

 n++;

 values[n] = 0;

}

There’s a mistake in this example. The condition of the while loop refers to the i variable, but that variable doesn’t actually change during the loop—the n variable does. This creates an infinite loop. The loop will continue executing until the user stops it, or until it generates an error of some kind.

Infinite loops can’t always be stopped by the user, except by quitting the browser—and some loops can even prevent the browser from quitting, or cause a crash.

Obviously, infinite loops are something to avoid; another common reason for infinite loops is using the wrong comparison overall or performing the wrong operation on a counter. Infinite loops can be difficult to spot because JavaScript won’t give you an error that actually tells you there is an infinite loop. Thus, each time you create a loop in a script, you should be careful to make sure there’s a way out.

NOTE

Depending on the browser version in use, an infinite loop might even make the browser stop responding to the user because all the memory is used up. Be sure you provide an escape route from infinite loops, and be sure to always test your work.

Occasionally, you might want to create a long-running and seemingly infinite loop deliberately. For example, you might want your program to execute until the user explicitly stops it, or until you provide an escape route with the break statement, as mentioned previously. Here’s an easy way to create an infinite loop:

while (true) {

 //more code

}

Because the value true is the conditional, this loop will always find its condition to be true.

Escaping from a Loop

There is a way out of a long-running and seemingly infinite loop. You can use the break statement at some point during the loop to exit immediately and continue with the first statement after the loop. Here is a simple example of the use of break:

while (true) {

 n++;

 if (values[n] == 1) break;

}

Although the while statement is set up as an infinite loop, the if statement checks the corresponding value of an array, and if it finds a value of 1, it exits the loop.

When the JavaScript interpreter encounters a break statement, it skips the rest of the loop and continues the script with the first statement after the right brace at the loop’s end. You can use the break statement in any type of loop, whether infinite or not. This provides an easy way to exit if an error occurs, or if another condition is met.

Continuing a Loop

One more JavaScript statement is available to help you control the execution of a loop. The continue statement skips the rest of the loop but, unlike break, it continues with the next iteration of the loop. Here is a simple example:

Click here to view code image

for (i=1; i<21; i++) {

 if (score[i]==0) continue;

 document.write("Student number "+ i + ", Score: "

 + score[i] + "
");

}

This script uses a for loop to print scores for 20 students, stored in the score array (not shown here). The if statement is used to check for scores with a value of 0. The script assumes that a score of 0 means that the student didn’t take the test, so it continues the loop without printing that score.

Looping Through Object Properties

Yet another type of loop is available in JavaScript. The for…in loop is not as flexible as an ordinary for or while loop, but it is specifically designed to perform an operation on each property of an object.

For example, the built-in navigator object contains properties that describe the user’s browser. You can use for…in to display this object’s properties:

Click here to view code image

for (i in navigator) {

 document.write("<p>Property: " + i + "
");

 document.write("Value: " + navigator[i] + "</p>");

}

Like an ordinary for loop, this type of loop uses an index variable (i in the example). For each iteration of the loop, the variable is set to the next property of the object. This makes it easy when you need to check or modify each of an object’s properties.

[image: Images] TRY IT YOURSELF

Working with Arrays and Loops

To apply your knowledge of loops, you will now create a script that works with arrays using loops. As you progress through this script, try to imagine how difficult it would be without JavaScript’s looping features.

This simple script will prompt the user for a series of names. After all the names have been entered, it will display the list of names in a numbered list. To begin the script, initialize some variables:

var names = new Array();

var i = 0;

The names array will store the names the user enters. You don’t know how many names will be entered, so you don’t need to specify a dimension for the array. The i variable will be used as a counter in the loops.

Next, use the prompt statement to prompt the user for a series of names. Use a loop to repeat the prompt for each name. You want the user to enter at least one name, so a do loop is ideal:

Click here to view code image

do {

 next = prompt("Enter the Next Name", " ");

 if (next > " ") {

 names[i] = next;

 }

 i = i + 1;

} while (next > " ");

This loop prompts for a string called next. If a name was entered and isn’t blank, it’s stored as the next entry in the names array. The i counter is then incremented. The loop repeats until the user doesn’t enter a name or clicks Cancel in the prompt dialog box.

Next, your script can display the number of names that was entered:

Click here to view code image

document.write("<h2>" + (names.length) + " names entered</h2>");

This statement displays the length property of the names array, surrounded by level 2 header tags for emphasis.

Next, the script should display all the names in the order in which they were entered. Because the names are in an array, the for…in loop is a good choice:

Click here to view code image

document.write("");

for (i in names) {

 document.write("" + names[i] + "");

}

document.write("");

Here you have a for…in loop that loops through the names array, assigning the counter i to each index in turn. The script then prints the name between opening and closing tags as an item in an ordered list. Before and after the loop, the script prints beginning and ending tags.

You now have everything you need for a working script. Listing 8.11 shows the HTML file for this example, and Listing 8.12 shows the JavaScript file.

LISTING 8.11 A Script to Prompt for Names and Display Them (HTML)

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Loops Example</title>

 </head>

 <body>

 <h1>Loops Example</h1>

 <p>Enter a series of names and JavaScript will display them

 in a numbered list.</p>

 <script type="text/javascript" src="loops.js"></script>

 </body>

</html>

LISTING 8.12 A Script to Prompt for Names and Display Them (JavaScript)

Click here to view code image

// create the array

names = new Array();

var i = 0;

// loop and prompt for names

do {

 next = prompt("Enter the Next Name", "");

 if (next > " ") {

 names[i] = next;

 }

 i = i + 1;

} while (next > " ");

document.write("<h2>" + (names.length) + " names entered</h2>");

// display all of the names

document.write("");

for (i in names) {

 document.write("" + names[i] + "");

}

document.write("");

To try this example, save the JavaScript file as loops.js and then load the HTML document into a browser. You’ll be prompted for one name at a time. Enter several names and then click Cancel to indicate that you’re finished. Figure 8.8 shows what the final results should look like in a browser.

[image: Images]

FIGURE 8.8
The output of the names example.

Summary

In this chapter, you learned several important features of JavaScript. First, you learned how to use functions to group JavaScript statements, and how to call functions and use the values they return. Next, you learned about JavaScript’s object-oriented features—defining objects with constructors, creating object instances, and working with properties, property values, and methods.

As an example of these object-oriented features, we looked closer at the Math and Date objects built in to JavaScript, and you learned more than you ever wanted to know about random numbers.

You also learned two ways to control the flow of your scripts. You learned how to use the if statement to evaluate conditional expressions and react to them. You also learned a shorthand form of conditional expression using the ?: operator, as well as the switch statement for working with multiple conditions. You also learned about JavaScript’s looping capabilities using for, while, and the do…while loops, and how to control loops further using the break and continue statements.

Not only are these structures important in JavaScript, they are very similar (if not exact, in some cases) to structures found in other programming languages, including PHP. These similarities will become apparent quickly in the next few chapters.

Q&A

Q. Many objects in JavaScript, such as DOM objects, include parent and child objects. Can I include child objects in my custom object definitions?

A. Yes. Just create a constructor function for the child object, and then add a property to the parent object that corresponds to it. For example, if you created a Nicknames object to store several nicknames for a person in the card file example, you could add it as a child object in the Card object’s constructor: this.nick = new Nicknames();.

Q. Can I create an array of custom objects?

A. Yes. First, create the object definition as usual and define an array with the required number of elements. Then assign a new object to each array element (for example, cardarray[1] = new Card();). You can use a loop to assign objects to an entire array at once.

Q. Can I modify all properties of objects?

A. With custom objects, yes—but this varies with built-in objects and DOM objects. For example, you can use the length property to find the length of a string, but it is a read-only property and cannot be modified.

Q.	Why don’t I get a friendly error message if I accidentally use = instead of ==?

A. In some cases, this does result in an error. However, the incorrect version often appears to be a correct statement. For example, in the statement if (a=1), the variable a is assigned the value 1.

Workshop

The Workshop contains quiz questions and activities to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. What JavaScript keyword is used to create an instance of an object?

A. object

B. new

C. instance

2. What is the meaning of the this keyword in JavaScript?

A. The current object.

B. The current script.

C. It has no meaning.

3. What is the range of random numbers generated by the Math.random function?

A. Between 1 and 100

B. Between 1 and the number of milliseconds since January 1, 1970

C. Between 0 and 1

4. What does the switch statement do?

A. Tests a variable or expression for a number of different values

B. Turns a variable on or off

C. Makes ordinary if statements longer and more confusing

5. Within a loop, what does the break statement do?

A. Crashes the browser

B. Starts the loop over

C. Escapes the loop entirely

Answers

1. A. The new keyword creates an object instance.

2. A. The this keyword refers to the current object.

3. C. The Math object returns a random number between 0 and 1.

4. A. The switch statement can test the same variable or expression for a number of different values.

5. C. The break statement escapes the loop.

Exercises

[image: Images] Modify the definition of the Card object to include a property called personal_notes to store your own notes about the person. Modify the object definition and printCard function in Listings 8.4 and 8.5 to include this property.

[image: Images] Modify Listings 8.11 and 8.12 to prompt for exactly 10 names. What happens if you click the Cancel button instead of entering a name?

CHAPTER 9
Understanding JavaScript Event Handling

What You’ll Learn in This Chapter:

[image: Images] How event handlers work

[image: Images] How event handlers relate to objects

[image: Images] How to create an event handler

[image: Images] How to detect mouse and keyboard actions

[image: Images] How to use onclick to change the appearance of <div>

In your experience with JavaScript so far, most of the scripts you’ve written have executed in a calm, orderly fashion, quietly and methodically moving from the first statement to the last. You’ve seen a few event handlers in use in sample scripts used to focus your attention on other aspects of programming, and it is likely that you used your common sense to follow along with the actions—onclick really does mean “when a click happens.” That alone speaks to the relative ease and simplicity of using JavaScript event handlers within your HTML.

In this chapter, you’ll learn to use various event handlers supported by JavaScript. Rather than executing statements in a methodical order, the user can interact directly with different parts of your scripts when he or she invokes an event handler. You’ll use event handlers in just about every bit of JavaScript you write throughout the rest of this book, and in fact they’re likely to feature prominently in most JavaScript you will write, period.

Understanding Event Handlers

As you learned in Chapter 4, “Introducing JavaScript,” JavaScript programs don’t have to execute in order. You also learned they can detect events and react to them. Events are things that happen within the scope of the browser—the user clicks a button, the mouse pointer moves, or a web page finishes loading from the server (just to name a few). Various events enable your scripts to respond to the mouse, the keyboard, and other circumstances. Events are the key methods JavaScript uses to make web documents interactive.

The script that you create and use to detect and respond to an event is generally referred to as an event handler. Event handlers are among the most powerful features of JavaScript. Luckily, they’re also among the easiest features to learn and use—often, a useful event handler requires only a single statement.

Objects and Events

As you learned in Chapter 6, “Understanding Dynamic Websites and HTML5 Applications,” JavaScript uses a set of objects to store information about the various parts of a web page—the buttons, links, images, windows, and so on that you interact with. An event can often happen in more than one place (for example, the user could click any one of the links on the page), so each event is associated with an object.

Each event has a name. For example, the mouseover event occurs when the mouse pointer moves over an object on the page. When the pointer moves over a particular link, the mouseover event is sent to that link’s event handler, if it has one. In the next few sections, you’ll learn more about creating and using event handlers in your own code.

Creating an Event Handler

You don’t need the <script> tag to invoke an event handler. Instead, you use the event name and code to invoke the event handler as an attribute of an individual HTML tag. For example, here is the HTML markup for a link that invokes an event handler script when a mouseover occurs on that linked bit of text:

Click here to view code image

<a href="http://www.google.com/"

 onmouseover="alert('You moved over the link.');">

 This is a link.

Note that this snippet is all one <a> element, although it’s split into multiple lines for readability here. In this example, the onmouseover attribute specifies a JavaScript statement to invoke—namely, an alert message is displayed when the user’s mouse moves over the link.

NOTE

The previous example uses single quotation marks to surround the text. This is necessary in an event handler because double quotation marks are used to surround the event handler itself. You can also use single quotation marks to surround the event handler and double quotes within the script statements—just don’t use the same type of quotation marks because that is a JavaScript syntax error.

You can invoke JavaScript statements like the preceding one in response to an event, but if you need to invoke more than one statement, it’s a good idea to use a function instead. Just define the function elsewhere in the document or in a referenced document and then call the function as the event handler, like this:

Click here to view code image

Move the mouse over this

 link.

This example calls a function called doIt when the user moves the mouse over the link. Using a function in this type of situation is convenient because you can use longer, more readable JavaScript routines as event handlers—not to mention you can reuse the function elsewhere without duplicating all of its code.

TIP

For simple event handlers, you can use two statements if you separate them with a semicolon. However, in most cases, it’s just easier and more maintainable to use a function to perform these multiple statements.

Defining Event Handlers with JavaScript

Rather than specifying an event-handling script each time you want to invoke it, best practices call for assigning a specific function as the default event handler for an event. This enables you to set event handlers conditionally, turn them on and off, and dynamically change the function that handles an event.

TIP

Setting up event handlers this way enables you to use an external JavaScript file to define the function and set up the event, keeping the JavaScript code completely separate from the HTML file.

To define an event handler in this way, first define a function and then assign the function as an event handler. Event handlers are stored as properties of the document object or another object that can receive an event. For example, these statements define a function called mousealert and then assign it as the event handler for all instances of mousedown in the current document:

Click here to view code image

function mousealert() {

 alert("You clicked the mouse!");

}

document.onmousedown = mousealert;

You can use this technique to set up an event handler for only a specific HTML element, but an additional step is required to achieve that goal: You must first find the object corresponding to the element. To do this, use the document.getElementById function.

First, define an element in the HTML document and specify an id attribute:

Click here to view code image

Next, in the JavaScript code, find the object and apply the event handler:

Click here to view code image

var link1_obj = document.getElementById("link1");

link1_obj.onclick = myCustomFunction;

You can do this for any object as long as you’ve defined it and therefore can reference it by a unique id attribute in the HTML file. Using this technique, you can easily assign the same function to handle events for multiple objects without adding clutter to your HTML code.

Supporting Multiple Event Handlers

What if you want more than one thing to happen when you click an element? For example, suppose you want two functions called update and display both to execute when a button is clicked? It’s very easy to run into syntax errors or logic errors such that two functions assigned to the same event won’t work as expected. One solution for clean separation and execution is to define a single function that calls both functions:

Click here to view code image

function updateThenDisplay() {

 update();

 display();

}

This isn’t always the ideal way to do things. For example, if you’re using two third-party scripts and both of them want to add a load event to the page, there should be a way to add both events. The W3C DOM standard defines a function, addEventListener, for this purpose. This function defines a listener for a particular event and object, and you can add as many listener functions as you need.

Using the Event Object

When an event occurs, you might want or need to know more about the event in order for your script to perform different actions—for example, for a keyboard event, you might want to know which key was pressed, especially if your script performs different actions depending on whether the J key or the L key was pressed. The DOM includes an Event object that provides this type of granular information.

To use the Event object, you can pass it on to your event handler function. For example, this statement defines a keypress event that passes the Event object to a function:

Click here to view code image

<body onkeypress="getKey(event);">

You can then define your function to accept the event as a parameter:

function getKey(e) {

 // more code

}

In Firefox, Safari, and Chrome, an Event object is automatically passed to the event handler function, so this will work even if you use JavaScript rather than HTML to define an event handler. In Internet Explorer, the most recent event is stored in the window.event object. In the preceding HTML snippet, this object is passed to the event handler function; therefore, depending on your browser, the wrong object (or no object) might be passed along in this scenario and your JavaScript code will need to do a little work to determine the correct object:

Click here to view code image

function getkey(e) {

 if (!e) e=window.event;

 // more code

}

In this case, the if statement checks whether the e variable is already defined. If it is not (because the user’s browser is Internet Explorer), it gets the window.event object and stores it in e. This ensures that you have a valid event object in any browser.

Unfortunately, although both Internet Explorer and non–Internet Explorer browsers support Event objects, these objects have different properties. One property that is the same in both browsers is Event.type, which is the type of event. This is simply the name of the event, such as mouseover and keypress. The following sections list some additional useful properties for each browser.

Internet Explorer Event Properties

The following are some of the commonly used properties of the Event object for Internet Explorer:

[image: Images] Event.button—The mouse button that was pressed. This value is 1 for the left button and usually 2 for the right button.

[image: Images] Event.clientX—The x coordinate (column, in pixels) where the event occurred.

[image: Images] Event.clientY—The y coordinate (row, in pixels) where the event occurred.

[image: Images] Event.altKey—A flag that indicates whether the Alt key was pressed during the event.

[image: Images] Event.ctrlKey—A flag that indicates whether the Ctrl key was pressed.

[image: Images] Event.shiftKey—A flag that indicates whether the Shift key was pressed.

[image: Images] Event.keyCode—The key code (in Unicode) for the key that was pressed.

[image: Images] Event.srcElement—The object where the event occurred.

Non–Internet Explorer Event Properties

The following are some of the commonly used properties of the Event object for modern browsers that are not Internet Explorer:

[image: Images] Event.modifiers—A flag that indicates which modifier keys (Shift, Ctrl, Alt, and so on) were held down during the event. This value is an integer that combines binary values representing the different keys.

[image: Images] Event.pageX—The x coordinate of the event within the web page.

[image: Images] Event.pageY—The y coordinate of the event within the web page.

[image: Images] Event.which—The key code for keyboard events (in Unicode), or the button that was pressed for mouse events. (It’s best to use the cross-browser button property instead.)

[image: Images] Event.button—The mouse button that was pressed. This works just like Internet Explorer except that the left button’s value is 0 and the right button’s value is 2.

[image: Images] Event.target—The object where the element occurred.

NOTE

The Event.pageX and Event.pageY properties are based on the top-left corner of the element where the event occurred, not always the exact position of the mouse pointer.

Using Mouse Events

The DOM includes a number of event handlers for detecting mouse actions. Your script can detect the movement of the mouse pointer and when a button is clicked, released, or both. Some of these will be familiar to you already because you have seen them in action in previous chapters.

Over and Out

You’ve already seen the first and most common event, mouseover, which is called when a user’s mouse pointer moves over a link or another object. Note that mouseout is the opposite—it is called when the user’s mouse pointer moves out of the object’s border. Unless something strange happens and the user’s mouse never moves again while the viewer is viewing the particular document, you can count on mouseout happening sometime after mouseover.

mouseout is particularly useful if your script has made a visual change within the document when the user’s mouse pointer moved over the object—for example, displaying a message in the status line or changing an image. You can use a mouseout event to undo the action when the pointer moves away.

However, when considering using mouseover and mouseout events, be mindful that not all devices actually include a mouse pointing event. An example is mobile devices—if you keep important information behind a mouse-based barrier, your mobile users will never see it.

TIP

One of the most common uses for mouseover and mouseout event handlers is to create rollovers—images that change when the mouse moves over them. You’ll learn how to create these later in the chapter.

Ups and Downs (and Clicks)

You can also use events to detect when the mouse button is clicked. The basic event for this is click. An event handler can be called when the mouse button is clicked while positioned over the appropriate object.

For example, you can use the following to display an alert when a link is clicked:

Click here to view code image

<a href="http://www.google.com/"

 onclick="alert('You are about to leave this site.');">

 Go Away

In this case, the click event invokes the JavaScript alert before the linked page is loaded into the browser. This is useful for making links conditional or displaying a disclaimer before sending the user away to the linked page.

If your click event handler returns the false value, the link will not be followed. For example, the following is a link that displays a confirmation dialog box. If you click Cancel, the link is not followed; if you click OK, the new page is loaded:

Click here to view code image

<a href="http://www.google.com/"

 onclick="return(window.confirm('Are you sure?'));">

 Go Away

This example uses the return statement to enclose the event handler. This ensures that the false value that is returned when the user clicks Cancel is returned from the event handler, which prevents the link from being followed.

The dblclick event is similar, but is used only if the user double-clicks an object. Because links usually require only a single click, you could use this to make a link do two different things depending on the number of clicks. (Needless to say, this could be confusing to the user, but it is technically possible.) You can also detect double-clicks on images and other objects.

To give you even more control of what happens when the mouse button is pressed, two more events are included:

[image: Images] mousedown is used when the user presses the mouse button.

[image: Images] mouseup is used when the user releases the mouse button.

These two events are the two halves of a mouse click. If you want to detect an entire click, use click, but you can use mouseup and mousedown to detect just one or the other.

To detect which mouse button is pressed, you can use the button property of the Event object. This property is assigned the value 0 or 1 for the left button, and 2 for the right button. This property is assigned for click, dblclick, mouseup, and mousedown events.

CAUTION

Browsers don’t normally detect click or dblclick events for the right mouse button. If you want to detect the right button, mousedown is the most reliable way.

As an example of these event handlers, you can create a script that displays information about mouse button events and determines which button is pressed. Listing 9.1 shows a script that handles some mouse events.

LISTING 9.1 The JavaScript File for the Mouse-Click Example

Click here to view code image

function mouseStatus(e) {

 if (!e) e = window.event;

 btn = e.button;

 whichone = (btn < 2) ? "Left" : "Right";

 message=e.type + " : " + whichone + "
";

 document.getElementById('testarea').innerHTML += message;

}

obj=document.getElementById('testlink');

obj.onmousedown = mouseStatus;

obj.onmouseup = mouseStatus;

obj.onclick = mouseStatus;

obj.ondblclick = mouseStatus;

This script includes a function, mouseStatus, that detects mouse events. This function uses the button property of the Event object to determine which button was pressed. It also uses the type property to display the type of event, since the function will be used to handle multiple event types.

After the function, the script finds the object for a link with the id attribute testlink and assigns its mousedown, mouseup, click, and dblclick events to the mousestatus function.

Save this script as click.js. Next, you will need an HTML document to work with the script; this is shown in Listing 9.2.

LISTING 9.2 The HTML File for the Mouse-Click Example

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Mouse Click Text</title>

 </head>

 <body>

 <h1>Mouse Click Test</h1>

 <p>Click the mouse on the test link below. A message

 will indicate which button was clicked.</p>

 <p>Test Link</p>

 <div id="testarea"></div>

 <script type="text/javascript" src="click.js"></script>

 </body>

</html>

This file defines a test link with the id property testlink, which is used in the script to assign event handlers. It also defines a <div> with an id of testarea, which is used by the script to display the message regarding the events. To test this document, save it in the same folder as the JavaScript file you created previously and load the HTML document into a browser. Some sample results are shown in Figure 9.1.

[image: Images]

FIGURE 9.1
The mouse-click example in action.

NOTE

Notice that a single click of the left mouse button triggers three events: mousedown, mouseup, and then click, whereas clicking the right mouse button triggers only two events.

Using Keyboard Events

JavaScript can also detect keyboard actions. The main event for this purpose is keypress, which occurs when a key is pressed and released, or held down. As with mouse buttons, you can detect the down and up parts of the key press with keydown and keyup event handlers.

Of course, you might find it useful to know which key the user pressed. You can find this out with the Event object, which is sent to your event handler when the event occurs. In Internet Explorer, Event.keyCode stores the ASCII character code for the key that was pressed. In non–Internet Explorer browsers, the Event.which property stores the ASCII character code for the key that was pressed.

NOTE

ASCII (American Standard Code for Information Interchange) is the standard numeric code used by most computers to represent characters. It assigns the numbers 0 to 128 to various characters—for example, the capital letters A through Z are ASCII values 65 to 90.

If you’d rather deal with actual characters than key codes, you can use the String method called fromCharCode to convert them. This method converts a numeric ASCII code to its corresponding string character. For example, the following statement converts the Event.which property to a character and stores it in the key variable:

Click here to view code image

var key = String.fromCharCode(event.which);

Because different browsers have different ways of returning the key code, displaying keys independently of the browser is a bit harder. However, you can create a script that displays keys for both Internet Explorer and non–Internet Explorer browsers. The following function displays each key as it is typed:

Click here to view code image

function displayKey(e) {

 // which key was pressed?

 if (e.keyCode) {

 var keycode=e.keyCode;

 } else {

 var keycode=e.which;

 }

 character=String.fromCharCode(keycode);

 // find the object for the destination paragraph

 var keysParagraph = document.getElementById('keys');

 // add the character to the paragraph

 keysParagraph.innerHTML += character;

}

The displayKey function receives the Event object from the event handler and stores it in the variable e. It checks whether the e.keyCode property exists and then stores it in the keycode variable if present. Otherwise, it assumes that the browser is not Internet Explorer and assigns keycode to the e.which property.

The remaining lines of the function convert the key code to a character and add it to the paragraph in the document with the id attribute keys. Listing 9.3 shows a complete example using this function.

NOTE

The final lines in the displayKey function use the getElementById function and the innerHTML attribute to display the keys you type within a paragraph on the page—in this case, a paragraph with an id of keys.

LISTING 9.3 Displaying Typed Characters

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Displaying Keypresses</title>

 <script type="text/javascript">

 function displayKey(e) {

 // which key was pressed?

 if (e.keyCode) {

 var keycode=e.keyCode;

 } else {

 var keycode=e.which;

 }

 character=String.fromCharCode(keycode);

 // find the object for the destination paragraph

 var keysParagraph = document.getElementById('keys');

 // add the character to the paragraph

 keysParagraph.innerHTML += character;

 }

 </script>

 </head>

 <body onkeypress="displayKey(event)">

 <h1>Displaying Typed Characters</h1>

 <p>This document includes a simple script that displays

 the keys you type as a new paragraph below. Type a few keys

 to try it. </p>

 <div id="keys"></div>

 </body>

</html>

When you load this example, type and then watch the characters you’ve typed appear in a paragraph of the document. Figure 9.2 shows the result of some typing, but you should really try it yourself to see the full effect!

[image: Images]

FIGURE 9.2
Displaying the output of the keys that were pressed.

Using the load and unload Events

Another event you might use often is load. This event occurs when the current page (including all of its images) finishes loading from the server.

The load event is related to the window object, and to define it you use an event handler in the <body> tag. For example, the following is a <body> element that uses a simple event handler to display an alert when the page finishes loading:

Click here to view code image

<body onload="alert('Loading complete.');">

CAUTION

Because the load event occurs after the HTML document has finished loading and displaying, you should not use the document.write or document.open statement within a load event handler, because it would overwrite the current document.

Images can also have a load event handler. When you define a load event handler for an element, it is triggered as soon as the specified image has completely loaded.

To set a load event using JavaScript, you assign a function to the onload property of the window object:

window.onload = MyFunction;

You can also specify an unload event for the <body> element. This event will be triggered whenever the browser unloads the current document—this occurs when another page is loaded or when the browser window is closed.

Using click to Change a <div>'s Appearance

As you’ve learned already in this chapter, the click event can be used to invoke all sorts of actions. You might think of a mouse click as a way to submit a form by clicking a button, but you can capture this event and use it to provide interactivity within your pages as well. In the example that follows, you will see how you can use the click event to show or hide information contained in a <div> element.

In this case, you will be adding interactivity to a web page by allowing the user to show previously hidden information when he or she clicks a piece of text. I refer to it as a piece of text because, strictly speaking, the text is not a link. That is to say, to the user it will look like a link and act like a link, but it will not be marked up within an <a> tag.

Listing 9.4 provides the complete code for this example, which we’ll walk through momentarily.

LISTING 9.4 Using onclick to Show or Hide Content

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Steptoe Butte</title>

 <style type="text/css">

 a {

 text-decoration: none;

 font-weight: bold;

 }

 img {

 margin-right: 12px;

 margin-bottom: 6px;

 border: 1px solid #000;

 }

 .mainimg {

 float: left;

 }

 #hide_e {

 display: none;

 }

 #elevation {

 display: none;

 }

 #hide_p {

 display: none;

 }

 #photos {

 display: none;

 }

 #show_e {

 display: block;

 }

 #show_p {

 display: block;

 }

 .fakelink {

 cursor: pointer;

 text-decoration: none;

 font-weight: bold;

 color: #E03A3E;

 }

 section {

 margin-bottom: 6px;

 }

 </style>

 </head>

 <body>

 <header>

 <h1>Steptoe Butte</h1>

 </header>

 <section>

 <h2>General Information</h2>

 <p><img src="steptoebutte.jpg" alt="View from Steptoe Butte"

 class="mainimg">Steptoe Butte is a quartzite island jutting out of

 the silty loess of the Palouse hills in

 Whitman County, Washington. The rock that forms the butte is over

 400 million years old, in contrast with the 15-7 million year old

 Columbia

 River basalts that underlie the rest of the Palouse (such

 "islands" of ancient rock have come to be called buttes, a butte

 being defined as a small hill with a flat top, whose width at

 top does not exceed its height).</p>

 <p>A hotel built by Cashup Davis stood atop Steptoe Butte from

 1888 to 1908, burning down several years after it closed. In 1946,

 Virgil McCroskey donated 120 acres (0.49 km2) of land to form

 Steptoe Butte State Park, which was later increased to over 150

 acres (0.61 km2). Steptoe Butte is currently recognized as a

 National Natural Landmark because of its unique geological value.

 It is named in honor of

 <a href="http://en.wikipedia.org/wiki/Colonel_Edward_

 Steptoe">Colonel

 Edward Steptoe.</p>

 </section>

 <section>

 <h2>Elevation</h2>

 <div class="fakelink"

 id="show_e"

 onclick="this.style.display='none';

 document.getElementById('hide_e').style.display='block';

 document.getElementById('elevation').style.display='inline';

 ">» Show Elevation</div>

 <div class="fakelink"

 id="hide_e"

 onclick="this.style.display='none';

 document.getElementById('show_e').style.display='block';

 document.getElementById('elevation').style.display='none';

 ">» Hide Elevation</div>

 <div id="elevation">3,612 feet (1,101 m), approximately

 1,000 feet (300 m) above the surrounding countryside.</div>

 </section>

 <section>

 <h2>Photos</h2>

 <div class="fakelink"

 id="show_p"

 onclick="this.style.display='none';

 document.getElementById('hide_p').style.display='block';

 document.getElementById('photos').style.display='inline';

 ">» Show Photos from the Top of Steptoe Butte</div>

 <div class="fakelink"

 id="hide_p"

 onclick="this.style.display='none';

 document.getElementById('show_p').style.display='block';

 document.getElementById('photos').style.display='none';

 ">» Hide Photos from the Top of Steptoe Butte</div>

 <div id="photos"><img src="steptoe_sm1.jpg" alt="View from Steptoe

 Butte"><img src="steptoe_sm2.jpg" alt="View from Steptoe

 Butte"><img src="steptoe_sm3.jpg" alt="View from Steptoe

 Butte"></div>

 </section>

 <footer>

 Text from

 Wikipedia, photos by the author.

 </footer>

 </body>

</html>

If you take a look at this code as rendered in your browser, you will see something like Figure 9.3.

[image: Images]

FIGURE 9.3
The initial display of Listing 9.4.

When your mouse pointer hovers over the red text link, it should change to a hand despite the fact it is not an <a> link.

To begin, look at the 11 entries in the style sheet. The first entry simply styles links that are surrounded by the <a> tag pair; these links display as non-underlined, bold, blue links. You can see these regular links in the two paragraphs of text in Figure 9.3 (and in the line at the bottom of the page). The next two entries make sure that the images used in the page have appropriate margins; the entry for the element sets some margins and a border, and the .mainimg class enables you to apply a style to the main image on the page, but not the set of three images at the bottom of the page.

The next four entries are for specific IDs, and those IDs are all set to be invisible (display: none) when the page initially loads. In contrast, the two IDs that follow are set to display as block elements when the page initially loads. Again, strictly speaking, these two IDs do not have to be defined as block elements because that is the default display. However, this style sheet includes these entries to illustrate the differences between the two sets of elements. If you count the number of <div> elements in Listing 9.4, you will find six in the code: four invisible and two that are visible upon page load.

The goal in this example is to change the display value of two IDs when another ID is clicked. But first you have to make sure users realize that a piece of text is clickable, and that typically happens when users see their mouse pointers change to reflect a present link. Although you can’t see it in Figure 9.3, if you load the sample code on your machine and view it in your browser, the mouse pointer changes to a hand with a finger pointing at a particular link.

This functionality is achieved by defining a class for this particular text; the class is called fakelink, as you can see in this snippet of code:

Click here to view code image

<div class="fakelink"

 id="show_e"

 onclick="this.style.display='none';

 document.getElementById('hide_e').style.display='block';

 document.getElementById('elevation').style.display='inline';

">» Show Elevation</div>

The fakelink class ensures that the text is rendered as non-underlined, bold, and red; cursor: pointer causes the mouse pointer to change in such a way that users think the text is a link of the type that would normally be enclosed in an <a> element. But the really interesting stuff happens when we associate an onclick attribute with a <div>. In the sample snippet just shown, the value of the onclick attribute is a series of commands that change the current value of CSS elements.

Let’s look at them separately:

Click here to view code image

this.style.display='none';

document.getElementById('hide_e').style.display='block';

document.getElementById('elevation').style.display='inline';

In the first line of the snippet, the this keyword refers to the element itself. In other words, this refers to the <div> ID called show_e. The keyword style refers to the style object; the style object contains all the CSS styles that you assign to the element. In this case, we are most interested in the display style. Therefore, this.style.display means “the display style of the show_e ID,” and we are setting the value of the display style to none when the text itself is clicked.

But three actions also occur within the onclick attribute. The other two actions begin with document.getElementById() and include a specific ID name within the parentheses. We use document.getElementById() instead of this because the second and third actions set CSS style properties for elements that are not the parent element. As you can see in the snippet, in the second and third actions, we are setting the display property values for the element IDs hide_e and elevation. When users click the currently visible <div> called show_e, the following happens:

[image: Images] The <div> element called show_e becomes invisible.

[image: Images] The <div> element called hide_e becomes visible and is displayed as a block.

[image: Images] The <div> element called elevation becomes visible and is displayed inline.

Figure 9.4 shows the result of these actions.

[image: Images]

FIGURE 9.4
When Show Elevation is clicked, the visibility of it and other <div> elements changes based on the commands in the onclick attribute.

Another set of <div> elements exists in the code in Listing 9.4: the ones that control the visibility of the additional photos. These elements are not affected by the onclick actions in the elevation-related elements. That is, when you click either Show Elevation or Hide Elevation, the photos-related <div> elements do not change. You can show the elevation and not the photos (as shown in Figure 9.4), the photos and not the elevation, or both the elevation and the photos at the same time (see Figure 9.5).

[image: Images]

FIGURE 9.5
The page after both Show Elevation and Show Photos from the Top of Steptoe Butte have been clicked.

This brief example has shown you the very beginning of the layout and interaction possibilities that await you when you master CSS in conjunction with events. For example, you can code your pages so that your users can change elements of the style sheet, change to an entirely different style sheet, move blocks of text to other places in the layout, take quizzes, submit forms, and do much, much more.

Summary

In this chapter, you learned to use events to detect mouse actions, keyboard actions, and other events, such as the loading of the page. You can use event handlers to perform a simple JavaScript statement when an event occurs, or to call a more complicated function.

JavaScript includes various other events. Many of these are related to forms, which you’ll learn more about in Chapter 15, “Working with Web-Based Forms.” In a longer example at the end of this chapter, you saw how to use onclick to show or hide text in a page with some design elements in it. Some new CSS was introduced: the use of the cursor property. Assigning a cursor property of pointer enabled you to indicate to users that particular text was acting as a link even though it was not enclosed within <a> and tags, as you are used to seeing.

Q&A

Q. Can I capture mouse or keyboard events on elements other than text, such as images?

A. Yes, these types of events can be applied to actions related to clicking on or rolling over images as well as text. However, other multimedia objects, such as embedded YouTube videos and Flash files, are not interacted with in the same way, because those objects are played via additional software for which other mouse or keyboard actions are applicable. For instance, if you click a YouTube video that is embedded in your web page, you are interacting with the YouTube player and no longer your actual web page—that action cannot be captured in the same way.

Q. What happens if I define both keydown and keypress event handlers? Will they both be called when a key is pressed?

A. The keydown event handler is called first. If it returns true, the keypress event is called. Otherwise, no key press event is generated.

Q. When I use the load event, my event handler sometimes executes before the page is done loading, or before some of the graphics. Is there a better way?

A. This is a bug in some older browsers. One solution is to add a slight delay to your script using the setTimeout method.

Workshop

The Workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

Test your knowledge of JavaScript events by answering the following questions.

1.	Which of the following is the correct event for detecting a mouse click on a link?

A. mouseup

B. link

C. click

2.	When does a load event handler for the <body> element execute?

A. When an image is finished loading

B. When the entire page is finished loading

C. When the user attempts to load another page

3.	Which of the following Event object properties indicates which key was pressed for a keypress event in Internet Explorer?

A. Event.which

B. Event.keyCode

C. Event.onKeyPress

Answers

1. A. The event for a mouse click is click.

2. B. The <body> element’s load event handler executes when the page and all its images are finished loading.

3. C. In Internet Explorer, the Event.keyCode property stores the character code for each key press.

Exercises

To gain more experience using event handlers in JavaScript, try the following exercise:

[image: Images] Extend any (or all!) of the sample scripts in this chapter to check for specific values of key press actions before continuing on to execute the underlying JavaScript statements within their associated functions.

[image: Images] Add commands to the onclick attributes in Listing 9.4 such that only one of the <div> elements (the elevation or photos) is visible at a time.

CHAPTER 10
The Basics of Using jQuery

What You’ll Learn in This Chapter:

[image: Images] Why you might use a third-party JavaScript library

[image: Images] How to use jQuery’s $().ready handler

[image: Images] How to use jQuery to select page elements and manipulate HTML content

[image: Images] How to chain commands together and handle events with jQuery

Third-party JavaScript libraries, or code libraries written and maintained by another party for easy implementation in your own code, offer many advantages to always writing your own code. First and foremost, using these libraries enables you to avoid reinventing the wheel for common tasks. Additionally, these libraries enable you to implement cross-browser scripting and sophisticated user interface elements without first having to become an expert in JavaScript.

There are many third-party JavaScript libraries out there, and in this chapter you’ll gain a brief introduction to the most popular one: jQuery.

By the end of this chapter, you will likely see why jQuery is so popular, and why developers continue to contribute plug-ins to this open-source project for the rest of the development community to use. With just a few keystrokes here and there, you’ll see how useful this library can be for adding interactivity to your website or web-based application.

Using Third-Party JavaScript Libraries

When you use JavaScript’s built-in and often-used Math and Date functions, JavaScript does most of the work—you don’t have to figure out how to convert dates between formats or calculate a cosine; you just use the function JavaScript provides. Third-party libraries are those libraries not directly included with JavaScript, but they serve a similar purpose: they enable you to do complicated things with only a small amount of code, because that small amount of code refers to something bigger under the hood that someone else has already created.

Although in general most people are big fans of third-party libraries, you should be aware of some of the common objections:

[image: Images] You won’t ever really know how the code works because you’re simply employing someone else’s algorithms and functions.

[image: Images] JavaScript libraries contain a lot of code you’ll never use but the browser has to download anyway.

Blindly implementing code is never a good thing; you should endeavor to understand what is happening behind the scenes when you use any library. But that understanding could be limited to knowing that someone else wrote a complicated algorithm that you could not—and it’s fine if that’s all you know, as long as you implement it appropriately and understand possible weaknesses.

To the point about libraries containing a lot of extraneous code, that should be a consideration especially if you know that your target users have bandwidth limitations or if the size of the library is disproportionate to the feature you’re using from it. For example, if your code requires the browser to load a 1MB library just to use one function, look into ways to fork the library (if it is open source) and use just the sections you need, find other features of the library you can use to make it worthwhile, look for another library that does what you want but with less overhead, or use a minified version of the library.

However, regardless of the objections, there are numerous good reasons for using third-party JavaScript libraries, which in my opinion outweigh the negative objections:

[image: Images] Using a well-written library can really take away some of the headaches of writing cross-browser JavaScript. You won’t have every browser always at your disposal, but the library writers—and their communities of users—will have tested using several versions of all major browsers.

[image: Images] Why invent code that somebody else has already written? Popular JavaScript libraries tend to contain the sorts of abstractions that programmers often need to use—which means you’ll likely need those functions too from time to time. The thousands of downloads and pages of online documentation and commentary generated by the most-used libraries pretty much guarantee that the code these libraries contain will be more thoroughly tested and debugged than the ordinary user’s home-cooked code would be.

[image: Images] Advanced functionality such as drag and drop and JavaScript-based animation is, well, really advanced and rather complex in its implementation. Truly cross-browser solutions for this type of functionality have always been one of the trickiest effects to code for all browsers, and well-developed and well-tested libraries can help you achieve these types of features and are incredibly valuable in terms of the time and effort they will save you.

Using a third-party JavaScript library is usually as simple as copying one or more files to your server (or linking to an external but stable location) and including a <script> tag in your document to load the library, thus making its code available to your own scripts.

jQuery Arrives on the Scene

The first implementation of jQuery was introduced in 2006 and has grown from an easy, cross-browser means of DOM manipulation to a stable, powerful library. This library contains not just DOM manipulation tools, but many additional features that make cross-browser JavaScript coding much more straightforward and productive. In fact, many JavaScript frameworks, which you’ll learn about later in this chapter, rely on the jQuery library for their own functionality.

The current version (at the time of writing) is 3.2.1, and jQuery also has an additional advanced user interface extensions library that can be used alongside the existing library to rapidly build and deploy rich user interfaces or to add various attractive effects to existing components.

NOTE

jQuery’s home page is at http://jquery.com/, where you not only can download the latest version, but also gain access to extensive documentation and sample code. The companion UI library can be found at http://jqueryui.com/.

TIP

If you don’t want to download and store the jQuery library on your own local development machine or production server, you can use a remotely hosted version from a content delivery network, such as the one hosted by Google. Instead of referring to a locally hosted .js file in your HTML files, use the following code to link to a stable and minified version of the code:

Click here to view code image

<script

src="http://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"

type="text/javascript"></script>

In many cases, this provides better performance than hosting your own version, due to Google’s servers being optimized for low-latency, massively parallel content delivery. Additionally, anyone visiting your page who has also visited another page that references this same file will have the file cached in their browser and will not need to download it again.

jQuery has at its heart a sophisticated, cross-browser method for selection of page elements. The selectors used to obtain elements are based on a combination of simple CSS-like selector styles, so with the CSS techniques you learned in earlier chapters of this book, you should have no problem getting up to speed with jQuery. Following are a few brief examples of jQuery code, to illustrate my point.

For example, if you want to get an element that has an ID of someElement, all you do is use this:

$("#someElement")

Or to return a collection of elements that have the someClass class name, you can simply use this:

$(".someClass")

We can very simply get or set values associated with our selected elements. Let’s suppose, for example, that we want to hide all elements having the class name hideMe. We can do that, in a fully cross-browser manner, in just one line of code:

$(".hideMe").hide();

Manipulating HTML and CSS properties is just as straightforward. To append the phrase “powered by jQuery” to all paragraph elements, for example, we would simply write the following:

Click here to view code image

$("p").append(" powered by jQuery");

To then change the background color of those same elements, we can manipulate their CSS properties directly:

Click here to view code image

$("p").css("background-color","yellow");

Additionally, jQuery includes simple cross-browser methods for determining whether an element has a class, adding and removing classes, getting and setting the text or HTML content of an element, navigating the DOM, getting and setting CSS properties, and handling cross-browser events easily. The associated jQuery UI library adds a huge range of UI widgets (such as date pickers, sliders, dialog boxes, and progress bars), animation tools, drag-and-drop capabilities, and much more.

Preparing to Use jQuery

As you learned in previous chapters, including any JavaScript library in your code is as simple as linking to it via a <script> element.

You have two options for storing the library: You can download and store it on your own server, or you can use a remotely hosted version from a content delivery network, such as the one hosted by Google or even the jQuery folks themselves.

If you download jQuery and keep it on your own server, I would suggest keeping it in a directory called js (for “javascript”) or another directory specifically for assets (in fact, you could even call it assets) so that it doesn’t get lost among all the other files you maintain. Then, you reference it like so:

Click here to view code image

<script src="/js/jquery-3.2.1.min.js" type="text/javascript"></script>

NOTE

The “min” in the filename is for the minified version of the library, or a version that is fully functioning but has all the whitespace, line breaks, and other unnecessary characters removed from the source code. Minified versions also rename internal variable and function names to shorter versions (since humans aren’t reading the minified version). This minified version is thus smaller in size, which requires less time and bandwidth for the end user to download, while retaining all original functionality. Minified code is not easy for human eyes to read, but computers have no issues with it, because the unnecessary spacing doesn’t matter to them.

I typically use the Google content delivery network, which means a <script> tag that looks like the following:

Click here to view code image

<script

 src="http://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"

 type="text/javascript">

</script>

However, you should use whatever is more comfortable for you, as long as you know the difference.

Becoming Familiar with the $().ready Handler

Previously in this book, you used a window.onload event handler to open a new window when a page was loaded. jQuery has its own handler that serves the same purpose, but is perhaps more explicitly named; this handler ensures that nothing within the page can be manipulated until a state of DOM readiness has been detected.

TIP

Readiness means that the full DOM is ready for manipulation, but does not necessarily mean all assets (such as images and other multimedia) have been fully downloaded and are available.

The syntax of the $().ready handler is simply this:

Click here to view code image

$().ready(function() {

 // jQuery code goes here

});

Pretty much all the jQuery code you write will be executed from within a statement like this. Like the JavaScript onload event handler you saw previously, the $().ready handler accomplishes two things:

[image: Images] It ensures that the code does not run until the DOM is available; that is, it ensures that any elements your code might be trying to access already exist, so your code doesn’t return any errors.

[image: Images] It helps make your code unobtrusive by separating it from the semantic (HTML) and presentation (CSS) layers.

Listing 10.1 enables you to watch the state of readiness occur by loading a document and watching jQuery write a message to the console when the DOM is available and thus a state of readiness has been achieved.

LISTING 10.1 Ensuring a State of Readiness

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Hello World!</title>

 <script

 src="http://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"

 type="text/javascript">

 </script>

 <script type="text/javascript">

 $().ready(function() {

 console.log("Yes, I am ready!");

 });

 </script>

 </head>

 <body>

 <h1 style="text-align: center">Hello World!
Are you ready?</h1>

 </body>

</html>

If you open your web browser, open Developer Tools, and then switch to the console, you should see the “Yes, I am ready!” message printed to the console when you load this specific web page, as shown in Figure 10.1. This message is printed by jQuery when the document reaches a ready state.

[image: Images]

FIGURE 10.1
jQuery has written a message to the console, declaring a state of readiness.

After your document has reached a ready state—which should take milliseconds and is really imperceptible to human eyes unless you’re looking for a console log statement—your page can continue on to be as interactive as you’ve planned.

Selecting DOM and CSS Content

With your documents in a ready state, you should be ready to do more with code. Before diving deeper into specific acts of manipulating content with jQuery, let’s take a look at some of the jQuery statements that enable you to select HTML elements. The first step in manipulating content is figuring out the content that you want to manipulate, and the following statements help you out with that.

These jQuery statements each return an object containing an array of the DOM elements specified by the expression that you see. Each of these statements builds off the jQuery wrapper syntax: $("").

Click here to view code image

$("span"); // all HTML span elements

$("#theElement"); // the HTML element having an ID of "theElement"

$(".theClassname"); // HTML elements having a class of "theClassname"

$("div#theElement"); // the <div> element with an ID of "theElement"

$("ul li a.theClassname"); // anchors with class "theClassname"

 // that are within list items

$("p > span"); // spans that are direct children of paragraphs

$("input[type=password]"); // inputs that have the specified type

$("p:first"); // the first paragraph on the page

$("p:even"); // all even numbered paragraphs

These examples are all DOM and CSS selectors, but jQuery also has its own custom selectors, such as the following:

Click here to view code image

$(":header"); // all header elements (h1 to h6)

$(":button"); // any button elements (inputs or buttons)

$(":radio"); // all radio buttons

$(":checkbox"); // all check boxes

$(":checked"); // all selected check boxes or radio buttons

If you notice, none of the preceding lines of jQuery has any actions associated with it. These selectors just get the required elements from the DOM. In the next few sections, you’ll learn how to work with the content you’ve selected.

Manipulating HTML Content

jQuery’s html() and text() methods enable you to get and set the content of any elements you’ve selected (using the statements in the preceding section), and the attr() method helps you get and set the values of individual element attributes. Let’s see some examples in the code snippets that follow.

The html() method gets the HTML of any element or collection of elements, and as such is very similar to JavaScript’s innerHTML that you’ve seen in earlier chapters. In the snippet that follows, the variable htmlContent will contain all the HTML and text inside an element with an ID of theElement:

Click here to view code image

var htmlContent = $("#theElement").html();

Using a similar syntax, you can set, and not just retrieve, the HTML content of a specified element or collection of elements:

Click here to view code image

$("#theElement").html("<p>Here is some new content for within

 theElement ID.</p>");

However, if you want only the text content of an element or collection of elements, without the HTML that surrounds it, you can use the text() method:

Click here to view code image

var textContent = $("#theElement").text();

If the previous snippets were used in order in your script, the value of textContent would be "Here is some new content for within theElement ID." (note the lack of surrounding <p> and </p> tags).

You could again change the content—but now only the text content—of the specified elements using the following snippet:

Click here to view code image

$("#theElement").text("Here is some new content for that element.");

In the snippets given previously, you can see how the use of jQuery selectors makes the process of selecting or referencing specific DOM elements pretty easy. In all of those snippets, you could swap out $("#theElement") with any of the selectors in the preceding section (and then some), as appropriate to your needs. Want to change the text of all anchor elements within a list to "Click Me!"? You can do that:

Click here to view code image

$("ul li a").text("Click Me!");

You can also append content rather than replacing it outright:

Click here to view code image

$("#theElement").append("<p>Here is even more new content.</p>");

In this snippet, the element with the ID theElement would now contain two paragraphs: the modified original from two previous snippets, and the new paragraph of content here.

Another useful trick is the capability to select specific attributes of particular elements. Using the attr() method, if you pass an argument containing the name of an attribute, jQuery will return the value of that attribute for the specified element.

For example, if you have an element such as

Click here to view code image

The Title Goes Here

then the following jQuery will return the value of the title attribute, or "The Title Goes Here":

Click here to view code image

var title = $("#theElement").attr("title");

You can also pass a second argument to the attr() method to set an attribute value:

Click here to view code image

$("#theElement").attr("title", "This is the new title.");

Showing and Hiding Elements

With plain-old JavaScript, showing and hiding page elements usually means manipulating the value of the display or visibility property of the element’s style object. Although that works just fine, it can lead to pretty long lines of code, such as this:

Click here to view code image

document.getElementById("theElement").style.visibility = 'visible';

You can use jQuery’s show() and hide() methods to carry out these tasks with less code. The jQuery methods also offer some additional functionality that’s quite useful, as you will see in the following code snippets. First, here is a simple way to make an element or a set of elements visible by calling the show() method:

Click here to view code image

$("#theElement").show(); // makes an element show if it has an ID of "theElement"

However, you can also add some additional parameters to spice up the transition. In the following example, the first parameter (fast) determines the speed of the transition. As an alternative to fast or slow, jQuery will happily accept a number of milliseconds for this argument as the required duration of the transition. If no value is set, the transition will occur instantly, with no animation.

TIP

The value "slow" corresponds to 600ms, and "fast" is equivalent to 200ms.

The second argument to the show() method can be a function that operates as a callback; that is, the specified function executes after the transition is complete:

Click here to view code image

$("#theElement").show("fast", function() {

 // do something once the specified element is shown

});

The hide() method is, as expected, the exact reverse of show(), enabling you to make page elements invisible with the same optional arguments as you saw for hide():

Click here to view code image

$("#theElement").hide("slow", function() {

 // do something once the specified element is hidden

});

Additionally, the toggle() method changes the current state of an element or a collection of elements; it makes visible any element in the collection that is currently hidden and hides any that are currently being shown. The same optional duration and callback function parameters are also available to the toggle() method:

Click here to view code image

$("#theElement").toggle(1000, function() {

 // do something once the specified element is shown or hidden

});

TIP

Remember that the show(), hide(), and toggle() methods can be applied to collections of elements, so the elements in that collection will appear or disappear all at once.

Animating Elements

As part of its rich feature set, jQuery also has methods for fading elements in and out, as well as optionally setting the transition duration in milliseconds and adding a callback function to the process.

To fade out to invisibility, use the fadeout() method:

Click here to view code image

$("#theElement").fadeOut("slow", function() {

 // do something after fadeout() has finished executing

});

To fade in, use the fadeIn() method, here using the duration in milliseconds:

Click here to view code image

$("#theElement").fadeIn(500, function() {

 // do something after fadeIn() has finished executing

});

You can also fade an element only partially, either in or out, using the fadeTo() method, also using a duration in milliseconds:

Click here to view code image

$("#theElement").fadeTo(3000, 0.5, function() {

 // do something after fadeTo() has finished executing

});

The second parameter in the fadeIn() method (here set to 0.5) represents the target opacity. Its value works similarly to the way opacity values are set in CSS, in that whatever the value of opacity is before the method is called, the element will be animated until it reaches the value specified in the argument.

In addition to fading elements in or out, you can also slide elements upward or downward without a change in opacity. The jQuery methods for sliding an element are direct corollaries to the fading methods you’ve just seen, and their arguments follow exactly the same rules.

For example, use the slideDown() method to slide an element down:

Click here to view code image

$("#theElement").slideDown(150, function() {

 // do something when slideDown() is finished executing

});

To slide an element up, use the slideUp() method:

Click here to view code image

$("#theElement").slideUp("slow", function() {

 // do something when slideUp() is finished executing

});

To provide a visual change to the element in an animated way, you do so by using jQuery to specify the new CSS styles that you want to have applied to the element. jQuery will then impose the new styles but in a gradual manner (instead of applying them instantly as in plain CSS/JavaScript), thus creating an animation effect.

You can use the animate() method on a wide range of numerical CSS properties. In this example, the width and height of an element are animated to a size of 400 × 500 pixels; after the animation is complete, the callback function is used to fade the element to invisibility:

Click here to view code image

$("#theElement").animate(

 {

 width: "400px",

 height: "500px"

 }, 1500, function() {

 $(this).fadeOut("slow");

 }

);

NOTE

Most jQuery methods return a jQuery object that can then be used in your call to another method. You could combine two of the methods in the previous examples, through what is called command chaining, like this:

Click here to view code image

$("#theElement").fadeOut().fadeIn();

In this example, the selected element will fade out and then fade back in. The number of items you can chain is arbitrarily large, allowing for several commands to successively work on the same collection of elements:

Click here to view code image

$("#theElement").text("Hello from jQuery").fadeOut().fadeIn();

Putting the Pieces Together to Create a jQuery Animation

Given what you’ve learned in this chapter so far, you can begin to put the pieces together into a more cohesive whole. Listing 10.2 shows a complete listing of the code used in a basic jQuery animation example; following the listing is an explanation of all the code used.

LISTING 10.2 A jQuery Animation Example

Click here to view code image

<!DOCTYPE html>

<html lang="en">

<head>

 <style>

 #animateMe {

 position: absolute;

 top: 100px;

 left: 100px;

 width: 100px;

 height: 400px;

 border: 2px solid black;

 background-color: red;

 padding: 20px;

 }

 </style>

 <title>Animation Example</title>

 <script

 src="http://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"

 type="text/javascript">

 </script>

 <script type="text/javascript">

 $().ready(function() {

 $("#animateMe").text("Changing shape…").animate(

 {

 width: "400px",

 height: "200px"

 }, 5000, function() {

 $(this).text("Fading away…").fadeOut(4000);

 }

);

 });

 </script>

</head>

<body>

 <div id="animateMe"></div>

</body>

</html>

If you put the code from Listing 10.1 into a file and open it with your web browser, you will see something like what’s shown in Figures 10.2 and 10.3—bear in mind that it’s difficult to capture animation examples in screenshots!

[image: Images]

FIGURE 10.2
The animation example shows the element changing shape.

[image: Images]

FIGURE 10.3
The animation example shows the element fading away after having changed shape.

Let’s take a closer look at the code that produced these examples. First, in the <style> section of the script, an element with an ID of animateMe is defined as an absolutely positioned rectangle that is 100 pixels wide and 400 pixels high, with the upper-left corner of that rectangle positioned 100 pixels from the top and 100 pixels from the left edge of the browser. This rectangle has a red background and a 2-pixel solid black border, with an inside padding of 20 pixels on all sides.

#animateMe {

 position: absolute;

 top: 100px;

 left: 100px;

 width: 100px;

 height: 400px;

 border: 2px solid black;

 background-color: red;

 padding: 20px;

}

The first <script> element contains a link to the Google Code CDN, which stores the particular version of the jQuery library we are using in this script, jQuery 3.2.1:

Click here to view code image

<script

 src="http://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"

 type="text/javascript">

</script>

The magic happens in the next <script> element, which contains actual jQuery. First, ensure that the document is in a ready state by wrapping the primary commands in the $().ready() handler:

$().ready(function() {

 // more code goes here

});

Within the $().ready() handler is a chain of commands and callback functions that ensure these actions happen to any element with an ID of animateMe:

1. Use the text() method to place text within the element labeled “Changing shape….”

2. Over a period of 5000 milliseconds, use the animate() method to change the shape of the element to one that is 400 pixels wide and 200 pixels high.

3. When the shape change is complete, use the text() method to place text within the element labeled “Fading away….”

4. Over a period of 4000 milliseconds, use the fadeOut() method to cause the element to disappear from view.

All the preceding steps are found in this chunk of the code:

Click here to view code image

$("#animateMe").text("Changing shape…").animate(

 {

 width: "400px",

 height: "200px"

 }, 5000, function() {

 $(this).text("Fading away…").fadeOut(4000);

 }

);

Finally, within the body of the HTML document, you see a <div> with an ID of animateMe. This <div>, which contains no text in the HTML, is the DOM element that all the jQuery code is manipulating:

<div id="animateMe"></div>

Although there’s no text inside the <div> element originally, the jQuery text() method adds it in for display as the script executes. That’s really all there is to it—you have some basic DOM elements that this powerful jQuery library can manipulate in many ways to produce an interactive experience for your users. Modifications to the display can happen automatically, as in the preceding example, or by capturing events that the user enacts, such as mouse clicks and key presses.

Handling Events with jQuery

All the examples in this chapter so far show jQuery that simply runs when the script is loaded in the browser. But as you’ve seen already in this book—specifically in Chapter 9, “Understanding JavaScript Event Handling” —and in your experience online in general, interactivity occurs when a user invokes actions through mouse clicks or key presses. For example, you may click a button to start a process, hover over an image to see a larger version, and so on.

jQuery has its own syntax for handling events, which is as straightforward as the basic HTML and JavaScript you’ve seen in Chapter 9. For example, you can attach event handlers to elements or collections of elements—such as all <a> elements, an <a> element with given ID, all <a> elements with a given class name, and so on.

Capturing click events happens directly with the jQuery .click() event handler:

Click here to view code image

$("a").click(function() {

 // execute this code when any anchor element is clicked

});

You can also handle a click event, .click(), using a named function:

Click here to view code image

function hello() {

 alert("Hello from jQuery");

}

$("a").click(hello);

In both instances, the code within the curly braces or the named function (depending on which you have used) will be executed when any anchor is clicked. Note that the .click() event handler is not the only one available to you; other event handlers include the following, which correspond to events you’ve seen in more detail in Chapter 9 of this book:

[image: Images] .keydown()—Handles a keydown JavaScript event

[image: Images] .keypress()—Handles a keypress JavaScript event

[image: Images] .keyup()—Handles a keyup JavaScript event

[image: Images] .dblclick()—Handles a dblclick (double-click) JavaScript event

[image: Images] .focusout()—Handles a focusout JavaScript event

[image: Images] .mousedown()—Handles a mousedown JavaScript event

[image: Images] .mouseenter()—Handles a mouseenter JavaScript event

[image: Images] .mouseleave()—Handles a mouseleave JavaScript event

[image: Images] .mousemove()—Handles a mousemove JavaScript event

[image: Images] .mouseout()—Handles a mouseout JavaScript event

[image: Images] .mouseover()—Handles a mouseover JavaScript event

[image: Images] .mouseup()—Handles a mouseup JavaScript event

For more information and documentation on other methods available in jQuery to handle JavaScript events, visit http://api.jquery.com/category/events/.

Summary

In this chapter, you took a closer look at the basics of using jQuery in your interactive sites, which begins by including the library and verifying the ready state of your document. From that point forward, you learned how to select page elements by referencing their element name, ID, class, or other position within the DOM, and how to manipulate the text within or the appearance of those elements.

Additionally, you learned about chaining jQuery commands together, and how to handle JavaScript events with jQuery so that users can initiate visual display or other changes through actions they take with their keyboard or mouse.

Q&A

Q. Can I use more than one third-party library in the same script?

A. Yes, in theory: If the libraries are well written and designed not to interfere with each other, there should be no problem with combining them. In practice, this will depend on the libraries you need and how they were written, but many JavaScript libraries can be used together or will include a warning about incompatibilities. For example, $ is an alias for jQuery, so if you are using other libraries that use $ as an alias, you should call jQuery.noConflict() in your scripts and replace all uses of $() with jQuery(). You can learn more at http://learn.jquery.com/using-jquery-core/avoid-conflicts-other-libraries/.

Q. This chapter was short, but isn’t jQuery huge?

A. Remarkably, even though jQuery is very powerful, it is not in fact a huge codebase, nor is it particularly unwieldy. Clocking in at 10,000 lines of code or so, and around 275KB (when not minimized), it’s definitely bigger than a web page, that’s for sure! But it is true that packed into those 10,000 lines of code are many features we have not discussed here. We will talk a little more about the jQuery UI library in the next chapter, but even that is not sufficient to cover everything you might find in the technical documentation at http://api.jquery.com/ or in the more user-friendly documentation and tutorials site at http://learn.jquery.com/.

Workshop

The Workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Test your knowledge of JavaScript libraries by answering the following questions. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. How could you select all page elements having a class of sidebar?

A. $(".sidebar")

B. $("class: sidebar")

C. $("#sidebar")

2. The expression $("p:first").show() does what, exactly?

A. Displays <p> elements before displaying any other elements

B. Makes the first <p> element on the page visible

C. Makes the first line of all <p> elements visible

3. When used with methods for fading, sliding, and animating elements, which of the following is not a valid value?

A. fast

B. 1000

C. quick

Answers

1. A. $(".sidebar")

2. B. Makes the first paragraph element on the page visible

3. C. quick

Exercises

To further explore the JavaScript features you learned about in this chapter, you can perform the following exercises:

[image: Images] Modify the example in Listing 10.2 to react to mouse events, using jQuery.

[image: Images] Go back to scripts used in earlier chapters that use JavaScript events for interactivity. Rewrite those examples using basic jQuery you learned here.

Part III: Taking Your Web Applications to the Next Level

CHAPTER 11
AJAX: Remote Scripting

What You’ll Learn in This Chapter:

[image: Images] How AJAX enables JavaScript to communicate with server-side programs and files

[image: Images] Using the XMLHttpRequest object’s properties and methods

[image: Images] Creating your own AJAX library

[image: Images] Using AJAX to read data from an XML file

[image: Images] Debugging AJAX applications

[image: Images] Using AJAX to communicate with a PHP program

Remote scripting, also known as AJAX—which stands for Asynchronous JavaScript and XML—is a browser feature that enables JavaScript to escape its client-side boundaries and work with files on a web server or with server-side programs. In this chapter, you’ll learn how AJAX works and create two working examples of client-side to server-side interactivity using AJAX requests. This chapter builds on the JavaScript you have learned in the previous chapters, and reintroduces you to PHP, which you will learn much more about as the book moves forward.

Introducing AJAX

Traditionally, one of the major limitations of JavaScript was that it couldn’t communicate with a web server because it is a client-side technology—JavaScript runs within the browser. For example, although you can create a game purely in JavaScript, keeping a list of high scores stored on a server requires some form of submitting data to a server-side script, which JavaScript alone could not do (because it originally wasn’t meant to do that).

Speaking purely about user interactions, one of the early limitations of web pages in general was that getting data from the user to the server, or from the server to the user, generally required a new page to be loaded and displayed. But in 2017, you would be hard-pressed to find some website in your daily browsing that doesn’t allow you to interact with content without loading a new page every time you click a button or submit a form. For example, if you use web-based email such as Google or Yahoo! Mail, or if you use Facebook or Twitter, then you’re interacting with some AJAX-based functionality.

AJAX was the answer to both of the problems indicated previously. AJAX, which you may also see written as just “Ajax,” refers to JavaScript’s capability to use a built-in object, XMLHttpRequest, to communicate with a web server without submitting a form or loading a page. This object is supported by Internet Explorer, Firefox, Chrome, and all other modern browsers.

Although the term AJAX was coined in 2005, the XMLHttpRequest object has been supported by browsers for years—it was developed by Microsoft and first appeared in Internet Explorer 5 (if you’re keeping track at home, that’s really old). In the past decade, it has become one of the cornerstones of advanced web application development. Another name for this technique is remote scripting.

NOTE

The term AJAX first appeared in an online article by Jesse James Garrett of Adaptive Path on February 18, 2005. It still appears here, which is well worth a read: http://adaptivepath.org/ideas/ajax-new-approach-web-applications/.

In the next few sections, we’ll look at the individual components of AJAX in a little more detail.

The JavaScript Client (Front End)

Traditionally, JavaScript had one way of communicating with a server: through an HTML form submission. Remote scripting allows for much more versatile communication with the server. The A in AJAX stands for asynchronous, which means that the browser (and the user) isn’t left hanging while waiting for the server to respond. Here’s how a typical AJAX request works:

1. The script creates an XMLHttpRequest object and sends it to the web server. After sending the request, the script can continue performing other tasks.

2. The server responds by sending the contents of a file, or the output of a server-side program.

3. When the response arrives from the server, a JavaScript function is triggered to act on the data.

4. Because the goal is a more responsive user interface, the script usually displays the data from the server using the DOM, eliminating the need for a page refresh.

In practice, this happens very quickly—almost imperceptible to the user—but even with a slow server, it will still work. Also, because the requests are asynchronous, more than one request can be in progress at a time.

The Server-Side Script (Back End)

The part of an application that resides on the web server is commonly referred to as the back end. You’ve learned about this concept in this book already, in your brief introduction to PHP in Chapter 5, “Introducing PHP.” The simplest back-end script is a static file on the server—JavaScript can request the file with XMLHttpRequest and then read and act on its contents. Most back-end scripts are typically server-side programs running in a language such as PHP, but they can also be static files full of data that is simply being returned to the user.

JavaScript can send data to a server-side program using the GET and POST methods; these are the same two methods an HTML form uses. In a GET request, the data is encoded in the URL that loads the program. In a POST request, the data is sent separately and the packet can contain more data than a GET request. If it helps, think of the AJAX request as mimicking the action of an HTML-based form, only without the <form> and other related tags.

XML

The X in AJAX stands for XML (Extensible Markup Language), the universal markup language designed to store and transport data. A server-side file or program can send data in XML format, and JavaScript can act on the data using its methods for working with XML. These methods are similar to the DOM methods you’ve already used—for example, you can use the getElementsByTagName() method to find elements with a particular tag in the data.

Keep in mind that XML is just one way to send data, and not always the easiest. The server could just as easily send plain text, which the script could display, or HTML, which the script could insert into the page using the innerHTML property. In fact, over the past decade that AJAX has been in use, a shift has occurred such that it is more typical to see data transferred in JSON format than in XML format. However, “AJAJ” doesn’t have the same ring to it.

NOTE

JSON (JavaScript Object Notation) takes the idea of encoding data in JavaScript and formalizes it. See http://www.json.org/ for details and code examples in many languages.

Popular Examples of AJAX

Although typical HTML and JavaScript are used to build web pages and sites, AJAX techniques often result in web applications—web-based services that perform work for the user. Here are a few well-known examples of AJAX:

[image: Images] Google’s Gail mail client (http://mail.google.com/) uses AJAX to make a fast-responding email application. You can delete messages and perform other tasks without waiting for a new page to load.

[image: Images] Amazon.com uses AJAX for many functions. For example, if you click one of the Yes/No voting buttons for a product comment, it sends your vote to the server and a message appears next to the button thanking you, all without loading a page.

[image: Images] Facebook uses AJAX all over the place, such as every time you “like” something, or as used to produce the “infinite scroll” that allows you to peruse your timeline unless the server no longer has anything to send back to you to fulfill your request for more.

These are just a few examples. Subtle bits of remote scripting appear all over the Web, and you might not even notice them—you’ll just be annoyed a little bit less often at waiting for a page to load. Because remote scripting can be complicated, several frameworks and libraries have been developed to simplify AJAX programming. For starters, the JavaScript libraries and frameworks described in the previous chapter include functions that simplify remote scripting.

Using XMLHttpRequest

We will now look at how to use XMLHttpRequest to communicate with a server. This might seem a bit complex, but the process is the same for any request. In fact, it’s so similar that later in this chapter you will create a reusable code library to simplify this process.

Creating a Request

The first step in creating a request is to create an XMLHttpRequest object. To do this, you use the new keyword, just like when you create other JavaScript objects, as you learned in Chapter 8, “JavaScript Fundamentals: Functions, Objects, and Flow Control.” The following statement creates an XMLHttpRequest request object:

Click here to view code image

var ajaxreq = new XMLHttpRequest();

The variable you use (ajaxreq in the example) stores the XMLHttpRequest object, and you’ll use the methods of this object to open and send a request, as explained in the following sections.

Opening a URL

The open() method of the XMLHttpRequest object specifies the filename as well as the method in which data will be sent to the server: GET or POST. These are the same methods supported by web forms; we’ll spend more time on these methods in later chapters of the book, as appropriate to the work you’ll be doing.

Click here to view code image

ajaxreq.open("GET","filename");

For the GET method, the data you send is included in the URL. For example, this command opens the search.php script stored on your server and sends the value John to the script as the query parameter:

Click here to view code image

ajaxreq.open("GET","search.php?query=John");

Sending the Request

You use the send() method of the XMLHttpRequest object to send the request to the server. If you are using the POST method, the data to send is the argument for send(). For a GET request, you can use the null value instead:

ajaxreq.send(null);

Awaiting a Response

After the request is sent, your script will continue without waiting for a result. Because the result could come at any time, you can detect it with an event handler. The XMLHttpRequest object has an onreadystatechange event handler for this purpose. You can create a function to deal with the response and set it as the handler for this event:

Click here to view code image

ajaxreq.onreadystatechange = MyFunc;

The request object has a property, readyState, that indicates its status, and this event is triggered whenever the readyState property changes. The values of readyState range from 0 for a new request to 4 for a complete request, so your event-handling function usually needs to watch for a value of 4.

Although the request is complete, it might not have been successful. The status property is set to 200 if the request succeeded or an error code if it failed. The statusText property stores a text explanation of the error or OK for success.

CAUTION

As usual with event handlers, be sure to specify the function name without parentheses. With parentheses, you’re referring to the result of the function; without them, you’re referring to the function itself.

Interpreting the Response Data

When the readyState property reaches 4 and the request is complete, the data returned from the server is available to your script in two properties: responseText is the response in raw text form, and responseXML is the response as an XML object. If the data was not in XML format, only the text property will be available.

JavaScript’s DOM methods are meant to work on XML, so you can use them with the responseXML property. Later in this chapter, you’ll use the getElementsByTagName() method to extract data from XML.

Creating a Simple AJAX Library

You should be aware by now that AJAX requests can be a bit complex, and to repeat that complex code in every page that calls it definitely makes for unwieldy pages that are no fun to maintain. To make things easier, you can create an AJAX library and simply reference it in your pages, as you do any external script. This library can then provide functions that handle making a request and receiving the result, which you can reuse any time you need AJAX functions.

The library in Listing 11.1 will be used in the two examples later in this chapter. This listing shows the complete AJAX library, in a bit of a verbose fashion so that you can see all the innerworkings as you go.

LISTING 11.1 The AJAX Library

Click here to view code image

// global variables to keep track of the request

// and the function to call when done

var ajaxreq=false, ajaxCallback;

// ajaxRequest: Sets up a request

function ajaxRequest(filename) {

 try {

 //make a new request object

 ajaxreq= new XMLHttpRequest();

 } catch (error) {

 return false;

 }

 ajaxreq.open("GET", filename);

 ajaxreq.onreadystatechange = ajaxResponse;

 ajaxreq.send(null);

}

// ajaxResponse: Waits for response and calls a function

function ajaxResponse() {

 if (ajaxreq.readyState !=4) return;

 if (ajaxreq.status==200) {

 // if the request succeeded…

 if (ajaxCallback) ajaxCallback();

 } else alert("Request failed: " + ajaxreq.statusText);

 return true;

}

The following sections explain the library’s code in a bit more detail.

The ajaxRequest Function

The ajaxRequest function handles all the steps necessary to create and send an XMLHttpRequest. First, it creates the XMLHttpRequest object. We use try and catch when creating the request just to ensure that we do not continue moving forward if an error occurs.

The ajaxResponse Function

The ajaxResponse function is used as the onreadystatechange event handler. This function first checks the readyState property for a value of 4. If it has a different value, the function returns without doing anything. The full range of values are:

[image: Images] 0—not initialized

[image: Images] 1—connection established with server

[image: Images] 2—request received

[image: Images] 3—processing

[image: Images] 4—request complete

Next, it checks the status property for a value of 200, which indicates that the request was successful. If so, it runs the function stored in the ajaxCallback variable. If not, it displays the error message in an alert box. For a useful list of HTTP status codes and what they mean, please see https://developer.mozilla.org/en-US/docs/Web/HTTP/Status.

Using the Library

To use this library, follow these steps:

1. Save the library file as ajax.js in the same folder as your HTML documents and scripts.

2. Include the script in the <head> of your document, using a <script> tag. It should be included before any other scripts that use its features.

3. In your script, create a function to be called when the request is complete, and set the ajaxCallback variable to the function.

4. Call the ajaxRequest() function. Its parameter is the filename of the server-side program or file. (This version of the library supports GET requests only, so you don’t need to specify the method.)

5. Your function specified in ajaxCallback will be called when the request completes successfully, and the global variable ajaxreq will store the data in its responseXML and responseText properties.

The two remaining examples in this chapter make use of this library to create AJAX applications.

Creating an AJAX Quiz Using the Library

Now that you have a reusable AJAX library, you can use it to create simple JavaScript applications that take advantage of remote scripting. This first example displays quiz questions on a page and prompts you for the answers.

Rather than including the questions in the script, this example reads the quiz questions and answers from an XML file on the server as a demonstration of AJAX.

CAUTION

Unlike most of the scripts in this book, this example requires a web server. It does not work on a local machine due to browsers’ security restrictions on remote scripting.

The HTML File

The HTML for this example is straightforward. It defines a simple form with an Answer field and a Submit button, along with some hooks for the script. The HTML for this example is shown in Listing 11.2.

LISTING 11.2 The HTML File for the Quiz Example

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>AJAX Quiz Test</title>

 <script type="text/javascript" src="ajax.js"></script>

 </head>

 <body>

 <h1>AJAX Quiz Example</h1>

 <button id="start_quiz">Start Quiz</button>

 <p>Question:

 [Press Button to Start Quiz]</p>

 <p>Answer:

 <input type="text" name="answer" id="answer"></p>

 <button id="submit">Submit Answer</button>

 <script type="text/javascript" src="quiz.js"></script>

 </body>

</html>

This HTML file includes the following elements:

[image: Images] The <script> tag in the <head> section includes the AJAX library you created in the preceding section from the ajax.js file.

[image: Images] The <script> tag in the <body> section includes the quiz.js file, which will contain the quiz script.

[image: Images] The tag sets up a place for the question to be inserted by the script.

[image: Images] The text field with the id value "answer" is where the user will answer the question.

[image: Images] The button with the id value "submit" will submit an answer.

[image: Images] The button with the id value "start_quiz" will start the quiz.

You can test the HTML document at this time by placing the file on your web server and accessing it via the URL, but the buttons won’t work until you add the XML and JavaScript files, as you’ll learn in the next two sections.

The XML File

The XML file for the quiz is shown in Listing 11.3. I’ve filled it with a few JavaScript questions, but it could easily be adapted for another purpose.

LISTING 11.3 The XML File Containing the Quiz Questions and Answers

Click here to view code image

<?xml version="1.0" ?>

<quiz>

 <question>What DOM object contains URL information for the window?</question>

 <answer>location</answer>

 <question>Which method of the document object finds the

 object for an element?</question>

 <answer>getElementById</answer>

 <question>If you declare a variable outside a function,

 is it global or local?</question>

 <answer>global</answer>

 <question>What is the formal standard for the JavaScript language

 called?</question>

 <answer>ECMAScript</answer>

</quiz>

The <quiz> tag encloses the entire file, and each question and each answer is enclosed in <question> and <answer> tags. Remember, this is XML, not HTML—these are not standard HTML tags, but tags that were created for this example. Because this file will be used only by your script, it does not need to follow a standard format.

To use this file, save it as questions.xml in the same folder as the HTML document. It will be loaded by the script you create in the next section.

Of course, with a quiz this small, you could have made things easier by storing the questions and answers in a JavaScript array. But imagine a much larger quiz, with thousands of questions, or a server-side program that pulls questions from a database, or even a hundred different files with different quizzes to choose from, and you can see the benefit of using a separate XML file.

The JavaScript File

Because you have a separate library to handle the complexities of making an AJAX request and receiving the response, the script for this example needs to deal only with the action for the quiz itself. Listing 11.4 shows the JavaScript file for this example.

LISTING 11.4 The JavaScript File for the Quiz Example

Click here to view code image

// global variable questionNumber is the current question number

var questionNumber=0;

// load the questions from the XML file

function getQuestions() {

 obj=document.getElementById("question");

 obj.firstChild.nodeValue="(please wait)";

 ajaxCallback = nextQuestion;

 ajaxRequest("questions.xml");

}

// display the next question

function nextQuestion() {

 questions = ajaxreq.responseXML.getElementsByTagName("question");

 obj=document.getElementById("question");

 if (questionNumber < questions.length) {

 question = questions[questionNumber].firstChild.nodeValue;

 obj.firstChild.nodeValue=question;

 } else {

 obj.firstChild.nodeValue="(no more questions)";

 }

}

// check the user’s answer

function checkAnswer() {

 answers = ajaxreq.responseXML.getElementsByTagName("answer");

 answer = answers[questionNumber].firstChild.nodeValue;

 answerfield = document.getElementById("answer");

 if (answer == answerfield.value) {

 alert("Correct!");

 }

 else {

 alert("Incorrect. The correct answer is: " + answer);

 }

 questionNumber = questionNumber + 1;

 answerfield.value="";

 nextQuestion();

}

// Set up the event handlers for the buttons

obj=document.getElementById("start_quiz");

obj.onclick=getQuestions;

ans=document.getElementById("submit");

ans.onclick=checkAnswer;

This script consists of the following:

[image: Images] The first var statement defines a global variable, questionNumber, which keeps track of which question is currently displayed. It is initially set to zero for the first question.

[image: Images] The getQuestions() function is called when the user clicks the Start Quiz button. This function uses the AJAX library to request the contents of the questions.xml file. It sets the ajaxCallback variable to the nextQuestion() function.

[image: Images] The nextQuestion() function is called when the AJAX request is complete. This function uses the getElementsByTagName() method on the responseXML property to find all the questions (<question> tags) and store them in the questions array.

[image: Images] The checkAnswer() function is called when the user submits an answer. It uses getElementsByTagName() to store the answers (<answer> tags) in the answers array, and then compares the answer for the current question with the user’s answer and displays an alert indicating whether the user was right or wrong.

[image: Images] The script commands after this function set up two event handlers. One attaches the getQuestions() function to the Start Quiz button to set up the quiz; the other attaches the checkAnswer() function to the Submit button.

Testing the Quiz

To try this example, you’ll need all four files in the same folder: ajax.js (the AJAX library), quiz.js (the quiz functions), questions.xml (the questions), and the HTML document. All but the HTML document need to have the correct filenames so that they will work correctly. Also remember that because it uses AJAX, this example requires a web server.

Figure 11.1 shows the quiz in action. The second question has just been answered.

[image: Images]

FIGURE 11.1
The quiz example loaded in a web browser.

Debugging AJAX-Based Applications

Dealing with remote scripting means working with several languages at once—JavaScript, server-side languages such as PHP, data markup such as XML or JSON, and of course HTML and CSS. Thus, when you find an error, it can be difficult to track down. Here are some tips for debugging AJAX-based applications:

[image: Images] Be sure that all filenames are correct and that the paths for all of these files are indicated correctly in your code.

[image: Images] If you are using a server-side language, test the script without using the AJAX request: Load the script in the browser and make sure it works, and try passing variables to the script via the URL and checking the resulting output.

[image: Images] Check the statusText property for the results of your request—an alert message or a message logged to the console is helpful here. It is often a clear message such as "File not found" that ends up explaining the problem.

[image: Images] If you’re using a third-party library, check its documentation—many libraries have built-in debugging features you can enable to examine what’s going on.

[image: Images] TRY IT YOURSELF

1. One of the most impressive demonstrations of AJAX is live search: Whereas a normal search form requires that you click a button and wait for a page to load to see the results, a live search displays results within the page immediately as you type in the search field. As you type letters or press the Backspace key, the results are updated instantly to make it easy to find the result you need.

2. Using the AJAX library you created earlier, live search is not too hard to implement. This example uses a PHP script on the server to provide the search results.

CAUTION

Once again, because it uses AJAX, this example requires a web server. You'll also need PHP to be installed, which it is by default for the vast majority of hosting services.

The HTML Form

The HTML for this example simply defines a search field and leaves some room for the dynamic results. The HTML document is shown in Listing 11.5.

LISTING 11.5 The HTML File for the Live Search Example

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>AJAX Live Search Example</title>

 <script type="text/javascript" src="ajax.js"></script>

 </head>

 <body>

 <h1>AJAX Live Search Example</h1>

 <p>Search for:

 <input type="text" size="40" id="searchlive"></p>

 <div id="results">

 <ul id="list">

 [Search results will display here.]

 </div>

 <script type="text/javascript" src="search.js"></script>

 </body>

</html>

This HTML document includes the following:

[image: Images] The <script> tag in the <head> section includes the AJAX library, ajax.js.

[image: Images] The <script> tag in the <body> section includes the search.js script, which you’ll create next.

[image: Images] The <input> element with the id value "searchlive" is where you’ll type your search query.

[image: Images] The <div> element with the id value "results" acts as a container for the dynamically fetched results. A bulleted list is created with a tag; this will be replaced with a list of results when you start typing.

The PHP Back End

Next, you’ll need a server-side program to produce the search results. This PHP program includes a list of names stored in an array. It will respond to a JavaScript query with the names that match what the user has typed so far. The names will be returned in XML format. For example, here is the output of the PHP program when searching for “smith”:

<names>

<name>John Smith</name>

<name>Jane Smith</name>

</names>

Although the list of names is stored within the PHP program here for simplicity, in a real application it would more likely be stored in a database—and this script could easily be adapted to work with a database containing thousands of names. The PHP program is shown in Listing 11.6.

LISTING 11.6 The PHP Code for the Live Search Example

Click here to view code image

<?php

 header("Content-type: text/xml");

 $names = array (

 "John Smith", "John Jones", "Jane Smith", "Jane Tillman",

 "Abraham Lincoln", "Sally Johnson", "Kilgore Trout",

 "Bob Atkinson", "Joe Cool", "Dorothy Barnes",

 "Elizabeth Carlson", "Frank Dixon", "Gertrude East",

 "Harvey Frank", "Inigo Montoya", "Jeff Austin",

 "Lynn Arlington", "Michael Washington", "Nancy West");

echo "<?xml version=\"1.0\" ?>\n";

echo "<names>\n";

while (list($k,$v)=each($names)) {

 if (stristr($v,$_GET['query'])) {

 echo "<name>$v</name>\n";

 }

}

echo "</names>\n";

?>

You’ve seen PHP scripts before but haven’t gone full steam ahead with PHP (that’s up next!), so here’s a summary of how this program works:

[image: Images] The header statement sends a header indicating that the output is in XML format. This is required for XMLHttpRequest to correctly use the responseXML property.

[image: Images] The $names array stores the list of names. You can use a much longer list of names without changing the rest of the code.

[image: Images] The program looks for a GET variable called query and uses a loop to output all the names that match the query.

[image: Images] Save the PHP script as search.php in the same folder as the HTML file. You can test it by typing a query such as search.php?query=John in the browser’s URL field. Use the View Source command to view the XML result.

The JavaScript Front End

Finally, the JavaScript for this example is shown in Listing 11.7.

LISTING 11.7 The JavaScript File for the Live Search Example

Click here to view code image

// global variable to manage the timeout

var t;

// Start a timeout with each keypress

function startSearch() {

 if (t) window.clearTimeout(t);

 t = window.setTimeout("liveSearch()",200);

}

// Perform the search

function liveSearch() {

 // assemble the PHP filename

 query = document.getElementById("searchlive").value;

 filename = "search.php?query=" + query;

 // DisplayResults will handle the Ajax response

 ajaxCallback = displayResults;

 // Send the Ajax request

 ajaxRequest(filename);

}

// Display search results

function displayResults() {

 // remove old list

 ul = document.getElementById("list");

 div = document.getElementById("results");

 div.removeChild(ul);

 // make a new list

 ul = document.createElement("ul");

 ul.id="list";

 names = ajaxreq.responseXML.getElementsByTagName("name");

 for (i = 0; i < names.length; i++) {

 li = document.createElement("li");

 name = names[i].firstChild.nodeValue;

 text = document.createTextNode(name);

 li.appendChild(text);

 ul.appendChild(li);

 }

 if (names.length==0) {

 li = document.createElement("li");

 li.appendChild(document.createTextNode("No results"));

 ul.appendChild(li);

 }

 // display the new list

 div.appendChild(ul);

}

// set up event handler

obj=document.getElementById("searchlive");

obj.onkeydown = startSearch;

This script includes the following components:

[image: Images] A global variable, t, is defined. This stores a pointer to the timeout used later in the script.

[image: Images] The startSearch() function is called when the user presses a key. This function uses setTimeout() to call the liveSearch() function after a 200-millisecond delay. The delay is necessary so that the key the user types has time to appear in the search field.

[image: Images] The liveSearch() function assembles a filename that combines search.php with the query in the search field and then launches an AJAX request using the library’s ajaxRequest() function.

[image: Images] The displayResults() function is called when the AJAX request is complete. It deletes the bulleted list from the <div id="results"> section and then assembles a new list using the W3C DOM and the AJAX results. If there are no results, it displays a “No results” message in the list.

[image: Images] The final lines of the script set up the startSearch() function as an event handler for the keydown event of the search field.

Making It All Work

To try this example, you’ll need three files on a web server: ajax.js (the library), search.js (the search script), and the HTML file. Figure 11.2 shows this example in action.

[image: Images]

FIGURE 11.2
The live search example as displayed in the browser.

Using jQuery’s Built-in Functions for AJAX

Having learned (and practiced) the “long” way of implementing AJAX requests in your website, you should know that jQuery has its own built-in functions for performing the same tasks. If you are already using jQuery, the following code snippets should make your programming life a lot easier.

NOTE

Of course, you can also include the jQuery library just to use its AJAX-related functionality, but if you do so, recognize you’re requiring the user’s browser to download a lot of code that you otherwise will not be using.

There are numerous AJAX-related jQuery functions and methods, which you can read about in great detail at http://api.jquery.com/category/ajax/. For the purposes of a quick introduction, the following three jQuery shorthand methods enable you to do most of what you need in a basic AJAX implementation. To try these examples, you need to load the jQuery library via a <script> tag, as you learned in Chapter 10, “The Basics of Using jQuery.”

The first of these shorthand methods is load(), which enables you to get a document from the server and display it “as is.” This method is useful if you have a set of static HTML pages that you want to piece together to form a cohesive view. For example, in the code that follows, the jQuery load() method gets the content from the file on the server called newContent.html and replaces the text of the element with an ID value of newContentHere with the content that is in the newContent.html document:

Click here to view code image

$(function() {

 $("#newContentHere").load("newContent.html");

});

If all of that seems a little too magical—if it hides the functionality from view and gives you less control than you would like—there are two other jQuery shorthand methods that provide more opportunities for AJAX scripting, both of which provide you with more control over what is going on. The get() and post() methods in jQuery enable you to specify a target script to either GET or POST as well as to send parameters and values along with your request.

In the example that follows, the get() jQuery method is used to send two parameters to the script called serverScript.php, via the GET HTTP method. These parameters are called param1 and param2, with values of value1 and value2, respectively. When the request has been made and has returned a result, an alert is displayed.

Click here to view code image

$.get("serverScript.php",

 {param1: "value1", param2: "value2"},

 function (data) {

 alert("Server responded: " + data);

 }

);

When the post() jQuery method is used, the syntax is essentially the same:

Click here to view code image

$.post("serverScript.php",

 {param1: "value1", param2: "value2"},

 function (data) {

 alert("Server responded: " + data);

 }

);

Summary

In this chapter, you learned how AJAX, or remote scripting, enables JavaScript to communicate with a web server and retrieve results in a seemingly uninterrupted way for the user. You created a reusable AJAX library that can be used to create any number of AJAX applications, and you created a sample quiz using questions and answers stored in an XML file. Finally, you created a live search form using AJAX and PHP and then learned you could perform similar functions using jQuery’s built-in AJAX functionality.

Q&A

Q. What happens if the server is slow, or never responds to the request?

A. When your server is slow, the callback function is called late or not at all. This can cause trouble with overlapping requests: For example, in the live search example, an erratic server might cause the responses for the first few characters typed to come in a few seconds apart, thus confusing the user. You can remedy this problem by checking the readyState property to make sure that a request is not already in progress before you start another one.

Q. In the live search example, why is the onkeydown event handler necessary? Wouldn’t the onchange event be easier to use?

A. Although onchange tells you when a form field has changed, it is not triggered until the user moves on to a different field—it doesn’t work for “live” search, so you have to watch for key presses instead. The onkeypress handler would work; however, in some browsers it doesn’t detect the Backspace key, and it’s nice to have the search update when you backspace to shorten the query.

Workshop

The Workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Test your knowledge of AJAX by answering the following questions. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. Which of the following is the A in AJAX?

A. Advanced

B. Asynchronous

C. Application

2. Which property of an XMLHttpRequest object indicates whether the request was successful?

A. status

B. readyState

C. success

3. True or false? jQuery has numerous AJAX-related functions that you could use instead of creating your own.

Answers

1. B. AJAX stands for Asynchronous JavaScript and XML.

2. A. The status property indicates whether the request was successful; readyState indicates whether the request is complete, but it does not indicate success.

3. True, but it comes at the cost of loading additional information in the user’s browser.

Exercises

If you want to gain more experience with AJAX, try the following exercises:

[image: Images] Build your own XML file of questions and answers on your favorite topic and try it with the quiz example.

[image: Images] Use the AJAX library to add an AJAX feature to your site or create a simple example of your own.

[image: Images] Rewrite the quiz example using one or more of jQuery’s built-in AJAX functions.

CHAPTER 12
PHP Fundamentals: Variables, Strings, and Arrays

What You’ll Learn in This Chapter:

[image: Images] All about variables—what they are, why you need to use them, and how to use them

[image: Images] Understanding and using data types

[image: Images] How to use some of the more commonly used operators

[image: Images] How to use operators to create expressions

[image: Images] How to define and use constants

[image: Images] How to create associative and multidimensional arrays

[image: Images] How to use the numerous array-related functions built in to PHP

In this chapter, you get your hands dirty with some of the nuts and bolts of the PHP scripting language, including variables, strings, operators, and arrays. It might sound like a lot, but even if this is your first foray into PHP, don’t worry—the earlier chapters on JavaScript fundamentals have prepared you for this one. No matter that JavaScript is on the client side and PHP is on the server side, these languages contain similar concepts and structures.

Even if you’re fully familiar with these concepts as used in JavaScript, this chapter covers a few PHP-specific features with regard to global variables, data types, and changing types. Similarly, the functions discussed that enable you to create, modify, and manipulate arrays are specific to PHP.

Variables

Just as in JavaScript, a variable in PHP is a special container that you can define, which then “holds” a value, such as a number, string, object, array, or a Boolean. Variables are fundamental to all kinds of programming languages. Without variables, you would be forced to hard-code each specific value used in your scripts. With variables, you can create templates for operations, such as adding two numbers, without worrying about the specific values the variables represent. Values are given to the variables when the script is run, possibly through user input, through a database query, or from the result of another action earlier in the script. In other words, variables should be used whenever the data in your script is liable to change—either during the lifetime of the script or when it is passed to another script for later use.

In PHP, a variable consists of a name of your choosing, preceded by a dollar sign ($). Variable names can include letters, numbers, and the underscore character (_), but they cannot include spaces. Names must begin with a letter or an underscore. The following list shows some legal variables:

$a

$a_longish_variable_name

$_24563

$sleepyZZZZ

NOTE

Your variable names should be meaningful as well as consistent in style. For example, if your script deals with name and password values, do not create a variable called $n for the name and $p for the password—those are not meaningful names for anyone other than you, at that particular moment. If you pick up that script weeks later, you might think that $n is the variable for number rather than name and that $p stands for page rather than password. And what if a co-worker has to modify your script? How will that person know what $n and $p stand for? You can use whatever naming convention you want for variables in your scripts, as long as the names are descriptive and follow some sort of pattern that others can understand.

A semicolon (;), also known as the instruction terminator, is used to end a PHP statement. The semicolons in the next fragments of code are not part of the variable names but are used to end the statement that declares the variable as “alive and kicking,” if you will. To declare a variable, you need only include it in your script. When you declare a variable, you usually assign a value to it in the same statement, as shown here:

$num1 = 8;

$num2 = 23;

The preceding lines declare two variables and use the assignment operator (=) to assign values to them. You will learn about assignment in more detail in the “Using Expressions and Operators” section later in this chapter. After you assign values to your variables, you can treat them exactly as if they were the values themselves. In other words,

echo $num1;

is equivalent to

echo 8;

as long as $num1 is assigned a value of 8.

Global Variables

In addition to the rules for naming variables in PHP, there are rules regarding the availability of variables. In general, the assigned value of a variable is present only within the function or script where it resides. For example, if you have scriptA.php that holds a variable called $name with a value of joe, and you want to create scriptB.php that also uses a $name variable, you can assign to that second $name variable a value of jane without affecting the variable in scriptA.php. The value of the $name variable is local to each script, and the assigned values are independent of each other.

However, you can also define the $name variable as global within a script or function. If the $name variable is defined as a global variable in both scriptA.php and scriptB.php, and these scripts are connected to each other (that is, one script calls the other or includes the other), there will be just one value for the now-shared $name variable. Examples of global variable scope are explained in more detail in Chapter 13, “PHP Fundamentals: Functions, Objects, and Flow Control.”

Superglobal Variables

In addition to global variables of your own creation, PHP has several predefined variables called superglobals. These variables are always present, and their values are available to all your scripts. Each of the following superglobals is actually an array of other variables:

[image: Images] $_GET contains any variables provided to a script through the GET method.

[image: Images] $_POST contains any variables provided to a script through the POST method.

[image: Images] $_COOKIE contains any variables provided to a script through a cookie.

[image: Images] $_FILES contains any variables provided to a script through file uploads.

[image: Images] $_SERVER contains information such as headers, file paths, and script locations.

[image: Images] $_ENV contains any variables provided to a script as part of the server environment.

[image: Images] $_REQUEST contains any variables provided to a script via GET, POST, or COOKIE input mechanisms.

[image: Images] $_SESSION contains any variables that are currently registered in a session.

The examples in this book use superglobals in all applicable situations. Using superglobals is crucial in creating secure applications because, in part, they reduce the likelihood of user-injected input to your scripts. By coding your scripts to accept only what you want, in a manner defined by you (from a form using the POST method or from a session, for example), you can eliminate some of the problems created by loosely written scripts.

Data Types

Different types of data take up different amounts of memory and may be treated differently when they are manipulated by a script. Some programming languages therefore demand that the programmer declare in advance which type of data a variable will contain. By contrast, PHP is loosely typed, meaning that it automatically determines the data type at the time data is assigned to each variable.

This automatic typing is a mixed blessing. On the one hand, it means that variables can be used flexibly—in one instance, a variable can hold a string and then later in the script it can hold an integer or some other data type. On the other hand, this flexibility can lead to problems in larger scripts if you are specifically expecting a variable to hold one data type when in fact it holds something completely different. For example, suppose you have created code to manipulate an array variable. If the variable in question instead contains a number value and no array structure is in place, errors will occur when the code attempts to perform array-specific operations on the variable.

Table 12.1 shows the eight standard data types available in PHP.

TABLE 12.1 Standard Data Types

	Type

	Example

	Description

	Boolean

	true

	One of the special values true or false

	Integer

	5

	A whole number

	Float or double

	3.234

	A floating-point number

	String

	"hello"

	A collection of characters

	Object

	
	An instance of a class

	Array

	
	An ordered set of keys and values

	Resource

	
	Reference to a third-party resource (a database, for example)

	NULL

	

	An uninitialized variable

Resource types are often returned by functions that deal with external applications or files. For example, you will see references to “the MySQL resource ID” in Chapter 18, “Interacting with MySQL Using PHP.” The NULL type is reserved for variables that have been declared but no value has been assigned to them.

PHP has several functions available to test the validity of a particular type of variable—one for each type, in fact. The is_* family of functions tests whether a given value is a certain data type; for example, is_bool(), tests whether a given value is a Boolean. Listing 12.1 assigns different data types to a single variable and then tests the variable with the appropriate is_* function. The comments in the code show you where the script is in the process.

NOTE

You will learn more about calling functions in Chapter 13.

LISTING 12.1 Testing the Type of a Variable

Click here to view code image

1: <?php

2: $testing; // declare a NULL value

3: echo "is null? ".is_null($testing); // checks if null

4: echo "
";

5: $testing = 5;

6: echo "is an integer? ".is_int($testing); // checks if integer

7: echo "
";

8: $testing = "five";

9: echo "is a string? ".is_string($testing); // checks if string

10: echo "
";

11: $testing = 5.024;

12: echo "is a double? ".is_double($testing); // checks if double

13: echo "
";

14: $testing = true;

15: echo "is boolean? ".is_bool($testing); // checks if boolean

16: echo "
";

17: $testing = array('apple', 'orange', 'pear');

18: echo "is an array? ".is_array($testing); // checks if array

19: echo "
";

20: echo "is numeric? ".is_numeric($testing); // checks if numeric

21: echo "
";

22: echo "is a resource? ".is_resource($testing); // checks if a resource

23: echo "
";

24: echo "is an array? ".is_array($testing); // checks if an array

25: echo "
";

26: ?>

Put these lines into a text file called testtype.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

is null? 1

is an integer? 1

is a string? 1

is a double? 1

is boolean? 1

is an array? 1

is numeric?

is a resource?

is an array? 1

When the $testing variable is declared in line 2, it is it given a NULL value, so when the variable is tested in line 3 to see whether it is NULL (using is_null()), the result is 1 (true).

After the check to see whether $testing is NULL, values are assigned to $testing by using the = sign and then the variable is tested using the appropriate is_* function. An integer, assigned to the $testing variable in line 5, is a whole or real number. In simple terms, you can think of a whole number as a number without a decimal point. A string, assigned to the $testing variable in line 8, is a collection of characters. When you work with strings in your scripts, they should always be surrounded by double or single quotation marks (" or '). A double, assigned to the $testing variable in line 11, is a floating-point number (that is, a number that includes a decimal point). A Boolean, assigned to the $testing variable in line 14, can have one of two special values: true or false. In line 17, an array is created using the array() function, which you learn more about later in this chapter. This particular array contains three items, and the script dutifully reports $testing to have a type of array.

From line 20 through the end of the script, no value is reassigned to $testing—only the type is tested. Lines 20 and 22 test whether $testing is a numeric or resource type, respectively, and because it is not, no value is displayed to the user. In line 24, the script tests again to see whether $testing is an array, and because it is, the value of 1 is displayed.

Changing Type with settype()

PHP also provides the function settype(), which is used to change the type of a variable. To use settype(), you place the variable to change and the type to change it to between the parentheses and separate the elements with a comma, like this:

Click here to view code image

settype($variabletochange, 'new type');

Listing 12.2 converts the value 3.14 (a float) to each of the four standard types examined in this chapter.

LISTING 12.2 Changing the Type of a Variable with settype()

Click here to view code image

1: <?php

2: $undecided = 3.14;

3: echo "is ".$undecided." a double? ".is_double($undecided)."
"; // double

4: settype($undecided, 'string');

5: echo "is ".$undecided." a string? ".is_string($undecided)."
"; // string

6: settype($undecided, 'integer');

7: echo "is ".$undecided." an integer? ".is_integer($undecided)."
"; // integer

8: settype($undecided, 'double');

9: echo "is ".$undecided." a double? ".is_double($undecided)."
"; // double

10: settype($undecided, 'bool');

11: echo "is ".$undecided." a boolean? ".is_bool($undecided)."
"; // boolean

12: ?>

In each case, we use the appropriate is_* function to confirm the new data type and to print the value of the variable $undecided to the browser using echo. When we convert the string "3.14" to an integer in line 6, any information beyond the decimal point is lost forever. That’s why $undecided contains 3 after we change it back to a double in line 8. Finally, in line 10, we convert $undecided to a Boolean. Any number other than 0 becomes true when converted to a Boolean. When you print a Boolean in PHP, true is represented as 1, and false is represented as an empty string; so in line 11, $undecided is printed as 1.

Put these lines into a text file called settype.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

is 3.14 a double? 1

is 3.14 a string? 1

is 3 an integer? 1

is 3 a double? 1

is 1 a boolean? 1

Changing Type by Casting

The principal difference between using settype() to change the type of an existing variable and changing the type by casting is the fact that casting produces a copy, leaving the original variable untouched. To change type through casting, you indicate the name of a data type, in parentheses, in front of the variable you are copying. For example, the following line creates a copy of the $originalvar variable, with a specific type (integer) and a new name ($newvar). The $originalvar variable is still available and is its original type; $newvar is a completely new variable.

Click here to view code image

$newvar = (integer) $originalvar

Listing 12.3 illustrates changing data types through casting.

LISTING 12.3 Casting a Variable

Click here to view code image

1: <?php

2: $undecided = 3.14;

3: $holder = (double) $undecided;

4: echo "is ".$holder." a double? ".is_double($holder)."
"; // double

5: $holder = (string) $undecided;

6: echo "is ".$holder." a string? ".is_string($holder)."
"; // string

7: $holder = (integer) $undecided;

8: echo "is ".$holder." an integer? ".is_integer($holder)."
"; // integer

9: $holder = (double) $undecided;

10: echo "is ".$holder." a double? ".is_double($holder)."
"; // double

11: $holder = (boolean) $undecided;

12: echo "is ".$holder." a boolean? ".is_bool($holder)."
"; // boolean

13: echo "<hr>";

14: echo "original variable type of $undecided: ";

15: echo gettype($undecided); // double

16: ?>

Listing 12.3 never actually changes the type of the $undecided variable, which remains a double throughout this script, as illustrated on line 15, where the gettype() function is used to determine the type of $undecided.

In fact, casting $undecided creates a copy that is then converted to the type specified at the time of the cast and stored in the variable $holder. This casting occurs first in line 3 and again in lines 5, 7, 9, and 11. Because the code is working with only a copy of $undecided and not the original variable, it never lost its original value, as the $undecided variable did in line 6 of Listing 12.2 when its type changed from a string to an integer.

Put the contents of Listing 12.3 into a text file called casttype.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

Click here to view code image

is 3.14 a double? 1

is 3.14 a string? 1

is 3 an integer? 1

is 3.14 a double? 1

is 1 a boolean? 1

original variable type of 3.14: double

Now that you’ve seen how to change the contents of a variable from one type to another either by using settype() or by casting, consider why this might be useful. It is not a procedure that you will have to use often because PHP automatically casts your variables for you when the context of the script requires a change. However, such an automatic cast is temporary, and you might want to make a variable persistently hold a particular data type, which is why PHP gives you the ability to specifically change types.

For example, the numbers that a user types into an HTML form are made available to your script as the string type. If you try to add two strings together because they contain numbers, PHP helpfully converts these strings into numbers while the addition is taking place. Therefore,

"30cm" + "40cm"

results in an answer of 70.

NOTE

The generic term number is used here to mean integers and floats. If the user input were in float form, and the strings added together were "3.14cm" and "4.12cm", the answer provided would be 7.26.

During the casting of a string into an integer or float, PHP ignores any nonnumeric characters. The string are truncated, and any characters from the location of the first nonnumeric character onward are ignored. So, whereas "30cm" is transformed into "30", the string "6ft2in" becomes just 6 because the rest of the string evaluates to 0.

You might want to clean up the user input yourself and use it in a particular way in your script. Imagine that the user has been asked to submit a number. We can simulate this by declaring a variable and assigning the user’s input to it:

$test = "30cm";

As you can see, the user has added units to his number—instead of entering 30, the user has entered 30cm. You can make sure that the user input is clean by casting it as an integer:

Click here to view code image

$newtest = (integer) $test;

echo "Your imaginary box has a width of $newtest centimeters.";

The resulting output is as follows:

Click here to view code image

Your imaginary box has a width of 30 centimeters.

Had the user input not been cast, and the value of the original variable, $test, been used in place of $newtest when the statement about the width of a box was printed, the result would have been this:

Click here to view code image

Your imaginary box has a width of 30cm centimeters.

This output looks strange; in fact, it looks like parroted user input that has not been cleaned up (which is exactly what it is).

Why Test Type?

Why might it be useful to know the type of a variable? In programming, circumstances often arise when data is passed to you from another source, such as a function. In Chapter 13, you will learn how to create functions in PHP; data is often passed between one or more functions because they can accept information as arguments from the code that calls them. For the function to work with the data it is given, it is a good idea to first verify that the function has been given values of the correct data type. For example, a function expecting data that has a type of resource will not work well when passed a string.

Using Expressions and Operators

With what you have learned so far about PHP, you can assign data to variables, and you can even investigate and change the data type of a variable. A programming language isn’t very useful, though, unless you can manipulate the data you have stored. Just like in JavaScript, operators in PHP are symbols used to manipulate data stored in variables, to make it possible to use one or more values to produce a new value, to check the validity of data to determine the next step in a condition, and so forth. A value operated on by an operator is referred to as an operand.

In this simple example, two operands are combined with an operator to produce a new value:

4 + 5

The integers 4 and 5 are operands. The addition operator (+) operates on these operands to produce the integer 9. Operators almost always sit between two operands, although you will see a few exceptions later in this chapter.

The combination of operands with an operator to produce a result is called an expression. Although operators and their operands form the basis of expressions, an expression need not contain an operator. In fact, an expression in PHP is defined as anything that can be used as a value. This includes integer constants such as 654, variables such as $user, and function calls such as is_int(). The expression (4 + 5), for example, consists of two expressions (4 and 5) and an operator (+). When an expression produces a value, it is often said to resolve to that value. That is, when all subexpressions are taken into account, the expression can be treated as if it were a code for the value itself. In this case, the expression 4 + 5 resolves to 9.

NOTE

An expression is any combination of functions, values, and operators that resolves to a value. As a rule of thumb, if you can use it as if it were a value, it is an expression.

Now that you have the principles out of the way, it’s time to take a tour of the operators commonly used in PHP programming. These will look quite similar to those used in JavaScript, as you saw in Chapter 7, “JavaScript Fundamentals: Variables, Strings, and Arrays.”

The Assignment Operator

You have seen the assignment operator in use each time a variable was declared in an example; the assignment operator consists of the single character =. The assignment operator takes the value of the right-side operand and assigns it to the left-side operand:

$name = "Jimbo";

The variable $name now contains the string "Jimbo". This construct is also an expression. Although it might seem at first glance that the assignment operator simply changes the variable $name without producing a value, a statement that uses the assignment operator always resolves to a copy of the value of the right operand. Therefore,

echo $name = "Jimbo";

prints the string "Jimbo" to the browser while it also assigns the value "Jimbo" to the $name variable.

Arithmetic Operators

The arithmetic operators do exactly what you would expect—they perform arithmetic operations. Table 12.2 lists these operators along with examples of their usage and results.

TABLE 12.2 Arithmetic Operators

	Operator

	Name

	Example

	Sample Result

	+

	Addition

	10+3

	13

	-

	Subtraction

	10-3

	7

	/

	Division

	10/3

	3.3333333333333

	*

	Multiplication

	10*3

	30

	%

	Modulus

	10%3

	1

The addition operator adds the right-side operand to the left-side operand. The subtraction operator subtracts the right-side operand from the left-side operand. The division operator divides the left-side operand by the right-side operand. The multiplication operator multiplies the left-side operand by the right-side operand. The modulus operator returns the remainder of the left-side operand divided by the right-side operand.

The Concatenation Operator

The concatenation operator is represented by a single period (.) in PHP; in JavaScript you have seen this type of operator, except it is a + symbol. Treating both operands as strings, this operator appends the right-side operand to the left-side operand. Therefore,

"hello" . " world"

returns

"hello world"

Note that the resulting space between the words occurs because there is a leading space in the second operand (" world" rather than "world"). The concatenation operator literally smashes together two strings without adding any padding. So, if you try to concatenate two strings without leading or trailing spaces, such as

"hello" . "world"

you will get this as your result:

"helloworld"

Regardless of the data types of the operands used with the concatenation operator, they are treated as strings, and the result is always of the string type. You will encounter concatenation frequently throughout this book when the results of an expression of some kind must be combined with a string, as in the following:

Click here to view code image

$cm = 212;

echo "the width is " . ($cm/100) . " meters";

Combined Assignment Operators

Although there is only one true assignment operator, PHP provides a number of combination operators that transform the left-side operand and return a result while also modifying the original value of the variable. As a rule, operators use operands but do not change their original values. But combined assignment operators break this rule. A combined assignment operator consists of a standard operator symbol followed by an equal sign. Combination assignment operators save you the trouble of using two operators in two different steps within your script. For example, if you have a variable with a value of 4 and you want to increase this value by 4 more, you might do this:

Click here to view code image

$x = 4;

$x = $x + 4; // $x now equals 8

However, you can also use a combination assignment operator (+=) to add and return the new value, as shown here:

$x = 4;

$x += 4; // $x now equals 8

Each arithmetic operator, as well as the concatenation operator, also has a corresponding combination assignment operator. Table 12.3 lists these new operators and shows an example of their usage.

TABLE 12.3 Some Combined Assignment Operators

	Operator

	Example

	Equivalent To

	+=

	$x += 5

	$x = $x + 5

	-=

	$x -= 5

	$x = $x - 5

	/=

	$x /= 5

	$x = $x / 5

	*=

	$x *= 5

	$x = $x * 5

	%=

	$x %= 5

	$x = $x % 5

	.=

	$x .= " test"

	$x = $x . " test"

Each of the examples in Table 12.3 transforms the value of $x using the value of the right-side operand. Subsequent uses of $x will refer to the new value. Here’s an example:

$x = 4;

$x += 4; // $x now equals 8

$x += 4; // $x now equals 12

$x -= 3; // $x now equals 9

These operators are used throughout the scripts in the book. You will frequently see the combined concatenation assignment operator when you begin to create dynamic text. Looping through a script and adding content to a string, such as dynamically building the HTML markup to represent a table, is a prime example of the use of a combined assignment operator.

Automatically Incrementing and Decrementing an Integer Variable

When coding in PHP, you will often find it necessary to increment or decrement a variable that is an integer type. You usually need to do this when you are counting the iterations of a loop. You have already learned two ways of doing this. You can increment the value of $x using the addition operator, like so:

Click here to view code image

$x = $x + 1; // $x is incremented by 1

Or you can use a combined assignment operator, like this:

Click here to view code image

$x += 1; // $x is incremented by 1

In both cases, the new value is assigned to $x. Because expressions of this kind are common, PHP provides some special operators that allow you to add or subtract the integer constant 1 from an integer variable, assigning the result to the variable itself. These are known as the post-increment and post-decrement operators. The post-increment operator consists of two plus symbols appended to a variable name:

Click here to view code image

$x++; // $x is incremented by 1

This expression increments the value represented by the variable $x by 1. Using two minus symbols in the same way decrements the variable:

Click here to view code image

$x--; // $x is decremented by 1

If you use the post-increment or post-decrement operators in conjunction with a conditional operator, the operand is modified only after the first operation has finished:

$x = 3;

$y = $x++ + 3;

In this instance, $y first becomes 6 (the result of 3 + 3) and then $x is incremented.

In some circumstances, you might want to increment or decrement a variable in a test expression before the test is carried out. PHP provides the pre-increment and pre-decrement operators for this purpose. These operators behave in the same way as the post-increment and post-decrement operators, but they are written with the plus or minus symbols preceding the variable:

Click here to view code image

++$x; // $x is incremented by 1

--$x; // $x is decremented by 1

If these operators are used as part of a test expression, incrementing occurs before the test is carried out. For example, in the next fragment, $x is incremented before it is tested against 4:

$x = 3;

++$x < 4; // false

The test expression returns false because 4 is not smaller than 4.

Comparison Operators

Comparison operators perform comparative tests using their operands and return the Boolean value true if the test is successful or false if the test fails. This type of expression is useful when using control structures in your scripts, such as if and while statements. This book covers if and while statements in Chapter 13.

For example, to test whether the value contained in $x is smaller than 5, you can use the less-than operator as part of your expression:

$x < 5

If $x contains the value 3, this expression has the value true. If $x contains 7, the expression resolves to false.

Table 12.4 lists the comparison operators.

TABLE 12.4 Comparison Operators

	Operator

	Name

	Returns True If…

	Example ($x Is 4)

	Result

	==

	Equivalence

	Left is equivalent to right.

	$x == 5

	false

	!=

	Nonequivalence

	Left is not equivalent to right.

	$x != 5

	true

	===

	Identical

	Left is equivalent to right, and they are the same type.

	$x === 4

	true

	!==

	Nonequivalence

	Left is equivalent to right, but they are not the same type.

	$x !== "4"

	false

	>

	Greater than

	Left is greater than right.

	$x > 4

	false

	>=

	Greater than or equal to

	Left is greater than or equal to right.

	$x >= 4

	true

	<

	Less than

	Left is less than right.

	$x < 4

	false

	<=

	Less than or equal to

	Left is less than or equal to right.

	$x <= 4

	true

These operators are most commonly used with integers or doubles, although the equivalence operator is also used to compare strings. Be very sure to understand the difference between the == and = operators. The == operator tests equivalence, whereas the = operator assigns value. Also, remember that === tests equivalence with regard to both value and type.

Creating Complex Test Expressions with the Logical Operators

Logical operators test combinations of Boolean values. For example, the or operator, which is indicated by two pipe characters (||) or simply the word or, returns the Boolean value true if either the left or the right operand is true:

true || false

This expression returns true.

The and operator, which is indicated by two ampersand characters (&&) or simply the word and, returns the Boolean value true only if both the left and right operands are true:

true && false

This expression returns the Boolean value false. It’s unlikely that you will use a logical operator to test Boolean constants because it makes more sense to test two or more expressions that resolve to a Boolean. For example,

($x > 2) && ($x < 15)

returns the Boolean value true if $x contains a value that is greater than 2 and less than 15. Parentheses are used when comparing expressions to make the code easier to read and to indicate the precedence of expression evaluation. Table 12.5 lists the logical operators.

TABLE 12.5 Logical Operators

	Operator

	Name

	Returns True If…

	Example

	Result

	||

	Or

	Left or right is true.

	true || false

	true

	or

	Or

	Left or right is true.

	true or false

	true

	xor

	Xor

	Left or right is true, but not both.

	true xor true

	false

	&&

	And

	Left and right are true.

	true && false

	false

	and

	And

	Left and right are true.

	true and false

	false

	!

	Not

	The single operand is not true.

	! true

	false

You might wonder why are there two versions of both the or and the and operators, and that’s a good question. The answer lies in operator precedence, which we examine next.

Operator Precedence

When you use an operator within an expression, the PHP engine usually reads your expression from left to right. For complex expressions that use more than one operator, though, the PHP engine could be led astray without some guidance. First, consider a simple case:

4 + 5

There’s no room for confusion here; PHP simply adds 4 to 5. But what about the following fragment, with two operators:

4 + 5 * 2

This presents a problem. Should PHP find the sum of 4 and 5, and then multiply it by 2, providing the result 18? Or does it mean 4 plus the result of 5 multiplied by 2, resolving to 14? If you were simply to read from left to right, the former would be true. However, PHP attaches different precedence to different operators, and because the multiplication operator has higher precedence than the addition operator, the second solution to the problem is the correct one: 4 plus the result of 5 multiplied by 2.

However, you can override operator precedence by putting parentheses around your expressions. In the following fragment, the addition expression is evaluated before the multiplication expression:

(4 + 5) * 2

Whatever the precedence of the operators in a complex expression, it is a good idea to use parentheses to make your code clearer and to save you from bugs, such as a situation where you apply sales tax to the wrong subtotal in a shopping cart. The following is a list of the operators covered in this chapter in precedence order (those with the highest precedence listed first):

++, --, (cast)

/, *, %

+, -

<, <=, =>, >

==, ===, !=

&&

||

=, +=, -=, /=, *=, %=, .=

and

xor

or

As you can see, or has a lower precedence than ||, and and has a lower precedence than &&, so you can use the lower-precedence logical operators to change the way a complex test expression is read. In the following fragment, the two expressions are equivalent, but the second is much easier to read:

$x and $y || $z

$x && ($y || $z)

Taking it one step further, the following fragment is easier still:

$x and ($y or $z)

However, all three examples are equivalent.

Note

The order of precedence is the only reason that both && and and are available in PHP. The same is true of || and or. In most circumstances, the use of parentheses makes for clearer code and fewer bugs than code that takes advantage of the difference in precedence of these operators. This book tends to use the more common || and && operators, and relies on parenthetical statements to set specific operator precedence.

Constants

Variables offer a flexible way of storing data because you can change their values and the type of data they store at any time during the execution of your scripts. However, if you want to work with a value that must remain unchanged throughout your script’s execution, you can define and use a constant. You must use PHP’s built-in define() function to create a constant, which subsequently cannot be changed unless you specifically define() it again. To use the define() function, place the name of the constant and the value you want to give it within parentheses and separated by a comma:

Click here to view code image

define("YOUR_CONSTANT_NAME", 42);

The value you want to set can be a number, a string, or a Boolean. By convention, the name of the constant should be in capital letters. Constants are accessed with the constant name only; no dollar symbol is required. Listing 12.4 shows you how to define and access a constant.

LISTING 12.4 Defining and Accessing a Constant

Click here to view code image

1: <?php

2: define("THE_YEAR", "2017");

3: echo "It is the year " . THE_YEAR;

4: ?>

TIP

Constants can be used anywhere in your scripts, including in functions stored in external files.

Notice that in line 3 the concatenation operator is used to append the value held by the constant to the string "It is the year " because PHP does not distinguish between a constant and a string within quotation marks.

Put these few lines into a text file called constant.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

It is the year 2017

The define() function can also accept a third Boolean argument that determines whether the constant name should be case sensitive. By default, constant names are case sensitive. However, by passing true to the define() function, you can change this behavior. So, if you were to set up our THE_YEAR constant as

Click here to view code image

define("THE_YEAR", "2017", true);

you could access its value without worrying about case:

echo the_year;

echo ThE_YeAr;

echo THE_YEAR;

The preceding three expressions are equivalent, and all result in an output of 2017. This feature can make scripts a little friendlier for other programmers who work with our code because they will not need to consider case when accessing a constant we have already defined. However, given the fact that other constants are case sensitive, this might make for more, rather than less, confusion as programmers forget which constants to treat in which way. Unless you have a compelling reason to do otherwise, the safest course is to keep your constants case sensitive and define them using uppercase characters, which is an easy-to-remember (not to mention standard) convention.

Predefined Constants

PHP automatically provides some built-in constants for you. For example, the constant __FILE__ returns the name of the file that the PHP engine is currently reading. The constant __LINE__ returns the current line number of the file. These are but two examples of what are called “magic constants,” because they are not statically predefined and instead change depending on the context in which they are used. For a complete list, see http://www.php.net/manual/en/language.constants.predefined.php.

You can also find out which version of PHP is interpreting the script with the PHP_VERSION constant. This constant can be useful if you need version information included in script output when sending a bug report. The PHP_VERSION constant is a predefined constant (and a reserved word). For a complete list of reserved constants, see http://www.php.net/manual/en/reserved.constants.php.

Understanding Arrays

Scalar variables of the types you’ve seen so far in this chapter can store only one value at a time—for example, the $color variable can hold only a value of red or blue, and so forth, but it cannot be used to hold a list of colors in the rainbow. But arrays are special types of variables that enable you to store as many values as you want, including all seven of those rainbow colors.

Arrays are indexed, which means that each entry is made up of a key and a value. The key is the index position, beginning with 0 and increasing incrementally by 1 with each new element in the array. The value is whatever value you associate with that position—a string, an integer, or whatever you want. Think of an array as a filing cabinet and each key/value pair as a file folder. The key is the label written on the top of the folder, and the value is what is inside. You’ll see this type of structure in action as you create arrays in the next section.

Creating Arrays

You can create an array using either the array() function or the array operator[]. The array() function is usually used when you want to create a new array and populate it with more than one element, all in one fell swoop. The array operator is often used when you want to create a new array with just one element at the outset, or when you want to add to an existing array element.

The following code snippet shows how to create an array called $rainbow using the array() function, containing all its various colors:

Click here to view code image

$rainbow = array("red", "orange", "yellow", "green", "blue", "indigo", "violet");

The following snippet shows the same array being created incrementally using the array operator:

$rainbow[] = "red";

$rainbow[] = "orange";

$rainbow[] = "yellow";

$rainbow[] = "green";

$rainbow[] = "blue";

$rainbow[] = "indigo";

$rainbow[] = "violet";

Both snippets create a seven-element array called $rainbow, with values starting at index position 0 and ending at index position 6. If you want to be literal about it, you can specify the index positions, such as in this code:

$rainbow[0] = "red";

$rainbow[1] = "orange";

$rainbow[2] = "yellow";

$rainbow[3] = "green";

$rainbow[4] = "blue";

$rainbow[5] = "indigo";

$rainbow[6] = "violet";

However, PHP handles this numbering for you when positions are not specified, and that eliminates the possibility that you might misnumber your elements when order is important, as in this example:

$rainbow[0] = "red";

$rainbow[1] = "orange";

$rainbow[2] = "yellow";

$rainbow[5] = "green";

$rainbow[6] = "blue";

$rainbow[7] = "indigo";

$rainbow[8] = "violet";

Regardless of whether you initially create your array using the array() function or the array operator, you can still add to it using the array operator. In the first line of the following snippet, six elements are added to the array, and one more element is added to the end of the array in the second line:

Click here to view code image

$rainbow = array("red", "orange", "yellow", "green", "blue", "indigo");

$rainbow[] = "violet";

The examples used in this section are of numerically indexed arrays, arguably the most common type you’ll see. In the next two sections, you learn about two other types of arrays: associative and multidimensional.

Creating Associative Arrays

Whereas numerically indexed arrays use an index position as the key—0, 1, 2, and so forth—associative arrays use actual named keys. The following example demonstrates this by creating an array called $character with four elements:

$character = array(

 "name" => "Bob",

 "occupation" => "superhero",

 "age" => 30,

 "special power" => "x-ray vision"

);

The four keys in the $character array are name, occupation, age, and special power. The associated values are Bob, superhero, 30, and x-ray vision, respectively. You can reference specific elements of an associative array using the specific key, such as in this example:

Click here to view code image

echo $character['occupation'];

Here is the output of this snippet:

superhero

As with numerically indexed arrays, you can use the array operator to add to an associative array:

Click here to view code image

$character['supername'] = "Mega X-Ray Guy";

This example adds a key called supername with a value of Mega X-Ray Guy.

The only difference between an associative array and a numerically indexed array is the key name. In a numerically indexed array, the key name is a number. In an associative array, the key name is a meaningful word.

Creating Multidimensional Arrays

The first two types of arrays hold strings and integers, whereas this third type holds other arrays. If each set of key/value pairs constitutes a dimension, a multidimensional array holds more than one series of these key/value pairs. For example, Listing 12.5 defines a multidimensional array called $characters, each element of which contains an associative array. This might sound confusing, but it’s really only an array that contains another array.

LISTING 12.5 Defining a Multidimensional Array

Click here to view code image

1: <?php

2: $characters = array(

3: array(

4: "name" => "Bob",

5: "occupation" => "superhero",

6: "age" => 30,

7: "special power" => "x-ray vision"

8:),

9: array(

10: "name" => "Sally",

11: "occupation" => "superhero",

12: "age" => 24,

13: "special power" => "superhuman strength"

14:),

15: array(

16: "name" => "Jane",

17: "occupation" => "arch villain",

18: "age" => 45,

19: "special power" => "nanotechnology"

20:)

21:);

22: ?>

In line 2, the $characters array is initialized using the array() function. Lines 3–8 represent the first element, lines 9–14 represent the second element, and lines 15–20 represent the third element. These elements can be referenced as $characters[0], $characters[1], and $characters[2].

Each element consists of an associative array, itself containing four elements: name, occupation, age, and special_power.

However, suppose you attempt to print the master elements, like so:

echo $characters[1];

In this case, the output will be

Array

because the master element indeed holds an array as its content. To really get to the content you want (that is, the specific information found within the inner array element), you need to access the master element index position plus the associative name of the value you want to view.

Take a look at this example:

Click here to view code image

echo $characters[1]['occupation'];

It prints this:

superhero

If you add the following lines to the end of the code in Listing 12.5, it prints the information stored in each element, with an added line displayed in the browser for good measure:

Click here to view code image

foreach ($characters as $c) {

 while (list($k, $v) = each ($c)) {

 echo "$k … $v
";

 }

 echo "<hr>";

}

The foreach loop is concerned with the master array element, $characters. It loops through this array and assigns the temporary name $c to the element contained within each position. Next, the code begins a while loop. This loop uses two functions to extract the contents of the inner array. First, the list() function names placeholder variables, $k and $v, which will be populated with the keys and values gathered from the each() function. The each() function looks at each element of the $c array and extracts the information accordingly.

The echo statement simply prints each key and value ($k and $v) extracted from the $c array using the each() function and adds a line break for display purposes. Figure 12.1 shows the result of this file, called mdarray.php.

[image: Images]

FIGURE 12.1
Looping through a multidimensional array.

Some Array-Related Constructs and Functions

More than 70 array-related functions are built in to PHP, which you can read about in detail at http://php.net/manual/en/ref.array.php. Some of the more common (and useful) functions are described briefly in this section:

[image: Images] count() and sizeof()—Each of these functions counts the number of elements in an array; sizeof() is an alias of count(). Given the array

Click here to view code image

$colors = array("blue", "black", "red", "green");

both count($colors); and sizeof($colors); return a value of 4.

[image: Images] each() and list()—These functions (well, list() is a language construct that looks like a function) usually appear together, in the context of stepping through an array and returning its keys and values. You saw an example of this previously, where we stepped through the $c array and printed its contents.

[image: Images] foreach()—This control structure (which looks like a function) is used to step through an array, assigning the value of an element to a given variable, as you saw in the previous section.

[image: Images] reset()—This function rewinds the pointer to the beginning of an array, as in this example:

reset($character);

This function proves useful when you are performing multiple manipulations on an array, such as sorting, extracting values, and so forth.

[image: Images] array_push()—This function adds one or more elements to the end of an existing array, as in this example:

Click here to view code image

array_push($existingArray, "element 1", "element 2", "element 3");

[image: Images] array_pop()—This function removes (and returns) the last element of an existing array, as in this example:

Click here to view code image

$last_element = array_pop($existingArray);

[image: Images] array_unshift()—This function adds one or more elements to the beginning of an existing array, as in this example:

Click here to view code image

array_unshift($existingArray, "element 1", "element 2", "element 3");

[image: Images] array_shift()—This function removes (and returns) the first element of an existing array, as in this example, where the value of the element in the first position of $existingArray is assigned to the variable $first_element:

Click here to view code image

$first_element = array_shift($existingArray);

[image: Images] array_merge()—This function combines two or more existing arrays, as in this example:

Click here to view code image

$newArray = array_merge($array1, $array2);

[image: Images] array_keys()—This function returns an array containing all the key names within a given array, as in this example:

Click here to view code image

$keysArray = array_keys($existingArray);

[image: Images] array_values()—This function returns an array containing all the values within a given array, as in this example:

Click here to view code image

$valuesArray = array_values($existingArray);

[image: Images] shuffle()—This function randomizes the elements of a given array. The syntax of this function is simply as follows:

shuffle($existingArray);

This brief rundown of array-related functions only scratches the surface of using arrays. However, arrays and array-related functions are used in the code examples throughout this book, so you will get your fill soon enough. If you don’t, there’s always the array section of the PHP Manual at http://php.net/manual/en/ref.array.php that discusses all array-related functions in great detail, including more than 10 different methods just for sorting your arrays.

Summary

This chapter covered some of the basic features of the PHP language. You learned about variables and how to assign values to them using the assignment operator. You also learned a bit about the scope of variables and built-in superglobals. This chapter also covered operators, and you learned how to combine some of the most common of these into expressions. You learned how to define and access constants, which will one day play a meaningful role in any application you build.

This chapter also introduced you to the concepts of arrays, including how they are created and referenced. The three array types are the numerically indexed array, associative array, and multidimensional array. In addition, you saw examples of some of the numerous array-related functions already built in to PHP. You can use these functions to manipulate and modify existing arrays, sometimes even creating entirely new ones.

Now that you have mastered some of the fundamentals of PHP, the next chapter really puts you in the driver’s seat. You learn how to make scripts that can make decisions and repeat tasks, with help from variables, expressions, and operators.

Q&A

Q. Why is it useful to know the type of data that a variable holds?

A. Often the data type of a variable constrains what you can do with it. For example, you cannot perform array-related functions on simple strings. Similarly, you might want to make sure that a variable contains an integer or a float before using it in a mathematical calculation, even though PHP will often help you by changing data types for you in this situation.

Q. Should I obey any conventions when naming variables?

A. Your goal should always be to make your code easy to read and understand. A variable such as $ab123245 tells you nothing about its role in your script and invites typos. Keep your variable names short and descriptive.

A variable named $f is unlikely to mean much to you when you return to your code after a month or so. A variable named $filename, however, should make more sense.

Q. Should I learn the operator precedence table?

A. There is no reason you shouldn’t, but I would save the effort for more useful tasks. By using parentheses in your expressions, you can make your code easy to read while defining your own order of precedence.

Q. How many dimensions can multidimensional arrays have?

A. You can create as many dimensions in your multidimensional array as you can manage, but remember the more dimensions you have, the more you have to manage. If you have data with more than a few dimensions, it might be wise to ask yourself whether that data should be stored differently, such as in a database, and accessed that way.

Workshop

The Workshop is designed to help you review what you’ve learned and begin putting your knowledge into practice.

Quiz

1. Which of the following variable names are not valid?

Click here to view code image

$a_value_submitted_by_a_user

$666666xyz

$xyz666666

$_____counter_____

$the first

$file-name

2. What does the following code fragment output?

$num = 33;

(boolean) $num;

echo $num;

3. What does the following statement output?

echo gettype("4");

4. What is the output from the following code fragment?

Click here to view code image

$test_val = 5.5466;

settype($test_val, "integer");

echo $test_val;

5. What construct can you use to define an array?

Answers

1. The variable name $666666xyz is not valid because it does not begin with a letter or an underscore character. The variable name $the first is not valid because it contains a space. $file-name is also invalid because it contains a nonalphanumeric character (-).

2. The fragment prints the integer 33. The cast to Boolean produces a converted copy of the value stored in $num. It does not alter the value actually stored there.

3. The statement outputs the string "string".

4. The code outputs the value 5. When a float is converted to an integer, any information beyond the decimal point is lost.

5. array()

Exercises

[image: Images] Assign values to two variables. Use comparison operators to test whether the first value is

[image: Images] The same as the second

[image: Images] Less than the second

[image: Images] Greater than the second

[image: Images] Less than or equal to the second

Print the result of each test to the browser.

Change the values assigned to your test variables and run the script again.

[image: Images] Create a multidimensional array of movies organized by genre. This should take the form of an associative array with genres as keys, such as Science Fiction, Action, Adventure, and so forth. Each of the array’s elements should be an array containing movie names, such as Alien, Terminator 3, Star Wars, and so on. After creating your arrays, loop through them, printing the name of each genre and its associated movies.

CHAPTER 13
PHP Fundamentals: Functions, Objects, and Flow Control

What You’ll Learn in This Chapter:

[image: Images] How to define and call functions from within your scripts

[image: Images] How to pass values to functions and receive values in return

[image: Images] How to access global variables from within a function

[image: Images] How to give a function a “memory”

[image: Images] How to pass data to functions by reference

[image: Images] How to create and manipulate objects and the data they contain

[image: Images] How to use the if statement to control the execution of code

[image: Images] How to use the switch statement to control the execution of code

[image: Images] How to repeat the execution of code using a while statement

[image: Images] How to use for statements to make tidy loops

[image: Images] How to break out of loops

[image: Images] How to use PHP start and end tags within control structures

It’s no coincidence that this chapter has a nearly identical title and structure as Chapter 8, “JavaScript Fundamentals: Functions, Objects, and Flow Control,” because the concepts shared between JavaScript and PHP are quite similar. This chapter goes a little deeper into the topics because your backend scripts are likely to handle more intensive programming than your JavaScript (at least early on in your career).

But just like in JavaScript, you’ll soon see that functions remain at the heart of a well-organized script and make your code easy to read and reuse. No large project would be manageable without them because the problem of repetitive code would bog down the development process. Throughout this chapter, you investigate functions and learn some of the ways functions can save you from repetitive work. You’ll also learn the very basics of object-oriented programming, in which the structure of an application is designed around objects and their relationships and interactions.

Finally, in this chapter you begin to move away from the linear PHP scripts of previous chapters and move toward loops and conditional checks just like you did with JavaScript in earlier chapters.

Calling Functions

You can think of a function as an input/output machine. This machine takes the raw materials you feed it (input) and works with them to produce a product (output). A function accepts values, processes them, and then performs an action (printing to the browser, for example) or returns a new value, or both.

If you needed to bake a single cake, you would probably do it yourself, in your own kitchen with your standard oven. But if you needed to bake thousands of cakes, you would probably build or acquire a special cake-baking machine, built for baking cakes in massive quantities. Similarly, when deciding whether to create a function for reuse, the most important factor to consider is the extent to which it can save you from writing repetitive code.

A function is a self-contained block of code that can be called by your scripts. When called, the function’s code is executed and performs a particular task. You can pass values to a function, which then uses the values appropriately—storing them, transforming them, displaying them, or whatever the function is told to do. When finished, a function can also pass a value back to the original code that called it into action.

Functions come in two flavors: those built in to the language and those you define yourself. PHP has hundreds of built-in functions. Look at the following snippet for an example of a function in use:

Click here to view code image

$text = strtoupper("Hello World!");

This example calls the strtoupper() function, passing it the string "Hello World!". The function then goes about its business of changing the contents of the string to uppercase letters; the result is stored in the $text variable.

A function call consists of the function name (strtoupper in this case) followed by parentheses. If you want to pass information to the function, you place it between these parentheses. A piece of information passed to a function in this way is called an argument. Some functions require that more than one argument be passed to them, separated by commas:

Click here to view code image

some_function($an_argument, $another_argument);

strtoupper() is typical for a function in that it returns a value. Most functions return some information back after they’ve completed their task; they usually at least tell whether their mission was successful. strtoupper() returns a string value, so its usage requires the presence of a variable to accept the new string, such as the following:

Click here to view code image

$new_string = strtoupper("Hello World!");

You may now use $new_string in your code, such as to print it to the screen:

echo $new_string;

This code results in the following text on the screen:

HELLO WORLD!

NOTE

The print() and echo() functions, which you may see throughout the examples in this book, are not actually functions—they’re language constructs designed to output strings to the browser. However, you will find them in the PHP function list, at http://www.php.net/print and http://www.php.net/echo, respectively. These constructs are similar in functionality and can be used interchangeably. Whichever one you use is a matter of taste.

The abs() function, for example, requires a signed numeric value and returns the absolute value of that number. Let’s try it out in Listing 13.1.

LISTING 13.1 Calling the Built-In abs() Function

<?php

$num = -321;

$newnum = abs($num);

echo $newnum;

//prints "321"

?>

This example assigns the value -321 to the variable $num. It then passes that variable to the abs() function, which makes the necessary calculation and returns a new value. The code assigns this to the variable $newnum and displays the result.

Put these lines into a text file called abs.php and place this file in your web server document root. When you access this script through your web browser, it produces the following:

321

In fact, Listing 13.1 could have dispensed with temporary variables altogether, passing the number straight to the abs() function and directly printing the result:

echo abs(-321);

This example uses the temporary variables $num and $newnum, though, to make each step of the process as clear as possible. Sometimes you can make your code more readable by breaking it up into a greater number of simple expressions.

You can call user-defined functions in exactly the same way that we have been calling built-in functions.

Defining a Function

You can define your own functions using the function statement:

Click here to view code image

function some_function($argument1, $argument2)

{

 //function code here

}

The name of the function follows the function statement and precedes a set of parentheses. If your function requires parameters, you must place comma-separated names within the parentheses. These parameters are filled by the values passed to your function as arguments. Even if your function doesn’t require parameters, you must nevertheless supply the parentheses.

NOTE

The naming rules for functions are similar to the naming rules for variables: Names cannot include spaces, and they must begin with a letter or an underscore. As with variables, your function names should be meaningful and consistent in style. The capitalization of function names is one such stylistic touch you can add to your code; using mixed case in names, such as myFunction() or handleSomeDifficultTask(), makes your code much easier to read. You may hear this naming convention referred to as camelCase.

Listing 13.2 declares and calls a function.

LISTING 13.2 Declaring and Calling a Function

Click here to view code image

<?php

function bighello()

{

 echo "<h1>HELLO!</h1>";

}

bighello();

?>

The script in Listing 13.2 simply outputs the string "HELLO!" wrapped in an HTML h1 element.

Listing 13.2 declares a function, bighello(), that requires no arguments. Because of this, the parentheses are left empty. Although bighello() is a working function, it is not terribly useful. Listing 13.3 creates a function that requires an argument and actually does something with it.

LISTING 13.3 Declaring a Function That Requires an Argument

Click here to view code image

1: <?php

2: function printBR($txt)

3: {

4: echo $txt."
";

5: }

6: printBR("This is a line.");

7: printBR("This is a new line.");

8: printBR("This is yet another line.");

9: ?>

NOTE

Unlike variable names, function names are not case sensitive. In Listing 13.3, the printBR() function could have been called as printbr(), PRINTBR(), or any combination thereof, with success.

Put these lines into a text file called printbr.php and place this file in your web server document root. When you access this script through your web browser, it should look like Figure 13.1.

[image: Images]

FIGURE 13.1
A function that prints a string with an appended
 tag.

In line 2, the printBR() function expects a string, so the variable name $txt is placed between the parentheses when the function is declared. Whatever is passed to printBR() is stored in this $txt variable. Within the body of the function, line 3 prints the $txt variable, appending a
 element to it.

When you want to print a line to the browser, such as in line 6, 7, or 8, you can call printBR() instead of the built-in print(), saving you the bother of typing the
 element.

Returning Values from User-Defined Functions

The previous example output an amended string to the browser within the printBR() function. Sometimes, however, you will want a function to provide a value that you can work with yourself. If your function has transformed a string that you have provided, you might want to get the amended string back so that you can pass it to other functions. A function can return a value using the return statement in conjunction with a value. The return statement stops the execution of the function and sends the value back to the calling code.

Listing 13.4 creates a function that returns the sum of two numbers.

LISTING 13.4 A Function That Returns a Value

Click here to view code image

1: <?php

2: function addNums($firstnum, $secondnum)

3: {

4: $result = $firstnum + $secondnum;

5: return $result;

6: }

7: echo addNums(3,5);

8: //will print "8"

9: ?>

Put these lines into a text file called addnums.php and place this file in your web server document root. When you access this script through your web browser, it produces the following:

8

Notice in line 2 that addNums() should be called with two numeric arguments (line 7 shows those to be 3 and 5 in this case). These values are stored in the variables $firstnum and $secondnum. Predictably, addNums() adds the numbers contained in these variables and stores the result in a variable called $result.

The return statement can return a value or nothing at all. How you arrive at a value passed by return can vary. The value can be hard-coded:

return 4;

It can be the result of an expression:

return $a/$b;

It can be the value returned by yet another function call:

Click here to view code image

return another_function($an_argument);

Understanding Variable Scope

A variable declared within a function remains local to that function. In other words, it is not available outside the function or within other functions. In larger projects, this can save you from accidentally overwriting the contents of a variable when you declare two variables with the same name in separate functions.

Listing 13.5 creates a variable within a function and then attempts to print it outside the function.

LISTING 13.5 Variable Scope: A Variable Declared Within a Function Is Unavailable Outside the Function

Click here to view code image

<?php

function test()

{

 $testvariable = "this is a test variable";

}

echo "test variable: ".$testvariable."
";

?>

Put these lines into a text file called scopetest.php and place this file in your web server document root. When you access this script through your web browser, it should look like Figure 13.2.

[image: Images]

FIGURE 13.2
Output of scopetest.php.

NOTE

The exact output you see depends on your PHP error settings. That is, it might or might not produce a “notice,” as shown in Figure 13.2, but it will show the lack of an additional string after "test variable".

The value of the variable $testvariable is not printed because no such variable exists outside the test() function. Remember that the attempt in line 6 to access a nonexistent variable produces a notice such as the one displayed only if your PHP settings are set to display all errors, notices, and warnings. If your error settings are not strictly set, only the string "test variable:" is shown.

Similarly, a variable declared outside a function is not automatically available within it.

Accessing Variables with the global Statement

From within one function, you cannot (by default) access a variable defined in another function or elsewhere in the script. Within a function, if you attempt to use a variable with the same name, you will only set or access a local variable. Let’s put this to the test in Listing 13.6.

LISTING 13.6 Variables Defined Outside Functions Are Inaccessible from Within a Function by Default

Click here to view code image

1: <?php

2: $life = 42;

3: function meaningOfLife()

4: {

5: echo "The meaning of life is ".$life";

6: }

7: meaningOfLife();

8: ?>

Put these lines into a text file called scopetest2.php and place this file in your web server document root. When you access this script through your web browser, it should look like Figure 13.3.

[image: Images]

FIGURE 13.3
Attempting to reference a variable from outside the scope of a function.

As you might expect, the meaningOfLife() function does not have access to the $life variable in line 2; $life is empty when the function attempts to print it. On the whole, this is a good thing because it saves you from potential clashes between identically named variables, and a function can always demand an argument if it needs information about the outside world. Occasionally, you might want to access an important variable from within a function without passing it in as an argument. This is where the global statement comes into play. Listing 13.7 uses global to restore order to the universe.

LISTING 13.7 Accessing Global Variables with the global Statement

Click here to view code image

1: <?php

2: $life=42;

3: function meaningOfLife()

4: {

5: global $life;

6: echo "The meaning of life is ".$life";

7: }

8: meaningOfLife();

9: ?>

Put these lines into a text file called scopetest3.php and place this file in your web server document root. When you access this script through your web browser, it should look like Figure 13.4.

[image: Images]

FIGURE 13.4
Successfully accessing a global variable from within a function using the global statement.

When you place the global statement in front of the $life variable when it is declared in the meaningOfLife() function (line 5), it refers to the $life variable declared outside the function (line 2).

You need to use the global statement within every function that needs to access a particular named global variable. Be careful, though: If you manipulate the contents of the variable within the function, the value of the variable changes for the script as a whole.

You can declare more than one variable at a time with the global statement by simply separating each of the variables you want to access with commas:

global $var1, $var2, $var3;

CAUTION

Usually, a parameter is a copy of whatever value is passed by the calling code; changing it in a function has no effect beyond the function block. Changing a global variable within a function, however, changes the original and not a copy. Use the global statement carefully.

Saving State Between Function Calls with the static Statement

Local variables within functions have a short but happy life—they come into being when the function is called and die when execution is finished, as they should. Occasionally, however, you might want to give a function a rudimentary memory.

Assume that you want a function to keep track of the number of times it has been called so that numbered headings can be created by a script. You could, of course, use the global statement to do this, as shown in Listing 13.8.

LISTING 13.8 Using the global Statement to Remember the Value of a Variable Between Function Calls

Click here to view code image

1: <?php

2: $num_of_calls = 0;

3: function numberedHeading($txt)

4: {

5: global $num_of_calls;

6: $num_of_calls++;

7: echo "<h1>".$num_of_calls." ".$txt."</h1>";

8: }

9: numberedHeading("Widgets");

10: echo "<p>We build a fine range of widgets.</p>";

11: numberedHeading("Doodads");

12: echo "<p>Finest in the world.</p>";

13: ?>

Put these lines into a text file called numberedheading.php and place this file in your web server document root. When you access this script through your web browser, it should look like Figure 13.5.

[image: Images]

FIGURE 13.5
Using the global statement to keep track of the number of times a function has been called.

This does the job. Listing 13.8 declares a variable, $num_of_calls, in line 2, outside the function numberedHeading(). Line 5 makes this variable available to the function by using the global statement.

Every time numberedHeading() is called, the value of $num_of_calls is incremented (line 6). You can then print out the heading, complete with the properly incremented heading number.

This is not the most elegant solution, however. Functions that use the global statement cannot be read as standalone blocks of code. In reading or reusing them, we need to look out for the global variables that they manipulate.

This is where the static statement can be useful. If you declare a variable within a function in conjunction with the static statement, the variable remains local to the function, and the function “remembers” the value of the variable from execution to execution. Listing 13.9 adapts the code from Listing 13.8 to use the static statement.

LISTING 13.9 Using the static Statement to Remember the Value of a Variable Between Function Calls

Click here to view code image

1: <?php

2: function numberedHeading($txt)

3: {

4: static $num_of_calls = 0;

5: $num_of_calls++;

6: echo "<h1>".$num_of_calls." ". $txt."</h1>";

7: }

8: numberedHeading("Widgets");

9: echo "<p>We build a fine range of widgets.</p>";

10: numberedHeading("Doodads");

11: echo "<p>Finest in the world.</p>";

12: ?>

The numberedHeading() function has become entirely self-contained. When the $num_of_calls variable is declared on line 4, an initial value is assigned to it. This assignment is made when the function is first called on line 8. This initial assignment is ignored when the function is called a second time on line 10. Instead, the code remembers the previous value of $num_of_calls. You can now paste the numberedHeading() function into other scripts without worrying about global variables. Although the output of Listing 13.9 is the same as that of Listing 13.8, the code is a bit more elegant.

More About Arguments

You’ve already seen how to pass arguments to functions, but there’s plenty more to cover. This section covers a technique for giving your arguments default values and explores a method of passing variables by reference rather than by value. This means that the function is given an alias of the original value rather than a copy of it.

Setting Default Values for Arguments

PHP provides a nifty feature to help build flexible functions. Until now, you’ve heard that some functions require one or more arguments. By making some arguments optional, you can render your functions a little less autocratic.

Listing 13.10 creates a useful little function that wraps a string in an HTML span element. To give the user of the function the chance to change the font-size style, you can demand a $fontsize argument in addition to the string (line 2).

LISTING 13.10 A Function Requiring Two Arguments

Click here to view code image

1: <?php

2: function fontWrap($txt, $fontsize)

3: {

4: echo "".$txt."";

5: }

6: fontWrap("really big text
","24pt");

7: fontWrap("some body text
","16pt");

8: fontWrap("smaller body text
","12pt");

9: fontWrap("even smaller body text
","10pt");

10: ?>

Put these lines into a text file called fontwrap.php and place this file in your web server document root. When you access this script through your web browser, it should look like Figure 13.6.

[image: Images]

FIGURE 13.6
A function that formats and outputs strings.

By assigning a value to an argument variable within the function definition’s parentheses, you can make the $fontsize argument optional. If the function call doesn’t define an argument for this parameter, the value you have assigned to the argument is used instead. Listing 13.11 uses this technique to make the $fontsize argument optional.

LISTING 13.11 A Function with an Optional Argument

Click here to view code image

1: <?php

2: function fontWrap($txt, $fontsize = "12pt")

3: {

4: echo "".$txt."";

5: }

6: fontWrap("really big text
","24pt");

7: fontWrap("some body text
");

8: fontWrap("smaller body text
");

9: fontWrap("even smaller body text
");

10: ?>

When the fontWrap() function is called with a second argument, as in line 6, this value is used to set the font-size attribute of the span element. When this argument is omitted, as in lines 7, 8, and 9, the default value of "12pt" is used instead. You can create as many optional arguments as you want, but when you’ve given an argument a default value, all subsequent arguments should also be given defaults.

Passing Variable References to Functions

When you pass arguments to functions, they are stored as copies in parameter variables. Any changes made to these variables in the body of the function are local to that function and are not reflected beyond it, as illustrated in Listing 13.12.

LISTING 13.12 Passing an Argument to a Function by Value

Click here to view code image

1: <?php

2: function addFive($num)

3: {

4: $num += 5;

5: }

6: $orignum = 10;

7: addFive($orignum);

8: echo $orignum;

9: ?>

Put these lines into a text file called addfive.php and place this file in your web server document root. When you access this script through your web browser, it produces the following:

10

The addFive() function accepts a single numeric value and adds 5 to it, but it returns nothing. A value is assigned to a variable $orignum in line 6 and then this variable is passed to addFive() in line 7. A copy of the contents of $orignum is stored in the variable $num. Although $num is incremented by 5, this has no effect on the value of $orignum. When $orignum is printed, you find that its value is still 10. By default, variables passed to functions are passed by value. In other words, local copies of the values of the variables are made.

You can change this behavior by creating a reference to your original variable. You can think of a reference as a signpost that points to a variable. In working with the reference, you are manipulating the value to which it points.

Listing 13.13 shows this technique in action. When you pass an argument to a function by reference, as in line 7, the contents of the variable you pass ($orignum) are accessed by the argument variable and manipulated within the function, rather than just a copy of the variable’s value (10). Any changes made to an argument in these cases change the value of the original variable. You can pass an argument by reference by adding an ampersand to the argument name in the function definition, as shown in line 2.

LISTING 13.13 Using a Function Definition to Pass an Argument to a Function by Reference

Click here to view code image

1: <?php

2: function addFive(&$num)

3: {

4: $num += 5;

5: }

6: $orignum = 10;

7: addFive($orignum);

8: echo $orignum;

9: ?>

Put these lines into a text file called addfive2.php and place this file in your web server document root. When you access this script through your web browser, it produces the following:

15

Testing for the Existence of a Function

You do not always know whether a function exists before you try to invoke it. Different builds of the PHP engine might include different functionality, and if you are writing a script that may be run on multiple servers, you might want to verify that key features are available. For instance, you might want to write code that uses MySQL if MySQL-related functions are available but simply log data to a text file otherwise.

You can use function_exists() to check for the availability of a function. function_exists() requires a string representing a function name. It returns true if the function can be located, and false otherwise.

Listing 13.14 shows function_exists() in action and illustrates some of the other topics we have covered in this chapter.

LISTING 13.14 Testing for a Function’s Existence

Click here to view code image

1: <?php

2: function tagWrap($tag, $txt, $func = "")

3: {

4: if ((!empty($txt)) && (function_exists($func))) {

5: $txt = $func($txt);

6: return "<".$tag.">".$txt."</".$tag.">
";

7: } else {

8: return "".$txt."
";

9: }

10: }

10:

12: function underline($txt)

13: {

14: return "".$txt."";

15: }

16: echo tagWrap('strong', 'make me bold');

17: echo tagWrap('em', 'underline and italicize me', "underline");

18: echo tagWrap('em', 'make me italic and quote me',

19: create_function('$txt', 'return ""$txt"";'));

20: ?>

Listing 13.14 defines two functions: tagWrap() (line 2) and underline() (line 12). The tagWrap() function accepts three strings: a tag, the text to format, and an optional function name. It returns a formatted string. The underline() function requires a single argument—the text to be formatted—and returns the text wrapped in tags with appropriate style attributes.

When you first call tagWrap() on line 16, you pass it the string "string" and the string "make me bold". Because you haven’t passed a value for the function argument, the default value (an empty string) is used. Line 4 checks whether the $func variable contains characters, and, if it is not empty, function_exists() is called to check for a function by that name. Of course, in this case, the $func variable is empty, so the $txt variable is wrapped in tags in the else clause on lines 7 and 8 and the result is returned.

The code calls tagWrap() on line 17 with the string 'em', some text, and a third argument: "underline". Then function_exists() finds a function called underline() (line 12), so it calls this function and passes the $txt argument variable to it before any further formatting is done. The result is an italicized, underlined string.

Finally, on line 18, the code calls tagWrap(), which wraps text in quotation entities. It is quicker to simply add the entities to the text to be transformed ourselves, but this example serves to illustrate the point that function_exists() works as well on anonymous functions as it does on strings representing function names.

Put these lines into a text file called exists.php and place this file in your web server document root. When you access this script through your web browser, it should look like Figure 13.7.

[image: Images]

FIGURE 13.7
Output of exists.php.

Creating an Object

Having spent a lot of time with functions that often end up manipulating scalar variables, let’s move on and spend some quality time with objects. Objects are inherently abstract. An object is a sort of theoretical box of things—variables, functions, and so forth—that exists in a templated structure called a class. Although it’s easy to visualize a scalar variable, such as $color, with a value of red, or an array called $character with three or four different elements inside it, some people have a difficult time visualizing objects.

For now, try to think of an object as a little box with inputs and outputs on either side of it. The input mechanisms are methods, and methods have properties. Throughout this section, we look at how classes, methods, and properties work together to produce various outputs.

As mentioned previously, an object exists as a data structure, and a definition of that structure called a class. In each class, you define a set of characteristics. For example, suppose you have created an automobile class. In the automobile class, you might have color, make, and model characteristics. Each automobile object uses all the characteristics, but each object initializes the characteristics to different values, such as blue, Jeep, and Renegade, or red, Porsche, and Boxster.

Using objects creates the potential for highly reusable code. Because classes are so tightly structured but self-contained and independent of one another, you can reuse them from one application to another. For example, suppose that you write a text-formatting class for one project and decide you can use that class in another project. Because a class is just a set of characteristics, you can pick up the code and use it in the second project, reaching into it with methods specific to the second application but using the inner workings of the existing code to achieve new results.

Creating an object is simple; you just declare it to be in existence:

class myClass {

 //code will go here

}

Now that you have a class, you can create a new instance of an object:

$object1 = new myClass();

In Listing 13.15, you have proof that your object exists, even though there’s nothing in it—it’s just been named.

LISTING 13.15 Proof That Your Object Exists

Click here to view code image

1: <?php

2: class myClass {

3: //code will go here

4: }

5: $object1 = new myClass();

6: echo "\$object1 is an ".gettype($object1).".
";

7:

8: if (is_object($object1)) {

9: echo "Really! I swear \$object1 is an object!";

10: }

11: ?>

If you save this code as proofofclass.php, place it in your document root, and access it with your web browser, you will see the following on your screen:

Click here to view code image

$object1 is an object.

Really! I swear $object1 is an object!

This is not a particularly useful class because it does absolutely nothing, but it is valid and shows you how the class template works in lines 2–5. Lines 8–10 use the is_object() function to test whether something is an object; in this case, the something is $object1. Because the test of is_object() evaluates to true, the string within the if statement is printed to the screen.

Next, you learn about using object properties and methods within the class template.

Properties of Objects

The variables declared inside an object are called properties. It is standard practice to declare your variables at the top of the class. These properties can be values, arrays, or even other objects. The following snippet uses simple scalar variables inside the class, prefaced with the public keyword:

Click here to view code image

class myCar {

 public $color = "silver";

 public $make = "Mazda";

 public $model = "Protege5";

}

NOTE

If you use the keyword public, protected, or private before the variable name, you can indicate if the class member (the variable) can be accessed everywhere (public), within the class itself or a parent class or an inherited class (protected), or only by the class itself (private).

Now when you create a myCar object, it will always have those three properties. Listing 13.16 shows you how to access properties after they have been declared and values have been assigned to them.

LISTING 13.16 Showing Object Properties

Click here to view code image

1: <?php

2: class myCar {

3: public $color = "blue";

4: public $make = "Jeep";

5: public $model = "Renegade";

6: }

7: $car = new myCar();

8: echo "I drive a: " . $car->color . " ".$car->make . " " . $car->model;

9: ?>

If you save this code as objproperties.php, place it in your document root, and access it with your web browser, you will see the following on your screen:

I drive a: blue Jeep Renegade

Because the odds are low that you drive a blue Jeep Renegade, you’ll want to change the properties of the myCar object. Listing 13.17 shows you how to do just that.

LISTING 13.17 Changing Object Properties

Click here to view code image

1: <?php

2: class myCar {

3: public $color = "blue";

4: public $make = "Jeep";

5: public $model = "Renegade";

6: }

7: $car = new myCar();

8: $car->color = "red";

9: $car->make = "Porsche";

10: $car->model = "Boxster";

11: echo "I drive a: " . $car->color . " " . $car->make . " ". $car->model;

12: ?>

If you save this code as objproperties2.php, place it in your document root, and access it with your web browser, you will see the following on your screen:

Click here to view code image

I drive a: red Porsche Boxster

NOTE

In this instance, even if the $color, $make, and $model properties had no initial values when declared, lines 8–10 would assign a value to them. As long as the properties are declared, you can use them later (initial values or not).

The purpose of Listing 13.17 is to show that as long as you have a well-defined class with properties, you can still easily change the values of the properties to fit your needs.

Object Methods

Methods add functionality to your objects. No longer will your objects just sit there, holding on to their properties for dear life—they’ll actually do something! Listing 13.18 shows just that.

LISTING 13.18 A Class with a Method

Click here to view code image

<?php

class myClass {

 public function sayHello() {

 echo "HELLO!";

 }

}

$object1 = new myClass();

$object1->sayHello();

?>

Although it is not the most thrilling example of action, if you save this code as helloclass.php, place it in your document root, and access it with your web browser, you will see the following on your screen:

HELLO!

A method looks and acts like a normal function but is defined within the framework of a class. The -> operator is used to call the object method in the context of your script. Had there been any variables stored in the object, the method would have been capable of accessing them for its own purposes, as illustrated in Listing 13.19.

LISTING 13.19 Accessing Class Properties Within a Method

Click here to view code image

1: <?php

2: class myClass {

3: public $name = "Jimbo";

4: public function sayHello() {

5: echo "HELLO! My name is " . $this->name;

6: }

7: }

8: $object1 = new myClass();

9: $object1->sayHello();

10: ?>

If you save this code as helloclass2.php, place it in your document root, and access it with your web browser, you will see the following on your screen:

HELLO! My name is Jimbo

The special variable $this is used to refer to the currently instantiated object as you see on line 5. Any time an object refers to itself, you must use the $this variable. Using the $this variable in conjunction with the -> operator enables you to access any property or method in a class, within the class itself.

One final tidbit regarding the basics of working with an object’s properties is how to change a property from within a method. Previously, a property’s value changed outside the method in which it was contained. Listing 13.20 shows how to make the change from inside a method.

LISTING 13.20 Changing the Value of a Property from Within a Method

Click here to view code image

1: <?php

2: class myClass {

3: public $name = "Jimbo";

4: public function setName($n) {

5: $this->name = $n;

6: }

7: public function sayHello() {

8: echo "HELLO! My name is ".$this->name;

9: }

10: }

11: $object1 = new myClass();

12: $object1->setName("Julie");

13: $object1->sayHello();

14: ?>

If you save this code as helloclass3.php, place it in your document root, and access it with your web browser, you will see the following on your screen:

HELLO! My name is Julie

Why? Because in lines 4–6, a new function called setName() was created. When it is called in line 12, it changes the value of $name to Julie. Therefore, when the sayHello() function is called in line 13 and it looks for $this->name, it uses Julie, which is the new value that was just set by the setName() function. In other words, an object can modify its own property—in this case, the $name variable.

Constructors

A constructor is a function that lives within a class and, given the same name as the class, is automatically called when a new instance of the class is created using new classname. Using constructors enables you to provide arguments to your class, which will then be processed immediately when the class is called. You will see constructors in action in the next section.

Object Inheritance

Having learned the absolute basics of objects, properties, and methods, you can start to look at object inheritance. Inheritance with regard to classes is just what it sounds like: One class inherits functionality from its parent class. Listing 13.21 shows an example.

LISTING 13.21 A Class Inheriting from Its Parent

Click here to view code image

1: <?php

2: class myClass {

3: public $name = "Benson";

4: public function myClass($n) {

5: $this->name = $n;

6: }

7: public function sayHello() {

8: echo "HELLO! My name is ".$this->name;

9: }

10: }

11: class childClass extends myClass {

12: //code goes here

13: }

14: $object1 = new childClass("Baby Benson");

15: $object1->sayHello();

16: ?>

If you save this code as inheritance.php, place it in your document root, and access it with your web browser, you will see the following on your screen:

Click here to view code image

HELLO! My name is Baby Benson

Lines 4–6 make up a constructor. Notice that the name of this function is the same as the class in which it is contained: myClass. Lines 11–13 define a second class, childClass, that contains no code. That’s fine because, in this example, the class exists only to demonstrate inheritance from the parent class. The inheritance occurs through the extends clause shown in line 11. The second class inherits the elements of the first class because this clause is used.

Listing 13.22 shows you one last example of how a child class can override the methods of the parent class.

LISTING 13.22 The Method of a Child Class Overriding That of Its Parent

Click here to view code image

1: <?php

2: class myClass {

3: public $name = "Benson";

4: public function myClass($n) {

5: $this->name = $n;

6: }

7: public function sayHello() {

8: echo "HELLO! My name is ".$this->name;

9: }

10: }

11: class childClass extends myClass {

12: public function sayHello() {

13: echo "I will not tell you my name.";

14: }

15: }

16: $object1 = new childClass("Baby Benson");

17: $object1->sayHello();

18: ?>

The only changes in this code from Listing 13.21 are the new lines 12–14. In these lines, a function is created called sayHello() that, instead of printing HELLO! My name is…, prints the message I will not tell you my name. Because the sayHello() function now exists in childClass, and childClass is the class called in line 16, its version of sayHello() is the one used.

If you save this code as inheritance2.php, place it in your document root, and access it with your web browser, you will see the following on your screen:

I will not tell you my name

Like most elements of object-oriented programming, inheritance is useful when attempting to make your code flexible. Suppose that you create a text-formatting class that organizes and stores data, formats it in HTML, and outputs the result to a browser—your own personal masterpiece. Now suppose that you have a client who wants to use that concept, but instead of formatting the content into HTML and sending it to a browser, he wants to format it as plain text and save it to a text file. No problem; you just add a few methods and properties, and away you go. Finally, the client comes back and says that he really wants the data to be formatted and sent as an email—and then, what the heck, why not create XML-formatted files as well?

Although you might want to pull your hair out in frustration, you’re really not in a bad situation. If you separate the compilation and storage classes from the formatting classes—one for each of the various delivery methods (HTML, text, email, XML)—you essentially have a parent-child relationship. Consider the parent class the one that holds the compilation and storage methods. The formatting classes are the children: They inherit the information from the parent and output the result based on their own functionality. Everybody wins.

Switching Flow

Your PHP scripts are going to be full of functions, objects, and logic that control input and output. It is common for scripts to evaluate conditions and change their behavior accordingly. These decisions make your PHP scripts dynamic—that is, able to change output according to circumstances. Like most programming languages, including JavaScript, as you saw in previous chapters, PHP enables you to control flow with an if statement.

The if Statement

The if statement is a way of controlling the execution of a statement that follows it (that is, a single statement or a block of code inside braces). The if statement evaluates an expression found between parentheses. If this expression results in a true value, the statement is executed. Otherwise, the statement is skipped entirely. This functionality enables scripts to make decisions based on any number of factors:

Click here to view code image

if (expression) {

 // code to execute if the expression evaluates to true

}

Listing 13.23 executes a block of code only if a variable contains the string "happy".

LISTING 13.23 An if Statement

Click here to view code image

1: <?php

2: $mood = "happy";

3: if ($mood == "happy") {

4: echo "Hooray! I'm in a good mood!";

5: }

6: ?>

In line 2, the value "happy" is assigned to the variable $mood. In line 3, the comparison operator == compares the value of the variable $mood with the string "happy". If they match, the expression evaluates to true, and the subsequent code is executed until the closing bracket is found (in this case, in line 5).

Put these lines into a text file called testif.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

Hooray! I'm in a good mood!

If you change the assigned value of $mood to "sad" or any other string besides "happy" and then run the script again, the expression in the if statement evaluates to false, and the code block is skipped. The script remains silent, which leads to the else clause.

Using the else Clause with the if Statement

When working with an if statement, you might want to define an alternative block of code that should be executed if the expression you are testing evaluates to false. You can do this by adding else to the if statement followed by a further block of code:

Click here to view code image

if (expression) {

 // code to execute if the expression evaluates to true

} else {

 // code to execute in all other cases

}

Listing 13.24 amends the example in Listing 13.23 so that a default block of code is executed if the value of $mood is not equivalent to "happy".

LISTING 13.24 An if Statement That Uses else

Click here to view code image

1: <?php

2: $mood = "sad";

3: if ($mood == "happy") {

4: echo "Hooray! I'm in a good mood!";

5: } else {

6: echo "I'm in a $mood mood.";

7: }

8: ?>

Put these lines into a text file called testifelse.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

I'm in a sad mood.

Notice in line 2 that the value of $mood is the string "sad", which obviously is not equal to "happy", so the expression in the if statement in line 3 evaluates to false. This results in the first block of code (line 4) being skipped. However, the block of code after else is executed, and the alternate message is printed: I'm in a sad mood. The string "sad" is the value assigned to the variable $mood.

Using an else clause in conjunction with an if statement allows scripts to make decisions about code execution. However, your options are limited to an either-or branch: either the code block following the if statement or the code block following the else statement. You’ll now learn about additional options for the evaluation of multiple expressions, one after another.

Using the elseif Clause with the if Statement

You can use an if…elseif…else clause to test multiple expressions (the if…else portion) before offering a default block of code (the elseif portion):

Click here to view code image

if (expression) {

 // code to execute if the expression evaluates to true

} elseif (another expression) {

 // code to execute if the previous expression failed

 // and this one evaluates to true

} else {

 // code to execute in all other cases

}

If the initial if expression does not evaluate to true, the first block of code is ignored. The elseif clause presents another expression for evaluation. If it evaluates to true, its corresponding block of code is executed. Otherwise, the block of code associated with the else clause is executed. You can include as many elseif clauses as you want; if you don’t need a default action, you can omit the else clause.

NOTE

The elseif clause can also be written as two words (else if). The syntax you use is a matter of taste, but coding standards employed by PEAR (the PHP Extension and Application Repository) and PECL (the PHP Extension Community Library) use elseif.

Listing 13.25 adds an elseif clause to the previous example.

LISTING 13.25 An if Statement That Uses else and elseif

Click here to view code image

1: <?php

2: $mood = "sad";

3: if ($mood == "happy") {

4: echo "Hooray! I'm in a good mood!";

5: } elseif ($mood == "sad") {

6: echo "Awww. Don't be down!";

7: } else {

8: echo "I'm neither happy nor sad, but $mood.";

9: }

10: ?>

Once again, the $mood variable has a value of "sad", as shown in line 2. This value is not equal to "happy", so the code in line 4 is ignored. The elseif clause in line 5 tests for equivalence between the value of $mood and the value "sad", which in this case evaluates to true. The code in line 6 is therefore executed. In lines 7 through 9, a default behavior is provided, which would be invoked if the previous test conditions were all false. In that case, we would simply print a message including the actual value of the $mood variable.

Put these lines into a text file called testifelseif.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

Awww. Don't be down!

Change the value of $mood to "iffy" and run the script. It produces the following output:

Click here to view code image

I'm neither happy nor sad, but iffy.

The switch Statement

The switch statement is an alternative way of changing flow, based on the evaluation of an expression. Using the if statement in conjunction with elseif, you can evaluate multiple expressions, as you’ve just seen. However, a switch statement evaluates only one expression in a list of expressions, selecting the correct one based on a specific bit of matching code. Whereas the result of an expression evaluated as part of an if statement is interpreted as either true or false, the expression portion of a switch statement is subsequently tested against any number of values, in hopes of finding a match:

Click here to view code image

switch (expression) {

 case result1:

 // execute this if expression results in result1

 break;

 case result2:

 // execute this if expression results in result2

 break;

 default:

 // execute this if no break statement

 // has been encountered hitherto

}

The expression used in a switch statement is often just a variable, such as $mood. Within the switch statement, you find a number of case statements. Each of these cases tests a value against the value of the switch expression. If the case value is equivalent to the expression value, the code within the case statement is executed. The break statement ends the execution of the switch statement altogether.

If the break statement is omitted, the next case statement is executed, regardless of whether a previous match has been found. If the optional default statement is reached without a previous matching value having been found, its code is executed.

CAUTION

It is important to include a break statement at the end of any code that will be executed as part of a case statement. Without a break statement, the program flow continues to the next case statement and ultimately to the default statement. In most cases, this results in unexpected behavior, likely incorrect!

Listing 13.26 re-creates the functionality of the if statement example using the switch statement.

LISTING 13.26 A switch Statement

Click here to view code image

1: <?php

2: $mood = "sad";

3: switch ($mood) {

4: case "happy":

5: echo "Hooray! I'm in a good mood!";

6: break;

7: case "sad":

8: echo "Awww. Don't be down!";

9: break;

10: default:

11: echo "I'm neither happy nor sad, but $mood.";

12: break;

13: }

14: ?>

Once again, in line 2 the $mood variable is initialized with a value of "sad". The switch statement in line 3 uses this variable as its expression. The first case statement in line 4 tests for equivalence between "happy" and the value of $mood. There is no match in this case, so script execution moves on to the second case statement in line 7. The string "sad" is equivalent to the value of $mood, so this block of code is executed. The break statement in line 9 ends the process. Lines 10 through 12 provide the default action, should neither of the previous cases evaluate as true.

Put these lines into a text file called testswitch.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

Awww. Don't be down!

Change the value of $mood to "happy" and run the script. It produces the following output:

Click here to view code image

Hooray! I'm in a good mood!

To emphasize the caution about the importance of the break statement, try running this script without the second break statement. Be sure to change the value of $mood back to "sad" and then run the script. Your output will be as follows:

Click here to view code image

Awww. Don't be down! I'm neither happy nor sad, but sad.

This is definitely not the desired output, so be sure to include break statements where appropriate.

Using the ?: Operator

The ?: or ternary operator is similar to the if statement, except that it returns a value derived from one of two expressions separated by a colon. This construct provides you with three parts of the whole—hence the name ternary. The expression used to generate the returned value depends on the result of a test expression:

Click here to view code image

(expression) ? returned_if_expression_is_true : returned_if_expression_is_false;

If the test expression evaluates to true, the result of the second expression is returned; otherwise, the value of the third expression is returned. Listing 13.27 uses the ternary operator to set the value of a variable according to the value of $mood.

LISTING 13.27 Using the ? Operator

Click here to view code image

1: <?php

2: $mood = "sad";

3: $text = ($mood == "happy") ? "I am in a good mood!" : "I am in a $mood mood.";

4: echo "$text";

5: ?>

In line 2, $mood is set to "sad". In line 3, $mood is tested for equivalence to the string "happy". Because this test returns false, the result of the third of the three expressions is returned.

Put these lines into a text file called testtern.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

I am in a sad mood.

The ternary operator can be difficult to read, but it’s useful if you are dealing with only two alternatives and want to write compact code.

Implementing Loops

So far, you’ve looked at decisions that a script can make about what code to execute. Scripts can also decide how many times to execute a block of code. Loop statements are specifically designed to enable you to perform repetitive tasks because they continue to operate until a specified condition is achieved or until you explicitly choose to exit the loop. Again, these structures will look familiar to you based on previous chapters that included discussions of loops in JavaScript.

The while Statement

The while statement looks similar in structure to a basic if statement, but it has the ability to loop:

while (expression) {

 // do something

}

Unlike an if statement, a while statement executes for as long as the expression evaluates to true, over and over again if need be. Each execution of a code block within a loop is called an iteration. Within the block, you usually change something that affects the while statement’s expression; otherwise, your loop continues indefinitely. For example, you might use a variable to count the number of iterations and act accordingly. Listing 13.28 creates a while loop that calculates and prints multiples of 2 up to 24.

LISTING 13.28 A while Statement

Click here to view code image

1: <?php

2: $counter = 1;

3: while ($counter <= 12) {

4: echo $counter . " times 2 is " . ($counter * 2) . "
";

5: $counter++;

6: }

7: ?>

This example initializes the variable $counter in line 2 with a value of 1. The while statement in line 3 tests the $counter variable so that as long as the value of $counter is less than or equal to 12, the loop continues to run. Within the while statement’s code block, the value of $counter is multiplied by 2, and the result is printed to the browser. In line 5, the value of $counter is incremented by 1. This step is extremely important because if you did not increment the value of the $counter variable, the while expression would never resolve to false and the loop would never end.

Put these lines into a text file called testwhile.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

1 times 2 is 2

2 times 2 is 4

3 times 2 is 6

4 times 2 is 8

5 times 2 is 10

6 times 2 is 12

7 times 2 is 14

8 times 2 is 16

9 times 2 is 18

10 times 2 is 20

11 times 2 is 22

12 times 2 is 24

The do…while Statement

A do…while statement looks a little like a while statement turned on its head. The essential difference between the two is that the code block is executed before the truth test and not after it:

do {

 // code to be executed

} while (expression);

CAUTION

The test expression of a do…while statement should always end with a semicolon.

This type of statement is useful when you want the code block to be executed at least once, even if the while expression evaluates to false. Listing 13.29 creates a do…while statement. The code block is executed a minimum of one time.

LISTING 13.29 The do…while Statement

Click here to view code image

1: <?php

2: $num = 1;

3: do {

4: echo "The number is: " . $num . "
";

5: $num++;

6: } while (($num > 200) && ($num < 400));

7: ?>

The do…while statement tests whether the variable $num contains a value that is greater than 200 and less than 400. Line 2 initializes $num to 1, so this expression returns false. Nonetheless, the code block is executed at least one time before the expression is evaluated, so the statement prints a single line to the browser.

Put these lines into a text file called testdowhile.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

The number is: 1

If you change the value of $num in line 2 to 300 and then run the script, the loop displays

The number is: 300

and continues to print similar lines, with increasing numbers, through

The number is: 399

The for Statement

Anything you want to do with a for statement can also be done with a while statement, but a for statement is often a more convenient method of achieving the same effect. In Listing 13.28, you saw how a variable was initialized outside the while statement and then tested within its expression and incremented within the code block. With a for statement, you can achieve this same series of events, but in a single line of code. This allows for more compact code and makes it less likely that you might forget to increment a counter variable, thereby creating an infinite loop:

Click here to view code image

for (initialization expression; test expression; modification expression) {

 // code to be executed

}

NOTE

Infinite loops are, as the name suggests, loops that run without bounds. If your loop is running infinitely, your script is running for an infinite amount of time. This behavior is very stressful on your web server and may render the web site unusable.

The expressions within the parentheses of the for statement are separated by semicolons. Usually, the first expression initializes a counter variable, the second expression is the test condition for the loop, and the third expression increments the counter. Listing 13.30 shows a for statement that re-creates the example in Listing 13.28, which multiplies 12 numbers by 2.

LISTING 13.30 Using the for Statement

Click here to view code image

1: <?php

2: for ($counter = 1; $counter <= 12; $counter++) {

3: echo $counter . " times 2 is " . ($counter * 2) . "
";

4: }

5: ?>

Put these lines into a text file called testfor.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

1 times 2 is 2

2 times 2 is 4

3 times 2 is 6

4 times 2 is 8

5 times 2 is 10

6 times 2 is 12

7 times 2 is 14

8 times 2 is 16

9 times 2 is 18

10 times 2 is 20

11 times 2 is 22

12 times 2 is 24

The results of Listings 13.28 and 13.30 are the same, but the for statement makes the code in Listing 13.30 more compact. Because the $counter variable is initialized and incremented at the beginning of the statement, the logic of the loop is clear at a glance. That is, as shown in line 2, the first expression initializes the $counter variable and assigns a value of 1, the test expression verifies that $counter contains a value that is less than or equal to 12, and the final expression increments the $counter variable. Each of these items is found in the single line of code.

When the sequence of script execution reaches the for loop, the $counter variable is initialized and the test expression is evaluated. If the expression evaluates to true, the code block is executed. The $counter variable is then incremented and the test expression is evaluated again. This process continues until the test expression evaluates to false.

Breaking Out of Loops with the break Statement

Both while and for statements incorporate a built-in test expression with which you can end a loop. However, the break statement enables you to break out of a loop based on the results of additional tests. This can provide a safeguard against error. Listing 13.31 creates a simple for statement that divides a large number by a variable that is incremented, printing the result to the screen.

LISTING 13.31 A for Loop That Divides 4000 by 10 Incremental Numbers

Click here to view code image

1: <?php

2: for ($counter = 1; $counter <= 10; $counter++) {

3: $temp = 4000 / $counter;

4: echo "4000 divided by " . $counter . " is…" . $temp . "
";

5: }

6: ?>

In line 2, this example initializes the variable $counter and assigns a value of 1. The test expression in the for statement verifies that the value of $counter is less than or equal to 10. Within the code block, 4000 is divided by $counter, printing the result to the browser.

Put these lines into a text file called testfor2.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

Click here to view code image

4000 divided by 1 is… 4000

4000 divided by 2 is… 2000

4000 divided by 3 is… 1333.33333333

4000 divided by 4 is… 1000

4000 divided by 5 is… 800

4000 divided by 6 is… 666.666666667

4000 divided by 7 is… 571.428571429

4000 divided by 8 is… 500

4000 divided by 9 is… 444.444444444

4000 divided by 10 is… 400

This seems straightforward enough. But what if the value you place in $counter comes from user input? The value could be a negative number or even a string. Let’s take the first instance, where the user input value is a negative number. Changing the initial value of $counter from 1 to -4 causes 4000 to be divided by 0 when the code block is executed for the fifth time. It is generally not a good idea for your code to divide by 0 because such an operation results in an answer of “undefined.” Listing 13.32 guards against this occurrence by breaking out of the loop if the value of the $counter variable equals 0.

LISTING 13.32 Using the break Statement

Click here to view code image

1: <?php

2: $counter = -4;

3: for (; $counter <= 10; $counter++) {

4: if ($counter == 0) {

5: break;

6: } else {

7: $temp = 4000/$counter;

8: echo "4000 divided by " . $counter . " is… " . $temp . "
";

9: }

10: }

11 ?>

NOTE

Dividing a number by 0 does not cause a fatal error in PHP. Instead, PHP generates a warning and execution continues.

Listing 13.32 uses an if statement, shown in line 4, to test the value of $counter before attempting mathematical operations using this value. If the value of $counter is equal to 0, the break statement immediately halts execution of the code block, and program flow continues after the for statement (line 11).

Put these lines into a text file called testfor3.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

Click here to view code image

4000 divided by -4 is… -1000

4000 divided by -3 is… -1333.33333333

4000 divided by -2 is… -2000

4000 divided by -1 is… -4000

Notice that the $counter variable was initialized in line 2, outside the for statement’s parentheses. This method was used to simulate a situation in which the value of $counter is set from outside the script.

TIP

You can omit any of the expressions from a for statement, but you must remember to retain the separation semicolons.

Skipping an Iteration with the continue Statement

The continue statement ends execution of the current iteration but doesn’t cause the loop as a whole to end. Instead, the next iteration begins immediately. Using the break statement as in Listing 13.32 is a little drastic. With the continue statement in Listing 13.33, you can avoid a divide-by-zero error without ending the loop completely.

LISTING 13.33 Using the continue Statement

Click here to view code image

1: <?php

2: $counter = -4;

3: for (; $counter <= 10; $counter++) {

4: if ($counter == 0) {

5: continue;

6: }

7: $temp = 4000 / $counter;

8: echo "4000 divided by " . $counter . " is… " . $temp . "
";

9: }

10: ?>

Line 5 swaps the break statement for a continue statement. If the value of the $counter variable is equivalent to 0, the iteration is skipped, and the next one starts immediately.

Put these lines into a text file called testcontinue.php and place this file in your web server document root. When you access this script through your web browser, it produces the following output:

Click here to view code image

4000 divided by -4 is… -1000

4000 divided by -3 is… -1333.33333333

4000 divided by -2 is… -2000

4000 divided by -1 is… -4000

4000 divided by 1 is… 4000

4000 divided by 2 is… 2000

4000 divided by 3 is… 1333.33333333

4000 divided by 4 is… 1000

4000 divided by 5 is… 800

4000 divided by 6 is… 666.666666667

4000 divided by 7 is… 571.428571429

4000 divided by 8 is… 500

4000 divided by 9 is… 444.44444444444

4000 divided by 10 is… 400

CAUTION

Using the break and continue statements can make code more difficult to read because they often add layers of complexity to the logic of the loop statements that contain them. Use these statements with care, or comment your code to show other programmers (or yourself) exactly what you’re trying to achieve with these statements.

Nesting Loops

Loops can contain other loop statements, as long as the logic is valid and the loops are tidy. The combination of such statements proves particularly useful when you’re working with dynamically created HTML tables. Listing 13.34 uses two for statements to print a multiplication table to the browser.

LISTING 13.34 Nesting Two for Loops

Click here to view code image

1: <?php

2: echo "<table style=\"border: 1px solid #000;\"> \n";

3: for ($y = 1; $y <= 12; $y++) {

4: echo "<tr> \n";

5: for ($x = 1; $x <= 12; $x++) {

6: echo "<td style=\"border: 1px solid #000; width: 25px;

7: text-align:center;\">";

8: echo ($x * $y);

9: echo "</td> \n";

10: }

11: echo "</tr> \n";

12: }

13: echo "</table>";

14: ?>

Before you examine the for loops, take a closer look at line 2 in Listing 13.34:

Click here to view code image

echo "<table style=\"border: 1px solid black;\"> \n";

Notice that Listing 13.34 uses the backslash character (\) before each of the quotation marks within the string containing the style information for the table. These backslashes also appear in lines 6 and 7, in the style information for the table data cell. This is necessary because it tells the PHP engine that we want to use the quotation mark character, rather than have PHP interpret it as the beginning or end of a string. If you did not “escape” the quotation marks with the backslash character, the statement would not make sense to the engine; it would read it as a string followed by a number followed by another string. Such a construct would generate an error. This line also uses \n to represent a newline character, which makes the source easier to read when it is rendered by the browser, which is useful especially for looking at HTML for tables.

The outer for statement (line 3) initializes a variable called $y, assigning to it a starting value of 1. This for statement defines an expression that intends to verify that the value of $y is less than or equal to 12, and then defines the increment that will be used. In each iteration, the code block prints a tr (table row) HTML element (line 4) and begins another for statement (line 5). This inner loop initializes a variable called $x and defines expressions along the same lines as for the outer loop. For each iteration, the inner loop prints a td (table cell) element to the browser (lines 6 and 7) as well as the result of $x multiplied by $y (line 8). Line 9 closes the table cell. After the inner loop has finished, execution falls back through to the outer loop, where the table row closes on line 11, ready for the process to begin again. When the outer loop has finished, the result is a neatly formatted multiplication table. Listing 13.34 wraps things up by closing the table on line 13.

Put these lines into a text file called testnestfor.php and place this file in your web server document root. When you access this script through your web browser, it should look like Figure 13.8.

[image: Images]

FIGURE 13.8
Output of testnestfor.php.

Summary

You saw a lot of code examples and hopefully learned a lot in this chapter. This chapter taught you about functions and how to create and use them. You learned how to define and pass arguments to a function, how to use the global and static statements, how to pass references to functions, and how to create default values for function arguments. You also learned to test for the existence of functions.

You learned the basics of working with object-oriented code. You learned to create classes and instantiate objects from them, and you learned how to create and access the properties and methods of a class, how to build new classes, and how to inherit features from parent classes.

As if all that wasn’t enough, you also learned about control structures and the ways in which they can help to make your scripts flexible and dynamic. Most of these structures reappear regularly throughout the rest of the book and are very similar in both JavaScript and PHP. You should now know enough of the basics to write both front-end and back-end scripts of your own that make decisions and perform repetitive tasks.

Q&A

Q. Can I include a function call within a double- or single-quoted string, as I can with a variable?

A. No. Just like in JavaScript, you must call functions outside quotation marks. However, you can break the string apart and place the function call between the parts of the string, using the concatenation operator to tie them together, as follows:

Click here to view code image

$newstring = "I purchased" . numPurchase($somenum) . " items.";

Q. What happens if I call a function that does not exist, or if I declare a function with a name already in use?

A. Calling a function that does not exist or declaring a function with the same name as another existing function causes the script to stop execution. Whether an error message displays in the browser depends on the error settings in your php.ini file.

Q. Must a control structure’s test expression result in a Boolean value?

A. Ultimately, yes. But in the context of a test expression, 0, an undefined variable, or an empty string is converted to false. All other values evaluate to true.

Q. Must I always surround a code block in a control statement with brackets?

A. If the code you want executed as part of a control structure consists of only a single line, you can omit the brackets. However, the habit of always using opening and closing brackets, regardless of structure length, is a good one.

Workshop

The Workshop is designed to help you review what you’ve learned and begin putting your knowledge into practice.

Quiz

1. True or false? If a function doesn’t require an argument, you can omit the parentheses in the function call.

2. How do you return a value from a function?

3. How can you declare a class called emptyClass that has no methods or properties?

4. If a variable is declared private, where can it be used?

5. How do you use an if statement to print the string "Youth message" to the browser if an integer variable, $age, is between 18 and 35, and if $age contains any other value, the string "Generic message" is printed to the browser?

Answers

1. The statement is false. You must always include the parentheses in your function calls, whether or not you are passing arguments to the function.

2. You must use the return keyword.

3. Use the class keyword, like so:

class emptyClass {

}

4. Variables declared private can only be used in the class itself.

5.

Click here to view code image

$age = 22;

if (($age >= 18) && ($age <= 35)) {

 echo "Youth message";

} else {

 echo "Generic message";

}

Exercises

[image: Images] Create a function that accepts four string variables, returns a string that contains an HTML table element, and encloses each of the variables in its own cell.

[image: Images] Create a class called baseCalc() that stores two numbers as properties. Next, create a method called calculate() that prints the numbers to the browser.

[image: Images] Now create classes called addCalc(), subCalc(), mulCalc(), and divCalc() that inherit functionality from baseCalc() but override the calculate() method, and then print the appropriate totals to the browser.

CHAPTER 14
Working with Cookies and User Sessions

What You’ll Learn in This Chapter:

[image: Images] How to store and retrieve cookie information

[image: Images] What session variables are and how they work

[image: Images] How to start or resume a session

[image: Images] How to store variables in a session

[image: Images] How to destroy a session

[image: Images] How to unset session variables

[image: Images] What the differences are between a browser’s local and session storage

In an online world controlled by HTTP—the Hypertext Transfer Protocol, or the way data is communicated on the Web—cookies and sessions are a means of storing and transferring small bits of information specific to you to help that communication along. For example, for the duration of the time you spend browsing an online shopping site, a bit of text stored in your web browser identifies your actions—such as adding an item to a shopping cart—as belonging to you.

Both JavaScript and PHP contain built-in language features for managing and keeping track of user information, including both simple cookies and all-encompassing user sessions.

Introducing Cookies

You can use cookies within your JavaScript or PHP scripts to store small bits of information about a user. A cookie is a small amount of data stored by the user’s browser in compliance with a request from a server or script. Each cookie consists of a name, value, and expiration date, as well as host and path information. Web browsers can handle up to 30 cookies for a single website, as long as the total amount of data stored is not more than 4KB.

After a cookie is set, only the originating host can read the data, ensuring that the user’s privacy is respected. Furthermore, users can configure their browsers to notify them upon receipt of all cookies, or even to refuse all cookie requests. For this reason, cookies should be used in moderation and should not be relied on as an essential element of an environment design without first warning users.

The Anatomy of a Cookie

Both JavaScript and PHP scripts can send cookies, and the underlying structure of the information that is sent through HTTP’s headers that might look something like this:

Click here to view code image

HTTP/1.1 200 OK

Date: Sat, 15 Jul 2017 10:50:58 GMT

Server: Apache/2.4.18 (Ubuntu) PHP/7.1.6

X-Powered-By: PHP/7.1.6

Set-Cookie: vegetable=artichoke; path=/; domain=.yourdomain.com

Connection: close

Content-Type: text/html

This example is specific to a cookie being sent via PHP, but the types of information sent are the same. In this example, the Set-Cookie header contains a name/value pair, a path, and a domain. If set, an expiration field provides the date at which the browser should “forget” the value of the cookie. If no expiration date is set, as in this example, the cookie expires when the user’s session expires—that is, when he closes his browser.

The path and domain fields work together: The path is a directory found on the domain, below which the cookie should be sent back to the server. If the path is a slash (/), which is common, that means the cookie can be read by any files below the document root. If the path is /products/, the cookie can be read only by files within the /products/ directory of the specific website.

The domain field represents the Internet domain from which cookie-based communication is allowed. For example, if your domain is www.yourdomain.com and you use www.yourdomain.com as the domain value for the cookie, the cookie will be valid only when the user browses the www.yourdomain.com website. This could pose a problem if you send the user to some domain like www2.yourdomain.com or billing.yourdomain.com within the course of his browsing experience, because the original cookie will no longer work. Therefore, it is common simply to begin the value of the domain slot in cookie definitions with a dot, leaving off the host (for example, .yourdomain.com). In this manner, the cookie is valid for all hosts on the “yourdomain.com” domain.

Accessing Cookies

If your web browser is configured to store cookies, it keeps the cookie-based information until the expiration date. If the browser is pointed at any page that matches the path and domain of the cookie, it resends the cookie to the server. The browser’s headers might look something like this:

Click here to view code image

GET / HTTP/1.1

Connection: Keep-Alive

Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/51.0.2704.106 Safari/537.36

Host: www.yourdomain.com

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0

Accept-Encoding: gzip, deflate, sdch

Accept-Language: en-US

Cookie: vegetable=artichoke

A PHP script then has access to the cookie in the environment variable HTTP_COOKIE or as part of the $_COOKIE superglobal variable, which you may access three different ways:

Click here to view code image

echo $_SERVER['HTTP_COOKIE']; // will print "vegetable=artichoke"

echo getenv('HTTP_COOKIE'); // will print "vegetable=artichoke"

echo $_COOKIE['vegetable']; // will print "artichoke"

You can access the cookie in JavaScript via document.cookie, which returns all the cookies associated with the current document loaded in the web browser. Suppose you were to put a piece of JavaScript in your code like the following:

console(document.cookie);

In this case, it would print the contents of the cookies (vegetable=artichoke in this instance) in the console of the browser, which is typically accessible in the browser’s Developer Tools (check the Help menu for your browser of choice).

Setting a Cookie

In this section, you’ll learn how to set cookies in PHP as well as in JavaScript. Cookies set by either language are completely accessible by the other (as well as languages not mentioned here) because these bits of information are ultimately stored in your web browser and appended to any server-side or client-side requests that are made. In other words, it doesn’t matter how cookies get there; once they’re there, they can be read.

You can set a cookie in a PHP script in two ways. First, you can use the header() function to set the Set-Cookie header. The header() function requires a string that is then included in the header section of the server response. Because headers are sent automatically for you, header() must be called before any output at all is sent to the browser:

Click here to view code image

header("Set-Cookie: vegetable=artichoke; expires=Sat, 15-Jul-2017 13:00:00 GMT;

path=/; domain=.yourdomain.com");

Although not difficult, this method of setting a cookie requires you to build a function to construct the header string. Although formatting the date as in this example and URL-encoding the name/value pair are not particularly arduous tasks, they are repetitive ones. Fortunately, PHP provides a function that does all these things already: setcookie().

The setcookie() function does what its name suggests—it outputs a Set-Cookie header. For this reason, just as before, it should be called before any other content is sent to the browser. The function accepts the cookie’s name, value, expiration date (in UNIX epoch format), path, domain, and integer (which should be set to 1 if the cookie is to be sent only over a secure connection). All arguments to this function are optional apart from the first (cookie name) parameter.

Listing 14.1 uses setcookie() to set a cookie.

LISTING 14.1 Setting and Printing a Cookie Value

Click here to view code image

1: <?php

2: setcookie("vegetable", "artichoke", time()+3600, "/", ".yourdomain.com", 0);

3:

4: if (isset($_COOKIE['vegetable'])) {

5: echo "<p>Hello again! You have chosen: ".$_COOKIE['vegetable'].".</p>";

6: } else {

7: echo "<p>Hello, you. This may be your first visit.</p>";

8: }

9: ?>

Even though the listing sets the cookie (line 2) when the script is run for the first time, the $_COOKIE['vegetable'] variable is not created at this point. Because a cookie is read-only when the browser sends it to the server, you cannot read it until the user revisits a page within this domain.

The cookie name is set to "vegetable" on line 2, and the cookie value to "artichoke". The time() function gets the current timestamp and adds 3600 to it (3,600 seconds in an hour). This total represents the expiration date. The code defines a path of "/", which means that a cookie should be sent for any page within this server environment. The domain argument is set to ".yourdomain.com" (you should make the change relevant to your own domain or leave it blank if you are working on localhost), which means that a cookie will be sent to any server in that group. Finally, the code passes 0 to setcookie(), signaling that cookies can be sent in an unsecure environment. If the value were 1, the cookie would only be valid in a secure (HTTPS) environment.

Passing setcookie() an empty string ("") for the string arguments or 0 for integer fields causes these arguments to be skipped.

NOTE

When you’re using a dynamically created expiration time in a cookie, as in Listing 14.1, note that the expiration time is created by adding a certain number of seconds to the current system time of the machine running Apache and PHP. If this system clock is not accurate, the machine may send the cookie at an expiration time that has already passed.

You can view your cookies in most modern web browsers using the Developer Tools baked into those browsers. Figure 14.1 shows the cookie information stored for Listing 14.1. The cookie name, content, and expiration date appear as expected; the domain name will differ when you run this script on your own domain.

[image: Images]

FIGURE 14.1
Viewing a cookie stored by PHP in a web browser.

For more information on using cookies, and the setcookie() function in particular, see the PHP Manual entry at http://www.php.net/setcookie.

To set the same cookie with JavaScript, you must be explicit with the header information, as in the first example in this section:

Click here to view code image

document.cookie = "vegetable=artichoke; expires=Sat, 15 Jul 2017 13:00:00 GMT;

path=/; domain=.yourdomain.com";

Listing 14.2 shows setting a cookie in JavaScript and providing a button to check the value of that cookie.

LISTING 14.2 Setting and Checking a Cookie with JavaScript

Click here to view code image

1: <!DOCTYPE html>

2: <html lang="en">

3: <head>

4: <title>Setting a Cookie</title>

5: <script type="text/javascript">

6: document.cookie = "vegetable=artichoke; expires=Sat, 15 Jul 2017 13:00:00 GMT;

7: path=/; domain=.yourdomain.com";

8: </script>

9: </head>

10: <body>

11: <h1>Got a Cookie?</h1>

12: <button onclick="alert(document.cookie);">Let's See!</button>

13: </body>

14: </html>

Figure 14.2 shows the cookie information stored for Listing 14.2. The cookie’s name, content, and expiration date appear as expected; the domain name will differ when you run this script on your own domain. You can see the cookie information in the Developer Tools as well as in the alert shown when the “Let’s See!” button is clicked.

[image: Images]

FIGURE 14.2
Viewing a stored cookie in a web browser by JavaScript.

Deleting a Cookie

In PHP, to delete a cookie, you just have to call setcookie() with the name argument only, which effectively resets all stored values:

setcookie("vegetable");

To be absolutely sure your cookie is no longer valid or storing any values at all, you could also set the cookie with a date that you are sure has already expired—a date in the past:

Click here to view code image

setcookie("vegetable", "", time()-60, "/", ".yourdomain.com", 0);

When deleting a cookie in this manner, make sure you pass setcookie() the same path, domain, and secure parameters as you did when originally setting the cookie.

Similarly, in JavaScript you delete a cookie with reset values, like so:

Click here to view code image

document.cookie = "vegetable=; expires=Thu, 01 Jan 1970 00:00:00 GMT";

In this case, the cookie expiration is set to a specific date in the past, meaning it is expired and thus will never be set.

Overview of Server-Side Sessions

Server-side sessions provide a unique identifier to a user, which can then be used to store and acquire information linked to that ID. When a visitor accesses a PHP session-enabled page, either a new identifier is allocated or the user is reassociated with one that was already established in a previous visit. Any variables that have been associated with the session become available to your code through PHP’s $_SESSION superglobal.

Session state is usually stored in a temporary file, although you can implement database storage or other server-side storage methods using a function called session_set_save_handler(). The use of session_set_save_handler() and a discussion about other advanced session functionality are beyond the scope of this book, but you can find more information in the PHP Manual section for sessions for all items not discussed here (http://php.net/manual/en/book.session.php).

To work with a PHP session, you need to explicitly start or resume that session unless you have changed your php.ini configuration file. By default, sessions do not start automatically. If you want to start a session this way, you must find the following line in your php.ini file and change the value from 0 to 1 (and restart the web server):

session.auto_start = 0

By changing the value of session.auto_start to 1, you ensure that a session initiates for every PHP document loaded by the web server. If you don’t change this setting, you need to call the session_start() function in each script.

After a session is started, you instantly have access to the user’s session ID via the session_id() function. The session_id() function enables you to either set or retrieve a session ID. Listing 14.2 starts a session and prints the session ID to the browser.

LISTING 14.3 Starting or Resuming a Session

Click here to view code image

1: <?php

2: session_start();

3: echo "<p>Your session ID is ".session_id().".</p>";

4: ?>

When this script (let’s call it session_checkid.php) is run for the first time from a browser, a session ID is generated by the session_start() function call on line 2. If the script is later reloaded or revisited, the same session ID is allocated to the user. This action assumes that the user has cookies enabled, as a cookie is created in the user’s browser that holds this information for reference.

For example, when I run this script the first time, the output is as follows:

Click here to view code image

Your session ID is 59f8a4cd676c96986ce293726d66b070.

When I reload the page, the output is still

Click here to view code image

Your session ID is 59f8a4cd676c96986ce293726d66b070.

because I have cookies enabled and the session ID still exists.

Because start_session() sets a cookie when initiating a session for the first time, it is imperative that you call this function before you output anything else at all to the browser. If you do not follow this rule, your session will not be set, and you will likely see warnings on your page.

Sessions remain current as long as the web browser is active. When the user restarts the browser, the cookie is no longer stored. You can change this behavior by altering the session.cookie_lifetime setting in your php.ini file. The default value is 0, but you can set an expiry period in seconds.

Working with Session Variables

Accessing a unique session identifier in each of your PHP documents is only the start of session functionality. When a session is started, you can store any number of variables in the $_SESSION superglobal and then access them on any session-enabled page.

Listing 14.4 adds two variables into the $_SESSION superglobal: product1 and product2 (lines 3 and 4).

LISTING 14.4 Storing Variables in a Session

Click here to view code image

1: <?php

2: session_start();

3: $_SESSION['product1'] = "Sonic Screwdriver";

4: $_SESSION['product2'] = "HAL 2000";

5: echo "The products have been registered.";

6: ?>

The magic in Listing 14.4 will not become apparent until the user moves to a new page. Listing 14.5 creates a separate PHP script that accesses the variables stored in the $_SESSION superglobal.

LISTING 14.5 Accessing Stored Session Variables

Click here to view code image

1: <?php

2: session_start();

3: ?>

4: <!DOCTYPE html>

5: <html lang="en">

6: <head>

7: <title>Your Products</title>

8: </head>

9: <body>

10: <h1>Your Products</h1>

11: <p>Your chosen products are:</p>

12:

13: <?php echo $_SESSION['product1']; ?>

14: <?php echo $_SESSION['product2']; ?>

15:

16: </body>

17: </html>

Figure 14.3 shows the output from Listing 14.5. As you can see, you have access to the $_SESSION['product1'] and $_SESSION['product2'] variables in an entirely new page. You can also see the reference to the PHPSESSID cookie in the browser’s Developer Tools.

[image: Images]

FIGURE 14.3
Accessing stored session variables.

Behind the scenes, PHP writes information to a temporary file on the web server. You can find out where this file is being written on your system by using the session_save_path() function. This function optionally accepts a path to a directory and then writes all session files to it. If you pass it no arguments, it returns a string representing the current directory to which it saves session files. On my system, the following prints /tmp:

echo session_save_path();

A glance at my /tmp directory reveals a number of files with names like the following:

Click here to view code image

sess_59f8a4cd676c96986ce293726d66b070

sess_76cae8ac1231b11afa2c69935c11dd95

sess_bb50771a769c605ab77424d59c784ea0

Opening the file that matches the session ID I was allocated when I first ran Listing 14.5, I can see how the registered variables have been stored:

Click here to view code image

product1|s:17:"Sonic Screwdriver";product2|s:8:"HAL 2000";

When a value is placed in the $_SESSION superglobal, PHP writes the variable name and value to a file. This information can be read and the variables resurrected later—as you have already seen. After you add a variable to the $_SESSION superglobal, you can still change its value at any time during the execution of your script, but the altered value is not reflected in the global setting until you reassign the variable to the $_SESSION superglobal.

The example in Listing 14.4 demonstrates the process of manually adding variables to the $_SESSION superglobal. This example is not very flexible, however. Ideally, you should be able to register a varying number of values. You might want to let users pick products from a list, for example. In this case, you can use the serialize() function to store an array in your session.

Listing 14.6 creates a form that allows a user to choose multiple products. You use the session variables to create a rudimentary shopping cart.

LISTING 14.6 Adding an Array Variable to a Session Variable

Click here to view code image

 1: <?php

 2: session_start();

 3: ?>

 4: <!DOCTYPE html>

 5: <html lang="en">

 6: <head>

 7: <title>Storing an array with a session</title>

 8: </head>

 9: <body>

10: <h1>Product Choice Page</h1>

11: <?php

12: if (isset($_POST['form_products'])) {

13: if (!empty($_SESSION['products'])) {

14: $products = array_unique(

15: array_merge(unserialize($_SESSION['products']),

16: $_POST['form_products']));

17: $_SESSION['products'] = serialize($products);

18: } else {

19: $_SESSION['products'] = serialize($_POST['form_products']);

20: }

21: echo "<p>Your products have been registered!</p>";

22: }

23: ?>

24: <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">

25: <p><label for="form_products">Select some products:</label>

26: <select id="form_products" name="form_products[]" multiple="multiple" size="3">

27: <option value="Sonic Screwdriver">Sonic Screwdriver</option>

28: <option value="Hal 2000">Hal 2000</option>

29: <option value="Tardis">Tardis</option>

30: <option value="ORAC">ORAC</option>

31: <option value="Transporter bracelet">Transporter bracelet</option>

32: </select></p>

33: <button type="submit" name="submit" value="choose">Submit Form</button>

34: </form>

35: <p>go to content page</p>

36: </body>

37: </html>

The listing starts or resumes a session by calling session_start() on line 2. This call gives access to any previously set session variables. An HTML form begins on line 24 and, on line 26, creates a SELECT element named form_products[], which contains OPTION elements for a number of products.

NOTE

Remember that HTML form elements that allow multiple selections, such as check boxes and multiple select lists, should have square brackets appended to the value of their NAME attributes. This makes the user’s choices available to PHP in an array.

The block of PHP code beginning on line 11 tests for the presence of the $_POST['form_products'] array (line 12). If the variable is present, you can assume that the form has been submitted and information has already been stored in the $_SESSION superglobal.

Line 12 tests for an array called $_SESSION['products']. If the array exists, it was populated on a previous visit to this script, so the code merges it with the $_POST['form_products'] array, extracts the unique elements, and assigns the result back to the $products array (lines 14–16). Then the $products array is added to the $_SESSION superglobal on line 17.

Line 35 contains a link to another script, which will demonstrate access to the products the user has chosen. This new script is created in Listing 14.7, but in the meantime you can save the code in Listing 14.6 as arraysession.php.

Moving on to Listing 14.7, you see how to access the items stored in the session created in arraysession.php.

LISTING 14.7 Accessing Session Variables

Click here to view code image

 1: <?php

 2: session_start();

 3: ?>

 4: <!DOCTYPE html>

 5: <html lang="en">

 6: <head>

 7: <title>Accessing Session Variables</title>

 8: </head>

 9: <body>

10: <h1>Content Page</h1>

11: <?php

12: if (isset($_SESSION['products'])) {

13: echo "Your cart:";

14: foreach (unserialize($_SESSION['products']) as $p) {

15: echo "".$p.";

16: }

17: echo "";

18: }

19: ?>

20: <p>return to product choice page</p>

21: </body>

22: </html>

Once again, session_start() resumes the session on line 2. Line 12 tests for the presence of the $_SESSION['products'] variable. If it exists, the variable is unserialized and looped through on lines 14–16, printing each of the user’s chosen items to the browser. Figure 14.4 shows an example of the output.

[image: Images]

FIGURE 14.4
Accessing an array of session variables.

For a real shopping cart program, you are likely to keep product details in a database and validate that user input rather than blindly store and present it, but Listings 14.6 and 14.7 demonstrate the ease with which you can use PHP session functions to access array variables set in other pages.

Destroying Sessions and Unsetting Session Variables

You can use the PHP function session_destroy() to end a session, which will erase all session variables managed on the server side. The session_destroy() function requires no arguments. You should have an established session for this function to work as expected. The following code fragment resumes a session in PHP and then abruptly destroys it:

session_start();

session_destroy();

When you move on to other pages that work with a PHP session, the session you have destroyed will not be available to them, forcing the initiation of new sessions. Any previously registered variables will be lost.

The session_destroy() function does not instantly destroy registered variables, however. They remain accessible to the script in which session_destroy() is called (until it is reloaded). The following code fragment resumes or initiates a session and registers a variable called test, which is set to 5. Destroying the session does not destroy the registered variable:

Click here to view code image

session_start();

$_SESSION['test'] = 5;

session_destroy();

echo $_SESSION['test']; // prints 5

To remove all registered variables from a session, you have to unset the variable:

Click here to view code image

session_start();

$_SESSION['test'] = 5;

session_destroy();

unset($_SESSION['test']);

echo $_SESSION['test']; // prints nothing (or a notice about an undefined index)

Using Sessions in an Environment with Registered Users

The examples you’ve seen so far have gotten your feet wet with PHP sessions, but perhaps additional explanation is warranted for using sessions “in the wild,” so to speak. The following two sections outline some examples of common session usage. In later chapters of this book, you’ll use sessions to some extent in the sample applications you build.

Working with Registered Users

Suppose that you’ve created an online community, or a portal, or some other type of application that users can “join.” The process usually involves a registration form, where the user creates a username and password and completes an identification profile. From that point forward, each time a registered user logs in to the system, you can grab the user’s identification information and store it in the user’s session.

The items you decide to store in the user’s session should be those items you can imagine using quite a bit—and that would be inefficient to continually extract from the database. For example, suppose that you have created a portal in which users are assigned a certain level, such as administrator, registered user, anonymous guest, and so forth. Within your display modules, you would always want to check to verify that the user accessing the module has the proper permissions to do so. Thus, “user level” is an example of a value stored in the user’s session, so that the authentication script used in the display of the requested module only has to check a session variable—there is no need to connect to, select, and query the database (except to validate that data further down the chain).

Working with User Preferences

If you are feeling adventurous in the design phase of a user-based application, you might build a system in which registered users can set specific preferences that affect the way they view your site. For example, you might allow your users to select from a predetermined color scheme, font type and size, and so forth. Or, you might allow users to turn “off” (or “on”) the visibility of certain content groupings.

You can store each of those functional elements in a session. When the user logs in, the application loads all relevant values into the user’s session and reacts accordingly for each subsequently requested page. Should the user decide to change her preferences, she could do so while logged in—you could even prepopulate a “preferences” form based on the items stored in the session instead of going back to the database to retrieve them. If the user changes any preferences while she is logged in, simply replace the value stored in the $_SESSION superglobal with the new selection—no need to force the user to log out and then log back in again.

Understanding Local and Session Storage in the Browser

The two scenarios just described can also be performed entirely within the browser itself, using mechanisms in HTML5 called local and session storage. Both local and session storage can be used to enhance a user’s experience with a website by reducing the latency inherent in continually requesting data from the web server.

Local and session storage in the browser do the same thing; the difference is the duration of time they perform their jobs. Local storage allows you to persist data in the user’s browser until he explicitly deletes it. This is great for long-term storage of preferences, but really bad when the computer is shared with others since the data will persist even after the browser is closed or the computer is shut down. On the other hand, items in session storage persist only as long as the tab, window, or browser is opened.

To place items in local or session storage, you can use JavaScript to access the HTML5 Web Storage API, like so:

Click here to view code image

localStorage.setitem("loggedIn", true);

sessionStorage.setitem("displayName", "Jane");

To access these values later, you can use JavaScript again:

Click here to view code image

var loggedIn = localStorage.getItem("loggedIn");

var displayName = sessionStorage.getItem("displayName");

You can learn more about the HTML5 Web Storage API at https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API/.

Summary

In this chapter, you looked at different ways of saving state in the stateless protocol of HTTP, including setting a cookie and starting a session. All methods of saving state use some manner of cookies or information in the HTTP headers, sometimes combined with the use of files or databases.

You learned that a cookie alone is not intrinsically reliable and cannot store much information. However, it can persist over a long period. Approaches that write information to a file or database involve some cost to speed and might become a problem on a popular site; this is a matter to explore with your systems administrators.

About sessions themselves, you learned how to initiate or resume a session with session_start(). When in a session, you learned how to add variables to the $_SESSION superglobal, check that they exist, unset them if you want, and destroy the entire session.

Q&A

Q. What will happen to my application if users disable cookies?

A. Simply put, if your application relies heavily on cookies and users have cookies disabled, your application won’t work. However, you can do your part to warn users that cookies are coming by announcing your intention to use cookies, and also by checking that cookies are enabled before doing anything “important” with your application. The idea being, of course, that even if users ignore your note that cookies must be turned on in order to use your application, specifically disallowing users to perform an action if your cookie test fails will get their attention!

Q. Should I be aware of any pitfalls with session functions?

A. The session functions are generally reliable. However, remember that cookies cannot be read across multiple domains. So, if your project uses more than one domain name on the same server (perhaps as part of an ecommerce environment), you might need to consider disabling cookies for sessions by setting the

session.use_cookies

directive to 0 in the php.ini file.

Workshop

The Workshop is designed to help you review what you’ve learned and begin putting your knowledge into practice.

Quiz

1. Which function would you use to start or resume a session within a PHP script?

2. Which PHP function can return the current session’s ID?

3. If you want to store user preferences for a long period of time on the client side, would you use local storage or session storage?

Answers

1. You can start a session by using the session_start() function within your PHP script.

2. You can access the session’s ID by using the session_id() function in your PHP script.

3. You would use local storage, but be careful if your use case includes using shared devices.

Exercises

[image: Images] Create a script that uses session functions to track which pages in your environment the user has visited.

[image: Images] Create a new script that lists for the user all the pages she has visited within your environment, and when.

CHAPTER 15
Working with Web-Based Forms

What You’ll Learn in This Chapter:

[image: Images] How HTML forms work

[image: Images] How to create the front end of an HTML form

[image: Images] How to name pieces of form data

[image: Images] How to include hidden data in forms

[image: Images] How to choose the correct form input controls for the situation

[image: Images] How to validate form data

[image: Images] How to submit form data

[image: Images] Using the form object with JavaScript

[image: Images] How to access information from forms using PHP

[image: Images] How to create a single document that contains both an HTML form and the PHP code that handles its submission

[image: Images] How to save state with hidden fields

[image: Images] How to use forms and PHP to send email

Web forms enable you to receive feedback, orders, or other information from the users who visit your web pages. If you’ve ever used a search engine such as Google or Bing, you’re familiar with HTML forms—those single-field entry forms with one button that, when clicked, gives you all the information you are looking for and then some. Product order forms are also a standard use of forms; if you’ve ordered anything from Amazon.com or purchased something from an eBay seller, you’ve used forms.

In this chapter, you’ll learn how to create your own forms, including both the front-end display and the back-end processing.

How HTML Forms Work

An HTML form is part of a web page that includes areas where users can enter information to be sent back to you, to another email address that you specify, to a database that you manage, or to another system altogether, such as a third-party management system for your company’s lead-generation forms, such as Salesforce.com.

Before you learn the HTML elements that are used to make your own forms, you should at least conceptually understand how the information from those forms makes its way back to you. The actual behind-the-scenes (the server-side or back-end) process requires knowledge of at least one programming language—or at least the ability to follow specific instructions when using someone else’s server-side script to handle the form input.

Forms include a button the user can click to submit the forms; that button can be an image that you create yourself or a standard HTML form button that is created when a form <input> element is created and given a type value of submit. When someone clicks a form-submission button, all the information typed in the form is sent to a URL that you specify in the action attribute of the <form> element. That URL should point to a specific script that will process your form, sending the form contents via email or performing another step in an interactive process (such as requesting results from a search engine or placing items in an online shopping cart).

When you start thinking about doing more with form content than simply emailing results to yourself, you need additional technical knowledge. For example, if you want to create an online store that accepts credit cards and processes transactions, there are some well-established practices for doing so, all geared toward ensuring the security of your customers’ data. That is not an operation you’ll want to enter into lightly.

Creating a Form

Every form must begin with an opening <form> tag, which can be located anywhere in the body of the HTML document. The <form> tag typically has three attributes, name, method, and action, as shown here:

Click here to view code image

<form name="my_form" method="post" action="myprocessingscript.php">

The most common method is post, which sends the form entry results to the back-end script as a document. You could also use method="get", which submits the results as part of the URL query string instead. The action attribute specifies the address for sending the form data. You have two options here:

[image: Images] You can type the location of a form-processing program or script on a web server, and the form data will then be sent to that program. This is by far the most common scenario.

[image: Images] You can type mailto: followed by your email address, and the form data will be sent directly to you whenever someone fills out the form. However, this approach is completely dependent on the user’s computer being properly configured with an email client. People accessing your site from a public computer without an email client will be left out in the cold. Here’s an example:

Click here to view code image

<form name="my_form" method="post" action="mailto:me@mysite.com">

The form created in Listing 15.1 and shown in Figure 15.1 includes just about every type of user input component you can currently use in HTML forms in modern browsers. Refer to this figure and listing as you read the following explanations of each type of input element.

[image: Images]

FIGURE 15.1
The code in Listing 15.1 uses many common HTML form elements.

LISTING 15.1 A Form with Various User-Input Components

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Guest Book</title>

 <style type="text/css">

 fieldset {

 width: 75%;

 border: 2px solid #ff0000;

 }

 legend {

 font-weight: bold;

 font-size: 125%;

 }

 label.question {

 width: 225px;

 float: left;

 text-align: left;

 font-weight: bold;

 }

 span.question {

 font-weight: bold;

 }

 input, textarea, select {

 border: 1px solid #000;

 padding: 3px;

 }

 #buttons {

 margin-top: 12px;

 }

 </style>

 </head>

 <body>

 <h1>My Guest Book</h1>

 <form name="gbForm" method="post" action="URL_to_script">

 <fieldset>

 <legend>Personal Information</legend>

 <p><label class="question" for="the_name">

 What is your name?</label>

 <input type="text" id="the_name" name="the_name"

 placeholder="Enter your full name."

 size="50" required autofocus></p>

 <p><label class="question" for="the_email">What is your e-mail

 address?</label>

 <input type="email" id="the_email" name="the_email"

 placeholder="Please use a real one!"

 size="50" required></p>

 </fieldset>

 <fieldset>

 <legend>Survey Questions</legend>

 <p>Please check all that apply:

 <input type="checkbox" id="like_it" name="some_statements[]"

 value="I really like your Web site.">

 <label for="like_it">I really like your Web site.</label>

 <input type="checkbox" id="the_best" name="some_statements[]"

 value="It's one of the best sites I've ever seen">

 <label for="the_best">It's one of the best sites I've ever

 seen.</label>

 <input type="checkbox" id="jealous" name="some_statements[]"

 value="I sure wish my site looked as good as yours.">

 <label for="jealous">I sure wish my site looked as good as

 yours.</label>

 <input type="checkbox" id="no_taste" name="some_statements[]"

 value="I have no taste and I'm pretty dense, so your site

 didn't do much for me.">

 <label for="no_taste">I have no taste and I'm pretty dense, so

 your site didn't do much for me.</label></p>

 <p><label for="choose_scale">Please rate my

 site on a scale of 1 (poor) to 10 (awesome):</label>

 <input type="number" id="choose_scale" name="choose_scale"

 min="0" max="10" step="1" value="5"></p>

 <p>Please choose the one thing you love

 Best about my web site:

 <input type="radio" id="the_picture" name="best_thing"

 value="me">

 <label for="the_picture">That amazing picture of you</label>

 <input type="radio" id="the_cats" name="best_thing"

 value="cats">

 <label for="the_cats">All the cat photos, of course</label>

 <input type="radio" id="the_story" name="best_thing"

 value="childhood story">

 <label for="the_story">The inspiring recap of your suburban

 childhood</label>

 <input type="radio" id="the_treasures" name="best_thing"

 value="Elvis treasures">

 <label for="the_treasures">The detailed list of all your Elvis

 memorabilia</label></p>

 <p><label for="how_improve">How can I

 improve my web site?</label>

 <select id="how_improve" name="how_improve" size="4" multiple>

 <option value="You can't. It couldn't be better.">You

 can't. It couldn't be better.</option>

 <option value="More about the cats.">More about the cats.

 </option>

 <option value="More about the family.">More about the

 family.</option>

 <option value="More about Elvis.">More about Elvis.

 </option>

 </select></p>

 </fieldset>

 <fieldset>

 <legend>Free for All!</legend>

 <p><label for="message">Feel free to send

 more praise, gift offers, etc.:</label>

 <textarea id="message" name="message" rows="7" cols="55">

 </textarea></p>

 </fieldset>

 <div id="buttons">

 <input type="submit" value="Click Here to Submit"> or

 <input type="reset" value="Erase and Start Over">

 </div>

 </form>

 </body>

</html>

The code in Listing 15.1 uses a <form> element that contains quite a few <input> tags. Each <input> tag corresponds to a specific user input component, such as a check box or radio button. The input, select, and text area elements contain borders in the style sheet, so it is easy to see the outline of the elements in the form. Keep in mind that you can apply all sorts of CSS to those elements.

The next few sections dig into the <input> tag and other form-related tags in detail.

Accepting Text Input

To ask the user for a specific piece of information within a form, use the <input> tag. Although the tag does not explicitly need to appear between the <form> and </form> tags, it is good practice and makes your code easier to follow. You can place <input> elements anywhere on the page in relation to text, images, and other HTML tags. For example, to ask for someone’s name, you could type the following text followed immediately by an <input> field:

Click here to view code image

<p><label class="question" for="the_name">What is your name?</label>

<input type="text" id="the_name" name="the_name"

 placeholder="Enter your full name."

 size="50" required autofocus></p>

The type attribute indicates what type of form element to display—a simple, one-line text entry box, in this case. (Each element type is discussed individually in this chapter.) In this example, note the use of the placeholder, required, and autofocus attributes. You’ll learn about the required attribute later in this chapter; the autofocus attribute automatically focuses the user’s cursor in this text field as soon as the browser renders the form. A form can have only one autofocus field. The placeholder attribute enables you to define some text that appears in the text box but disappears when you begin to type. Using this attribute, you can give the user a bit more guidance in completing your form.

TIP

If you want the user to enter text without the text being displayed on the screen, you can use <input type="password"> instead of <input type="text">. Asterisks (***) are then displayed in place of the text the user types. The size, maxlength, and name attributes work exactly the same for type="password" as they do for type="text". Keep in mind that this technique of hiding a password provides only visual protection; no encryption or other protection is associated with the password being transmitted.

The size attribute indicates approximately how many characters wide the text input box should be. If you are using a proportionally spaced font, the width of the input will vary depending on what the user enters. If the input is too long to fit in the box, most web browsers automatically scroll the text to the left.

The maxlength attribute determines the number of characters the user is allowed to type into the text box. If a user tries to type beyond the specified length, the extra characters won’t appear. You can specify a length that is longer, shorter, or the same as the physical size of the text box. The size and maxlength attributes are used only for those input fields meant for text values, such as type="text", type="email", type="URL", and type="tel", but not check boxes and radio buttons since those have fixed sizes.

Naming Each Piece of Form Data

No matter what type an input element is, you must give a name to the data it gathers. You can use any name you like for each input item, as long as each one on the form is different (except in the case of radio buttons and check boxes, discussed later in this chapter). When the form is processed by a back-end script, each data item is identified by name—you’ll see this later in the chapter as you process forms using PHP. This name becomes a variable, which is filled with a value. The value is either what the user typed in the form or the value associated with the element the user selected.

For example, if a user enters Jane Doe in the text box defined previously, a variable is sent to the form-processing script; the variable is user_name, and the value of the variable is Jane Doe. Form-processing scripts work with these types of variable names and values.

NOTE

Form-processing scripts are oversimplified here, for the sake of explanation at this point in the chapter. The exact appearance (or name) of the variables made available to your processing script depends on the programming language of that script. But conceptually, it’s valid to say that the name of the input element becomes the name of the variable, and the value of the input element becomes that variable’s value on the back end.

To use this text field (or others) in JavaScript, remember that the text object uses the name attribute; you refer to the value of the field in the previous snippet like this:

Click here to view code image

document.formname.user_name.value

Labeling Each Piece of Form Data

Labeling your form data is not the same as using a name or id attribute to identify the form element for later use. Instead, the <label></label> tag pair surrounds text that acts as a sort of caption for a form element. A form element <label> provides additional context for the element, which is especially important for screen reader software.

You can see two different examples in Listing 15.1. First, you can see the <label> surrounding the first question a user is asked (What is your name?). The use of the for attribute ties this label to the <input> element with the same id (in this case, the_name):

Click here to view code image

<p><label class="question" for="the_name">What is your name?</label>

<input type="text" id="the_name" name="the_name"

 placeholder="Enter your full name."

 size="50" required autofocus></p>

A screen reader would read to the user "What is your name?" and then also say "text box" to alert the user to complete the text field with the appropriate information. In another example from Listing 15.1, you see the use of <label> to surround different options in a check box list (and also a list of radio buttons, later in the listing):

Click here to view code image

<p>Please check all that apply:

<input type="checkbox" id="like_it" name="some_statements[]"

 value="I really like your Web site.">

<label for="like_it">I really like your Web site.</label>

<input type="checkbox" id="the_best" name="some_statements[]"

 value="It's one of the best sites I've ever seen">

<label for="the_best">It's one of the best sites I've ever

 seen.</label>

<input type="checkbox" id="jealous" name="some_statements[]"

 value="I sure wish my site looked as good as yours.">

<label for="jealous">I sure wish my site looked as good as

 yours.</label>

<input type="checkbox" id="no_taste" name="some_statements[]"

 value="I have no taste and I'm pretty dense, so your site

 didn't do much for me.">

<label for="no_taste">I have no taste and I'm pretty dense, so your

 site didn't do much for me.</label></p>

In this situation, the screen reader would read the text surrounded by the <label> tag, followed by "check box," to alert the user to choose one of the given options. Labels should be used for all form elements and can be styled using CSS in the same manner as other container elements—the styling does not affect the screen reader, but it does help with layout aesthetics and readability.

Grouping Form Elements

In Listing 15.1, you can see the use of the <fieldset> and <legend> elements three different times, to create three different groups of form fields. The <fieldset> element does just that—it surrounds groups of form elements to provide additional context for the user, whether the user is accessing it directly in a web browser or with the aid of screen-reader software. The <fieldset> element just defines the grouping; the <legend> element contains the text that will display or be read aloud to describe this grouping, such as the following from Listing 15.1:

Click here to view code image

<fieldset>

 <legend>Personal Information</legend>

 <p><label class="question" for="the_name">What is your name?</label>

 <input type="text" id="the_name" name="the_name"

 placeholder="Enter your full name."

 size="50" required autofocus></p>

…

</fieldset>

In this situation, when the screen reader reads the <label> associated with a form element, as you learned in the preceding section, it also appends the <legend> text. In the preceding example, it would be read as “Personal Information. What is your name? Text box.” The <fieldset> and <legend> elements can be styled using CSS, so the visual cue of the grouped elements can easily be made visible in a web browser (as you saw previously in Figure 15.1).

Including Hidden Data in Forms

Want to send certain data items to the server script that processes a form, but don’t want the user to see those data items? Use an <input> tag with a type="hidden" attribute. This attribute has no effect on the display; it just adds any name and value you specify to the form results when they are submitted.

If you are using a form-processing script provided by your web hosting provider, you might be directed to use this attribute to tell a script where to email the form results. For example, including the following code emails the results to me@mysite.com after the form is submitted:

Click here to view code image

<input type="hidden" name="mailto" value="me@mysite.com">

You sometimes see scripts using hidden input elements to carry additional data that might be useful when you receive the results of the form submission; some examples of hidden form fields include an email address and a subject for the email. If you are using a script provided by your web hosting provider, consult the documentation provided with that script for additional details about potential required hidden fields.

Exploring Form Input Controls

Various input controls are available for retrieving information from the user. You’ve already seen one text-entry option; the next few sections introduce you to most of the remaining form-input options you can use to design forms.

Check Boxes

Besides the text field, one of the simplest input types is a check box, which appears as a small square. Users can click check boxes to select or deselect one or more items in a group. For example, the check boxes in Listing 15.1 display after text that reads "Please check all that apply," implying that the user could indeed check all that apply.

The HTML for the check boxes in Listing 15.1 shows that the value of the name attribute is the same for all of them:

Click here to view code image

<p>Please check all that apply:

<input type="checkbox" id="like_it" name="some_statements[]"

 value="I really like your Web site.">

<label for="like_it">I really like your Web site.</label>

<input type="checkbox" id="the_best" name="some_statements[]"

 value="It's one of the best sites I've ever seen">

<label for="the_best">It's one of the best sites I've ever

 seen.</label>

<input type="checkbox" id="jealous" name="some_statements[]"

 value="I sure wish my site looked as good as yours.">

<label for="jealous">I sure wish my site looked as good as

 yours.</label>

<input type="checkbox" id="no_taste" name="some_statements[]"

 value="I have no taste and I'm pretty dense, so your site

 didn't do much for me.">

<label for="no_taste">I have no taste and I'm pretty dense, so your

 site didn't do much for me.</label></p>

The use of the brackets in the name attribute ([]) indicates to the back-end processing script that a series of values will be placed into this one variable instead of just one value (well, it might be just one value if the user selects only one check box). If a user selects the first check box, the text string I really like your Web site. is placed in the website_response[] bucket. If the user selects the third check box, the text string I sure wish my site looked as good as yours. also is put into the website_response[] bucket. The processing script then works with that variable as an array of data rather just a single entry.

TIP

If you find that the label for an input element is displayed too close to the element, just add a space between the close of the <input> tag and the start of the label text, like this:

Click here to view code image

<input type="checkbox" name="mini"

><label>Mini Piano Stool</label>

However, you might see groups of check boxes that do use individual names for the variables in the group. For example, the following is another way of writing the check box group:

Click here to view code image

<p>Please check all that apply:

<input type="checkbox" id="like_it" name="liked_site" value="yes"

 value="I really like your Web site.">

<label for="like_it">I really like your Web site.</label>

<input type="checkbox" id="the_best" name="best_site" value="yes"

 value="It's one of the best sites I've ever seen">

<label for="the_best">It's one of the best sites I've ever

 seen.</label>

<input type="checkbox" id="jealous" name="my_site_sucks" value="yes"

 value="I sure wish my site looked as good as yours.">

<label for="jealous">I sure wish my site looked as good as

 yours.</label>

<input type="checkbox" id="no_taste" name="am_dense" value="yes"

 value="I have no taste and I'm pretty dense, so your site

 didn't do much for me.">

<label for="no_taste">I have no taste and I'm pretty dense, so your

 site didn't do much for me.</label></p>

In this second list of check boxes, the variable name of the first check box is "liked_site" and the value (if checked) is "yes" when handled by a back-end processing script.

If you want a check box to be checked by default when the web browser renders the form, include the checked attribute. For example, the following code creates two check boxes, and the first is checked by default:

Click here to view code image

<input type="checkbox" id="like_it" name="liked_site" value="yes"

 value="I really like your Web site." checked>

<label for="like_it">I really like your Web site.</label>

<input type="checkbox" id="the_best" name="best_site" value="yes"

 value="It's one of the best sites I've ever seen">

<label for="the_best">It's one of the best sites I've ever

 seen.</label>

The check box labeled I really like your Web site. is checked by default in this example. The user must click the check box to uncheck it and thus indicate that he has another opinion of your site. The check box marked It's one of the best sites I've ever seen. is unchecked to begin with, so the user must click it to turn it on. Check boxes that are not selected do not appear in the form output.

If you want to handle values from the checkbox object in JavaScript, the object has the following four properties:

[image: Images] name is the name of the check box as well as the object name.

[image: Images] value is the "true" value for the check box—usually on. This value is used by server-side programs to indicate whether the check box was checked. In JavaScript, you should use the checked property instead.

[image: Images] defaultChecked is the default status of the check box, assigned by the checked attribute in HTML.

[image: Images] checked is the current value. This is a Boolean value: true for checked and false for unchecked.

To manipulate the check box or use its value, you use the checked property. For example, this statement turns on a check box called same_address in a form named order:

Click here to view code image

document.order.same.checked = true;

The check box has a single method: click(). This method simulates a click on the box. It also has a single event, onClick, that occurs whenever the check box is clicked. This happens whether the box was turned on or off, so you’ll need to examine the checked property via JavaScript to see what action really happened.

Radio Buttons

Radio buttons, for which only one choice can be selected at a time, are almost as simple to implement as check boxes. The simplest use of a radio button is for yes/no questions or for voting when only one candidate can be selected.

To create a radio button, use type="radio" and give each option its own <input> tag. Use the same name for all the radio buttons in a group, but don’t use the brackets ([]) you used with the check box, because you don’t have to accommodate multiple answers:

Click here to view code image

<input type="radio" id="vote_yes" name="vote" value="yes" checked>

<label for="vote_yes">Yes</label>

<input type="radio" id="vote_no" name="vote" value="no">

<label for="vote_no">No</label>

The value can be any name or code you choose. If you include the checked attribute, that button is selected by default. No more than one radio button with the same name can be checked.

When designing your form and choosing between check boxes and radio buttons, ask yourself whether the question being asked or implied could be answered in only one way. If so, use a radio button.

NOTE

Radio buttons are named for their similarity to the buttons on old push-button radios. Those buttons used a mechanical arrangement so that when you pushed one button in, any other pressed button popped out.

As for scripting, radio buttons are similar to check boxes, except that an entire group of them shares a single name and a single object. You can refer to the following properties of the radio object:

[image: Images] name is the name common to the radio buttons.

[image: Images] length is the number of radio buttons in the group.

To access the individual buttons in JavaScript, you treat the radio object as an array. The buttons are indexed, starting with 0. Each individual button has the following properties:

[image: Images] value is the value assigned to the button.

[image: Images] defaultChecked indicates the value of the checked attribute and the default state of the button.

[image: Images] checked is the current state.

For example, you can check the first radio button in the radio1 group on the form1 form with this statement:

Click here to view code image

document.form1.radio1[0].checked = true;

However, if you do this, be sure you set the other values to false as needed. This is not done automatically. You can use the click() method to do both of these actions in one step.

Like check boxes, radio buttons have a click() method and an onClick event handler. Each radio button can have a separate statement for this event.

Selection Lists

Both scrolling lists and pull-down pick lists are created with the <select> tag. You use this tag together with the <option> tag, as the following example shows (taken from Listing 15.1):

Click here to view code image

<p><label for="how_improve">How can I

 improve my web site?</label>

<select id="how_improve" name="how_improve" size="4" multiple>

 <option value="You can't. It couldn't be better.">You can't.

 It couldn't be better.</option>

 <option value="More about the cats.">More about the cats.</option>

 <option value="More about the family.">More about the

 family.</option>

 <option value="More about Elvis.">More about Elvis.</option>

</select></p>

Unlike the text input type that you learned about briefly in a previous section, the size attribute here determines how many items show at once on the selection list. If size="2" were used in the preceding code, only the first two options would be visible and a scrollbar would appear next to the list so the user could scroll down to see the third and fourth options.

Including the multiple attribute enables users to select more than one option at a time; the selected attribute makes an option initially selected by default. When the form is submitted, the text specified in the value attribute for each option accompanies the selected option.

TIP

If you leave out the size attribute or specify size="1", the list creates a simple drop-down pick list. Pick lists don’t allow for multiple choices; they are logically equivalent to a group of radio buttons. The following example shows another way to choose yes or no for a question:

Click here to view code image

<select name="vote">

 <option value="yes">Yes</option>

 <option value="no">No</option>

</select>

The object for selection lists is the select object. The object itself has the following properties:

[image: Images] name is the name of the selection list.

[image: Images] length is the number of options in the list.

[image: Images] options is the array of options. Each selectable option has an entry in this array.

[image: Images] selectedIndex returns the index value of the currently selected item. You can use this to check the value easily. In a multiple-selection list, this indicates the first selected item.

The options array has a single property of its own, length, which indicates the number of selections. In addition, each item in the options array has the following properties:

[image: Images] index is the index into the array.

[image: Images] defaultSelected indicates the state of the selected attribute.

[image: Images] selected is the current state of the option. Setting this property to true selects the option. The user can select multiple options if the multiple attribute is included in the <select> tag.

[image: Images] name is the value of the name attribute. This is used by the server.

[image: Images] text is the text that is displayed in the option.

The select object has two methods—blur() and focus()—that perform the same purposes as the corresponding methods for text objects. The event handlers are onBlur, onFocus, and onChange, also similar to other objects.

NOTE

You can change selection lists dynamically—for example, choosing a product in one list could control which options are available in another list. You can also add and delete options from the list.

Reading the value of a selected item is a two-step process. You first use the selectedIndex property and then use the value property to find the value of the selected choice. Here’s an example:

Click here to view code image

ind = document.mvform.choice.selectedIndex;

val = document.mvform.choice.options[ind].value;

This uses the ind variable to store the selected index and then assigns the val variable to the value of the selected choice. Things are a bit more complicated with a multiple selection: You have to test each option’s selected attribute separately.

No HTML tags other than <option> and </option> should appear between the <select> and </select> tags, with the exception of the <optgroup> tag (not shown in Listing 15.1). The use of <optgroup>, as in the following snippet, enables you to create groups of options (that’s where the name optgroup comes from) with a label that shows up in the list but can’t be selected as an "answer" to the form field. For example, the snippet

Click here to view code image

<select name="grades">

 <optgroup label="Good Grades">

 <option value="A">A</option>

 <option value="B">B</option>

 </optgroup>

 <optgroup label="Average Grades">

 <option value="C">C</option>

 </optgroup>

 <optgroup label="Bad Grades">

 <option value="D">D</option>

 <option value="F">F</option>

 </optgroup>

</select>

produces a drop-down list that looks like this:

Good Grades

 A

 B

Average Grades

 C

Bad Grades

 D

 F

In this situation, only A, B, C, D, and F are selectable, but the <optgroup> labels are visible.

Text Fields, Text Areas, and Other Input Types

The <input type="text"> attribute mentioned earlier this chapter allows the user to enter only a single line of text. When you want to allow multiple lines of text in a single input item, use the <textarea> and </textarea> tags to create a text area instead of just a text field. Any text you include between these two tags is displayed as the default entry in that box. Here’s the example from Listing 15.1:

Click here to view code image

<textarea id="message" name="message" rows="7" cols="55">Your

 message here.</textarea>

As you probably guessed, the rows and cols attributes control the number of rows and columns of text that fit in the input box. The cols attribute is a little less exact than rows and approximates the number of characters that fit in a row of text. Text area boxes do have a scrollbar, however, so the user can enter more text than what fits in the display area.

The text and textarea objects also have a few JavaScript methods you can use:

[image: Images] focus() sets the focus to the field. This positions the cursor in the field and makes it the current field.

[image: Images] blur() is the opposite; it removes the focus from the field.

[image: Images] select() selects the text in the field, just as a user can do with the mouse. All the text is selected; there is no way to select part of the text.

You can also use event handlers to detect when the value of a text field changes. The text and textarea objects support the following event handlers:

[image: Images] The onFocus event happens when the text field gains focus.

[image: Images] The onBlur event happens when the text field loses focus.

[image: Images] The onChange event happens when the user changes the text in the field and then moves out of it.

[image: Images] The onSelect event happens when the user selects some or all of the text in the field. Unfortunately, there’s no way to tell exactly which part of the text was selected. (If the text is selected with the select() method described previously, this event is not triggered.)

If used, these event handlers should be included in the <input> tag declaration. For example, the following text field includes an onChange event that displays an alert:

Click here to view code image

<input type="text" name="text1" onChange="window.alert('Changed.');">

Let’s turn back to the basic <input> element for a minute, however, because HTML5 provides many more type options for input than simply "text," such as built-in date pickers. The downside is that not all browsers fully support many of those options (such as the built-in date picker). Here are a few of the different input types that are fully supported but that we haven’t discussed in any detail in this lesson:

[image: Images] type="email"—This appears as a regular text field, but when form validation is used, the built-in validator checks that it is a well-formed email address. Some mobile devices display relevant keys (the @ sign, for example) by default instead of requiring additional user interactions.

[image: Images] type="file"—This input type opens a dialog box to enable you to search for a file on your computer to upload.

[image: Images] type="number"—Instead of creating a <select> list with <option> tags for each number, this type enables you to specify min and max values, and the step-between numbers, to automatically generate a list on the browser side. You can see this in use in Listing 15.1.

[image: Images] type="range"—Much like the number type just covered, this type enables you to specify min and max values and the step-between numbers, but in this case, it appears as a horizontal slider.

[image: Images] type="search"—This appears as a regular text field, but with additional controls sometimes used to allow the user to clear the search box using an x or a similar character.

[image: Images] type="url"—This input type appears as a regular text field, but when form validation is used, the built-in validator checks that it is a well-formed URL. Some mobile devices display relevant keys (the .com virtual key, for instance) by default instead of requiring additional user interactions.

You can stay up to date with the status of these and other <input> types using the chart at https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input.

Using HTML5 Form Validation

Many features in HTML5 have made web developers very happy people. One of the simplest yet most life-changing feature might be the inclusion of form validation. Before HTML5 form validation existed, we had to create convoluted JavaScript-based form validation, which caused headaches for everyone involved.

But no more! HTML5 validates forms by default, unless you use the novalidate attribute in the <form> element. Of course, if you do not use the required attribute in any form fields themselves, there’s nothing to validate. As you learned in a previous section, not only are fields validated for content (any content at all) but they are validated according to the type they are. For example, in Listing 15.1, we have a required field for an email address:

Click here to view code image

<p><label class="question" for="the_email">What is your e-mail

 address?</label>

<input type="email" id="the_email" name="the_email"

 placeholder="Please use a real one!"

 size="50" required></p>

In Figures 15.2 and 15.3, you can see that the form automatically validates for the presence of content, but then also slaps you on the wrists when you try to enter a junk string in the field instead of an email address.

[image: Images]

FIGURE 15.2
Attempting to submit a form with no content in a required field causes a validation error.

NOTE

Validation of email addresses begins and ends with the entry simply looking like an email address. This sort of pattern matching is really the only type of “validation” that you can do with email addresses, short of a time-consuming back-end processing script.

You can use the pattern attribute of the <input> field to specify your own pattern-matching requirements. The pattern attribute uses regular expressions, which is a large enough topic to warrant its own book. But consider a little example. If you want to ensure that your <input> element contains only numbers and letters (no special characters), you could use the following:

Click here to view code image

<input type="text" id="the_text" name="the_text"

 placeholder="Please enter only letters and numbers!"

 size="50" pattern="[a-z,A-Z,0-9]" required >

The pattern here says that if the field contains any letter between a and z, any letter between A and Z (case matters), and any number between 0 and 9, it’s valid. To learn more about regular expressions without buying an entire book, take a look at the online tutorial at http://regexone.com/.

[image: Images]

FIGURE 15.3
Attempting to submit a form with badly formed content in a field expecting an email address causes a validation error.

Submitting Form Data

Forms typically include a button that submits the form data to a script on the server or invokes a JavaScript action. For the rest of this chapter, we’ll go through some JavaScript actions first and then move into back-end processing using PHP.

So about that button—you can put any label you like on the Submit button with the value attribute:

Click here to view code image

<input type="submit" value="Place My Order Now!">

Unless you change the style using CSS, a gray button is sized to fit the label you put in the value attribute. When the user clicks it, all data items on the form are sent to the email address or script specified in the form’s action attribute.

You can also include a Reset button that clears all entries on the form so that users can start over if they change their minds or make mistakes. Use the following:

Click here to view code image

<input type="reset" value="Clear This Form and Start Over">

If the standard Submit and Reset buttons look a little bland to you, remember that you can style them using CSS. If that’s not good enough, you’ll be glad to know that there’s an easy way to substitute your own graphics for these buttons. To use an image of your choice for a Submit button, use the following:

Click here to view code image

<input type="image" src="button.gif" alt="Order Now!">

The button.gif image displays on the page, and the form also is submitted when a user clicks the button.gif image. You can include any attributes normally used with the tag, such as alt and style.

The form element also includes a generic button type. When using type="button" in the <input> tag, you get a button that performs no action on its own but can have an action assigned to it using a JavaScript event handler (such as onclick).

Using JavaScript for Form Events

The form object has two methods: submit() and reset(). You can use these methods to submit the data or reset the form yourself, without requiring the user to click a button. One reason for this is to submit the form when the user clicks an image or performs another action that would not usually submit the form.

CAUTION

If you use the submit() method to send data to a server or via email, most browsers will prompt the user to verify that he or she wants to submit the information. There’s no way to do this behind the user’s back (nor should you ever do anything with data without the user knowing it).

The form object has two events, Submit and Reset. You can specify a group of JavaScript statements or a function call for these events within the <form> tag that defines the form.

If you specify a statement or a function for the Submit event, the statement is called before the data is submitted to the server-side script. You can prevent the submission from happening by returning a value of false from the Submit event handler. If the statement returns true, the data will be submitted. In the same fashion, you can prevent a Reset button from working with an Reset event handler.

Accessing Form Elements with JavaScript

The most important property of the form object is the elements array, which contains an object for each of the form elements. You can refer to an element by its own name or by its index in the array. For example, the following two expressions both refer to the first element in the form shown in Listing 15.1:

document.gbForm.elements[0]

document.gbForm.name

NOTE

Both forms and elements can be referred to by their own names or as indexes in the forms and elements arrays. For clarity, the examples in this chapter use individual form and element names rather than array references. You’ll also find it easier to use names in your own scripts.

If you do refer to forms and elements as arrays, you can use the length property to determine the number of objects in the array: document.forms.length is the number of forms in a document, and document.gbForm.elements.length is the number of elements in the gbForm form.

You can also access form elements using the W3C DOM. In this case, you use an id attribute on the form element in the HTML document, and use the document.getElementById() method to find the object for the form. For example, this statement finds the object for the text field called name and stores it in the name variable:

Click here to view code image

name = document.getElementById("name");

This enables you to quickly access a form element without first finding the form object. You can assign an id to the <form> tag and find the corresponding object if you need to work with the form’s properties and methods.

Displaying Data from a Form

As a simple example of interacting with forms purely on the client side, Listing 15.2 shows a form with name, address, and phone number fields, as well as a JavaScript function that displays the data from the form in a pop-up window.

LISTING 15.2 A Form That Displays Data in a Pop-up Window

Click here to view code image

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Form Display Example</title>

 <script type="text/javascript">

 function display() {

 dispWin = window.open('','NewWin',

 'toolbar=no,status=no,width=300,height=200')

 message = "NAME:" +

 document.form1.name.value;

 message += "ADDRESS:" +

 document.form1.address.value;

 message += "PHONE:" +

 document.form1.phone.value;

 message += "";

 dispWin.document.write(message);

 }

 </script>

 </head>

 <body>

 <h1>Form Display Example</h1>

 <p>Enter the following information. When you press the Display

 button, the data you entered will be displayed in a pop-up.</p>

 <form name="form1" method="get" action="">

 <p>NAME: <input type="text" name="name" size="50"></p>

 <p>ADDRESS: <input type="text" name="address" size="50"></p>

 <p>PHONE: <input type="text" name="phone" size="50"></p>

 <p><input type="button" value="Display"

 onclick="display();"></p>

 </form>

 </body>

</html>

Here is a breakdown of how this simple HTML document and script work:

[image: Images] The <script> section in the document’s header defines a function called display() that opens a new window and displays the information from the form.

[image: Images] The <form> tag begins the form. Because this form is handled entirely by JavaScript, the form action and method have no value.

[image: Images] The <input> tags define the form’s three fields: yourname, address, and phone. The last <input> tag defines the Display button, which is set to run the display() function.

Figure 15.4 shows this form in action. The Display button has been clicked, and the pop-up window shows the results. Although this is not the most exciting example of client-side form interaction, it clearly shows the basics that form a foundation for later work.

[image: Images]

FIGURE 15.4
Displaying data from a form in a pop-up window.

Accessing Form Elements with PHP

To emphasize the process of communicating between a static HTML form and a back-end processing script, let’s keep the HTML separate from the PHP code. Listing 15.3 builds a simple HTML form.

LISTING 15.3 A Simple HTML Form

Click here to view code image

1: <!DOCTYPE html>

2: <html>

3: <head>

4: <title>A simple HTML form</title>

5: </head>

6: <body>

7: <form method="post" action="send_simpleform.php">

8: <p><label for="user">Name:</label>

9: <input type="text" id="user" name="user"></p>

10: <p><label for="message">Message:</label>

11: <textarea id="message" name="message" rows="5" cols="40"></textarea></p>

12: <button type="submit" name="submit" value="send">Send Message</button>

13: </form>

14: </body>

15: </html>

Put these lines into a text file called simpleform.html and place that file in your web server document root. This listing defines a form that contains a text field with the name "user" on line 9, a text area with the name "message" on line 11, and a submit button on line 12. The form element’s action argument points to a file called send_simpleform.php that processes the form information. The method of this form is post, so the variables are stored in the $_POST superglobal.

Listing 15.4 creates the code that receives user input and displays it within the context of an HTML page.

LISTING 15.4 Reading Input from a Form

Click here to view code image

1: <!DOCTYPE html>

2: <html>

3: <head>

4: <title>A simple response</title>

5: </head>

6: <body>

7: <p>Welcome, <?php echo $_POST['user']; ?>!</p>

8: <p>Your message is:

9: <?php echo $_POST['message']; ?></p>

10: </body>

11: </html>

Put these lines into a text file called send_simpleform.php and place that file in your web server document root.

The script in Listing 15.4 is called when the user submits the form created in Listing 15.3. The code in Listing 15.4 accesses two variables: $_POST['user'] and $_POST['message']. These are references to the variables in the $_POST superglobal, which contain the values that the user entered in the user text field and the message text area. Form processing in PHP really is as simple as that.

Enter some information in the form fields and click the Send Message button. You should see your input echoed to the screen. An example is shown in Figure 15.5.

[image: Images]

FIGURE 15.5
Form submission complete.

Accessing Form Input with User-Defined Arrays

The previous example showed how to gather information from HTML elements that submit a single value per element name, such as text fields, text areas, and radio buttons. This leaves you with a problem when working with elements such as check boxes because it is possible for the user to choose one or more items. Suppose you name the element with a plain name, like so:

Click here to view code image

<input type="checkbox" id="products" name="products">

In this case, the script that receives this data has access to only a single value corresponding to this name ($_POST['products']) and thus only the first check box in the list that the user selected. You can change this behavior by renaming an element of this kind so that its name ends with an empty set of square brackets. You’ve seen this already in Listing 15.1, as one of the survey questions asked the user to "check all that apply." You could then put the responses in an array called some_statements.

Click here to view code image

<p>Please check all that apply:

 <input type="checkbox" id="like_it" name="some_statements[]"

 value="I really like your Web site.">

 <label for="like_it">I really like your Web site.</label>

 <input type="checkbox" id="the_best" name="some_statements[]"

 value="It's one of the best sites I've ever seen">

 <label for="the_best">It's one of the best sites I've ever

 seen.</label>

 <input type="checkbox" id="jealous" name="some_statements[]"

 value="I sure wish my site looked as good as yours.">

 <label for="jealous">I sure wish my site looked as good as

 yours.</label>

 <input type="checkbox" id="no_taste" name="some_statements[]"

 value="I have no taste and I'm pretty dense, so your site

 didn't do much for me.">

 <label for="no_taste">I have no taste and I'm pretty dense, so

 your site didn't do much for me.</label>

</p>

In the script that processes the form input, the values of all selected check boxes with the name "some_statements[]" are available in an array called $_POST['some_statements']. You can cycle through the array, as in the following snippet, which builds a bulleted list of selected items:

Click here to view code image

<?php

if (!empty($_POST['products'])) {

 echo "";

 foreach ($_POST['products'] as $value) {

 echo "$value";

 }

 echo "";

} else {

 echo "None";

}

?>

Although the looping technique is particularly useful with check boxes, it can also work with other types of form elements. For example, if you use a SELECT element that allows for multiple selections, you are also enabling a user to choose many values within a single field name.

As long as the name you choose ends with empty square brackets, PHP compiles the user input for this field into an array.

Combining HTML and PHP Code on a Single Page

In some circumstances, you might want to include the form-parsing PHP code on the same page as a hard-coded HTML form. Such a combination can prove useful if you need to present the same form to the user more than once. You would have more flexibility if you were to write the entire page dynamically, of course, but you would miss out on one of the great strengths of PHP, which is that it mingles well with standard HTML. The more standard HTML you can include in your pages, the easier they are for designers and page builders to amend without asking you, the programmer, for help.

For the following examples, imagine that you’re creating a site that teaches basic math to preschool children and have been asked to create a script that takes a number from form input and tells the user whether it’s larger or smaller than a predefined integer.

Listing 15.5 creates the HTML. For this example, you need only a single text field, but even so, the code listing includes a little PHP.

LISTING 15.5 An HTML Form That Calls Itself

Click here to view code image

 1: <!DOCTYPE html>

 2: <html>

 3: <head>

 4: <title>An HTML form that calls itself</title>

 5: </head>

 6: <body>

 7: <form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">

 8: <p><label for="guess">Type your guess here:</label>

 9: <input type="text" id="guess" name="guess" ></p>

10: <button type="submit" name="submit" value="submit">Submit</button>

11: </form>

12: </body>

13: </html>

The action of this script is $_SERVER['PHP_SELF'], as shown in line 7. This global variable represents the name of the current script. In other words, the action tells the script to reload itself. The script in Listing 15.5 does not produce any output yet, but if you upload the script to your web server, access the page, and view the source of the page, you will notice that the form action now contains the name of the script itself.

In Listing 15.6, you begin to build up the dynamic elements of the script.

LISTING 15.6 A PHP Number-Guessing Script

Click here to view code image

1: <?php

2: $num_to_guess = 42;

3: if (!isset($_POST['guess'])) {

4: $message = "Welcome to the guessing machine!";

5: } elseif (!is_numeric($_POST['guess'])) { // is not numeric

6: $message = "I don't understand that response.";

7: } elseif ($_POST['guess'] == $num_to_guess) { // matches!

8: $message = "Well done!";

9: } elseif ($_POST['guess'] > $num_to_guess) {

10: $message = $_POST['guess']." is too big! Try a smaller number.";

11: } elseif ($_POST['guess'] < $num_to_guess) {

12: $message = $_POST['guess']." is too small! Try a larger number.";

13: } else { // some other condition

14: $message = "I am terribly confused.";

15: }

16: ?>

First, you must define the number that the user guesses, and this is done in line 2 when 42 is assigned to the $num_to_guess variable. Next, you must determine whether the form has been submitted. You can test for submission by looking for the existence of the variable $_POST['guess'], which is available only if the form script has been submitted (with or without a value in the field). If a value for $_POST['guess'] isn’t present, you can safely assume that the user arrived at the page without submitting a form. If the value is present, you can test the value it contains. The test for the presence of the $_POST['guess'] variable takes place on line 3.

Lines 3 through 15 represent an if…elseif…else control structure. Only one of these conditions will be true at any given time, depending on what (if anything) was submitted from the form. Depending on the condition, a different value is assigned to the $message variable. That variable is then printed to the screen in line 23 in Listing 15.7, which is part of the HTML portion of the script.

LISTING 15.7 A PHP Number-Guessing Script (Continued)

Click here to view code image

17: <!DOCTYPE html>

18: <html lang="en">

19: <head>

20: <title>A PHP number guessing script</title>

21: </head>

22: <body>

23: <h1><?php echo $message; ?></h1>

24: <form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">

25: <p><label for="guess">Type your guess here:</label>

26: <input type="text" is="guess" name="guess"></p>

27: <button type="submit" name="submit" value="submit">Submit</button>

28: </form>

29: </body>

30: </html>

Place the PHP and HTML code (all the lines in Listings 15.6 and 15.7) into a text file called numguess.php and put this file in your web server document root. Now access the script with your web browser, and you should see something like Figure 15.6.

[image: Images]

FIGURE 15.6
The form created by Listings 15.6 and 15.7.

Make a guess and click the submit button, and you should be directed appropriately to guess again as in Figure 15.7.

You could still make a few more additions, but you can probably see how simple it would be to hand the code to a designer for aesthetic treatment. The designer can do her part without having to disturb the programming in any way—the PHP code is at the top, and the rest is almost entirely HTML.

[image: Images]

FIGURE 15.7
Results of guessing incorrectly.

Using Hidden Fields to Save State in Dynamic Forms

The script in Listing 15.6 has no way of knowing how many guesses a user has made, but you can use a hidden field to keep track of this value. A hidden field behaves the same as a text field, except that the user cannot see it unless he views the HTML source of the document that contains it.

Take the original numguess.php script and save a copy as numguess2.php. In the new version, add a line after the initial assignment of the $num_to_guess variable:

Click here to view code image

$num_tries = (isset($_POST['num_tries'])) ? $num_tries + 1 : 1;

This line initializes a variable called $num_tries and assigns a value to it. If the form has not yet been submitted (if $_POST['num_tries'] is empty), the value of the $num_tries variable is 1 because you are on your first attempt at guessing the number. If the form has already been sent, the new value is the value of $_POST['num_tries'] plus 1.

The next change comes after the HTML level H1 heading:

Click here to view code image

<p>Guess number: <?php echo $num_tries; ?></p>

This new line simply prints the current value of $num_tries to the screen.

Finally, before the HTML code for the form submission button, add the hidden field. This field saves the incremented value of $num_tries:

Click here to view code image

<input type="hidden" name="num_tries" value="<?php echo $num_tries; ?>">

Listing 15.8 shows the new script in its entirety.

LISTING 15.8 Saving State with a Hidden Field

Click here to view code image

1: <?php

2: $num_to_guess = 42;

3: $num_tries = (isset($_POST['num_tries'])) ? $num_tries + 1 : 1;

4: if (!isset($_POST['guess'])) {

5: $message = "Welcome to the guessing machine!";

6: } elseif (!is_numeric($_POST['guess'])) { // is not numeric

7: $message = "I don't understand that response.";

8: } elseif ($_POST['guess'] == $num_to_guess) { // matches!

9: $message = "Well done!";

10: } elseif ($_POST['guess'] > $num_to_guess) {

11: $message = $_POST['guess']." is too big! Try a smaller number.";

12: } elseif ($_POST['guess'] < $num_to_guess) {

13: $message = $_POST['guess']." is too small! Try a larger number.";

14: } else { // some other condition

15: $message = "I am terribly confused.";

16: }

17: ?>

18: <!DOCTYPE html>

19: <html lang="en">

20: <head>

21: <title>A PHP number guessing script</title>

22: </head>

23: <body>

24: <h1><?php echo $message; ?></h1>

25: <p>Guess number: <?php echo $num_tries; ?></p>

26: <form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">

27: <p><label for="guess">Type your guess here:</label>

28: <input type="text" id="guess" name="guess"></p>

29: <input type="hidden" name="num_tries" value="<?php echo $num_tries; ?>">

30: <button type="submit" name="submit" value="submit">Submit</button>

31: </form>

32: </body>

33: </html>

Save the numguess2.php file and place it in your web server document root. Access the form a few times with your web browser and try to guess the number (pretending you don’t already know it). The counter should increment by 1 each time you access the form.

Sending Mail on Form Submission

You’ve already seen how to take form responses and print the results to the screen, so you’re only one step away from sending those responses in an email message. Before learning about sending mail, however, read through the next section to make sure that your system is properly configured.

System Configuration for the mail() Function

Before you can use the mail() function to send mail, you need to set up a few directives in the php.ini file so that the function works properly. Open php.ini with a text editor and look for these lines:

Click here to view code image

[mail function]

; For Win32 only.

; http://php.net/smtp

SMTP = localhost

; http://php.net/smtp-port

smtp_port = 25

; For Win32 only.

; http://php.net/sendmail-from

;sendmail_from = me@example.com

; For Unix only. You may supply arguments as well (default: "sendmail -t -i").

; http://php.net/sendmail-path

;sendmail_path =

If you’re using Windows as your web server platform, the first two directives apply to you. For the mail() function to send mail, it must be able to access a valid outgoing mail server. If you plan to use the outgoing mail server on your machine, the entry in php.ini could look like this:

SMTP = smtp.yourisp.net

The second configuration directive is sendmail_from, which is the email address used in the From header of the outgoing email. It can be overwritten in the mail script itself but normally operates as the default value, as in this example:

Click here to view code image

sendmail_from = youraddress@yourdomain.com

A good rule of thumb for Windows users is that whatever outgoing mail server you’ve set up in your email client on that machine, you should also use as the value of SMTP in php.ini.

If your web server is running on a Linux/UNIX platform, you use the sendmail functionality of that particular machine. In this case, only the last directive applies to you: sendmail_path. The default is sendmail -t -i, but if sendmail is in an odd place or if you need to specify different arguments, feel free to do so, as in the following example, which does not use real values:

Click here to view code image

sendmail_path = /opt/sendmail -odd –arguments

After making any changes to php.ini on any platform, you must restart the web server process for the changes to take effect.

Creating the Form

In Listing 15.9, you see the basic HTML for creating a simple feedback form named feedback.html. This form has an action of sendmail.php, which you create in the next section. The fields in feedback.html are simple: Lines 8 and 9 create a name field and label, lines 10 and 11 create the return email address field and label, and lines 12 and 13 contain the text area and label for the user’s message.

LISTING 15.9 Creating a Simple Feedback Form

Click here to view code image

1: <!DOCTYPE html>

2: <html lang="en">

3: <head>

4: <title>E-Mail Form</title>

5: </head>

6: <body>

7: <form action="sendmail.php" method="post">

8: <p><label for="name">Name:</label>

9: <input type="text" size="25" id="name" name="name"></p>

10: <p><label for="email">E-Mail Address:</label>

11: <input type="text" size="25" id="email" name="email"></p>

12: <p><label for="msg">Message:</label>

13: <textarea id="msg" name="msg" cols="30" rows="5"></textarea></p>

14: <button type="submit" name="submit" value="send">Send Message</button>

15: </form>

16: </body>

17: </html>

Put all the lines shown in Listing 15.9 into a text file called feedback.html and place this file in your web server document root. Now access the script with your web browser, and you should see something like Figure 15.8.

[image: Images]

FIGURE 15.8
The form created in Listing 15.9.

In the next section, you create the script that sends this form to a recipient.

Creating the Script to Send the Mail

This script differs only slightly in concept from the script in Listing 15.4, which simply printed form responses to the screen. In the script shown in Listing 15.10, in addition to printing the responses to the screen, you send them to an email address.

LISTING 15.10 Sending the Simple Feedback Form

Click here to view code image

1: <?php

2: //start building the mail string

3: $msg = "Name: ".$_POST['name']."\n";

4: $msg .= "E-Mail: ".$_POST['email']."\n";

5: $msg .= "Message: ".$_POST['message']."\n";

6:

7: //set up the mail

8: $recipient = "you@yourdomain.com";

9: $subject = "Form Submission Results";

10: $mailheaders = "From: My Web Site <defaultaddress@yourdomain.com> \n";

11: $mailheaders .= "Reply-To: ".$_POST['email'];

12:

13: //send the mail

14: mail($recipient, $subject, $msg, $mailheaders);

15: ?>

16: <!DOCTYPE html>

17: <html>

18: <head>

19: <title>Sending mail from the form in Listing 15.9</title>

20: </head>

21: <body>

22: <p>Thanks, <?php echo $_POST['name']; ?>,

23: for your message.</p>

24: <p>Your e-mail address:

25: <?php echo $_POST['email']; ?></p>

26: <p>Your message:
 <?php echo $_POST['message']; ?> </p>

27: </body>

28: </html>

The variables printed to the screen in lines 22–26 are $_POST['name'], $_POST['email'], and $_POST['message']—the names of the fields in the form. Their values are saved as part of the $_POST superglobal. That’s all well and good for printing the information to the screen, but in this script, you also want to create a string that’s sent in email. For this task, you essentially build the email by concatenating strings to form one long message string, using the newline (\n) character to add line breaks where appropriate.

Lines 3 through 5 create the $msg variable, a string containing the values typed by the user in the form fields (and some label text for good measure). This string forms the body of the email. Note the use of the concatenation operator (.=) when adding to the $msg variable in lines 4 and 5.

Lines 8 and 9 are hard-coded variables for the email recipient and the subject of the email message. Replace you@yourdomain.com with your own email address, obviously. If you want to change the subject, feel free to do that too!

Lines 10 and 11 set up some mail headers—namely, the From: and Reply-to: headers. You could put any value in the From: header; this is the information that displays in the From or Sender column of your email application when you receive this mail.

CAUTION

If your outbound mail server is a Windows machine, you should replace the \n newline character with \r\n.

The mail() function uses five parameters: the recipient, the subject, the message, any additional mail headers, and any additional sendmail parameters. In our example, we use only the first four parameters. The order of these parameters is shown in line 14.

Put these lines into a text file called sendmail.php and place that file in your web server document root. Use your web browser and go back to the form, enter some information, and click the submission button. You should see something like Figure 15.9 in your browser.

[image: Images]

FIGURE 15.9
Sample results from sendmail.php.

If you then check your email, you should have a message waiting for you. It might look something like Figure 15.10.

[image: Images]

FIGURE 15.10
Email sent from sendmail.php.

NOTE

This example does not include any server-side validation of form elements and just assumes that the user has entered values into the form. In a real-life situation, you would check for the presence and validity of the values entered in the form before doing anything with the mail, perhaps starting with HTML5 form validation as you saw earlier in this chapter.

Summary

This chapter demonstrated how to create HTML forms, which enable your visitors to provide information to you when they are hooked up to a back-end processing script. You learned about all the major form elements, including a little about how the names and value attributes of form elements are interpreted by JavaScript and PHP. Speaking of PHP, you learned how to work with various superglobals and form input. You learned how to pass information from script call to script call using hidden fields. You also learned how to send your form results in email, which is a good milestone to have accomplished.

Table 15.1 summarizes the HTML tags and attributes covered in this chapter.

TABLE 15.1 HTML Tags and Attributes Covered in Chapter 15

	Tag/Attribute

	Function

	<form>…</form>

	Indicates an input form.

	Attributes

	Function

	action="scripturl"

	Gives the address of the script to process this form input.

	method="post/get"

	Indicates how the form input will be sent to the server. Normally set to post rather than get.

	<label>…</label>

	Provides information for the form element to which it is associated.

	<fieldset>…</fieldset>

	Groups a set of related form elements.

	<legend>…</legend>

	Provides a label to a set of related form elements.

	<input>

	Indicates an input element for a form.

	type="controltype"

	Gives the type for this input widget. Some possible values are checkbox, hidden, radio, reset, submit, text, and image, among others.

	name="name"

	Gives the unique name of this item, as passed to the script.

	value="value"

	Gives the default value for a text or hidden item. For a check box or radio button, it’s the value to be submitted with the form. For reset or submit buttons, it’s the label for the button itself.

	src="imageurl"

	Shows the source file for an image.

	checked

	Is used for check boxes and radio buttons. Indicates that this item is checked.

	autofocus

	Puts focus on the element when the form is loaded.

	required

	Indicates that the field should be validated for content, according to type (where appropriate).

	pattern="pattern"

	Indicates that the content of this field should be validated against this regular expression.

	size="width"

	Specifies the width, in characters, of a text input region.

	maxlength="maxlength"

	Specifies the maximum number of characters that can be entered into a text region.

	<textarea>…</textarea>

	Indicates a multiline text entry form element. Default text can be included.

	name="name"

	Specifies the name to be passed to the script.

	rows="numrows"

	Specifies the number of rows this text area displays.

	cols="numchars"

	Specifies the number of columns (characters) this text area displays.

	autofocus

	Puts focus on the element when the form is loaded.

	required

	Indicates that the field should be validated for content according to type (where appropriate).

	pattern="pattern"

	Indicates that the content of this field should be validated against this regular expression.

	<select>…</select>

	Creates a menu or scrolling list of possible items.

	name="name"

	Shows the name that is passed to the script.

	size="numelements"

	Indicates the number of elements to display. If size is indicated, the selection becomes a scrolling list. If no size is given, the selection is a drop-down pick list.

	multiple

	Allows multiple selections from the list.

	required

	Indicates that the field should be validated for a selection.

	<optgroup>…</optgroup>

	Indicates a grouping of <option> elements.

	label="label"

	Provides a label for the group.

	<option>…</option>

	Indicates a possible item within a <select> element.

	selected

	Selects the <option> by default in the list when this attribute is included.

	value="value"

	Specifies the value to submit if this <option> is selected when the form is submitted.

Q&A

Q. Is there any way to create a large number of text fields without dealing with different names for all of them?

A. Yes. If you use the same name for several elements in the form, their objects form an array. For example, if you defined 20 text fields with the name member, you could refer to them as member[0] through member[19]. This also works with other types of form elements.

Q. If HTML5 contains form validation, do I ever have to worry about validation again?

A. Yes, you do. Although HTML5 form validation is awesome, you should still validate the form information that is sent to you on the back end. Back-end processing is outside the scope of the book, but as a rule, you should never trust any user input—always check it before performing an action that uses it (especially when interacting with a database).

Workshop

The Workshop contains quiz questions and activities to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. Which of these attributes of a <form> tag determines where the data will be sent?

A. action

B. method

C. name

2. Which built-in associative array contains all values submitted as part of a POST request?

3. What are the five arguments used by the mail() function?

Answers

1. A. The action attribute determines where the data is sent.

2. The $_POST superglobal.

3. The recipient, the subject, the message string, additional headers, and additional parameters.

Exercises

[image: Images] Create a PHP script that processes the big form in Listing 15.1 and sends it to you via email.

[image: Images] Create a calculator script that enables the user to submit two numbers and choose an operation (addition, multiplication, division, or subtraction) to perform on them.

Part IV: Integrating a Database into Your Applications

CHAPTER 16
Understanding the Database Design Process

What You’ll Learn in This Chapter:

[image: Images] Some advantages to good database design

[image: Images] Three types of table relationships

[image: Images] How to normalize your database

[image: Images] How to implement a good database design process

This chapter introduces you to the reasoning behind designing a relational database. Depending on how you decide to focus your technical work in the future—you may want to focus on the front end, the back end, or both—you may never need to work directly in a database or design a database schema, or a structure representing a logical view of the database, from the ground up. However, no matter where you focus your work, understanding how data is defined, structured, and stored in a relational database is critical to understanding just what you can do with that data, and how to do it.

After this concept-focused chapter, you jump headlong into learning the basic MySQL commands in preparation for integrating MySQL in your own applications.

The Importance of Good Database Design

A good database design is crucial for a high-performance application, just as an aerodynamic body is important to a race car. If a car does not have smooth lines, it produces drag and goes slower. Without optimized relationships, your database will not perform as efficiently as possible. Thinking about relationships and database efficiency—which includes ease of maintenance, minimizing duplications, and avoiding inconsistencies—is part of database normalization, or simply normalization.

NOTE

Specifically, normalization refers to the process of structuring data to minimize duplication and inconsistencies.

Beyond the issue of performance is the issue of maintenance—your database should be easy to maintain. This includes storing only a limited amount (if any) of repetitive data. If you have a lot of repetitive data and one instance of that data undergoes a change (such as a name change), that change has to be made for all occurrences of the data. To eliminate duplication and enhance your ability to maintain the data, you might create a table of possible values and use a key to refer to the value. That way, if the value changes names, the change occurs only once—in the master table. The reference remains the same throughout other tables.

For example, suppose that you are responsible for maintaining a database of students and the classes in which they are enrolled. If 35 of these students are in the same class (let’s call it Advanced Math), this class name would appear 35 times in the table. Now, if the instructor decides to change the name of the class to Mathematics IV, you must change 35 records to reflect the new name of the class. If the database were designed so that class names appeared in one table and just the class ID number was stored with the student record, you would have to change only one record—not 35—to update the name, and you could be sure that the data in your database stays in sync with reality.

The benefits of a well-planned and designed database are numerous, and it stands to reason that the more work you do up front, the less you have to do later. A really bad time for a database redesign is after the public launch of the application using it—although it does happen, and the results are costly.

So, before you even start coding an application, spend a lot of time designing your database. Throughout the rest of this chapter, you learn more about relationships and normalization—two important pieces to the database design puzzle.

Types of Table Relationships

Table relationships come in several forms:

[image: Images] One-to-one relationships

[image: Images] One-to-many relationships

[image: Images] Many-to-many relationships

For example, suppose that you have a table called employees that contains each person’s Social Security number or other individual identifier, his or her name, and the department in which he or she works. Suppose that you also have a separate table called departments containing the list of all available departments, made up of a department ID and a name. In the employees table, the Department ID field matches an ID found in the departments table. You can see this type of relationship in Figure 16.1. The PK next to the field name indicates the primary key for the table, or the key that uniquely defines the records in the table.

[image: Images]

FIGURE 16.1
The employees and departments tables are related through the DeptID key.

In the following sections, we take a closer look at each of the relationship types.

One-to-One Relationships

In a one-to-one relationship, a key appears only once in a related table. The employees and departments tables do not have a one-to-one relationship because many employees undoubtedly belong to the same department. A one-to-one relationship exists, for example, if each employee is assigned one computer within the company. Figure 16.2 shows the one-to-one relationship of employees to computers.

[image: Images]

FIGURE 16.2
One computer is assigned to each employee.

The employees and computers tables in your database would look something like Figure 16.3, which represents a one-to-one relationship.

[image: Images]

FIGURE 16.3
One-to-one relationship in the data model.

One-to-Many Relationships

In a one-to-many relationship, keys from one table appear multiple times in a related table. The example shown in Figure 16.1, indicating a connection between employees and departments, illustrates a one-to-many relationship. A real-world example is an organizational chart of the department, as shown in Figure 16.4.

[image: Images]

FIGURE 16.4
One department contains many employees.

The one-to-many relationship is the most common type of relationship. Another practical example is the use of a state abbreviation in an address database; each state has a unique identifier (CA for California, PA for Pennsylvania, and so on), and each address in the United States has a state associated with it.

If you have eight friends in California and five in Pennsylvania, you use only two distinct abbreviations in your table. One abbreviation (CA) represents a one-to-eight relationship, and the other (PA) represents a one-to-five relationship.

Many-to-Many Relationships

The many-to-many relationship sometimes causes problems in practical examples of normalized databases—so much so that you may see tables representing many-to-many relationships broken into a series of one-to-many relationships. In a many-to-many relationship, the key value of one table can appear many times in a related table. So far, that just sounds like a one-to-many relationship, but here’s the curveball: The opposite is also true, meaning that the primary key from that second table can also appear many times in the first table.

Think of such a relationship this way, using the example of students and classes: A student has an ID and a name. A class has an ID and a name. A student usually takes more than one class at a time, and a class always contains more than one student, as you can see in Figure 16.5.

[image: Images]

FIGURE 16.5
Students take classes, and classes contain students.

As you can see, this sort of relationship does not present an easy method for relating tables. Your tables could look like Figure 16.6, seemingly unrelated.

[image: Images]

FIGURE 16.6
The students table and the classes table, unrelated.

To make the theoretical many-to-many relationship a reality, you create an intermediate table, one that sits between the two tables and essentially maps them together. You might build such a table similar to the one in Figure 16.7.

[image: Images]

FIGURE 16.7
The students_classes_map table acts as an intermediary.

If you take the information in Figure 16.5 and put it into the intermediate table, you can create something like Figure 16.8.

[image: Images]

FIGURE 16.8
The students_classes_map table populated with data.

As you can see, many students and many classes happily coexist within the students_ classes_map table.

With this introduction to the types of relationships, learning about normalization should be a snap.

Understanding Normalization

Normalization is simply a set of rules that will ultimately make your life easier when you are acting as a database administrator, but also when you are a developer whose responsibility it is to modify data in the database in any way. Normalization is the art of organizing your database in such a way that your tables relate to each other where appropriate and are flexible for future growth.

The sets of rules used in normalization are called normal forms. If your database design follows the first set of rules, it is considered in the first normal form. If the first three sets of rules of normalization are followed, your database is said to be in the third normal form.

Throughout this chapter, you learn about each rule in the first, second, and third normal forms—the most foundational of the nine basic normalizations—and I hope you will follow them as you create your own applications. In the chapter, you use a sample set of tables for a students-and-courses database and take it to the third normal form.

Problems with the Flat Table

Before launching into the first normal form, you have to start with a bunch of data that needs to be normalized. In the case of a database, it’s the flat table. A flat table is like a spreadsheet—it has many, many columns that define it, and rows of data each have data in, or hold space for, those columns. There are no relationships between multiple tables; all the data you could possibly want is right there in that single flat table. This scenario is inefficient and consumes more physical space on your hard drive than a normalized database.

In your students-and-courses database, assume that you have the following fields in your flat table:

[image: Images] StudentName—The name of the student.

[image: Images] CourseID1—The ID of the first course taken by the student.

[image: Images] CourseDescription1—The description of the first course taken by the student.

[image: Images] CourseInstructor1—The instructor of the first course taken by the student.

[image: Images] CourseID2—The ID of the second course taken by the student.

[image: Images] CourseDescription2—The description of the second course taken by the student.

[image: Images] CourseInstructor2—The instructor of the second course taken by the student.

[image: Images] Repeat CourseID, CourseDescription, and CourseInstructor columns many more times to account for all the classes students can take during their academic career.

With what you’ve learned so far, you should be able to identify the first problem area: CourseID, CourseDescription, and CourseInstructor columns become repeated groups.

Eliminating redundancy is the first step in normalization, so next you take this flat table to first normal form. If your table remained in its flat format, you could have a lot of unclaimed space and a lot of space being used unnecessarily—not an efficient table design.

First Normal Form

The rules for the first normal form are as follows:

[image: Images] Eliminate repeating information.

[image: Images] Create separate tables for related data.

If you think about the flat table design with many repeated sets of fields for the students- and-courses database, you can identify two distinct topics: students and courses. Taking your students-and-courses database to the first normal form means that you create two tables: one for students and one for courses, as shown in Figure 16.9.

[image: Images]

FIGURE 16.9
Breaking the flat table into two tables.

Your two tables now represent a one-to-many relationship of one student to many courses. Students can take as many courses as they want and are not limited to the number of CourseID/CourseDescription/CourseInstructor groupings that existed in the flat table.

The next step is to put the tables into second normal form.

Second Normal Form

The rule for the second normal form is as follows:

[image: Images] No nonkey attributes depend on a portion of the primary key.

In plain English, this means that if fields in your table are not entirely related to a primary key, you have more work to do. In the students-and-courses example, you need to break out the courses into their own table and modify the students_courses table.

CourseID, CourseDescription, and CourseInstructor can become a table called courses with a primary key of CourseID. The students_courses table should then just contain two fields: StudentID and CourseID. You can see this new design in Figure 16.10.

[image: Images]

FIGURE 16.10
Taking your tables to second normal form.

This structure should look familiar to you as a many-to-many relationship using an intermediary mapping table. The third normal form is the last form we look at here, and you should find that it is just as simple to understand as the first two.

Third Normal Form

The rule for the third normal form is as follows:

[image: Images] No attributes depend on other nonkey attributes.

This rule simply means that you need to look at your tables and see whether you have more fields that can be broken down further and that are not dependent on a key. Think about removing repeated data and you’ll find your answer: instructors. Inevitably, an instructor teaches more than one class. However, CourseInstructor is not a key of any sort. So, if you break out this information and create a separate table purely for the sake of efficiency and maintenance (as shown in Figure 16.11), that is the third normal form.

Third normal form is usually adequate for removing redundancy and allowing for flexibility and growth.

The next section gives you some pointers for the thought process involved in database design and where it fits in the overall design process of your application.

[image: Images]

FIGURE 16.11
Taking your tables to third normal form.

Following the Design Process

The greatest problem in application design is a lack of forethought (in anything, really, but in this case we’re talking about the database design). As it applies to database-driven applications, the design process must include a thorough evaluation of your database—what it should hold, how data relates to each other, and, most important, whether it is flexible and scalable. The latter point is important because no matter how thorough you think you are being at the beginning, the nature of development is such that you will inevitably have great ideas later as well and you’ll need to work those into your flexible design.

The general steps in the design process are as follows:

[image: Images] Define the objective.

[image: Images] Design the data structures (tables and fields).

[image: Images] Discern relationships.

[image: Images] Define and implement business rules.

[image: Images] Create the application.

Creating the application is the last step, not the first. Many developers take an idea for an application, build it, and then go back and try to make a set of database tables fit into it. This approach is completely backward, inefficient, and will cost a lot of time and money. That is not to say that such an approach doesn’t have a place in rapid prototyping or very quick development cycles—it does! I can guarantee that many amazing applications we all use on a regular basis probably started with a poorly structured database. However, at some point, that database schema quickly put together to get an application released as soon as possible will reach its limits; the earlier you focus on the database in your development process, the better, because the database refactoring work will become exponentially more expensive as time goes on and features are added.

So, before you start any application design process, sit down and talk it out. If you cannot describe your application—including the objectives, audience, and target market—you are not ready to build it, let alone model the database.

After you can describe the actions and nuances of your application to other people and it makes sense to them, you can start thinking about the tables you want to create. Start with big flat tables because after you write them down, your newfound normalization skills will take over. You will be able to find your redundancies and visualize your relationships. As you become more experienced, you will be able to minimize the steps in this process, but there’s nothing wrong with stepping through them carefully and explicitly.

The next step is to do the normalization. Go from a flat table to the first normal form and so on, up to the third normal form if possible. Use paper, pencils, sticky notes, or whatever helps you to visualize the tables and relationships. There’s no shame in data modeling on sticky notes until you are ready to create the tables themselves. Plus, using sticky notes is a lot cheaper than buying software to do it for you; good, full-featured modeling software ranges from hundreds to several thousands of dollars.

After you have a preliminary data model, look at it from the application’s point of view. Or look at it from the point of view of the person using the application you are building. This is the point where you define business rules and see whether your data model breaks. An example of a business rule for an online registration application is, “Each user must have one email address, and it must not belong to any other user.” If EmailAddress is not a unique field in your data model, your model will break based on the business rule.

After your business rules have been applied to your data model, only then can application programming begin with confidence. You can rest assured that your data model is solid and you will not be programming yourself into a brick wall. The latter event is all too common, but easy to avoid.

Summary

Following proper database design is a key way to ensure your application will be efficient, flexible, and easy to manage and maintain. An important aspect of database design is to use relationships between tables instead of throwing all your data into one big flat file. Types of relationships include one-to-one, one-to-many, and many-to-many.

Using relationships to properly organize your data is called normalization. There are many levels of normalization, but the primary levels are the first, second, and third normal forms. Each level has a rule or two that you must follow. Following all the rules helps ensure that your database is well organized and flexible.

To take an idea from inception through to fruition, you should follow a design process. This process essentially says, “Think before you act.” Discuss rules, requirements, and objectives, and only then create the final version of your normalized tables.

Q&A

Q. Are there only three normal forms?

A. No, there are more than three normal forms. Additional forms include but are not limited to the Boyce-Codd normal form, fourth normal form, and fifth normal form/Join-Projection normal form. These forms are not often followed in practical application development because the benefits of doing so are outweighed by the cost in man-hours and database efficiency (but it is certainly fine if you implement them). For more information, see http://en.wikipedia.org/wiki/Database_normalization#.

Workshop

The Workshop is designed to help you review what you have learned and begin putting your knowledge into practice.

Quiz

1. Name three types of data relationships.

2. Because many-to-many relationships are difficult to represent in an efficient database design, what should you do?

3. Name a few ways you can create visualizations of data relationships.

Answers

1. One-to-one, one-to-many, and many-to-many.

2. Create a series of one-to-many relationships using intermediary mapping tables.

3. You can use a range of tools, from sticky notes and string (where notes are the tables and string shows the relationships between tables) to software used to draw diagrams, to software programs that interpret your SQL statements and produce visualizations.

Exercises

[image: Images] Explain each of the three normal forms to a person who works with spreadsheets and flat tables.

CHAPTER 17
Learning Basic SQL Commands

What You’ll Learn in This Chapter:

[image: Images] The basic MySQL data types

[image: Images] How to use the CREATE TABLE statement to create a table

[image: Images] How to use the INSERT statement to enter records

[image: Images] How to use the SELECT statement to retrieve records

[image: Images] How to use basic functions, the WHERE clause, and the GROUP BY clause in SELECT expressions

[image: Images] How to select from multiple tables, using JOIN or subselects

[image: Images] How to use the UPDATE and REPLACE statement to modify existing records

[image: Images] How to use the DELETE statement to remove records

[image: Images] How to use string functions built in to MySQL

[image: Images] How to use date and time functions built in to MySQL

The preceding chapter explained the basics of the database design process, and this chapter provides a primer on basic SQL syntax, which you use to create and manipulate your MySQL database tables. This is a hands-on chapter, and it assumes that you can issue queries directly to MySQL, either through the MySQL command-line interface or through another management interface such as phpMyAdmin, which is included in the XAMPP installation provided through the Quick Start process in Appendix A, “Installation QuickStart Guide with XAMPP.”

Although this might not be the most exciting chapter in the book, it does show you many basic and functional examples of elements you’ll use throughout the rest of your work, as you issue these same queries with PHP to create dynamic applications.

Learning the MySQL Data Types

Properly defining the fields in a table is important to the overall optimization of your database. You should use only the type and size of field you really need to use; do not define a field as 10 characters wide if you know you’re only going to use two characters—that’s eight extra characters the database has to account for, even if they are unused. These field types are also referred to as data types, as in the “type of data” you will be storing in those fields.

MySQL uses many different data types, but there are three primary categories to learn: numeric, date and time, and string types. Pay close attention because properly defining the data type is more important than any other part of the table-creation process.

Numeric Data Types

MySQL uses all the standard ANSI SQL numeric data types. So if you’re coming to MySQL from a different database system, these definitions will look familiar to you. The following list shows the common numeric data types and their descriptions:

NOTE

The terms signed and unsigned are used in the list of numeric data types. If you remember your basic algebra, you’ll recall that a signed integer can be a positive or negative integer, whereas an unsigned integer is always a nonnegative integer.

[image: Images] INTEGER, commonly aliased as INT—A normal-sized integer that can be signed or unsigned. If it’s signed, the allowable range is from −2147483648 to 2147483647. If it’s unsigned, the allowable range is from 0 to 4294967295. You can specify a data type width of up to 11 digits.

[image: Images] TINYINT—A small integer that can be signed or unsigned. If it’s signed, the allowable range is from −128 to 127. If it’s unsigned, the allowable range is from 0 to 255. You can specify a width of up to four digits.

[image: Images] SMALLINT—A small integer that can be signed or unsigned. If it’s signed, the allowable range is from −32768 to 32767. If it’s unsigned, the allowable range is from 0 to 65535. You can specify a width of up to five digits.

[image: Images] MEDIUMINT—A medium-sized integer that can be signed or unsigned. If it’s signed, the allowable range is from −8388608 to 8388607. If it’s unsigned, the allowable range is from 0 to 16777215. You can specify a width of up to nine digits.

[image: Images] BIGINT—A large integer that can be signed or unsigned. If it’s signed, the allowable range is from −9223372036854775808 to 9223372036854775807. If it’s unsigned, the allowable range is from 0 to 18446744073709551615. You can specify a width of up to 11 digits.

[image: Images] FLOAT(M,D)—A floating-point number that cannot be unsigned. You can define the display length (M) and the number of decimals (D). This is not required and defaults to 10,2, where 2 is the number of decimals and 10 is the total number of digits (including decimals). Decimal precision can go to 24 places for a FLOAT.

[image: Images] DOUBLE(M,D)—A double-precision floating-point number that cannot be unsigned. You can define the display length (M) and the number of decimals (D). This is not required and will default to 16,4, where 4 is the number of decimals. Decimal precision can go to 53 places for a DOUBLE. REAL is a synonym for DOUBLE.

[image: Images] DECIMAL(M,D)—An unpacked fixed-point number used to specify exact precision. In unpacked decimals, each decimal corresponds to 1 byte. Defining the display length (M) and the number of decimals (D) is required. NUMERIC is a synonym for DECIMAL.

Of all the MySQL numeric data types, you will likely use some variation of INT most often, but be careful which you choose because you will run into problems if you define your fields to be smaller than you actually need. For example, if you define an ID field as an unsigned TINYINT, you cannot successfully insert that 256th record if ID is a primary key (and thus required).

Date and Time Types

MySQL has several data types available for storing dates and times, and in the past these data types were flexible in their input. In other words, you could enter dates that are not valid, such as February 30 (February has only 28 or 29 days, never 30). Also, you could store dates with missing information. For example, if you know that someone was born sometime in November 1980, you can use 1980-11-00, where 00 would have been for the day, if you knew it. However, in MySQL 5.7 and greater, the ALLOW_INVALID_DATES setting is not on by default. For more information please see the MySQL Manual entry at https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_allow_invalid_dates.

If you are using an older version of MySQL or one with ALLOW_INVALID_DATES turned on, the flexibility of MySQL’s date and time types also means that the responsibility for date checking falls on the application developer (that would be you). In these scenarios, MySQL checks only two elements for validity: that the month is between 0 and 12 and that the day is between 0 and 31. MySQL does not automatically verify that the 30th day of the second month (February 30) is a valid date. Therefore, any date validation you want to include in your application should happen in your PHP code before you even attempt to add a record with a bogus date into your database table.

The MySQL date and time data types are as follows:

[image: Images] DATE—A date in YYYY-MM-DD format, between 1000-01-01 and 9999-12-31. For example, December 30, 1973 is stored as 1973-12-30.

[image: Images] DATETIME—A date and time combination in YYYY-MM-DD HH:MM:SS format, between 1000-01-01 00:00:00 and 9999-12-31 23:59:59. For example, 3:30 in the afternoon on December 30, 1973 is stored as 1973-12-30 15:30:00.

[image: Images] TIMESTAMP—A timestamp between midnight, January 1, 1970 and (to be excruciatingly precise) January 19, 2038 at 03:14:07. You can define multiple lengths to the TIMESTAMP field, which directly correlates to what is stored in it. The default length for TIMESTAMP is 14, which stores YYYYMMDDHHMMSS. This looks like the previous DATETIME format, only without the hyphens and colons between numbers; 3:30 in the afternoon on December 30, 1973 is stored as 19731230153000. Other definitions of TIMESTAMP are 12 (YYMMDDHHMMSS), 8 (YYYYMMDD), and 6 (YYMMDD).

[image: Images] TIME—Stores time in HH:MM:SS format; this may also include elapsed time, not just clock time. For example, you could store 48:10 for 48 hours and ten minutes.

[image: Images] YEAR(M)—Stores a year in two-digit or four-digit format. If the length is specified as 2 (for example, YEAR(2)), YEAR can be 70 to 69 (1970 to 2069). If the length is specified as 4, YEAR can be 1901 to 2155. The default length is 4.

You may end up using DATETIME more often than any other date- or time-related data type, but do understand the differences between it and the others.

String Types

Although numeric and date types are fun, most data you’ll store will be in string format. This list describes the common string data types in MySQL:

[image: Images] CHAR(M)—A fixed-length string between 1 and 255 characters in length; for example, CHAR(5). The string is right-padded with spaces to the specified length when stored (and stripped when retrieved). Defining a length is not required, but the default is 1.

[image: Images] VARCHAR(M)—A variable-length string between 1 and 65,535 characters in length; for example, VARCHAR(192). You must define a length when creating a VARCHAR field.

[image: Images] BLOB or TEXT—A field with a maximum length of 65,535 characters. BLOBs are Binary Large Objects and are used to store large amounts of binary data, such as images or other types of files. Fields defined as TEXT also hold large amounts of data just like BLOBs; the difference between the two is that sorts and comparisons on stored data are case sensitive on BLOBs and are not case sensitive in TEXT fields. You do not specify a length with BLOB or TEXT.

[image: Images] TINYBLOB or TINYTEXT—A BLOB or TEXT column with a maximum length of 255 characters. You do not specify a length with TINYBLOB or TINYTEXT.

[image: Images] MEDIUMBLOB or MEDIUMTEXT—A BLOB or TEXT column with a maximum length of 16,777,215 characters. You do not specify a length with MEDIUMBLOB or MEDIUMTEXT.

[image: Images] LONGBLOB or LONGTEXT—A BLOB or TEXT column with a maximum length of 4,294,967,295 characters. You do not specify a length with LONGBLOB or LONGTEXT.

[image: Images] ENUM—An enumeration, which is a fancy term for list of allowed values. When defining an ENUM, you are creating a list of items from which the value must be selected (or it can be NULL). For example, if you want your field to contain A or B or C, you would define your ENUM as ENUM ('A', 'B', 'C'), and only those values (or NULL) could ever populate that field. ENUMs can have 65,535 different values. ENUMs use an index for storing items.

NOTE

The SET type is similar to ENUM in that it is defined as a list. However, the SET type is stored as a full value rather than an index of a value, as with ENUMs, and can only store 64 members.

You will probably use VARCHAR fields more often than other field types, and ENUMs can be quite useful as well.

Learning the Table-Creation Syntax

The table-creation statement requires the following:

[image: Images] Name of the table

[image: Images] Name for each field

[image: Images] Definition for each field

The generic table-creation syntax is

Click here to view code image

CREATE TABLE table_name (column_name column_type);

The table name is up to you, of course, but it should be a name that reflects the usage of the table. For example, if you have a table that holds the inventory of a grocery store, you would not name the table s. You would probably name it something like grocery_inventory. Similarly, the field names you select should be as concise as possible and relevant to the function they serve and the data they hold. For example, you might call a field holding the name of an item item_name, not n.

The following table-creation example creates a generic grocery_inventory table with fields for ID, item name, item description, item price, and quantity. Each of the fields is a different type; the ID and quantity fields hold integers, the item name field holds up to 50 characters, the item description field holds up to 65,535 characters of text, and the item price field contains a float:

Click here to view code image

CREATE TABLE grocery_inventory (

 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 item_name VARCHAR (50) NOT NULL,

 item_desc TEXT,

 item_price FLOAT NOT NULL,

 curr_qty INT NOT NULL

);

NOTE

The id field is defined as a primary key. You’ll learn more about keys in later chapters, in the context of creating specific tables as parts of sample applications, but in brief, a primary key is the unique identifier for a record (or row) in a table. In this field definition, using auto_increment as an attribute of the field tells MySQL to use the next available integer for the id field when the next record is inserted and no value is specified for that field. NOT NULL is used to indicate that the field must contain a value.

The MySQL server responds with Query OK each time a query, regardless of type, is successful. Otherwise, an error message displays, telling you where your query went awry. Depending on the interface to MySQL you are using, you may or may not see this specific response. However, regardless of the interface, it should provide you with some indication of the status of the query.

Using the INSERT Statement

After you have created some tables, you use the SQL statement INSERT for adding new records to these tables. The basic syntax of INSERT is

Click here to view code image

INSERT INTO table_name (column list) VALUES (column values);

Within the parenthetical list of values, you must enclose strings within quotation marks. The SQL standard is single quotes, but MySQL enables the usage of either single or double quotes. So, if you are used to working in Oracle, which forces single-quoted strings, there’s no need to change your behavior to comply with norms in the world of MySQL. Remember to escape the type of quotation mark used, if it is within the string itself.

NOTE

Integers do not require quotation marks around them.

Here is a classic example of a string where escaping is necessary:

O'Connor said "Boo"

If you enclose your strings in double quotes, the INSERT statement looks like this:

Click here to view code image

INSERT INTO table_name (column_name) VALUES ("O'Connor said \"Boo\"");

If you enclose your strings in single quotes instead, the INSERT statement looks like this:

Click here to view code image

INSERT INTO table_name (column_name) VALUES ('O\'Connor said "Boo"');

A Closer Look at INSERT

Besides the table name, the INSERT statement consists of two main parts: the column list and the value list. Only the value list is actually required, but if you omit the column list, you must specifically provide the value for each column in your value list—in the exact order.

Using the grocery_inventory table as an example, you have five fields: id, item_name, item_desc, item_price, and curr_qty. To insert a complete record, you could use either of these statements:

[image: Images] A statement with all columns named:

Click here to view code image

INSERT INTO grocery_inventory

(id, item_name, item_desc, item_price, curr_qty)

VALUES (1, 'Apples', 'Beautiful, ripe apples.', 0.25, 1000);

[image: Images] A statement that uses all columns but does not explicitly name them:

Click here to view code image

INSERT INTO grocery_inventory VALUES (2, 'Bunches of Grapes',

'Seedless grapes.', 2.99, 500);

Give both of them a try and see what happens. You should get successful response (“Query OK”) to both statements.

Now for some more interesting methods of using INSERT. Because id was defined at creation time as an auto-incrementing integer in the grocery_inventory table, you do not have to put it in your value list. However, if there’s a value you specifically do not want to list (such as id), you then must list the remaining columns in use. For example, the following statement does not list the columns and does not give a value for id:

Click here to view code image

INSERT INTO grocery_inventory VALUES

 ('Bottled Water (6-pack)', '500ml spring water.', 2.29, 250);

The preceding statement produces an error, such as this:

Click here to view code image

ERROR 1136: Column count doesn't match value count at row 1

Because you did not list any columns in this statement, MySQL expects all of them to be in the value list; since you did not, the statement results in an error. If your goal was to let MySQL do the work for you by auto-incrementing the id field, you could use either of these statements:

[image: Images] A statement with all columns named except id:

Click here to view code image

INSERT INTO grocery_inventory (item_name, item_desc, item_price, curr_qty)

VALUES ('Bottled Water (6-pack)', '500ml spring water.', 2.29, 250);

[image: Images] A statement that uses all columns but does not explicitly name them and indicates a NULL entry for id (so one is filled in for you):

Click here to view code image

INSERT INTO grocery_inventory VALUES (NULL, 'Bottled Water (12-pack)',

'500ml spring water.', 4.49, 500);

Go ahead and try both so that your grocery_inventory table has four records in total. It makes no different to MySQL which valid statements you use, but as with everything based on your own preferences, be consistent in your application development. Consistent structures are easier for you to debug later because you know what to expect.

Using the SELECT Statement

SELECT is the SQL statement used to retrieve records from your tables. This statement syntax can be totally simple or very complicated, depending on which fields you want to select, whether you want to select from multiple tables, and what conditions you plan to impose on the query. As you become more comfortable interacting with databases, you will learn to enhance your SELECT queries, ultimately making your database do as much work as possible and not overworking your programming language.

The most basic SELECT syntax looks like this:

Click here to view code image

SELECT expressions_and_columns FROM table_name

[WHERE some_condition_is_true]

[ORDER BY some_column [ASC | DESC]]

[LIMIT offset, rows]

Look at the first line:

Click here to view code image

SELECT expressions_and_columns FROM table_name

One handy expression is the * symbol, which stands for everything. So, to select everything (all rows, all columns) from the grocery_inventory table, your SQL query would be

Click here to view code image

SELECT * FROM grocery_inventory;

Depending on how much data is in the grocery_inventory table, your results will vary, but the results might look something like this:

Click here to view code image

+----+-------------------------+-------------------------+------------+----------+

| id | item_name | item_desc | item_price | curr_qty |

+----+-------------------------+-------------------------+------------+----------+

| 1 | Apples | Beautiful, ripe apples. | 0.25 | 1000 |

| 2 | Bunches of Grapes | Seedless grapes. | 2.99 | 500 |

| 3 | Bottled Water (6-pack) | 500ml spring water. | 2.29 | 250 |

| 4 | Bottled Water (12-pack) | 500ml spring water. | 4.49 | 500 |

+----+-------------------------+-------------------------+------------+----------+

4 rows in set (0.00 sec)

NOTE

This output comes from the MySQL command line interface; it creates a lovely, formatted table with the names of the columns along the first row as part of the resultset. If you are using a different interface to MySQL, your results will look different. (Focus on observing the expected data and not the interface differences.)

If you want to select specific columns only—and this is always the recommended option because you should only ask for data you will actually use—replace the * with the names of the columns separated by commas. The following statement selects just the id, item_name, and curr_qty fields from the grocery_inventory table:

Click here to view code image

SELECT id, item_name, curr_qty FROM grocery_inventory;

The results are displayed as follows:

Click here to view code image

+----+-------------------------+----------+

| id | item_name | curr_qty |

+----+-------------------------+----------+

| 1 | Apples | 1000 |

| 2 | Bunches of Grapes | 500 |

| 3 | Bottled Water (6-pack) | 250 |

| 4 | Bottled Water (12-pack) | 500 |

+----+-------------------------+----------+

4 rows in set (0.00 sec)

Ordering SELECT Results

By default, results of SELECT queries are ordered as they were inserted into the table and should not be relied on as a meaningful ordering system. If you want to order results a specific way, such as by date, ID, name, and so on, specify your sorting requirements using the ORDER BY clause. In the following query, the intention is a resultset ordered alphanumerically by item_name:

Click here to view code image

SELECT id, item_name, curr_qty FROM grocery_inventory

ORDER BY item_name;

Success! The results are as follows:

Click here to view code image

+----+-------------------------+----------+

| id | item_name | curr_qty |

+----+-------------------------+----------+

| 1 | Apples | 1000 |

| 4 | Bottled Water (12-pack) | 500 |

| 3 | Bottled Water (6-pack) | 250 |

| 2 | Bunches of Grapes | 500 |

+----+-------------------------+----------+

4 rows in set (0.03 sec)

TIP

When you select results from a table without specifying a sort order, the results may or may not be ordered by their key value. This occurs because MySQL reuses the space taken up by previously deleted rows. In other words, if you add records with ID values of 1 through 5, delete the record with ID number 4, and then add another record (ID number 6), the records might appear in the table in this order: 1, 2, 3, 6, 5.

The default sorting of ORDER BY results is ascending (ASC); strings sort from A to Z, integers start at 0, and dates sort from oldest to newest. You can also specify a descending sort, using DESC:

Click here to view code image

SELECT id, item_name, curr_qty FROM grocery_inventory

ORDER BY item_name DESC;

Here are the results:

Click here to view code image

+----+-------------------------+----------+

| id | item_name | curr_qty |

+----+-------------------------+----------+

| 2 | Bunches of Grapes | 500 |

| 3 | Bottled Water (6-pack) | 250 |

| 4 | Bottled Water (12-pack) | 500 |

| 1 | Apples | 1000 |

+----+-------------------------+----------+

4 rows in set (0.00 sec)

You’re not limited to sorting by just one field—you can specify as many fields as you want as long as they are separated by commas. The sorting priority is the order in which you list the fields.

Limiting Your Results

You can use the LIMIT clause to return only a certain number of records from your SELECT query result. Two options apply when using the LIMIT clause: the offset and the number of rows. The offset is the starting position, and the number of rows should be self-explanatory (and is required).

Suppose that you have more than two or three records in the grocery_inventory table, and you want to select the ID, name, and quantity of the first two, ordered by curr_qty. In other words, you want to select the two items with the least inventory. The following single-parameter limit starts at the 0 position and goes to the second record:

Click here to view code image

SELECT id, item_name, curr_qty FROM grocery_inventory

ORDER BY curr_qty LIMIT 2;

Here are the results:

Click here to view code image

+----+------------------------+----------+

| id | item_name | curr_qty |

+----+------------------------+----------+

| 3 | Bottled Water (6-pack) | 250 |

| 2 | Bunches of Grapes | 500 |

+----+------------------------+----------+

2 rows in set (0.00 sec)

The LIMIT clause can prove useful in an actual application. For example, you can use the LIMIT clause within a series of SELECT queries to travel through results in steps (first two items, next two items, next two items after that):

[image: Images] SELECT * FROM grocery_inventory ORDER BY curr_qty LIMIT 0, 2;

[image: Images] SELECT * FROM grocery_inventory ORDER BY curr_qty LIMIT 2, 2;

[image: Images] SELECT * FROM grocery_inventory ORDER BY curr_qty LIMIT 4, 2;

If you specify an offset and number of rows in your query, and no results are found, you won’t see an error—just an empty resultset. For example, if the grocery_inventory table contains only six records, a query with a LIMIT offset of 6 produces no results.

In web-based applications, when you see lists of data displayed with links such as “previous 10” and “next 10,” it’s a safe bet that a LIMIT clause is at work.

Using WHERE in Your Queries

You have learned numerous ways to retrieve particular columns from your tables but not specific rows. This is when the WHERE clause comes in to play. From the sample SELECT syntax, you see that WHERE is used to specify a particular condition:

Click here to view code image

SELECT expressions_and_columns FROM table_name

[WHERE some_condition_is_true]

An example is to retrieve all the records for items with a quantity of 500:

Click here to view code image

SELECT * FROM grocery_inventory WHERE curr_qty = 500;

Here are the results:

Click here to view code image

+----+-------------------------+---------------------+------------+----------+

| id | item_name | item_desc | item_price | curr_qty |

+----+-------------------------+---------------------+------------+----------+

| 2 | Bunches of Grapes | Seedless grapes. | 2.99 | 500 |

| 4 | Bottled Water (12-pack) | 500ml spring water. | 4.49 | 500 |

+----+-------------------------+---------------------+------------+----------+

2 rows in set (0.00 sec)

As shown previously, if you use an integer as part of your WHERE clause, quotation marks are not required. Quotation marks are required around strings, however, and the same rules apply with regard to escaping characters as you learned in the section on INSERT.

Using Operators in WHERE Clauses

You’ve used the equal sign (=) in your WHERE clauses to determine the truth of a condition—that is, whether one thing is equal to another. You can use many types of operators, with comparison operators and logical operators being the most popular types. Table 17.1 lists the comparison operators and their meanings.

TABLE 17.1 Basic Comparison Operators and Their Meanings

	Operator

	Meaning

	=

	Equal to

	!=

	Not equal to

	<=

	Less than or equal to

	<

	Less than

	>=

	Greater than or equal to

	>

	Greater than

There’s also a handy operator called BETWEEN, which is useful with integer or date comparisons because it searches for results between a minimum and maximum value. Here’s an example:

Click here to view code image

SELECT * FROM grocery_inventory WHERE

item_price BETWEEN 1.50 AND 3.00;

Here are the results:

Click here to view code image

+----+------------------------+---------------------+------------+----------+

| id | item_name | item_desc | item_price | curr_qty |

+----+------------------------+---------------------+------------+----------+

| 2 | Bunches of Grapes | Seedless grapes. | 2.99 | 500 |

| 3 | Bottled Water (6-pack) | 500ml spring water. | 2.29 | 250 |

+----+------------------------+---------------------+------------+----------+

2 rows in set (0.00 sec)

Other operators include logical operators, which enable you to use multiple comparisons within your WHERE clause. The basic logical operators are AND and OR. When you use AND, all comparisons in the clause must be true to retrieve results, whereas using OR allows a minimum of one comparison to be true. Also, you can use the IN operator to specify a list of items that you want to match.

String Comparison Using LIKE

You were introduced to matching strings within a WHERE clause by using = or !=, but there’s another useful operator for the WHERE clause when comparing strings: the LIKE operator. This operator uses two characters as wildcards in pattern matching:

[image: Images] %—Matches multiple characters

[image: Images] _—Matches exactly one character

For example, if you want to find records in the grocery_inventory table where the first name of the item starts with the letter A, you would use the following:

Click here to view code image

SELECT * FROM grocery_inventory WHERE item_name LIKE 'A%';

Here are the results:

Click here to view code image

+----+-----------+-------------------------+------------+----------+

| id | item_name | item_desc | item_price | curr_qty |

+----+-----------+-------------------------+------------+----------+

| 1 | Apples | Beautiful, ripe apples. | 0.25 | 1000 |

+----+-----------+-------------------------+------------+----------+

1 row in set (0.00 sec)

NOTE

Unless you’re performing a LIKE comparison on a binary string, the comparison is not case sensitive. You can force a case-sensitive comparison using the BINARY keyword.

Selecting from Multiple Tables

You are not limited to selecting only one table at a time. That would certainly make application programming a long and tedious task! When you select from more than one table in one SELECT query, you are really joining the tables together.

Suppose that you have two tables: fruit and color. You can select all rows from each of the two tables by using two separate SELECT statements:

SELECT * FROM fruit;

This query might result in something like this:

+----+-----------+

| id | fruitname |

+----+-----------+

| 1 | apple |

| 2 | orange |

| 3 | grape |

| 4 | banana |

+----+-----------+

4 rows in set (0.00 sec)

SELECT * FROM color;

The second query could result in data like this:

+----+-----------+

| id | colorname |

+----+-----------+

| 1 | red |

| 2 | orange |

| 3 | purple |

| 4 | yellow |

+----+-----------+

4 rows in set (0.00 sec)

When you want to select from both tables at once, the syntax of the SELECT statement differs somewhat. First, you must ensure that all the tables you’re using in your query appear in the FROM clause of the SELECT statement. Using the fruit and color example, if you simply want to select all columns and rows from both tables, you might think you would use the following SELECT statement:

SELECT * FROM fruit, color;

With this query, you get results like this:

Click here to view code image

+----+-----------+----+-----------+

| id | fruitname | id | colorname |

+----+-----------+----+-----------+

| 1 | apple | 1 | red |

| 2 | orange | 1 | red |

| 3 | grape | 1 | red |

| 4 | banana | 1 | red |

| 1 | apple | 2 | orange |

| 2 | orange | 2 | orange |

| 3 | grape | 2 | orange |

| 4 | banana | 2 | orange |

| 1 | apple | 3 | purple |

| 2 | orange | 3 | purple |

| 3 | grape | 3 | purple |

| 4 | banana | 3 | purple |

| 1 | apple | 4 | yellow |

| 2 | orange | 4 | yellow |

| 3 | grape | 4 | yellow |

| 4 | banana | 4 | yellow |

+----+-----------+----+-----------+

16 rows in set (0.00 sec)

Sixteen rows of repeated information are probably not what you were looking for. What this query did is literally join a row in the color table to each row in the fruit table. Because there are four records in the fruit table and four entries in the color table, that’s 16 records returned to you.

When you select from multiple tables, you must build proper WHERE clauses to ensure that you really get what you want. In the case of the fruit and color tables, what you really want is to see the fruitname and colorname records from these two tables where the IDs of each match up. This brings us to the next nuance of the query: how to indicate exactly which field you want when the fields are named the same in both tables.

Simply, you append the table name to the field name, like this:

tablename.fieldname

So, the query for selecting fruitname and colorname from both tables where the IDs match would be as follows:

Click here to view code image

SELECT fruitname, colorname FROM fruit, color WHERE fruit.id = color.id;

This query produces a better result for you:

+-----------+-----------+

| fruitname | colorname |

+-----------+-----------+

| apple | red |

| orange | orange |

| grape | purple |

| banana | yellow |

+-----------+-----------+

4 rows in set (0.00 sec)

However, if you attempt to select a column that appears in both tables with the same name, you get an ambiguity error:

Click here to view code image

SELECT id, fruitname, colorname FROM fruit, color

WHERE fruit.id = color.id;

This query produces the following error:

Click here to view code image

ERROR 1052: Column: 'id' in field list is ambiguous

If you want to select the ID from the fruit table, you use this:

Click here to view code image

SELECT fruit.id, fruitname, colorname FROM fruit,

color WHERE fruit.id = color.id;

This query produces these results:

Click here to view code image

+------+-----------+-----------+

| id | fruitname | colorname |

+------+-----------+-----------+

| 1 | apple | red |

| 2 | orange | orange |

| 3 | grape | purple |

| 4 | banana | yellow |

+------+-----------+-----------+

4 rows in set (0.00 sec)

This was a basic example of joining two tables together for use in a single SELECT query. The JOIN keyword is an actual part of SQL, which enables you to build more complex queries.

Using JOIN

You can use several types of JOINs in MySQL, all of which refer to the order in which the tables are put together and the results are displayed. The type of JOIN used with the fruit and color tables is an INNER JOIN, although it wasn’t written explicitly as such. To rewrite the SQL statement using the proper INNER JOIN syntax, you use the following:

Click here to view code image

SELECT fruitname, colorname FROM fruit

INNER JOIN color ON fruit.id = color.id;

Your resultset looks like this:

+-----------+-----------+

| fruitname | colorname |

+-----------+-----------+

| apple | red |

| orange | orange |

| grape | purple |

| banana | yellow |

+-----------+-----------+

4 rows in set (0.00 sec)

The ON clause replaces the WHERE clause you’ve seen before; in this instance, it tells MySQL to join together the rows in the tables where the IDs match each other. When joining tables using ON clauses, you can use any conditions that you would use in a WHERE clause, including all the various logical and arithmetic operators.

Another common type of JOIN is the LEFT JOIN. When you join two tables with LEFT JOIN, all rows from the first table are returned, regardless of whether there are matches in the second table. Suppose that you have two tables in an address book: one called master_name, containing basic records, and one called email, containing email records. Any records in the email table would be tied to a particular ID of a record in the master_name table. For example, look at these two tables (the master_name and email tables, respectively):

Click here to view code image

+---------+-----------+----------+

| name_id | firstname | lastname |

+---------+-----------+----------+

| 1 | John | Smith |

| 2 | Jane | Smith |

| 3 | Jimbo | Jones |

| 4 | Andy | Smith |

| 5 | Chris | Jones |

| 6 | Anna | Bell |

| 7 | Jimmy | Carr |

| 8 | Albert | Smith |

| 9 | John | Doe |

+---------+-----------+----------+

+---------+-------------------+

| name_id | email |

+---------+-------------------+

| 2 | jsmith@jsmith.com |

| 6 | annabell@aol.com |

| 9 | jdoe@yahoo.com |

+---------+-------------------+

Using LEFT JOIN on these two tables, you can see that if a value from the email table does not exist, an empty value appears in place of an email address:

Click here to view code image

SELECT firstname, lastname, email FROM master_name

LEFT JOIN email ON master_name.name_id = email.name_id;

The LEFT JOIN query here produces these results:

Click here to view code image

+-----------+----------+-------------------+

| firstname | lastname | email |

+-----------+----------+-------------------+

| John | Smith | |

| Jane | Smith | jsmith@jsmith.com |

| Jimbo | Jones | |

| Andy | Smith | |

| Chris | Jones | |

| Anna | Bell | annabell@aol.com |

| Jimmy | Carr | |

| Albert | Smith | |

| John | Doe | jdoe@yahoo.com |

+-----------+----------+-------------------+

9 rows in set (0.00 sec)

A RIGHT JOIN works like LEFT JOIN but with the table order reversed. In other words, when you use a RIGHT JOIN, all rows from the second table are returned, no matter whether matches exist in the first table. However, in the case of the master_name and email tables, there are only three rows in the email table, whereas there are nine rows in the master_name table. This means that only three of the nine rows are returned by this query:

Click here to view code image

SELECT firstname, lastname, email FROM master_name

RIGHT JOIN email ON master_name.name_id = email.name_id;

The results are as expected:

Click here to view code image

+-----------+----------+-------------------+

| firstname | lastname | email |

+-----------+----------+-------------------+

| Jane | Smith | jsmith@jsmith.com |

| Anna | Bell | annabell@aol.com |

| John | Doe | jdoe@yahoo.com |

+-----------+----------+-------------------+

3 rows in set (0.00 sec)

Several different types of JOINs are available in MySQL, and you have learned about the most common types. To learn more about JOINs such as CROSS JOIN, STRAIGHT JOIN, and NATURAL JOIN, visit the MySQL Manual at http://dev.mysql.com/doc/refman/5.7/en/join.html. As you continue your learning elsewhere, I highly recommend learning more about and practicing JOINs; they can be one of the most powerful tools in your SQL toolkit.

Using Subqueries

Simply stated, a subquery is a SELECT query that appears within another SQL statement. Such queries can prove extremely useful because they often eliminate the need for bulky JOIN clauses, and in the case of application programming, subqueries can eliminate the need for multiple queries within loops.

An example of the basic subquery syntax is shown here:

Click here to view code image

SELECT expressions_and_columns FROM table_name WHERE somecolumn = (SUBQUERY);

You can also use subqueries with UPDATE and DELETE statements, as shown here:

Click here to view code image

DELETE FROM table_name WHERE somecolumn = (SUBQUERY);

or

Click here to view code image

UPDATE table_name SET somecolumn = 'something' WHERE somecolumn = (SUBQUERY);

NOTE

The outer statement of a subquery can be SELECT, INSERT, UPDATE, DELETE, as well as more advanced statements not addressed in this book (e.g. SET and DO).

The subquery must always appear in parentheses—no exceptions!

When you use subqueries, the WHERE portion of the outer statement does not have to use the = comparison operator. In addition to =, you can use any of the basic comparison operators as well as keywords such as IN, which you’ll see in a moment.

The following example uses a subquery to obtain records from users in the master_name table who have an email address in the email table:

Click here to view code image

SELECT firstname, lastname FROM master_name

WHERE name_id IN (SELECT name_id FROM email);

The results of this query may look something like this:

+-----------+----------+

| firstname | lastname |

+-----------+----------+

| Jane | Smith |

| Anna | Bell |

| John | Doe |

+-----------+----------+

3 rows in set (0.00 sec)

For a more detailed discussion of subqueries, including limitations, see the “Subqueries” section of the MySQL Manual at http://dev.mysql.com/doc/refman/5.7/en/subqueries.html.

Using the UPDATE Statement to Modify Records

UPDATE is the SQL statement used to modify the contents of one or more columns in an existing record or set of records. The most basic UPDATE syntax looks like this:

Click here to view code image

UPDATE table_name

SET column1='new value',

column2='new value2'

[WHERE some_condition_is_true]

The guidelines for updating a record are similar to those used when inserting a record: The data you’re entering must be appropriate to the data type of the field, and you must enclose your strings in single or double quotes, escaping where necessary.

For example, assume that you have a table called fruit containing an ID, a fruit name, and the status of the fruit (ripe or rotten):

+----+------------+--------+

| id | fruit_name | status |

+----+------------+--------+

| 1 | apple | ripe |

| 2 | orange | rotten |

| 3 | grape | ripe |

| 4 | banana | rotten |

+----+------------+--------+

4 rows in set (0.00 sec)

To update the status of the fruit to ripe, use

Click here to view code image

UPDATE fruit SET status = 'ripe';

You receive a response from the database like so:

Click here to view code image

Query OK, 2 rows affected (0.00 sec)

Rows matched: 4 Changed: 2 Warnings: 0

Take a close look at the result of the statement. It was successful, as you can tell from the Query OK message. Also note that only two rows were affected—if you try to set the value of a column to the value it already is, the update won’t occur for that column.

The second line of the response shows that four rows were matched, and only two were changed. If you’re wondering what matched, the answer is simple: Because you did not specify a particular condition for matching, the match is all rows.

You must be careful and use a condition when updating a table, unless you really intend to change all the columns for all records to the same value. For the sake of argument, assume that the word grape is spelled incorrectly in its row in the table, and you want to use UPDATE to correct this mistake:

Click here to view code image

UPDATE fruit SET fruit_name = 'grape';

This query would have horrible results:

Click here to view code image

Query OK, 4 rows affected (0.00 sec)

Rows matched: 4 Changed: 4 Warnings: 0

When you read the result, you should be filled with dread: Four of four records were changed, instead of only the one you intended, meaning your fruit table now looks like this:

+----+------------+--------+

| id | fruit_name | status |

+----+------------+--------+

| 1 | grape | ripe |

| 2 | grape | ripe |

| 3 | grape | ripe |

| 4 | grape | ripe |

+----+------------+--------+

4 rows in set (0.00 sec)

All your fruit records are now grapes. While you were attempting to correct the spelling of one field, all fields were changed because you failed to specify a condition.

Should you find yourself in an administrative position to dole out UPDATE privileges to your users, think about the responsibility you’re giving to someone—one wrong move and your entire table could be grapes. In the preceding example, you could have used the id or fruit_name field in your WHERE clause, as you will see in the following section.

Conditional UPDATEs

Making a conditional UPDATE means that you are using WHERE clauses to match specific records. Using a WHERE clause in an UPDATE statement is just like using a WHERE clause in a SELECT query. All the same comparison and logical operators can be used, such as equal to, greater than, OR, and AND.

Assume that your fruit table has not been completely filled with grapes but instead contains four records, one with a spelling mistake (grappe instead of grape). The UPDATE statement to fix the spelling mistake is as follows:

Click here to view code image

UPDATE fruit SET fruit_name = 'grape' WHERE fruit_name = 'grappe';

In this case, only one row was matched and one row was changed, as shown with this result:

Click here to view code image

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Your fruit table should be intact, and all fruit names should be spelled properly:

SELECT * FROM fruit;

This SELECT query shows the following:

+----+------------+--------+

| id | fruit_name | status |

+----+------------+--------+

| 1 | apple | ripe |

| 2 | pear | ripe |

| 3 | banana | ripe |

| 4 | grape | ripe |

+----+------------+--------+

4 rows in set (0.00 sec)

Using Existing Column Values with UPDATE

Another feature of UPDATE is the capability to use the current value in the record as the base value. For example, go back to the grocery_inventory table example, with a table that looks like this:

Click here to view code image

+----+-------------------------+-------------------------+------------+----------+

| id | item_name | item_desc | item_price | curr_qty |

+----+-------------------------+-------------------------+------------+----------+

| 1 | Apples | Beautiful, ripe apples. | 0.25 | 1000 |

| 2 | Bunches of Grapes | Seedless grapes. | 2.99 | 500 |

| 3 | Bottled Water (6-pack) | 500ml spring water. | 2.29 | 250 |

| 4 | Bottled Water (12-pack) | 500ml spring water. | 4.49 | 500 |

| 5 | Bananas | Bunches, green. | 1.99 | 150 |

| 6 | Pears | Anjou, nice and sweet. | 0.5 | 500 |

| 7 | Avocado | Large Haas variety. | 0.99 | 750 |

+----+-------------------------+-------------------------+------------+----------+

7 rows in set (0.00 sec)

When someone purchases a product, such as an apple (id = 1), the inventory table should be updated accordingly. However, you won’t know exactly what number to enter in the curr_qty column, just that you sold one. In this case, use the current value of the column and subtract 1, like so:

Click here to view code image

UPDATE grocery_inventory SET curr_qty = curr_qty - 1 WHERE id = 1;

This query should give you a new value of 999 in the curr_qty column, and indeed it does:

Click here to view code image

SELECT * FROM grocery_inventory;

The SELECT query shows the new inventory quantity:

Click here to view code image

+----+-------------------------+-------------------------+------------+----------+

| id | item_name | item_desc | item_price | curr_qty |

+----+-------------------------+-------------------------+------------+----------+

| 1 | Apples | Beautiful, ripe apples. | 0.25 | 999 |

| 2 | Bunches of Grapes | Seedless grapes. | 2.99 | 500 |

| 3 | Bottled Water (6-pack) | 500ml spring water. | 2.29 | 250 |

| 4 | Bottled Water (12-pack) | 500ml spring water. | 4.49 | 500 |

| 5 | Bananas | Bunches, green. | 1.99 | 150 |

| 6 | Pears | Anjou, nice and sweet. | 0.5 | 500 |

| 7 | Avocado | Large Haas variety. | 0.99 | 750 |

+----+-------------------------+-------------------------+------------+----------+

7 rows in set (0.00 sec)

Using the REPLACE Statement

Another method for modifying records is to use the REPLACE statement, which is remarkably similar to the INSERT statement:

Click here to view code image

REPLACE INTO table_name (column list) VALUES (column values);

The REPLACE statement works like this: If the record you are inserting into the table contains a primary key value that matches a record already in the table, the record in the table is deleted and the new record inserted in its place.

NOTE

The REPLACE command is a MySQL-specific extension to ANSI SQL. This command mimics the action of a DELETE and re-INSERT of a particular record. In other words, you get two commands for the price of one.

Using the grocery_inventory table, the following statement replaces the entry for Apples:

Click here to view code image

REPLACE INTO grocery_inventory VALUES

 (1, 'Granny Smith Apples', 'Sweet!', '0.50', 1000);

You should see the following result:

Click here to view code image

Query OK, 2 rows affected (0.00 sec)

Notice that the result states 2 rows affected. In this case, because id is a primary key that had a matching value in the grocery_inventory table, the original row was deleted and the new row was inserted: 2 rows affected.

Use a SELECT query to verify that the entry is correct, which it is:

Click here to view code image

+----+-------------------------+-------------------------+------------+----------+

| id | item_name | item_desc | item_price | curr_qty |

+----+-------------------------+-------------------------+------------+----------+

| 1 | Granny Smith Apples | Sweet! | 0.50 | 1000 |

| 2 | Bunches of Grapes | Seedless grapes. | 2.99 | 500 |

| 3 | Bottled Water (6-pack) | 500ml spring water. | 2.29 | 250 |

| 4 | Bottled Water (12-pack) | 500ml spring water. | 4.49 | 500 |

| 5 | Bananas | Bunches, green. | 1.99 | 150 |

| 6 | Pears | Anjou, nice and sweet. | 0.5 | 500 |

| 7 | Avocado | Large Haas variety. | 0.99 | 750 |

+----+-------------------------+-------------------------+------------+----------+

7 rows in set (0.00 sec)

If you use a REPLACE statement, and the value of the primary key in the new record does not match a value for a primary key already in the table, the record is simply inserted, and only one row is affected.

Using the DELETE Statement

The basic DELETE syntax is as follows:

Click here to view code image

DELETE FROM table_name

[WHERE some_condition_is_true]

[LIMIT rows]

Notice that no column specification is used in the DELETE statement—when you use DELETE, the entire record is removed. You might recall the fiasco earlier in this chapter regarding grapes in the fruit table, when updating a table without specifying a condition caused an update of all records. You must be similarly careful when using DELETE.

The statement

DELETE FROM fruit;

removes all records in the table, assuming the following structure and data in a table called fruit:

+----+------------+--------+

| id | fruit_name | status |

+----+------------+--------+

| 1 | apple | ripe |

| 2 | pear | rotten |

| 3 | banana | ripe |

| 4 | grape | rotten |

+----+------------+--------+

4 rows in set (0.00 sec)

You can always verify the deletion by attempting to SELECT data from the table. If you were to issue the query

SELECT * FROM fruit;

after removing all the records, you would see that all your fruit is gone:

Empty set (0.00 sec)

Conditional DELETE

A conditional DELETE statement, just like a conditional SELECT query or UPDATE statement, means you are using WHERE clauses to match specific records. You have the full range of comparison and logical operators available to you, so you can pick and choose which records you want to delete.

A prime example is to remove all records for rotten fruit from the fruit table:

Click here to view code image

DELETE FROM fruit WHERE status = 'rotten';

Two records were deleted:

Click here to view code image

Query OK, 2 rows affected (0.00 sec)

Only ripe fruit remains:

+----+------------+--------+

| id | fruit_name | status |

+----+------------+--------+

| 1 | apple | ripe |

| 3 | banana | ripe |

+----+------------+--------+

2 rows in set (0.00 sec)

You can also use ORDER BY clauses in your DELETE statements; look at the basic DELETE syntax with the ORDER BY clause added to its structure:

Click here to view code image

DELETE FROM table_name

[WHERE some_condition_is_true]

[ORDER BY some_column [ASC | DESC]]

[LIMIT rows]

At first glance, you might wonder, “Why does it matter in what order I delete records?” But the ORDER BY clause isn’t for the deletion order, it’s for the sorting order of records.

In this example, a table called access_log shows access time and username:

Click here to view code image

+----+---------------------+----------+

| id | date_accessed | username |

+----+---------------------+----------+

| 1 | 2016-01-06 06:09:13 | johndoe |

| 2 | 2016-01-06 06:09:22 | janedoe |

| 3 | 2016-01-06 06:09:39 | jsmith |

| 4 | 2016-01-06 06:09:44 | mikew |

+----+---------------------+----------+

4 rows in set (0.00 sec)

To remove the oldest record, first use ORDER BY to sort the results appropriately, and then use LIMIT to remove just one record:

Click here to view code image

DELETE FROM access_log ORDER BY date_accessed DESC LIMIT 1;

Select all from access_log and verify that only three records exist:

SELECT * FROM access_log;

The results are as follows:

Click here to view code image

+----+---------------------+----------+

| id | date_accessed | username |

+----+---------------------+----------+

| 2 | 2016-01-06 06:09:22 | janedoe |

| 3 | 2016-01-06 06:09:39 | jsmith |

| 4 | 2016-01-06 06:09:44 | mikew |

+----+---------------------+----------+

3 rows in set (0.00 sec)

Frequently Used String Functions in MySQL

MySQL’s built-in string-related functions can be used in several ways within statements and queries. You can use functions in SELECT queries without specifying a table to retrieve a result of the function. Or you can use functions to enhance your SELECT query results by concatenating two fields to form a new string. The following examples are by no means a complete library of MySQL string-related functions, but are some interesting and commonly used functions. For more, see the MySQL Manual at http://dev.mysql.com/doc/refman/5.7/en/string-functions.html.

Length and Concatenation Functions

The group of length and concatenation functions focuses on the length of strings and concatenating strings together. Length-related functions include LENGTH(), OCTET_LENGTH(), CHAR_LENGTH(), and CHARACTER_LENGTH(), which do almost the same thing: count characters in a string.

Click here to view code image

SELECT LENGTH('This is cool!');

The result is this:

+-------------------------+

| LENGTH('This is cool!') |

+-------------------------+

| 13 |

+-------------------------+

1 row in set (0.00 sec)

The fun begins with the CONCAT() function, which concatenates two or more strings:

Click here to view code image

SELECT CONCAT('My', 'S', 'QL');

This query results in the following:

+-------------------------+

| CONCAT('My', 'S', 'QL') |

+-------------------------+

| MySQL |

+-------------------------+

1 row in set (0.00 sec)

Imagine using this function with a table containing names, split into firstname and lastname fields. Instead of using two strings, use two field names to concatenate the firstname and the lastname fields. By concatenating the fields, you reduce the lines of code necessary to achieve the same result in your application:

Click here to view code image

SELECT CONCAT(firstname, lastname) FROM master_name;

This query results in the following:

Click here to view code image

+-----------------------------+

| CONCAT(firstname, lastname) |

+-----------------------------+

| JohnSmith |

| JaneSmith |

| JimboJones |

| AndySmith |

| ChrisJones |

| AnnaBell |

| JimmyCarr |

| AlbertSmith |

| JohnDoe |

+-----------------------------+

9 rows in set (0.00 sec)

TIP

If you’re using a field name and not a string in a function, do not enclose the field name within quotation marks. If you do, MySQL interprets the string literally. In a CONCAT() example like

Click here to view code image

SELECT CONCAT('firstname', 'lastname') FROM master_name;

you get the following result:

Click here to view code image

+---------------------------------+

| CONCAT('firstname', 'lastname') |

+---------------------------------+

| firstnamelastname |

| firstnamelastname |

| firstnamelastname |

| firstnamelastname |

| firstnamelastname |

| firstnamelastname |

| firstnamelastname |

| firstnamelastname |

| firstnamelastname |

+---------------------------------+

9 rows in set (0.00 sec)

The CONCAT() function would be even more useful if there were some sort of separator between the names, and that’s where the next function comes in: CONCAT_WS().

As you might have figured out, CONTACT_WS() stands for concatenate with separator. The separator can be anything you choose, but the following example uses whitespace:

Click here to view code image

SELECT CONCAT_WS(' ', firstname, lastname) FROM master_name;

This query results in the following:

Click here to view code image

+-------------------------------------+

| CONCAT_WS(' ', firstname, lastname) |

+-------------------------------------+

| John Smith |

| Jane Smith |

| Jimbo Jones |

| Andy Smith |

| Chris Jones |

| Anna Bell |

| Jimmy Carr |

| Albert Smith |

| John Doe |

+-------------------------------------+

9 rows in set (0.00 sec)

If you want to shorten the width of your result table, you can use AS to name the custom result field:

Click here to view code image

SELECT CONCAT_WS(' ', firstname, lastname) AS fullname FROM master_name;

With this, you get the following results:

+--------------+

| fullname |

+--------------+

| John Smith |

| Jane Smith |

| Jimbo Jones |

| Andy Smith |

| Chris Jones |

| Anna Bell |

| Jimmy Carr |

| Albert Smith |

| John Doe |

+--------------+

9 rows in set (0.00 sec)

Trimming and Padding Functions

MySQL provides several functions for adding and removing extra characters (including whitespace) from strings. The RTRIM() and LTRIM() functions remove whitespace from either the right or left side of a string:

Click here to view code image

SELECT RTRIM('stringstring ');

This query results in the following, although it is difficult to see the change:

+--------------------------+

| RTRIM('stringstring ') |

+--------------------------+

| stringstring |

+--------------------------+

1 row in set (0.00 sec)

The LTRIM() function results are easier to see:

Click here to view code image

SELECT LTRIM(' stringstring');

This query results in the following, with the whitespace clearly stripped:

+-------------------------+

| LTRIM(' stringstring') |

+-------------------------+

| stringstring |

+-------------------------+

1 row in set (0.00 sec)

You may have padded strings to trim if the string is coming out of a fixed-width field and either doesn’t need to carry along the additional padding or is being inserted into a varchar or other non-fixed-width field. If your strings are padded with a character besides whitespace, use the TRIM() function to name the characters you want to remove. For example, to remove the leading X characters from the string XXXneedleXXX, use

Click here to view code image

SELECT TRIM(LEADING 'X' FROM 'XXXneedleXXX');

Here is the result of this query:

Click here to view code image

+---------------------------------------+

| TRIM(LEADING 'X' FROM 'XXXneedleXXX') |

+---------------------------------------+

| needleXXX |

+---------------------------------------+

1 row in set (0.00 sec)

You can use TRAILING to remove the characters from the end of the string:

Click here to view code image

SELECT TRIM(TRAILING 'X' FROM 'XXXneedleXXX');

The results of this query are as follows:

Click here to view code image

+--+

| TRIM(TRAILING 'X' FROM 'XXXneedleXXX') |

+--+

| XXXneedle |

+--+

1 row in set (0.00 sec)

If neither LEADING nor TRAILING is indicated, both are assumed:

Click here to view code image

SELECT TRIM('X' FROM 'XXXneedleXXX');

This query results in this:

Click here to view code image

+-------------------------------+

| TRIM('X' FROM 'XXXneedleXXX') |

+-------------------------------+

| needle |

+-------------------------------+

1 row in set (0.00 sec)

Just as RTRIM() and LTRIM() remove padding characters, RPAD() and LPAD() add characters to a string. For example, you might want to add specific identification characters to a string that is part of an order number, in a database used for sales. When you use the padding functions, the required elements are the string, the target length, and the padding character. For example, pad the string needle with the X character until the string is 10 characters long using this query:

Click here to view code image

SELECT RPAD('needle', 10, 'X');

You will see this result:

+-------------------------+

| RPAD('needle', 10, 'X') |

+-------------------------+

| needleXXXX |

+-------------------------+

1 row in set (0.00 sec)

Location and Position Functions

The group of location and position functions is useful for finding parts of strings within other strings. The LOCATE() function returns the position of the first occurrence of a given substring within the target string. For example, you can look for a needle in a haystack:

Click here to view code image

SELECT LOCATE('needle', 'haystackneedlehaystack');

You should see this result:

Click here to view code image

+--+

| LOCATE('needle', 'haystackneedlehaystack') |

+--+

| 9 |

+--+

1 row in set (0.00 sec)

The substring needle begins at position 9 in the target string. If the substring cannot be found in the target string, MySQL returns 0 as a result.

NOTE

Unlike position counting within most programming languages, which start at 0, position counting using MySQL starts at 1.

An extension of the LOCATE() function is to use a third argument for starting position. If you start looking for needle in haystack before position 9, you’ll receive a result. Otherwise, because needle starts at position 9, you’ll receive a 0 result if you specify a greater starting position.

Substring Functions

If your goal is to extract a substring from a target string, several functions fit the bill. Given a string, starting position, and length, you can use the SUBSTRING() function. This example gets three characters from the string MySQL, starting at position 2:

Click here to view code image

SELECT SUBSTRING("MySQL", 2, 3);

The result is as follows:

+--------------------------+

| SUBSTRING("MySQL", 2, 3) |

+--------------------------+

| ySQ |

+--------------------------+

1 row in set (0.00 sec)

If you just want a few characters from the left or right ends of a string, use the LEFT() and RIGHT() functions:

SELECT LEFT("MySQL", 2);

The result of this query is as follows:

+------------------+

| LEFT("MySQL", 2) |

+------------------+

| My |

+------------------+

1 row in set (0.00 sec)

Similarly, using RIGHT(), as in

SELECT RIGHT("MySQL", 3);

you get the following results:

+-------------------+

| RIGHT("MySQL", 3) |

+-------------------+

| SQL |

+-------------------+

1 row in set (0.00 sec)

One common use of substring functions is to extract parts of order numbers to find out who placed the order. In some applications, the system is designed to automatically generate an order number containing a date, customer identification, and other information. If this order number always follows a particular pattern, such as XXXX-YYYYY-ZZ, you can use substring functions to extract the individual parts of the whole. For example, if ZZ always represents the state to which the order was shipped, you can use the RIGHT() function to extract these characters and report the number of orders shipped to a particular state.

String Modification Functions

PHP has numerous functions to modify the appearance of strings, but if you can perform the task as part of the SQL statement, all the better—let the database system do as much work as possible to alleviate the burden further on in the application layer.

The MySQL LCASE() and UCASE() functions transform a string into lowercase and uppercase, respectively. For example, the query

SELECT LCASE('MYSQL');

produces the following results:

+----------------+

| LCASE('MYSQL') |

+----------------+

| mysql |

+----------------+

1 row in set (0.00 sec)

For uppercasing, use the following query:

SELECT UCASE('mysql');

This query produces the following results:

+----------------+

| UCASE('mysql') |

+----------------+

| MYSQL |

+----------------+

1 row in set (0.00 sec)

TIP

A practical use of the LCASE() and UCASE() functions is when you are validating user input against data stored in MySQL—such as in the case of a user login form. If you want the login process to appear not case sensitive, you could attempt to match the uppercase (or lowercase) version of the user input against the uppercase (or lowercase) version of the data stored in the table.

Remember, if you use the functions with field names, don’t use quotation marks. For example, you would use the query

Click here to view code image

SELECT UCASE(lastname) FROM master_name;

to produce results like this:

+-----------------+

| UCASE(lastname) |

+-----------------+

| BELL |

| CARR |

| DOE |

| JONES |

| JONES |

| SMITH |

| SMITH |

| SMITH |

| SMITH |

+-----------------+

9 rows in set (0.00 sec)

Another fun string-manipulation function is REPEAT(), which does just what it sounds like—repeats a string for a given number of times:

SELECT REPEAT("bowwow", 4);

You should see this result:

+--------------------------+

| REPEAT("bowwow", 4) |

+--------------------------+

| bowwowbowwowbowwowbowwow |

+--------------------------+

1 row in set (0.00 sec)

The REPLACE() function replaces all occurrences of a given string with another string. For example, the query

Click here to view code image

SELECT REPLACE('bowwowbowwowbowwowbowwow', 'wow', 'WOW');

produces the following:

Click here to view code image

+---+

| REPLACE('bowwowbowwowbowwowbowwow', 'wow', 'WOW') |

+---+

| bowWOWbowWOWbowWOWbowWOW |

+---+

1 row in set (0.00 sec)

Using Date and Time Functions in MySQL

You can use MySQL’s built-in date-related functions in SELECT queries, with or without specifying a table, to retrieve a result of the function. Or you can use the functions with any type of date field such as DATE, DATETIME, TIMESTAMP, and YEAR. Depending on the type of field in use, the results of the date-related functions can be more or less useful, and the following examples are by no means a complete library of MySQL date- and time-related functions. For more functions, see the MySQL Manual at http://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html.

Working with Days

The DAYOFWEEK() and WEEKDAY() functions perform the same task but with slightly different results. Both functions find the weekday index of a date, but the difference lies in the starting day and position.

If you use DAYOFWEEK(), the first day of the week is Sunday, at position 1, and the last day of the week is Saturday, at position 7. Here’s an example:

Click here to view code image

SELECT DAYOFWEEK('2016-07-04');

This query produces the following result:

+-------------------------+

| DAYOFWEEK('2016-07-04') |

+-------------------------+

| 2 |

+-------------------------+

1 row in set (0.00 sec)

The result shows that July 4, 2016, was weekday index 2, or Monday. Using the same date with WEEKDAY() gives you a different result with the same meaning:

+-----------------------+

| WEEKDAY('2016-07-04') |

+-----------------------+

| 0 |

+-----------------------+

1 row in set (0.00 sec)

The result shows that July 4, 2016, was weekday index 0. Because WEEKDAY() uses Monday as the first day of the week at position 0 and Sunday as the last day at position 6, 0 is accurate: Monday.

The DAYOFMONTH() and DAYOFYEAR() functions are more straightforward, with only one result and a range that starts at 1 and ends at 31 for DAYOFMONTH() and 366 for DAYOFYEAR(). Some examples follow:

Click here to view code image

SELECT DAYOFMONTH('2016-07-04');

This query produces the following results:

+--------------------------+

| DAYOFMONTH('2016-07-04') |

+--------------------------+

| 4 |

+--------------------------+

1 row in set (0.00 sec)

Now try:

Click here to view code image

SELECT DAYOFYEAR('2016-07-04');

This query produces the following results:

+-------------------------+

| DAYOFYEAR('2016-07-04') |

+-------------------------+

| 186 |

+-------------------------+

1 row in set (0.00 sec)

It might seem odd to have a function that returns the day of the month on a particular date because the day is right there in the string. But think about using these types of functions in WHERE clauses to perform comparisons on records. If you have a table that holds online orders with a field containing the date the order was placed, you can quickly get a count of the orders placed on any given day of the week, or see how many orders were placed during the first half of the month versus the second half.

The following two queries show how many orders were placed during the first three days of the week (throughout all months) and then the remaining days of the week:

Click here to view code image

SELECT COUNT(id) FROM orders WHERE DAYOFWEEK(date_ordered) < 4;

SELECT COUNT(id) FROM orders WHERE DAYOFWEEK(date_ordered) > 3;

Using DAYOFMONTH(), the following examples show the number of orders placed during the first half of any month versus the second half:

Click here to view code image

SELECT COUNT(id) FROM orders WHERE DAYOFMONTH(date_ordered) < 16;

SELECT COUNT(id) FROM orders WHERE DAYOFMONTH(date_ordered) > 15;

You can use the DAYNAME() function to add more life to your results because it returns the name of the weekday for any given date:

Click here to view code image

SELECT DAYNAME(date_ordered) FROM orders;

This query produces results such as these:

+-----------------------+

| DAYNAME(date_ordered) |

+-----------------------+

| Thursday |

| Monday |

| Thursday |

| Thursday |

| Wednesday |

| Thursday |

| Sunday |

| Sunday |

+-----------------------+

8 rows in set (0.00 sec)

Functions aren’t limited to being used in WHERE clauses—you can use them in ORDER BY clauses as well, such as the following:

Click here to view code image

SELECT DAYNAME(date_ordered) FROM orders

ORDER BY DAYOFWEEK(date_ordered);

Working with Months and Years

Days of the week are not the only parts of the calendar, and MySQL has functions specifically for months and years as well. Just like the DAYOFWEEK() and DAYNAME() functions, MONTH() and MONTHNAME() return the number of the month in a year and the name of the month for a given date. Here’s an example:

Click here to view code image

SELECT MONTH('2016-07-04'), MONTHNAME('2016-07-04');

This query produces the following:

Click here to view code image

+---------------------+-------------------------+

| MONTH('2016-07-04') | MONTHNAME('2016-07-04') |

+---------------------+-------------------------+

| 7 | July |

+---------------------+-------------------------+

1 row in set (0.00 sec)

Using MONTHNAME() on the orders table shows the proper results but can show a lot of repeated data:

+-------------------------+

| MONTHNAME(date_ordered) |

+-------------------------+

| November |

| November |

| November |

| November |

| November |

| November |

| November |

| October |

+-------------------------+

8 rows in set (0.00 sec)

You can use DISTINCT to get nonrepetitive results:

Click here to view code image

SELECT DISTINCT MONTHNAME(date_ordered) FROM orders;

This query produces results like these:

+-------------------------+

| MONTHNAME(date_ordered) |

+-------------------------+

| November |

| October |

+-------------------------+

2 rows in set (0.00 sec)

For work with years, the YEAR() function returns the year of a given date:

Click here to view code image

SELECT DISTINCT YEAR(date_ordered) FROM orders;

This query produces results like the following:

+--------------------+

| YEAR(date_ordered) |

+--------------------+

| 2015 |

| 2016 |

+--------------------+

1 row in set (0.00 sec)

Working with Weeks

Weeks can be tricky things—there can be 53 weeks in a year if Sunday is the first day of the week and four or more of the days of the same week will be in January. For example, December 30 of 2001 was a Sunday:

SELECT DAYNAME('2001-12-30');

Here’s proof:

+-----------------------+

| DAYNAME('2001-12-30') |

+-----------------------+

| Sunday |

+-----------------------+

1 row in set (0.00 sec)

That fact made December 30 of 2001 part of the 53rd week of the year if calculated using the one of the eight different ways to calculate weeks, which you can see using this query:

SELECT WEEK('2001-12-30', 4);

The week of the year is shown appropriately in the results:

+-----------------------+

| WEEK('2001-12-30', 4) |

+-----------------------+

| 53 |

+-----------------------+

1 row in set (0.00 sec)

The 53rd week contained December 30 and 31 and was only 2 days long; the first week of 2002 began with January 1.

If you want your weeks to start on Mondays but still want to find the week of the year, the optional second argument enables you to change the start day. A 1 indicates a week that starts on Monday and four or more days of the same week will be January. In the following examples, a Monday start day makes December 30 part of the 52nd week of 2001, but December 31 is still part of the 53rd week of 2001:

SELECT WEEK('2001-12-30',1);

This query produces the following results:

+----------------------+

| WEEK('2001-12-30',1) |

+----------------------+

| 52 |

+----------------------+

1 row in set (0.00 sec)

While the query

SELECT WEEK('2001-12-31',1);

produces this result:

+----------------------+

| WEEK('2001-12-31',1) |

+----------------------+

| 53 |

+----------------------+

1 row in set (0.00 sec)

The point of this exercise was to show that there are many different date and time manipulation and retrieval functions, with numerous options within each one—always refer to the MySQL Manual if you are unsure or just curious.

Working with Hours, Minutes, and Seconds

If you’re using a date that includes the exact time, such as datetime or timestamp, or even just a time field, there are functions to find the hours, minutes, and seconds from that string. Not surprisingly, these functions are called HOUR(), MINUTE(), and SECOND(). HOUR() returns the hour in a given time, which is between 0 and 23. The range for MINUTE() and SECOND() is 0 to 59.

Here is an example:

Click here to view code image

SELECT HOUR('2016-01-09 07:27:49') AS hour,

MINUTE('2016-01-09 07:27:49') AS minute,

SECOND('2016-01-09 07:27:49') AS second;

This query produces the following:

+------+--------+--------+

| hour | minute | second |

+------+--------+--------+

| 7 | 27 | 49 |

+------+--------+--------+

1 row in set (0.00 sec)

That’s a lot of queries to get at one time from a datetime field. However, you can put the hour and minute together and even use CONCAT_WS() to put the colon (:) between the results and get a representation of the time, like so:

Click here to view code image

SELECT CONCAT_WS(':',HOUR('2016-01-09 07:27:49'),

MINUTE('2016-01-09 07:27:49')) AS sample_time;

This query produces the following:

+-------------+

| sample_time |

+-------------+

| 7:27 |

+-------------+

1 row in set (0.00 sec)

In the next section, you learn how to use the DATE_FORMAT() function to properly format dates and times.

Formatting Dates and Times with MySQL

The DATE_FORMAT() function formats a date, datetime, or timestamp field into a string by using options that tell it exactly how to display the results. The syntax of DATE_FORMAT() is as follows:

DATE_FORMAT(date,format)

Table 17.2 lists many formatting options for DATE_FORMAT().

TABLE 17.2 DATE_FORMAT() Format String Options

	Option

	Result

	%M

	Month name (January through December)

	%b

	Abbreviated month name (Jan through Dec)

	%m

	Month, padded digits (01 through 12)

	%c

	Month (1 through 12)

	%W

	Weekday name (Sunday through Saturday)

	%a

	Abbreviated weekday name (Sun through Sat)

	%D

	Day of the month using an English suffix such as 1st, 2nd, 3rd, etc.,

	%d

	Day of the month, padded digits (00 through 31)

	%e

	Day of the month (0 through 31)

	%j

	Day of the year, padded digits (001 through 366)

	%Y

	Year, four digits

	%y

	Year, two digits

	%X

	Four-digit year for the week where Sunday is the first day (used with %V)

	%x

	Four-digit year for the week where Monday is the first day (used with %v)

	%w

	Day of the week (0=Sunday…6=Saturday)

	%U

	Week (0 through 53) where Sunday is the first day of the week

	%u

	Week (0 through 53) where Monday is the first day of the week

	%V

	Week (1 through 53) where Sunday is the first day of the week (used with %X)

	%v

	Week (1 through 53) where Monday is the first day of the week (used with %x)

	%H

	Hour, padded digits (00 through 23)

	%k

	Hour (0 through 23)

	%h

	Hour, padded digits (01 through 12)

	%l

	Hour (1 through 12)

	%i

	Minutes, padded digits (00 through 59)

	%S

	Seconds, padded digits (00 through 59)

	%s

	Seconds, padded digits (00 through 59)

	%r

	Time, 12-hour clock (hh:mm:ss [AP]M)

	%T

	Time, 24-hour clock (hh:mm:ss)

	%p

	AM or PM

NOTE

Any other characters used in the DATE_FORMAT() option string appear literally.

To display the 07:27 result that we rigged in the previous section, you use the %h and %i options to return the hour and minute from the date with a colon between the two options. Here’s an example:

Click here to view code image

SELECT DATE_FORMAT('2016-01-09 07:27:49, '%h:%i') AS sample_time;

This query produces the following:

+-------------+

| sample_time |

+-------------+

| 07:27 |

+-------------+

1 row in set (0.00 sec)

The following are just a few more examples of the DATE_FORMAT() function in use, but this function is best understood by practicing it yourself.

Click here to view code image

SELECT DATE_FORMAT('2016-01-09', '%W, %M %D, %Y') AS sample_time;

This query produces the following output:

+------------------------------+

| sample_time |

+------------------------------+

| Saturday, January 9th, 2016 |

+------------------------------+

1 row in set (0.00 sec)

Here’s a query to format the time right this second (well, when I wrote this):

Click here to view code image

SELECT DATE_FORMAT(NOW(),'%W the %D of %M, %Y

around %l o\'clock %p') AS sample_time;

Here’s the output when I ran the query:

Click here to view code image

+---+

| sample_time |

+---+

| Tuesday the 13th of September, 2016 around 1 o'clock PM |

+---+

1 row in set (0.00 sec)1 row in set (0.04 sec)

Take some time to play around with date formatting options on your own; there are plenty, and you’ll find them easy to follow.

Performing Date Arithmetic with MySQL

MySQL has several functions to help perform date arithmetic, and this is one of the areas where it is typically more efficient to allow MySQL to do the math than your PHP script. The DATE_ADD() and DATE_SUB() functions return a result given a starting date and an interval. The syntax for both functions is as follows:

Click here to view code image

DATE_ADD(date,INTERVAL value type)

DATE_SUB(date,INTERVAL value type)

Table 17.3 shows the possible types and their expected value format.

TABLE 17.3 Values and Types in Date Arithmetic

	Value

	Type

	Number of seconds

	SECOND

	Number of minutes

	MINUTE

	Number of hours

	HOUR

	Number of days

	DAY

	Number of months

	MONTH

	Number of years

	YEAR

	"minutes:seconds"

	MINUTE_SECOND

	"hours:minutes"

	HOUR_MINUTE

	"days hours"

	DAY_HOUR

	"years-months"

	YEAR_MONTH

	"hours:minutes:seconds"

	HOUR_SECOND

	"days hours:minutes"

	DAY_MINUTE

	"days hours:minutes:seconds"

	DAY_SECOND

For example, to find the date of the current day plus 21 days, use the following:

Click here to view code image

SELECT DATE_ADD(NOW(), INTERVAL 21 DAY);

The query when I ran it produced the following result:

Click here to view code image

+----------------------------------+

| DATE_ADD(NOW(), INTERVAL 21 DAY) |

+----------------------------------+

| 2016-10-04 16:03:41 |

+----------------------------------+

1 row in set (0.02 sec)

Using DATE_SUB() produced this result:

Click here to view code image

+----------------------------------+

| DATE_SUB(NOW(), INTERVAL 21 DAY) |

+----------------------------------+

| 2016-08-23 16:03:58 |

+----------------------------------+

1 row in set (0.00 sec)

Use the expression DAY, as shown in Table 17.3, despite what might be a natural tendency to use DAYS instead of DAY. Using DAYS results in an error:

Click here to view code image

ERROR 1064: You have an error in your SQL syntax near 'DAYS)' at line 1

If you use DATE_ADD() or DATE_SUB() with a date value rather than a datetime value, the result is shown as a date value unless you use expressions related to hours, minutes, and seconds. In that case, your result is a datetime result.

For example, the result of the first query here remains a date field, whereas the second becomes a datetime:

Click here to view code image

SELECT DATE_ADD('2015-12-31', INTERVAL 1 DAY);

This query produces the following results:

Click here to view code image

+--+

| DATE_ADD('2015-12-31', INTERVAL 1 DAY) |

+--+

| 2016-01-01 |

+--+

1 row in set (0.00 sec)

While the query

Click here to view code image

SELECT DATE_ADD('2015-12-31', INTERVAL 12 HOUR);

produces this result:

Click here to view code image

+--+

| DATE_ADD('2015-12-31', INTERVAL 12 HOUR) |

+--+

| 2015-12-31 12:00:00 |

+--+

1 row in set (0.00 sec)

You can also perform date arithmetic using the + and - operators instead of DATE_ADD() and DATE_SUB() functions, as shown here:

Click here to view code image

SELECT '2015-12-31' + INTERVAL 1 DAY;

This query produces the following result:

Click here to view code image

+-------------------------------+

| '2015-12-31' + INTERVAL 1 DAY |

+-------------------------------+

| 2016-01-01 |

+-------------------------------+

1 row in set (0.00 sec)

Special Functions and Conversion Features

The MySQL NOW() function returns a current datetime result and is useful for time-stamping login or access times, as well as for numerous other tasks. MySQL has a few other functions that perform similarly.

The CURDATE() and CURRENT_DATE() functions are synonymous, and each returns the current date in YYYY-MM-DD format:

Click here to view code image

SELECT CURDATE(), CURRENT_DATE();

This query produces results like the following:

Click here to view code image

+------------+----------------+

| CURDATE() | CURRENT_DATE() |

+------------+----------------+

| 2016-09-13 | 2016-09-13 |

+------------+----------------+

1 row in set (0.01 sec)

Similarly, the CURTIME() and CURRENT_TIME() functions are synonymous and return the current time in HH:MM:SS format:

Click here to view code image

SELECT CURTIME(), CURRENT_TIME();

This query produces results like the following:

Click here to view code image

+-----------+----------------+

| CURTIME() | CURRENT_TIME() |

+-----------+----------------+

| 13:07:23 | 13:07:23 |

+-----------+----------------+

1 row in set (0.00 sec)

The NOW(), SYSDATE(), and CURRENT_TIMESTAMP() functions return values in full datetime format (YYYY-MM-DD HH:MM:SS):

Click here to view code image

SELECT NOW(), SYSDATE(), CURRENT_TIMESTAMP();

This query produces results like the following:

Click here to view code image

+---------------------+---------------------+---------------------+

| NOW() | SYSDATE() | CURRENT_TIMESTAMP() |

+---------------------+---------------------+---------------------+

| 2016-09-13 13:07:38 | 2016-09-13 13:07:38 | 2016-09-13 16:07:38 |

+---------------------+---------------------+---------------------+

1 row in set (0.00 sec)

The UNIX_TIMESTAMP() function returns the current date in—or converts a given date to—UNIX timestamp format. UNIX timestamp format is in seconds since the epoch, or seconds since midnight, January 1, 1970. Here’s an example:

SELECT UNIX_TIMESTAMP();

This query produces results like the following for the time the query was run:

+------------------+

| UNIX_TIMESTAMP() |

+------------------+

| 1473782880|

+------------------+

1 row in set (0.00 sec)

This query gets the UNIX timestamp for a specific date:

Click here to view code image

SELECT UNIX_TIMESTAMP('1973-12-30');

Here is the result of this query:

Click here to view code image

+------------------------------+

| UNIX_TIMESTAMP('1973-12-30') |

+------------------------------+

| 126057600|

+------------------------------+

1 row in set (0.00 sec)

The FROM_UNIXTIME() function performs a conversion of a UNIX timestamp to a full datetime format when used without any options:

Click here to view code image

SELECT FROM_UNIXTIME('1473782880');

The result of this query is as follows:

Click here to view code image

+-----------------------------+

| FROM_UNIXTIME('1473782880') |

+-----------------------------+

| 2016-09-13 16:08:00.000000 |

+-----------------------------+

1 row in set (0.00 sec)

You can use the format options from the DATE_FORMAT() functions to display a timestamp in a more appealing manner:

Click here to view code image

SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(), '%D %M %Y at %h:%i:%s');

Here is the result of this query at the moment I wrote it:

Click here to view code image

+---+

| FROM_UNIXTIME(UNIX_TIMESTAMP(), '%D %M %Y at %h:%i:%s') |

+---+

| 13th September 2016 at 04:09:13 |

+---+

1 row in set (0.00 sec)

Summary

In this chapter, you learned the basics of SQL, from table creation to manipulating records. The table-creation statement requires three important pieces of information: the table name, the field name, and the field definitions. Field definitions are important because a well-designed table helps speed along your database. MySQL has three major categories of data types: numeric, date and time, and string.

The INSERT statement, used to add records to a table, names the table and columns you want to populate and then defines the values. When placing values in the INSERT statement, you must enclose strings within single or double quotes. The SELECT SQL query is used to retrieve records from specific tables. The * character enables you to select all fields for all records in a table, but you can also specify particular column names. If the resultset contains too many records for you, the LIMIT clause provides a simple method for extracting slices of results if you indicate a starting position and the number of records to return. To order the results, use the ORDER BY clause to select the columns to sort. Sorts can be performed on integers, dates, and strings, in either ascending or descending order. The default order is ascending. Without specifying an order, results display in the order they appear in the table.

You can pick and choose which records you want to return using WHERE clauses to test for the validity of conditions. Comparison or logical operators are used in WHERE clauses, and sometimes both types are used for compound statements. Selecting records from multiple tables within one statement is as advanced as it gets because JOINs require good planning to produce correct results. Common types of JOINs are INNER JOIN, LEFT JOIN, and RIGHT JOIN, although MySQL supports a few other kinds of JOINs. You also learned that you can use subqueries instead of JOINs when working with multiple tables.

The UPDATE and REPLACE statements modify existing data in your MySQL tables. UPDATE is good for changing values in specific columns and for changing values in multiple records based on specific conditions. REPLACE is a variation of INSERT that deletes and then reinserts a record with a matching primary key. Be careful when using UPDATE or REPLACE to change values in a column because failure to add a condition results in the given column being updated throughout all records in the table.

The DELETE statement removes whole records from tables. This also makes it dangerous, so be sure you give DELETE privileges only to users who can handle the responsibility. You can specify conditions when using DELETE so that records are removed only if a particular expression in a WHERE clause is true. Also, you can delete smaller sets of records in your table using a LIMIT clause. If you have an exceptionally large table, deleting portions is less resource-intensive than deleting each record in a huge table.

You were introduced to MySQL functions that perform actions on strings, dates, and times. If you have strings in MySQL that you want to concatenate or for which you want to count characters, you can use functions such as CONCAT(), CONCAT_WS(), and LENGTH(). To pad or remove padding from strings, use RPAD(), LPAD(), TRIM(), LTRIM(), and RTRIM() to get just the strings you want. You can also find the location of a string within another string, or return a part of a given string using the LOCATE(), SUBSTRING(), LEFT(), and RIGHT() functions. Functions such as LCASE(), UCASE(), REPEAT(), and REPLACE() also return variations of the original strings.

MySQL’s built-in date and time functions can definitely take some of the load off your application by internally formatting dates and times and performing the date and time arithmetic. The formatting options used for the DATE_FORMAT() function provide a simple method to produce a custom display string from any sort of date field. The DATE_ADD() and DATE_SUB() functions and their numerous available interval types help you determine dates and times in the past or future. In addition, functions such as DAY(), WEEK(), MONTH(), and YEAR() prove useful for extracting parts of dates for use in WHERE or ORDER BY clauses.

Q&A

Q. What characters can I use to name my tables and fields, and what is the character limit?

A. The maximum length of database, table, and field names is 64 characters. Any character you can use in a directory name or filename, you can use in database and table names, except the slash (/) and period (.) characters. These limitations are in place because MySQL creates directories and files in your file system, which correspond to database and table names. No character limitations (besides length) apply in field names.

Q. Can I use multiple functions in one statement, such as making a concatenated string all uppercase?

A. Sure. Just be mindful of your opening and closing parentheses. This example shows how to uppercase the concatenated first and last names from the master name table:

Click here to view code image

SELECT UCASE(CONCAT_WS(' ', firstname, lastname)) FROM master_name;

The result would be something like this:

Click here to view code image

+--+

| UCASE(CONCAT_WS(' ', firstname, lastname)) |

+--+

| JOHN SMITH |

| JANE SMITH |

| JIMBO JONES |

| ANDY SMITH |

| CHRIS JONES |

| ANNA BELL |

| JIMMY CARR |

| ALBERT SMITH |

| JOHN DOE |

+--+

9 rows in set (0.00 sec)

If you want to uppercase just the last name, use this:

Click here to view code image

SELECT CONCAT_WS(' ', firstname, UCASE(lastname)) FROM master_name;

The result would be something like this:

Click here to view code image

+--+

| CONCAT_WS(' ', firstname, UCASE(lastname)) |

+--+

| John SMITH |

| Jane SMITH |

| Jimbo JONES |

| Andy SMITH |

| Chris JONES |

| Anna BELL |

| Jimmy CARR |

| Albert SMITH |

| John DOE |

+--+

9 rows in set (0.00 sec)

Workshop

The Workshop is designed to help you review what you’ve learned and begin putting your knowledge into practice.

Quize

1. The integer 56678685 could be which data type(s)?

2. How would you define a field that could contain only the following strings: apple, pear, banana, cherry?

3. What would be the LIMIT clauses for selecting the first 25 records of a table? Then the next 25?

4. How do you formulate a string comparison using LIKE to match first names of John or Joseph?

5. How do you explicitly refer to a field called id in a table called table1?

6. Write a SQL query that joins two tables, orders and items_ordered, each of which has a primary key of order_id. From the orders table, select the following fields: order_name and order_date. From the items_ordered table, select the item_description field.

7. Write a SQL query to find the starting position of the substring "grape" in the string "applepearbananagrape".

8. Write a query that selects the last five characters from the string "applepearbananagrape".

Answers

1. MEDIUMINT, INT, or BIGINT

2. ENUM ('apple', 'pear', 'banana', 'cherry')

 or

 SET ('apple', 'pear', 'banana', 'cherry')

3. LIMIT 0, 25 and LIMIT 25, 25

4. LIKE 'Jo%'

5. Use table1.id instead of id in your query.

6. SELECT orders.order_name, orders.order_date, items_ordered.item_description FROM orders LEFT JOIN items_ordered ON orders.order_id = items_ordered.id;

7. SELECT LOCATE('grape', 'applepearbananagrape');

8. SELECT RIGHT("applepearbananagrape", 5);

Exercises

[image: Images] Take the time to create some sample tables and practice using basic INSERT statements and SELECT queries.

CHAPTER 18
Interacting with MySQL Using PHP

What You’ll Learn in This Chapter:

[image: Images] How to connect to MySQL using PHP

[image: Images] How to insert and select data through PHP scripts

Now that you have learned the basics of PHP and the basics of working with MySQL, you are ready to make the two interact. Think of PHP as a conduit to MySQL: The statements and queries you learned to use in the previous chapter are the same statements and queries that you send to MySQL in this chapter, only this time you send them with PHP. Putting these two pieces together will help form a solid foundation for dynamic applications.

MySQL or MySQLi?

If you are returning to PHP from working with it years earlier, you might have used the mysql_* extension and its family of functions.

However, since the release of MySQL 4.1.3 (well over a decade ago), the database system includes functionality necessitating new communications methods in PHP, which are now encompassed in the mysqli_* family of functions. A mention of the old extension is still warranted, however, because you are still likely to find code examples all over the Internet that use the mysql extension instead of mysqli.

All code in this chapter, and throughout the rest of this book, uses the mysqli extension for interacting with MySQL using PHP. For more information, see the PHP Manual chapter titled “MySQL Improved Extension,” at http://www.php.net/mysqli.

Connecting to MySQL with PHP

To successfully use PHP functions to communicate with MySQL, you must have MySQL running at a location to which your web server can connect (not necessarily the same machine as your web server). You also must have created a user (with a password), and you must know the name of the database to which you want to connect. If you got up and running using Appendix A, “Installation QuickStart Guide with XAMPP,” or Appendix B, “Installing and Configuring MySQL,” and Appendix D, “Installing and Configuring PHP,” you should already have taken care of this. If you are using PHP and MySQL as part of a hosting package at an Internet service provider, make sure you have either been given or have created a username, password, and database name before proceeding with the rest of this chapter.

In all script examples in this chapter, the database name is testDB, the user is testuser, and the password is somepass. Substitute your own information when you use these scripts.

NOTE

All code in this chapter (as well as other chapters moving forward) reflect the procedural use of the mysqli_* family of functions. You can also use these functions in an object-oriented way. For more information on that, visit the PHP Manual at http://www.php.net/mysqli.

If you are coming to PHP from an object-oriented programming language or have an object-oriented mindset, I recommend reviewing the object-oriented functionality in the PHP Manual and substituting it where appropriate—conceptually, these processes are all quite similar.

However, if you are new to programming, or have not yet embraced an object-oriented mindset, there is nothing wrong with learning the procedural style or using it in your daily work. I continue to use procedural programming throughout this book because it has proven to be the best way for new programmers to understand the processes.

Making a Connection

The basic syntax for a connection to MySQL is as follows:

Click here to view code image

$mysqli = mysqli_connect("hostname", "username", "password", "database");

The value of $mysqli is the result of the function and is used in later functions for communicating with MySQL.

With sample values inserted, the connection code looks like this:

Click here to view code image

$mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

Listing 18.1 is a working example of a connection script. It creates a new connection in line 2 and then tests to see whether an error occurred. If an error occurred, line 5 prints an error message and uses the mysqli_connect_error() function to print the message. If no error occurs, line 8 prints a message that includes host information resulting from calling the mysqli_get_host_info() function.

LISTING 18.1 A Simple Connection Script

Click here to view code image

1: <?php

2: $mysqli = new mysqli("localhost", "testuser", "somepass", "testDB");

3:

4: if (mysqli_connect_errno()) {

5: printf("Connect failed: %s\n", mysqli_connect_error());

6: exit();

7: } else {

8: printf("Host information: %s\n", mysqli_get_host_info($mysqli));

9: }

10: ?>

Save this script as mysqlconnect.php and place it in the document area of your web server. Access the script with your web browser and you will see something like the following, if the connection was successful:

Click here to view code image

Host information: localhost via TCP/IP

You might also see something like this:

Click here to view code image

Host information: localhost via UNIX socket

If the connection fails, an error message is printed. Line 5 generates an error via the mysqli_connect_error() function. An example is shown here, which is the output that occurs when the password is changed to an incorrect password for this user:

Click here to view code image

Connect failed: Access denied for user 'testuser'@'localhost' (using password: YES)

However, if the connection is successful, line 8 prints the output of mysqli_get_host_info(), as in the preceding examples.

Although the connection closes when the script finishes its execution, it is a good practice to close the connection explicitly. You can see how to do this in line 9 of Listing 18.2, using the mysqli_close() function.

LISTING 18.2 The Modified Simple Connection Script

Click here to view code image

1: <?php

2: $mysqli = new mysqli("localhost", "testuser", "somepass", "testDB");

3:

4: if (mysqli_connect_errno()) {

5: printf("Connect failed: %s\n", mysqli_connect_error());

6: exit();

7: } else {

8: printf("Host information: %s\n", mysqli_get_host_info($mysqli));

9: mysqli_close($mysqli);

10: }

11: ?>

We did not use the mysqli_close() function after line 5 because if line 5 is executed, it is because no connection was made in the first place.

That’s all there is to basic connectivity to MySQL using PHP. The next section covers the query execution functions, which are much more interesting than simply opening a connection and letting it sit there.

Executing Queries

Half the battle in executing MySQL statements and queries using PHP is knowing how to write the SQL—and you’ve already learned the basics of this in the previous chapter. The mysqli_query() function in PHP is used to send your SQL query to MySQL.

In your script, first make the connection and then execute a statement. The script in Listing 18.3 creates a simple table called testTable.

LISTING 18.3 A Script to Create a Table

Click here to view code image

1: <?php

2: $mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

3:

4: if (mysqli_connect_errno()) {

5: printf("Connect failed: %s\n", mysqli_connect_error());

6: exit();

7: } else {

8: $sql = "CREATE TABLE testTable

9: (id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

10: testField VARCHAR(75))";

11: $res = mysqli_query($mysqli, $sql);

12:

13: if ($res === TRUE) {

14: echo "Table testTable successfully created.";

15: } else {

16: printf("Could not create table: %s\n", mysqli_error($mysqli));

17: }

18:

19: mysqli_close($mysqli);

20: }

21: ?>

NOTE

When you issue statements and queries via a script, the semicolon at the end of the SQL statement is not required like it is when accessing MySQL directly via the command-line interface.

In lines 8–10, the text that makes up the SQL statement is assigned to the variable $sql. This is an arbitrary name, and you do not even need to place the content of your SQL query in a separate variable. (It appears as such in the example so that the different parts of this process are clear to you.)

The mysqli_query function returns a value of true or false, and this value is checked in the if…else statement beginning in line 13. If the value of $res is true, a success message is printed to the screen. If you access MySQL through the command-line interface to verify the creation of the testTable table, you will see the following output of DESCRIBE testTable:

Click here to view code image

+-----------+-------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-----------+-------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| testField | varchar(75) | YES | | NULL | |

+-----------+-------------+------+-----+---------+----------------+

If this is the case, congratulations! You have successfully created a table in your MySQL database using PHP.

However, if the value of $res is not true and the table was not created, an error message appears, generated by the mysqli_error() function.

Retrieving Error Messages

Take some time to familiarize yourself with the mysqli_error() function; it will become your friend. When used in conjunction with the PHP die() construct, which simply exits the script at the point at which die() appears, the mysqli_error() function returns a helpful error message when you make a mistake.

For example, now that you have created a table called testTable, you cannot execute that script again without an error. Try to execute the script again; when you execute the script, you should see something like the following in your web browser:

Click here to view code image

Could not create table: Table 'testtable' already exists

How exciting! Move on to the next section to start inserting data into your table, and soon you’ll be retrieving and formatting it via PHP.

Working with MySQL Data

Inserting, updating, deleting, and retrieving data all revolve around the use of the mysqli_ query() function to execute the basic SQL statements you learned about in Chapter 17, “Learning Basic SQL Commands.” For INSERT, UPDATE, and DELETE statements, no additional scripting is required after the query has been executed because you’re not displaying any results (unless you want to). When using SELECT queries, you have a few options for displaying the data retrieved by your query. After an important message about avoiding SQL injection, we start with the basics and insert some data so that you’ll have something to retrieve later.

Avoiding SQL Injection

In the table-creation script in Listing 18.3, the data used in the SQL statement was hard-coded into the script. However, in the types of dynamic websites or web-based applications that you are likely to build, you will most often be inserting (INSERT) data into a table or selecting (SELECT) from a table based on user input from a form or other process. If you do not pay attention to this type of user input and do not sanitize it before using it in your queries, you are vulnerable to SQL injection–based security issues.

SQL injection happens when nefarious individuals take the opportunity to type full or partial SQL statements and queries in your form fields, with the assumption that when the script executes these statements and queries, security will be breached and data potentially exposed.

NOTE

A famous XKCD comic strip, informally known as the “Little Bobby Tables” strip, perfectly illustrates the issue of SQL injections. This comic strip is often referenced in discussion forums and other programming-related help sites, with respondents saying “Don’t forget Little Bobby Tables!” when providing answers to form input and query-related questions. You can see the comic strip at http://xkcd.com/327/.

Take the following example, which attempts to gather user information from a table called users where the name field matches a value completed in a form; this is much like a web-based login process:

Click here to view code image

$sql = SELECT * FROM users

WHERE name = '".$_POST['username_from_form']."';

Imagine the value entered in the username_from_form field is something like this:

' or '1'='1

This results in a full query, as follows:

SELECT * FROM users

WHERE name = ' ' or '1'='1';

This query always results in a valid response, because 1 = 1 always returns true.

You probably get the idea, but if not, the PHP Manual has several more examples on the SQL Injection page at http://www.php.net/manual/en/security.database.sql-injection.php. Throughout this book, the code examples limit vulnerability to SQL injection, with one exception: displaying error messages. While you are learning, and operating in a development rather than production environment, I support the printing of error messages to the screen so that you understand what is happening (or not happening). In a production environment, you should suppress error messages, especially when they show the names of database users or tables, to further limit the ability for SQL injection attacks.

TIP

After you have mastered the concepts involved with working with MySQL and PHP in the procedural ways indicated in this chapter, we’ll take a look at the PDO (PHP Data Objects) abstraction layer for further hardening of your production applications, as described here: http://www.php.net/manual/en/book.pdo.php.

Inserting Data with PHP

The easiest (and safest) method for inserting data at this stage in the game is to simply hard-code the INSERT statement, as shown in Listing 18.4.

LISTING 18.4 A Script to Insert a Record

Click here to view code image

1: <?php

2: $mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

3:

4: if (mysqli_connect_errno()) {

5: printf("Connect failed: %s\n", mysqli_connect_error());

6: exit();

7: } else {

8: $sql = "INSERT INTO testTable (testField) VALUES ('some value')";

9: $res = mysqli_query($mysqli, $sql);

10:

11: if ($res === TRUE) {

12: echo "A record has been inserted.";

13: } else {

14: printf("Could not insert record: %s\n", mysqli_error($mysqli));

15: }

16:

17: mysqli_close($mysqli);

18: }

19: ?>

The only changes between this script—for record insertion—and the script in Listing 18.3 for table creation are the SQL query stored in the $sql variable on line 8 and the text modifications on lines 12 and 14. The connection code and the structure for issuing a query remain the same. In fact, most procedural code for accessing MySQL falls into this same type of code template.

Call this script mysqlinsert.php and place it on your web server. Running this script results in the addition of a row to the testTable table. To enter more records than the one shown in the script, either you can make a long list of hard-coded SQL statements and use mysqli_query() multiple times to execute these statements (an atypical use in real-world applications) or you can create a form-based interface to the record-addition script, which we do next.

To create the form for this script, you need only one field, because the id field can automatically increment based on the table definition. The action of the form is the name of the record-addition script; let’s call it insert.php. Your HTML form might look something like Listing 18.5.

LISTING 18.5 An Insert Form

Click here to view code image

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Record Insertion Form</title>

 </head>

 <body>

 <form action="insert.php" method="post">

 <p><label for="testfield">Text to Add:</label>

 <input type="text" id="testfield" name="testfield" size="30"></p>

 <button type="submit" name="submit" value="insert">Insert Record</button>

 </form>

 </body>

 </html>

Save this file as insert_form.html and put it in the document root of your web server. Next, create the insert.php script shown in Listing 18.6. The value entered in the form replaces the hard-coded values in the SQL query with a variable called $_POST['testfield'] (guarded against SQL injection, of course).

LISTING 18.6 An Insert Script Used with the Form

Click here to view code image

1: <?php

2: $mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

3:

4: if (mysqli_connect_errno()) {

5: printf("Connect failed: %s\n", mysqli_connect_error());

6: exit();

7: } else {

8: $clean_text = mysqli_real_escape_string($mysqli, $_POST['testfield']);

9: $sql = "INSERT INTO testTable (testField)

10: VALUES ('".$clean_text."')";

11: $res = mysqli_query($mysqli, $sql);

12:

13: if ($res === TRUE) {

14: echo "A record has been inserted.";

15: } else {

16: printf("Could not insert record: %s\n", mysqli_error($mysqli));

17: }

18:

19: mysqli_close($mysqli);

20: }

21: ?>

The only changes between this script and the script in Listing 18.4 are in line 8, where the form input is sanitized to avoid SQL injection, and in line 10, where we use the sanitized string $clean_text in place of the hard-coded text string from the previous example. To sanitize the input, we use the mysqli_real_escape_string() function; this function requires that a connection has already been made, and so it is placed in this position within the else portion of the if…else statement.

Save the script as insert.php and put it in the document root of your web server. In your web browser, access the HTML form that you created. It should look something like Figure 18.1.

[image: Images]

FIGURE 18.1
The HTML form for adding a record.

Enter a string in the Text to Add field, as shown in Figure 18.2.

[image: Images]

FIGURE 18.2
Text typed in the form field.

Finally, click the Insert Record button to execute the insert.php script and insert the record. If successful, you will see results similar to Figure 18.3.

[image: Images]

FIGURE 18.3
The record has been successfully added.

To verify the work that has been done with PHP, you can use the MySQL command-line interface to view the records in the table using a SELECT query:

SELECT * FROM testTable;

The output should be as follows:

+----+---------------------+

| id | testField |

+----+---------------------+

| 1 | some value |

| 2 | Little Bobby Tables |

+----+---------------------+

2 rows in set (0.00 sec)

Next, you learn how to retrieve and format results with PHP, and not just through the MySQL command-line interface as you have previously.

Retrieving Data with PHP

Because you have a few rows in your testTable table, you can write a PHP script to retrieve that data. Starting with the basics, we write a script that issues a SELECT query but doesn’t overwhelm you with result data. Let’s just get the number of rows. To do this, use the mysqli_num_rows() function; see line 12 of Listing 18.7.

LISTING 18.7 A Script to Retrieve Data

Click here to view code image

1: <?php

2: $mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

3:

4: if (mysqli_connect_errno()) {

5: printf("Connect failed: %s\n", mysqli_connect_error());

6: exit();

7: } else {

8: $sql = "SELECT * FROM testTable";

9: $res = mysqli_query($mysqli, $sql);

10:

11: if ($res) {

12: $number_of_rows = mysqli_num_rows($res);

13: printf("Result set has %d rows.\n", $number_of_rows);

14: } else {

15: printf("Could not retrieve records: %s\n", mysqli_error($mysqli));

16: }

17:

18: mysqli_free_result($res);

19: mysqli_close($mysqli);

20: }

21: ?>

Save this script as count.php, place it in your web server document directory, and access it through your web browser. You should see a message like the following. (The actual number will vary depending on how many records you inserted into the table.)

Result set has 4 rows.

Line 12 uses the mysqli_num_rows() function to retrieve the number of rows in the resultset ($res), and it places the value in a variable called $number_of_rows. Line 13 prints this number to your browser. The number should be equal to the number of records you inserted during testing.

There’s a new function in this listing that was not in previous listings. Line 18 shows the use of the mysqli_free_result() function. Using mysqli_free_result() before closing the connection with mysqli_close() ensures that all memory associated with the query and the result is freed for use by other scripts.

Now that you know there are some records in the table (four, according to the output), you can get fancy and fetch the actual contents of those records. You can do this in a few ways, but the easiest method is to retrieve each row from the table as an array.

You use a while statement to go through each record in the resultset, placing the values of each field into a specific variable and then displaying the results onscreen. The syntax of mysqli_fetch_array() is as follows:

Click here to view code image

$newArray = mysqli_fetch_array($result_set);

Follow along using the sample script in Listing 18.8.

LISTING 18.8 A Script to Retrieve Data and Display Results

Click here to view code image

1: <?php

2: $mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

3:

4: if (mysqli_connect_errno()) {

5: printf("Connect failed: %s\n", mysqli_connect_error());

6: exit();

7: } else {

8: $sql = "SELECT * FROM testTable";

9: $res = mysqli_query($mysqli, $sql);

10:

11: if ($res) {

12: while ($newArray = mysqli_fetch_array($res, MYSQLI_ASSOC)) {

13: $id = $newArray['id'];

14: $testField = $newArray['testField'];

15: echo "The ID is ".$id." and the text is: ".$testField."
";

16: }

17: } else {

18: printf("Could not retrieve records: %s\n", mysqli_error($mysqli));

19: }

20:

21: mysqli_free_result($res);

22: mysqli_close($mysqli);

23: }

24: ?>

Save this script as select.php, place it in your web server document directory, and access it through your web browser. You should see a message for each record entered into testTable, as shown in Figure 18.4. This message is created in the while loop in lines 12 through 15.

[image: Images]

FIGURE 18.4
Selecting records from MySQL.

As you can see, you could create an entire database-driven application using just four or five MySQLi functions. This chapter barely scratched the surface of using PHP with MySQL; there are many more MySQLi functions in PHP that you’ll learn about in context throughout this book.

Additional MySQL Functions in PHP

More than 100 MySQL-specific functions are available through the MySQLi interface in PHP. Most of these functions are simply alternative methods of retrieving data or are used to gather information about the table structure in question. Throughout this book, especially in the upcoming project-related chapters, you’ll gradually be introduced to more of the MySQL-specific functions in PHP. However, for a complete list of functions, with practical examples, visit the MySQLi section of the PHP Manual at http://www.php.net/mysqli.

Summary

Using PHP and MySQL to create dynamic, database-driven websites is a breeze. Just remember that the PHP functions are essentially a gateway to the database server; anything you can enter using the MySQL command-line interface, you can use with the mysqli_query() function. You also learned how to avoid SQL injections when receiving user input from a form.

To connect to MySQL with PHP, you need to know your MySQL username, password, and database name. When connected, you can issue standard SQL commands with the mysqli_query() function. If you have issued a SELECT command, you can use mysqli_num_rows() to count the records returned in the resultset. If you want to display the data found, you can use mysqli_fetch_array() to get all the results during a loop and display them onscreen.

Q&A

Q. Is it possible to use both mysql_* and mysqli_* functions in one application?

A. If PHP was built with both libraries enabled, you can use either set of functions to talk to MySQL. However, be aware that if you use the mysql_* set of functions with a version of MySQL later than 4.1.3, you cannot access certain new functionality. In addition, if you are inconsistent with your usage throughout your application, maintenance and upkeep of your application will be time-consuming and produce less-than-optimal results.

Workshop

The Workshop is designed to help you review what you’ve learned and begin putting your knowledge into practice.

Quiz

1. What is the primary function used to make the connection between PHP and MySQL, and what information is necessary?

2. Which PHP function retrieves the text of a MySQL error message?

3. Which PHP function counts the number of records in a resultset?

Answers

1. The mysqli_connect() function creates a connection to MySQL and requires the hostname, username, and password.

2. The mysqli_error() function returns a MySQL error message.

3. The mysqli_num_rows() function counts the number of records in a resultset. You can also achieve the same goal by counting the number of unique IDs in the table and returning that number as a result, e.g. SELECT COUNT(id) FROM tablename.

Exercises

[image: Images] Using an HTML form and PHP script, create a table that contains fields for a person’s first and last names. Create another script that adds records to the table.

[image: Images] Once you have records in your table, create a PHP script that retrieves and displays these records in alphabetical order by last name.

Part V: Getting Started with Application Development

CHAPTER 19
Creating a Simple Discussion Forum

What You’ll Learn in This Chapter:

[image: Images] How to create tables for a simple discussion forum

[image: Images] How to create input forms for a simple discussion forum

[image: Images] How to display a simple discussion forum

[image: Images] How to add JavaScript to improve a discussion forum

In this chapter, you learn the design process behind a simple discussion forum. This includes developing the database tables and user input forms and displaying the results. When broken into pieces like this, such a task seems simple—and it is! The ultimate goal is to understand the concepts and relationships that go into making something like a discussion forum, not to create the world’s most full-functioned system. In fact, you’ll see it’s quite sparse, but it sure is relational.

Designing the Database Tables

Think of the basic components of a forum: topics and posts. A forum—if properly used by its patrons—should have several topics, and each of those topics will have one or more posts submitted by users. Knowing that, you should realize that the posts are tied to the topics through a key field. This key forms the relationship between the two tables.

Think about the requirements for the topics themselves. You definitely need a field for the title, and subsequently you might want fields to hold the creation time and the identification of the user who created the topic. Similarly, think of the requirements for the posts: You want to store the text of the post, the time of its creation, and the identity of person who created it. Most important, you need that key to tie the post to the topic.

The following two statements, called forum_topics and forum_posts, create these tables:

Click here to view code image

CREATE TABLE forum_topics (

 topic_id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 topic_title VARCHAR (150),

 topic_create_time DATETIME,

 topic_owner VARCHAR (150)

);

CREATE TABLE forum_posts (

 post_id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 topic_id INT NOT NULL,

 post_text TEXT,

 post_create_time DATETIME,

 post_owner VARCHAR (150)

);

NOTE

This simple forum example identifies users by their email addresses and does not require any sort of login sequence.

You should now have two empty tables waiting for some input. In the next section, you create the input forms for adding a topic and a post.

Creating an Include File for Common Functions

Previous chapters used an included file of common functions to make your scripts more concise and to help manage information that might change over time, such as a database username and password. The same thing is true in this chapter. Listing 19.1 contains the code shared by the scripts in this chapter.

LISTING 19.1 Common Functions in an Included File

Click here to view code image

1: <?php

2: function doDB() {

3: global $mysqli;

4:

5: //connect to server and select database; you may need it

6: $mysqli = mysqli_connect("localhost", "testuser",

7: "somepass", "testDB");

8:

9: //if connection fails, stop script execution

10: if (mysqli_connect_errno()) {

11: printf("Connect failed: %s\n", mysqli_connect_error());

12: exit();

13: }

14: }

15: ?>

Lines 2–14 set up the database connection function, doDB. If the connection cannot be made, the script exits when this function is called; otherwise, it makes the value of $mysqli available to other parts of your script.

Save this file as db_include.php and place it on your web server. The other code listings in this chapter include this file within the first few lines of the script.

Creating the Input Forms and Scripts

Before you can add any posts, you must add a topic to the forum. It is common practice in forum creation to add the topic and the first post in that topic at the same time, because from a user’s point of view, it doesn’t make much sense to add a topic and then go back, select the topic, and add a reply. You want the process to be as smooth as possible. Listing 19.2 shows the form for a new topic creation, which includes a space for the first post in the topic.

LISTING 19.2 Form for Adding a Topic

Click here to view code image

 <!DOCTYPE html>

 <html lang="en">

 <head>

 <title>Add a Topic</title>

 </head>

 <body>

 <h1>Add a Topic</h1>

 <form method="post" action="do_addtopic.php">

 <p><label for="topic_owner">Your Email Address:</label>

 <input type="email" id="topic_owner" name="topic_owner" size="40"

 maxlength="150" required="required"></p>

 <p><label for="topic_title">Topic Title:</label>

 <input type="text" id="topic_title" name="topic_title" size="40"

 maxlength="150" required="required"></p>

 <p><label for="post_text">Post Text:</label>

 <textarea id="post_text" name="post_text" rows="8"

 cols="40"></textarea></p>

 <button type="submit" name="submit" value="submit">Add Topic</button>

 </form>

 </body>

 </html>

Seems simple enough: The three fields shown in the form, which you can see in Figure 19.1, are all you need to complete both tables; your script and database can fill in the rest. Save Listing 19.2 as something like addtopic.html and put it in your web server document root so that you can follow along.

[image: Images]

FIGURE 19.1
The topic-creation form.

To create the entry in the forum_topics table, you use the values from the $_POST['topic_title'] and $_POST['topic_owner'] variables from the input form. The topic_id and topic_create_time fields will be automatically incremented and added, respectively, via the now() MySQL function.

Similarly, in the forum_posts table, you use the values of $_POST['post_text'] and $_POST['topic_owner'] from the input form, and the post_id, post_create_time, and the topic_id fields will be automatically incremented or otherwise supplied. Because you need a value for the topic_id field to be able to complete the entry in the forum_posts table, you know that this query must happen after the query to insert the record in the forum_topics table. Listing 19.3 creates the script to add these records to the table.

LISTING 19.3 Script for Adding a Topic

Click here to view code image

1: <?php

2: include 'db_include.php';

3: doDB();

4:

5: //check for required fields from the form

6: if ((!$_POST['topic_owner']) || (!$_POST['topic_title']) ||

7: (!$_POST['post_text'])) {

8: 	header("Location: addtopic.html");

9: 	exit;

10: }

11:

12: //create safe values for input into the database

13: $clean_topic_owner = mysqli_real_escape_string($mysqli,

14: $_POST['topic_owner']);

15: $clean_topic_title = mysqli_real_escape_string($mysqli,

16: $_POST['topic_title']);

17: $clean_post_text = mysqli_real_escape_string($mysqli,

18: $_POST['post_text']);

19:

20: //create and issue the first query

21: $add_topic_sql = "INSERT INTO forum_topics

22: (topic_title, topic_create_time, topic_owner)

23: VALUES ('".$clean_topic_title ."', now(),

24: '".$$clean_topic_owner."')";

25:

26: $add_topic_res = mysqli_query($mysqli, $add_topic_sql)

27: or die(mysqli_error($mysqli));

28:

29: //get the id of the last query

30: $topic_id = mysqli_insert_id($mysqli);

31:

32: //create and issue the second query

33: $add_post_sql = "INSERT INTO forum_posts

34: (topic_id, post_text, post_create_time, post_owner)

35: VALUES ('".$topic_id."', '".$clean_post_text."',

36: now(), '".$clean_topic_owner."')";

37:

38: $add_post_res = mysqli_query($mysqli, $add_post_sql)

39: or die(mysqli_error($mysqli));

40: //close connection to MySQL

41: mysqli_close($mysqli);

42:

43: //create nice message for user

44: $display_block = "<p>The ".$_POST["topic_title"]."

45: topic has been created.</p>";

46: ?>

47: <!DOCTYPE html>

48: <html>

49: <head>

50: <title>New Topic Added</title>

51: </head>

52: <body>

53: <h1>New Topic Added</h1>

54: <?php echo $display_block; ?>

55: </body>

56: </html>

Lines 2–3 include the file of user-created functions and call the database connection function. Next, lines 6–10 check for the three required fields needed to complete both tables (the topic owner, a topic title, and some text for the post). If any one of these fields is not present, the user is redirected to the original form. Lines 13–18 create database-safe versions of the contents of those variables.

Lines 21–27 create and insert the first query, which adds the topic to the forum_topics table. Note that no value is entered for the id field in the table; the automatically incrementing value is added by the system per the original table definition. The MySQL now() function is used to timestamp the record with the current time at insertion. The other fields in the record are completed using values from the form.

Line 30 shows the use of a handy function: mysqli_insert_id(). This function retrieves the primary key ID of the last record inserted into the database by this script. In this case, mysqli_insert_id() gets the id value from the forum_topics table, which will become the entry for the topic_id field in the forum_posts table.

Lines 33–39 create and insert the second query, again using a mixture of information known and supplied by the system. The second query adds the text of the user’s post to the forum_posts table. Lines 44–45 simply create a display string for the user, and the rest of the script rounds out the HTML that is rendered by the browser.

Save this listing as do_addtopic.php—the name of the action in the previous script—and place it in the document root of your web server. Complete the form you created from Listing 19.1 and then submit it, and you should see the New Topic Added message. Figures 19.2 and 19.3 show the sequence of events.

[image: Images]

FIGURE 19.2
Adding a topic and first post.

[image: Images]

FIGURE 19.3
Successful addition of a topic and first post.

In the next section, you put together two more pieces of the puzzle: displaying the topics and posts and replying to a topic.

Displaying the Topic List

Now that you have a topic and at least one post in your database, you can display this information and let people add new topics or reply to existing ones. In Listing 19.4, you take a step back and create a page that lists all the topics in the forum. This page shows the basic information of each topic and provides the user with a link to add a new topic; you have already created the form and script for that. The code in Listing 19.4 represents an entry page for your forum.

Although Listing 19.4 looks like a lot of code, it’s actually many small, simple concepts you’ve already encountered, starting with the include() function and database connection function in lines 2–3.

LISTING 19.4 Topic Listing Script

Click here to view code image

1: <?php

2: include 'db_include.php';

3: doDB();

4:

5: //gather the topics

6: $get_topics_sql = "SELECT topic_id, topic_title,

7: DATE_FORMAT(topic_create_time, '%b %e %Y at %r') AS

8: fmt_topic_create_time, topic_owner FROM forum_topics

9: ORDER BY topic_create_time DESC";

10: $get_topics_res = mysqli_query($mysqli, $get_topics_sql)

11: or die(mysqli_error($mysqli));

12:

13: if (mysqli_num_rows($get_topics_res) < 1) {

14: //there are no topics, so say so

15: $display_block = "<p>No topics exist.</p>";

16: } else {

17: //create the display string

18: $display_block <<<END_OF_TEXT

19: <table>

20: <tr>

21: <th>TOPIC TITLE</th>

22: <th># of POSTS</th>

23: </tr>

24: END_OF_TEXT;

25:

26: while ($topic_info = mysqli_fetch_array($get_topics_res)) {

27: $topic_id = $topic_info['topic_id'];

28: $topic_title = stripslashes($topic_info['topic_title']);

29: $topic_create_time = $topic_info['fmt_topic_create_time'];

30: $topic_owner = stripslashes($topic_info['topic_owner']);

31:

32: //get number of posts

33: $get_num_posts_sql = "SELECT COUNT(post_id) AS post_count FROM

34: forum_posts WHERE topic_id = '".$topic_id."'";

35: $get_num_posts_res = mysqli_query($mysqli, $get_num_posts_sql)

36: or die(mysqli_error($mysqli));

37:

38: while ($posts_info = mysqli_fetch_array($get_num_posts_res)) {

39: $num_posts = $posts_info['post_count'];

40: }

41:

42: //add to display

43: $display_block .= <<<END_OF_TEXT

44: <tr>

45: <td>

46: $topic_title

47: Created on $topic_create_time by $topic_owner</td>

48: <td class="num_posts_col">$num_posts</td>

49: </tr>

50: END_OF_TEXT;

51: }

52: //free results

53: mysqli_free_result($get_topics_res);

54: mysqli_free_result($get_num_posts_res);

55:

56: //close connection to MySQL

57: mysqli_close($mysqli);

58:

59: //close up the table

60: $display_block .= "</table>";

61: }

62: ?>

63: <!DOCTYPE html>

64: <html lang="en">

65: <head>

66: <title>Topics in My Forum</title>

67: <style type="text/css">

68: table {

69: border: 1px solid black;

70: border-collapse: collapse;

71: }

72: th {

73: border: 1px solid black;

74: padding: 6px;

75: font-weight: bold;

76: background: #ccc;

77: }

78: td {

79: border: 1px solid black;

80: padding: 6px;

81: }

82: .num_posts_col { text-align: center; }

83: </style>

84: </head>

85: <body>

86: <h1>Topics in My Forum</h1>

87: <?php echo $display_block; ?>

88: <p>Would you like to add a topic?</p>

89: </body>

90: </html>

Lines 6–11 show the first of the database queries, and this particular one selects all the topic information in order by descending date. In other words, these lines gather the data in such a way that the topic that was created most recently will appear at the top of the list. In the query, notice the use of the date_format() function to create a much nicer date display than the raw value stored in the database.

Line 13 checks for the presence of any records returned by the query. If no records are returned, and thus no topics are in the table, you want to tell the user. Line 15 creates this message. At this point, if no topics existed, the script would break out of the if…else construct and be over with; the next action would occur at line 63, which is the start of the static HTML. If the script ended here, the message created in line 15 would be printed in line 87.

If you have topics in your forum_topics table, however, the script continues at line 16. At line 18, a block of text is assigned to the $display_block variable, containing the beginnings of an HTML table. Lines 19–23 set up a table with two columns: one for the title and one for the number of posts. At line 26, you begin to loop through the results of the original query.

The while loop in line 26 says that while there are elements to be extracted from the resultset, extract each row as an array called $topic_info and use the field names as the array element to assign the value to a new variable. So, the first element the script tries to extract is the topic_id field, on line 27. It assigns the value of $topic_info['topic_id'] to the $topic_id variable, meaning that it gets a local value for $topic_id from an array called $topic_info, containing a field called topic_id. Continue doing this for the $topic_title, $topic_create_time, and $topic_owner variables in lines 28–30. The stripslashes() function removes any escape characters that may have been input into the table at the time of record insertion.

Lines 33–36 create and issue another query, in the context of the while loop, to get the number of posts for that particular topic. In line 43, the script continues the creation of the $display_block string, using the concatenation operator (.=) to make sure that this string is tacked on to the end of the display string you have built so far. In lines 45–47, you create the HTML table column to display the link to the file that will show the topic (showtopic.php) and print the topic owner and creation time.

The second HTML table column, on line 48, shows the number of posts. The script breaks out of the while loop on line 51, and on line 60 it adds the last bit to the $display_block string to close the table. The remaining lines print the HTML for the page, including the value of the $display_block string.

If you save this file as topiclist.php and place it in your web server document root, and if you have topics in your database tables, you might see something like Figure 19.4.

[image: Images]

FIGURE 19.4
Topics are available.

Displaying the Posts in a Topic

As you might have guessed, the next item on the task list is to build that showtopic.php file to show the topic’s postings. Listing 19.5 does just that. In this listing, lines 6–9 check for the existence of a value for topic_id in the GET query string. Because you intend to show all the posts within a selected topic, you need to know which topic to use in your query, and this is the manner in which the information is given to you. If a value in $_GET['topic_id'] does not exist, the user is redirected back to the topic listing page, presumably to try again.

LISTING 19.5 Script to Show Topic Posts

Click here to view code image

1: <?php

2: include 'db_include.php';

3: doDB();

4:

5: //check for required info from the query string

6: if (!isset($_GET['topic_id'])) {

7: header("Location: topiclist.php");

8: exit;

9: }

10:

11: //create safe values for use

12: $safe_topic_id = mysqli_real_escape_string($mysqli, $_GET['topic_id']);

13:

14: //verify the topic exists

15: $verify_topic_sql = "SELECT topic_title FROM forum_topics

16: WHERE topic_id = '".$safe_topic_id."'";

17: $verify_topic_res = mysqli_query($mysqli, $verify_topic_sql)

18: or die(mysqli_error($mysqli));

19:

20: if (mysqli_num_rows($verify_topic_res) < 1) {

21: //this topic does not exist

22: $display_block = "<p>You have selected an invalid topic.

23: Please try again.</p>";

24: } else {

25: //get the topic title

26: while ($topic_info = mysqli_fetch_array($verify_topic_res)) {

27: $topic_title = stripslashes($topic_info['topic_title']);

28: }

29:

30: //gather the posts

31: $get_posts_sql = "SELECT post_id, post_text, DATE_FORMAT(post_create_time,

32: '%b %e %Y
%r') AS fmt_post_create_time, post_owner

33: FROM forum_posts

34: WHERE topic_id = '".$safe_topic_id."'

35: ORDER BY post_create_time ASC";

36: $get_posts_res = mysqli_query($mysqli, $get_posts_sql)

37: or die(mysqli_error($mysqli));

38:

39: //create the display string

40: $display_block = <<<END_OF_TEXT

41: <p>Showing posts for the $topic_title topic:</p>

42: <table>

43: <tr>

44: <th>AUTHOR</th>

45: <th>POST</th>

46: </tr>

47: END_OF_TEXT;

48:

49: while ($posts_info = mysqli_fetch_array($get_posts_res)) {

50: $post_id = $posts_info['post_id'];

51: $post_text = nl2br(stripslashes($posts_info['post_text']));

52: $post_create_time = $posts_info['fmt_post_create_time'];

53: $post_owner = stripslashes($posts_info['post_owner']);

54:

55: //add to display

56: $display_block .= <<<END_OF_TEXT

57: <tr>

58: <td><p>$post_owner</p>

59: <p>created on:
$post_create_time</p></td>

60: <td><p>$post_text</p>

61: <p>

62: REPLY TO POST</p></td>

63: </tr>

64: END_OF_TEXT;

65: }

66:

67: //free results

68: mysqli_free_result($get_posts_res);

69: mysqli_free_result($verify_topic_res);

70:

71: //close connection to MySQL

72: mysqli_close($mysqli);

73:

74: //close up the table

75: $display_block .= "</table>";

76: }

77: ?>

78: <!DOCTYPE html>

79: <html lang="en">

80: <head>

81: <title>Posts in Topic</title>

82: <style type="text/css">

83: table {

84: border: 1px solid black;

85: border-collapse: collapse;

86: }

87: th {

88: border: 1px solid black;

89: padding: 6px;

90: font-weight: bold;

91: background: #ccc;

92: }

93: td {

94: border: 1px solid black;

95: padding: 6px;

96: vertical-align: top;

97: }

98: .num_posts_col { text-align: center; }

99: </style>

100: </head>

101: <body>

102: <h1>Posts in Topic</h1>

103: <?php echo $display_block; ?>

104: </body>

105: </html>

Lines 15–18 show the first of these queries, and this one is used to validate that the topic_id sent in the query string is actually a valid entry by selecting the associated topic_title for the topic in question. If the validation fails the test in line 20, a message is created in lines 22–23, and the script breaks out of the if…else statement and finishes up by printing HTML. This output looks like Figure 19.5.

[image: Images]

FIGURE 19.5
Invalid topic selected.

If, however, the topic is valid, the script extracts the value of topic_title in line 27, again using stripslashes() to remove any escape characters that may have been automatically added upon insertion. Next, the script creates and issues a query in lines 31–37 to gather all the posts associated with that topic in ascending order by time. In this case, the newest posts are at the bottom of the list. Line 40 starts a block of text, containing the beginnings of an HTML table. Lines 42–46 set up a table with two columns: one for the author of the post and one for the post text itself. The script stops writing the text block momentarily and at line 49 begins to loop through the results of the original query.

The while loop in line 49 says that although there are elements to be extracted from the resultset, extract each row as an array called $posts_info and use the field names as the array element to assign the value to a new variable. So, the first element the script tries to extract is the post_id field on line 50. It assigns the value of $posts_info['post_id'] to the variable $post_id, meaning that it gets a local value for $post_id from an array called $posts_info, containing a field called post_id. Continue doing this for the $post_text, $post_create_time, and $post_owner variables in lines 51–53. The stripslashes() function is again used to remove any escape characters, and the nl2br() function is used on the value of $posts_info[post_text] to replace all newline characters with line-break characters.

In line 56, the script continues to write to the $display_block string, using the concatenation operator (.=) to make sure that this string is tacked on to the end of the string you have created so far. Lines 58–59 create the HTML table column to display the author and creation time of the post. The second HTML table row, on lines 60–63, shows the text of the post as well as a link to reply to the post. The script breaks out of the while loop on line 65, and on line 75 it adds the last bit to the $display_block string to close the table. The remaining lines print the HTML for the page, including the value of the $display_block string.

If you save this file as showtopic.php and place it in your web server document root, and if you have posts in your database tables, you might see something like Figure 19.6.

[image: Images]

FIGURE 19.6
Posts in a topic.

A one-post topic is boring, so let’s finish up this chapter by creating the script to add a post to a topic.

Adding Posts to a Topic

In this final step, you create the replytopost.php script, which contains code that looks similar to the script used to add a new topic. Listing 19.6 shows the code for this all-in-one form and script, which begins with the inclusion of the functions file and the initiation of the database connection on lines 2–3. Although the script performs different tasks depending on the status of the form (whether it’s being shown or submitted), both conditions require database interaction at some point.

LISTING 19.6 Script to Add Replies to a Topic

Click here to view code image

1: <?php

2: include 'db_include.php';

3: doDB();

4:

5: //check to see if we're showing the form or adding the post

6: if (!$_POST) {

7: // showing the form; check for required item in query string

8: if (!isset($_GET['post_id'])) {

9: header("Location: topiclist.php");

10: exit;

11: }

12:

13: //create safe values for use

14: $safe_post_id = mysqli_real_escape_string($mysqli, $_GET['post_id']);

15:

16: //still have to verify topic and post

17: $verify_sql = "SELECT ft.topic_id, ft.topic_title FROM forum_posts

18: AS fp LEFT JOIN forum_topics AS ft ON fp.topic_id =

19: ft.topic_id WHERE fp.post_id = '".$safe_post_id."'";

20:

21: $verify_res = mysqli_query($mysqli, $verify_sql)

22: or die(mysqli_error($mysqli));

23:

24: if (mysqli_num_rows($verify_res) < 1) {

25: //this post or topic does not exist

26: header("Location: topiclist.php");

27: exit;

28: } else {

29: //get the topic id and title

30: while($topic_info = mysqli_fetch_array($verify_res)) {

31: $topic_id = $topic_info['topic_id'];

32: $topic_title = stripslashes($topic_info['topic_title']);

33: }

34: ?>

35: <!DOCTYPE html>

36: <html>

37: <head>

38: <title>Post Your Reply in <?php echo $topic_title; ?></title>

39: </head>

40: <body>

41: <h1>Post Your Reply in <?php echo $topic_title; ?></h1>

42: <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">

43: <p><label for="post_owner">Your Email Address:</label>

44: <input type="email" id="post_owner" name="post_owner" size="40"

45: maxlength="150" required="required"></p>

46: <p><label for="post_text">Post Text:</label>

47: <textarea id="post_text" name="post_text" rows="8" cols="40"

48: required="required"></textarea></p>

49: <input type="hidden" name="topic_id" value="<?php echo $topic_id; ?>">

50: <button type="submit" name="submit" value="submit">Add Post</button>

51: </form>

52: </body>

53: </html>

54: <?php

55: }

56: //free result

57: mysqli_free_result($verify_res);

58:

59: //close connection to MySQL

60: mysqli_close($mysqli);

61:

62: } else if ($_POST) {

63: //check for required items from form

64: if ((!$_POST['topic_id']) || (!$_POST['post_text']) ||

65: (!$_POST['post_owner'])) {

66: header("Location: topiclist.php");

67: exit;

68: }

69:

70: //create safe values for use

71: $safe_topic_id = mysqli_real_escape_string($mysqli, $_POST['topic_id']);

72: $safe_post_text = mysqli_real_escape_string($mysqli, $_POST['post_text']);

73: $safe_post_owner = mysqli_real_escape_string($mysqli, $_POST['post_owner']);

74:

75: //add the post

76: $add_post_sql = "INSERT INTO forum_posts (topic_id,post_text,

77: post_create_time,post_owner) VALUES

78: ('".$safe_topic_id."', '".$safe_post_text."',

79: now(),'".$safe_post_owner."')";

80: $add_post_res = mysqli_query($mysqli, $add_post_sql)

81: or die(mysqli_error($mysqli));

82:

83: //close connection to MySQL

84: mysqli_close($mysqli);

85:

86: //redirect user to topic

87: header("Location: showtopic.php?topic_id=".$_POST['topic_id']);

88: exit;

89: }

90: ?>

Line 6 checks to see whether the form is being submitted. If $_POST does not have a value, the form has not yet been submitted, and it must be shown. Before showing the form, however, you must check for that one required item; lines 8–11 check for the existence of a value for post_id in the GET query string. If a value in $_GET['post_id'] does not exist, the user is redirected back to the topic listing page.

If you made it past the check for a value in $_GET['post_id'], lines 17–22 create and issue a complicated-looking query that gets the values of the topic_id and topic_title fields from the forum_topics table, based on the only value that you know: a now-database-safe value (thanks to line 14) of $_GET['post_id']. This query both validates the existence of the post and gets information you will need later in the script. Lines 24–27 act on the results of this validity test, again redirecting the user back to the topiclist.php page if the test fails.

If the value of $_GET['post_id'] represents a valid post, you extract the value of topic_id and topic_title in lines 30–33, again using stripslashes() to remove any escape characters. Next, the script prints to the screen the entirety of the form for adding a post, and that’s it for this script until the user clicks the form submission button. In the form, you see that the action is $_SERVER['PHP_SELF'] on line 42, indicating that this script will be recalled into action. A hidden field in line 49 holds the information that needs to be passed along to the next iteration of the script.

Moving on to line 62, you can see that this block of code is executed when the script is reloaded and $_POST contains a value. This block checks for the presence of all required fields from the form (lines 64–68) and then, if they are all present, issues the query to add the post to the database (lines 76–81) using safe values created in lines 71–73. After the post is added to the database, the user is redirected to the showtopic.php page (lines 87–88), using the appropriate query string to display the active topic.

Save this file as replytopost.php and place it in your web server document root. If you try it out, you may see something like Figures 19.7 and 19.8.

[image: Images]

FIGURE 19.7
Preparing to add a post.

[image: Images]

FIGURE 19.8
A post was added to the list.

Modifying the Forum Display with JavaScript

Once you have collected data from a database using PHP, you can manipulate it with JavaScript, because that data has been sent to the browser where JavaScript can get to it.

In the simple forum you created in this chapter, the topic list and posts are displayed automatically in the order defined by the database query, which is by the creation date. But it can be useful to be able to reorder them when you’re viewing them in the browser. Although you can reorder them by sending another query to the database and return another page for the browser to render—this time with the information in a different order—it’s more responsive for the end user to use JavaScript to reorder them on demand.

In order to sort with JavaScript, you first need to modify the HTML a bit. The new bits of JavaScript will use HTML tbody tags to sort the table cells, while leaving the headers at the top. Starting with Listing 19.4, modify lines 18–24 to add JavaScript hooks to make the table sortable, as in Listing 19.7. The modifications have been highlighted in the listing.

LISTING 19.7 Making the Table Sortable

Click here to view code image

18: $display_block <<<END_OF_TEXT

19: <table id="myTable">

 <thead>

20: <tr>

21: <th>TOPIC

 TITLE</th>

22: <th># of

 POSTS</th>

23: </tr>

 </thead>

 <tbody>

24: END_OF_TEXT;

In addition to adding the thead and tbody tags, you also need to add an ID to the table, and turn the table head elements into links so that the document can be sorted.

You also need to close the table body, at the bottom of the PHP, by changing line 60 to include the closing </tbody> tag.

Click here to view code image

60: $display_block .= "</tbody>

 </table>";

To make this work, you need to add the JavaScript to the HTML on the page. Insert the script in Listing 19.8 before the </body> tag (line 89).

LISTING 19.8 JavaScript for Sorting the Table

Click here to view code image

1: <script type="text/javascript">

2: function sortTable(table, col, reverse) {

3: var tb = table.tBodies[0];

4: var tr = Array.prototype.slice.call(tb.rows, 0);

5: var i;

6: reverse = -((+reverse) || -1);

7: tr = tr.sort(function (a, b) {

8: return reverse // '-1 *' if want opposite order

9: * (a.cells[col].textContent.trim()

10: .localeCompare(b.cells[col].textContent.trim())

11:);

12: });

13: for(i = 0; i < tr.length; ++i) tb.appendChild(tr[i]);

14: }

15: // sortTable(tableNode, columnId, false);

16: </script>

This simple script looks at the table identified in the sortTable() function call to find the <tbody> section (line 3). It puts all the rows in the table body into an array (line 4) and sorts them (line 7). Finally, it appends all the rows on the page in order (line 13). The order of the sort is set by the final parameter. Line 6 changes the direction if the parameter is not zero.

Summary

In this chapter, you saw how forums are hierarchical in nature: Forums contain topics; topics contain posts. You cannot have a topic without a post, and posts do not exist in forums without belonging to a topic. You applied this knowledge to the creation of tables to hold forum topics and posts, and you used PHP scripts to create the input and to display pages for these items. Finally, you added JavaScript to the scripts to enable on-page sorting of the data.

Q&A

Q. What if I want multiple forums? This sequence assumes that only one forum is available.

A. If you want to have multiple forums in your discussion board, create a table called forums (or something to that effect) containing fields for an ID, name, and perhaps a forum description. Then, in the forum_topics and forum_posts tables, add a field called forum_id so that those elements lower in the hierarchy are tied to the master forum. Be sure to amend the SQL queries for record insertion to account for the value of the forum_id.

Next, instead of starting your display at the topic level, begin it at the forum level. Just as you created a script to display topics, create a script to show the forums. The link to the forum display would contain the forum_id, and the page itself would show all the topics within that forum.

Workshop

The Workshop is designed to help you review what you’ve learned and begin putting your knowledge into practice.

Quiz

1. How is the topic ID value passed to the showtopic.php script?

2. What else, besides telling the user that the topic was successfully added, could you do at the end of the do_addtopic.php script?

3. Why does the script use the mysqli_real_escape_string() function on values from forms?

4. Why is it better to use JavaScript for sorting the displayed data?

Answers

1. Through the $_GET superglobal, named as the value of $_GET['topic_id'].

2. Just as with the replytopost.php script, you could eliminate the message display and simply redirect the user to the topic she just created, showing the new topic and post in all its glory.

3. The mysqli_real_escape_string() function guards against SQL injection attacks by preparing “safe” strings for insertion into the database tables.

4. JavaScript allows the data to be sorted more quickly, which makes the page more responsive to the end user. Also, it doesn’t require any additional SQL calls so the page loads quickly.

Exercises

[image: Images] You’ll notice that none of these pages are really tied together with any sort of navigation. Take these basic framework scripts and apply some navigational flow to them. Make sure that users can always add a topic or return to the topic list from any given page, for example.

[image: Images] Use the information provided in the Q&A section to integrate and display multiple forums into your tidy little discussion board. While you’re at it, apply some text styles and colors to jazz up these bare-bones examples.

[image: Images] Modify the JavaScript to create a toggle function on the sorting so that the data sorts both backwards and forwards when clicked. Try adding the sorting functionality to the rest of your data lists as well, to make your forum more functional.

CHAPTER 20
Creating an Online Storefront

What You’ll Learn in This Chapter:

[image: Images] How to create relational tables for an online store

[image: Images] How to create scripts to display store categories

[image: Images] How to create scripts to display individual items

[image: Images] How to create JavaScript to enhance the storefront

In this short chapter, you create a generic online storefront. As with the previous project chapter, you learn how to create the relevant database tables as well as the scripts for displaying the information to the user. The examples used in this chapter represent one of many different possibilities to complete these tasks and are meant to provide a foundation of knowledge rather than a definitive method for completing the tasks. You will also get some ideas for how to use JavaScript to make your storefront easier to use and more appealing for your users.

Planning and Creating the Database Tables

Before you tackle the process of creating database tables for an online store, think about the real-life shopping process. When you walk into a store, items are ordered in some fashion: The hardware and the baby clothes aren’t mixed together, the electronics and the laundry detergent aren’t side by side, and so on. Applying that knowledge to database normalization, already you can see that you need a table to hold categories and a table to hold items. In this simple store, each item belongs to one category.

Next, think about the items themselves. Depending on the type of store you have, your items might or might not have colors, and might or might not have sizes. But all your items will have a name, a description, and a price. Again, thinking in terms of normalization, you can imagine that you might have one general items table and two additional tables that relate to the general items table.

Table 20.1 shows sample table and field names to use for your online storefront. In a minute, you create the actual SQL statements, but first you should look at this information and try to see the relationships. Ask yourself which of the fields should be primary or unique keys.

TABLE 20.1 Storefront Table and Field Names

	Table Name

	Field Names

	store_categories

	id, cat_title, cat_desc

	store_items

	id, cat_id, item_title, item_price, item_desc, item_image

	store_item_size

	item_id, item_size

	store_item_color

	item_id, item_color

As you can see in the following SQL statements, the store_categories table has two fields besides the id field: cat_title and cat_desc, for title and description, respectively. The id field is the primary key, and cat_title is a unique field because there’s no reason you would have two identical categories:

Click here to view code image

CREATE TABLE store_categories (

 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 cat_title VARCHAR (50) UNIQUE,

 cat_desc TEXT

);

Next, we tackle the store_items table, which has five fields besides the id field—none of which are unique keys. The lengths specified in the field definitions are arbitrary; you should use whatever best fits your store.

The cat_id field relates the item to a particular category in the store_categories table. This field is not unique because you will want more than one item in each category. The item_title, item_price, and item_desc (for description) fields are self-explanatory. The item_image field holds a filename (in this case, the file is assumed to be local to your server) that you use to build an HTML tag when it is time to display your item information:

Click here to view code image

CREATE TABLE store_items (

 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 cat_id INT NOT NULL,

 item_title VARCHAR (75),

 item_price FLOAT (8,2),

 item_desc TEXT,

 item_image VARCHAR (50)

);

Both the store_item_size and store_item_color tables contain optional information: If you sell books, they won’t have sizes or colors, but if you sell shirts, they will. For each of these tables, the item_id, item_size, and item_color fields are not unique keys because you can associate as many colors and sizes with a particular item as you want:

Click here to view code image

CREATE TABLE store_item_size (

 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 item_id INT NOT NULL,

 item_size VARCHAR (25)

);

CREATE TABLE store_item_color (

 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 item_id INT NOT NULL,

 item_color VARCHAR (25)

);

These are all the tables necessary for a basic storefront—that is, for displaying the items you have for sale, which is the limit of what you’ll learn in this book.

In Chapter 19, “Creating a Simple Discussion Forum,” you learned how to use PHP forms and scripts to add or delete records in your tables. If you apply the same principles to this set of tables, you can easily create an administrative front end to your storefront. We do not go through that process in this book, but feel free to do it on your own. (If you understood what was going on in Chapter 19, you know enough about PHP and MySQL to complete the tasks.)

For now, you can simply issue MySQL queries, via the MySQL monitor or other interface, to add information to your tables. Following are some examples, if you want to follow along with sample data.

Inserting Records into the store_categories Table

The following queries create three categories in your store_categories table (hats, shirts, and books):

Click here to view code image

INSERT INTO store_categories VALUES

 (1, 'Hats', 'Funky hats in all shapes and sizes!');

INSERT INTO store_categories VALUES (2, 'Shirts', 'From t-shirts to

sweatshirts to polo shirts and beyond.');

INSERT INTO store_categories VALUES (3, 'Books', 'Paperback, hardback,

books for school or play.');

In the next section, we add some items to the categories.

Inserting Records into the store_items Table

The following queries add three item records to each category. Feel free to add many more.

Click here to view code image

INSERT INTO store_items VALUES (1, 1, 'Baseball Hat', 12.00,

'Fancy, low-profile baseball hat.', 'baseballhat.gif');

INSERT INTO store_items VALUES (2, 1, 'Cowboy Hat', 52.00,

'10 gallon variety', 'cowboyhat.gif');

INSERT INTO store_items VALUES (3, 1, 'Top Hat', 102.00,

'Good for costumes.', 'tophat.gif');

INSERT INTO store_items VALUES (4, 2, 'Short-Sleeved T-Shirt',

12.00, '100% cotton, pre-shrunk.', 'sstshirt.gif');

INSERT INTO store_items VALUES (5, 2, 'Long-Sleeved T-Shirt',

15.00, 'Just like the short-sleeved shirt, with longer sleeves.',

'lstshirt.gif');

INSERT INTO store_items VALUES (6, 2, 'Sweatshirt', 22.00,

'Heavy and warm.', 'sweatshirt.gif');

INSERT INTO store_items VALUES (7, 3, 'Jane\'s Self-Help Book',

12.00, 'Jane gives advice.', 'selfhelpbook.gif');

INSERT INTO store_items VALUES (8, 3, 'Generic Academic Book',

35.00, 'Some required reading for school, will put you to sleep.',

'boringbook.gif');

INSERT INTO store_items VALUES (9, 3, 'Chicago Manual of Style',

9.99, 'Good for copywriters.', 'chicagostyle.gif');

NOTE

The preceding queries refer to various graphics which are not included in the code. You can find free-to-use images online or make some placeholder graphics of your own.

Inserting Records into the store_item_size Table

The following queries associate sizes with one of the three items in the shirts category and a generic “one size fits all” size to each of the hats (assume that they’re strange hats). On your own, insert the same set of size associations for the remaining items in the shirts category:

Click here to view code image

INSERT INTO store_item_size (item_id, item_size) VALUES (1,'One Size Fits All');

INSERT INTO store_item_size (item_id, item_size) VALUES (2,'One Size Fits All');

INSERT INTO store_item_size (item_id, item_size) VALUES (3,'One Size Fits All');

INSERT INTO store_item_size (item_id, item_size) VALUES (4,'S');

INSERT INTO store_item_size (item_id, item_size) VALUES (4,'M');

INSERT INTO store_item_size (item_id, item_size) VALUES (4,'L');

INSERT INTO store_item_size (item_id, item_size) VALUES (4,'XL');

Inserting Records into the store_item_color Table

The following queries associate colors with one of the three items in the shirts category. On your own, insert color records for the remaining shirts and hats.

Click here to view code image

INSERT INTO store_item_color (item_id, item_color) VALUES (1,'red');

INSERT INTO store_item_color (item_id, item_color) VALUES (1,'black');

INSERT INTO store_item_color (item_id, item_color) VALUES (1,'blue');

Displaying Categories of Items

Believe it or not, the most difficult task in this project is now complete. Compared to thinking up categories and items, creating the scripts used to display the information is easy!

The first script you make is one that lists categories and items. Obviously, you do not want to list all categories and all items at once as soon as the user walks in the door, but you do want to give the user the option of immediately picking a category, seeing its items, and then picking another category. In other words, this script serves two purposes: It shows the categories; then, if a user clicks a category link, it shows the items in that category.

Listing 20.1 shows the full code for seestore.php. If you have worked through this book sequentially, you will notice a lot of the same basic construction you saw in previous chapters; these projects are all examples of foundational CRUD—which stands for create , read, update, delete—applications. Even so, the code is still explained in detail after the listing.

LISTING 20.1 Script to View Categories

Click here to view code image

1: <?php

2: //connect to database

3: $mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

4:

5: $display_block = "<h1>My Categories</h1>

6: <p>Select a category to see its items.</p>";

7:

8: //show categories first

9: $get_cats_sql = "SELECT id, cat_title, cat_desc FROM

10: store_categories ORDER BY cat_title";

11: $get_cats_res = mysqli_query($mysqli, $get_cats_sql)

12: or die(mysqli_error($mysqli));

13:

14: if (mysqli_num_rows($get_cats_res) < 1) {

15: $display_block = "<p>Sorry, no categories to browse.</p>";

16: } else {

17: while ($cats = mysqli_fetch_array($get_cats_res)) {

18: $cat_id = $cats['id'];

19: $cat_title = strtoupper(stripslashes($cats['cat_title']));

20: $cat_desc = stripslashes($cats['cat_desc']);

21:

22: $display_block .= "<p><a href=\"".$_SERVER['PHP_SELF'].

23: "?cat_id=".$cat_id."\">".$cat_title."
"

24: .$cat_desc."</p>";

25:

26: if (isset($_GET['cat_id']) && ($_GET['cat_id'] == $cat_id)) {

27: //create safe value for use

28: $safe_cat_id = mysqli_real_escape_string($mysqli,

29: $_GET['cat_id']);

30:

31: //get items

32: $get_items_sql = "SELECT id, item_title, item_price

33: FROM store_items WHERE

34: cat_id = '".$cat_id."' ORDER BY item_title";

35: $get_items_res = mysqli_query($mysqli, $get_items_sql)

36: or die(mysqli_error($mysqli));

37:

38: if (mysqli_num_rows($get_items_res) < 1) {

39: $display_block = "<p>Sorry, no items in this

40: category.</p>";

41: } else {

42: $display_block .= "";

43: while ($items = mysqli_fetch_array($get_items_res)) {

44: $item_id = $items['id'];

45: $item_title = stripslashes($items['item_title']);

46: $item_price = $items['item_price'];

47:

48: $display_block .= "<a href=\"showitem.php?item_id=".

49: $item_id."\">".$item_title."

50: (\$".$item_price.")";

51: }

52:

53: $display_block .= "";

54: }

55: //free results

56: mysqli_free_result($get_items_res);

57: }

58: }

59: }

60: }

61: //free results

62: mysqli_free_result($get_cats_res);

63: //close connection to MySQL

64: mysqli_close($mysqli);

65: ?>

66: <!DOCTYPE html>

67: <html lang="en">

68: <head>

69: <title>My Categories</title>

70: </head>

71: <body>

72: <?php echo $display_block; ?>

73: </body>

74: </html>

Given the length of scripts you saw in Chapter 19, these 74 fully functional lines should be a welcome change. Line 3 opens the database connection because regardless of which action the script is taking—showing categories or showing items in categories—the database is necessary. You can also use an include to use to a database connection function, as you did throughout the examples in Chapter 19.

Line 5 starts the $display_block string, with some basic page title information added to it. Lines 9–12 create and issue the query to retrieve the category information. Line 14 checks for categories; if none are in the table, a message is stored in the $display block variable for display to the user, and that’s all this script does. (It jumps to the HTML in line 66 and prints to the screen after freeing up some database results.) However, if categories are found, the script moves on to line 17, which begins a while loop to extract the information.

In the while loop, lines 18–20 retrieve the ID, title, and description of the category. String operations are performed to ensure that no slashes are in the text and that the category title is in uppercase for display purposes. Lines 22–24 place the category information, including a self-referential page link, in the $display_block string. If a user clicks the link displayed by that string, she returns to this same script, except with a category ID passed in the query string. The script checks for this value in line 26.

If a $_GET['cat_id'] value has been passed to the script (and has been verified as a valid ID) because the user clicked a category link in hopes of seeing listed items, the script builds and issues another query using a safe version of that value (lines 32–36) to retrieve the items in the category. Lines 38–51 check for items and then build an item string as part of $display_block. Part of the information in the string is a link to a script called showitem.php, which you create in the next section.

After reaching that point, the script has nothing left to do besides free up some resources, and it prints the HTML and value of $display_block. Figure 20.1 shows the outcome of the script when accessed directly; only the category information is shown.

[image: Images]

FIGURE 20.1
Categories in the store.

In Figure 20.2, you see what happens when the user clicks the HATS link: The script gathers all the items associated with the category and prints them on the screen. The user can still jump to another category on this same page, and the script will gather the items for that category.

[image: Images]

FIGURE 20.2
Items within a category in the store.

The last piece of the puzzle for this chapter is the creation of the item-display page.

Displaying Items

The item-display page that you’ll build next shows all of the information for the item that is stored in the database. Listing 20.2 shows the code for showitem.php.

LISTING 20.2 Script to View Item Information

Click here to view code image

1: <?php

2: //connect to database

3: $mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

4:

5: $display_block = "<h1>My Store - Item Detail</h1>";

6:

7: //create safe values for use

8: $safe_item_id = mysqli_real_escape_string($mysqli, $_GET['item_id']);

9:

10: //validate item

11: $get_item_sql = "SELECT c.id as cat_id, c.cat_title, si.item_title,

12: si.item_price, si.item_desc, si.item_image FROM store_items

13: AS si LEFT JOIN store_categories AS c on c.id = si.cat_id

14: WHERE si.id = '".$safe_item_id."'";

15: $get_item_res = mysqli_query($mysqli, $get_item_sql)

16: or die(mysqli_error($mysqli));

17:

18: if (mysqli_num_rows($get_item_res) < 1) {

19: //invalid item

20: $display_block .= "<p>Invalid item selection.</p>";

21: } else {

22: //valid item, get info

23: while ($item_info = mysqli_fetch_array($get_item_res)) {

24: $cat_id = $item_info['cat_id'];

25: $cat_title = strtoupper(stripslashes($item_info['cat_title']));

26: $item_title = stripslashes($item_info['item_title']);

27: $item_price = $item_info['item_price'];

28: $item_desc = stripslashes($item_info['item_desc']);

29: $item_image = $item_info['item_image'];

30: }

31:

32: //make breadcrumb trail & display of item

33: $display_block .= <<<END_OF_TEXT

34: <p>You are viewing:

35: $cat_title

36: > $item_title</p>

37: <div style="float: left;"></div>

38: <div style="float: left; padding-left: 12px">

39: <p>Description:
$item_desc</p>

40: <p>Price: \$$item_price</p>

41: END_OF_TEXT;

42: //free result

43: mysqli_free_result($get_item_res);

44:

45: //get colors

46: $get_colors_sql = "SELECT item_color FROM store_item_color WHERE

47: item_id = '".$safe_item_id."' ORDER BY item_color";

48: $get_colors_res = mysqli_query($mysqli, $get_colors_sql)

49: or die(mysqli_error($mysqli));

50:

51: if (mysqli_num_rows($get_colors_res) > 0) {

52: $display_block .= "<p>Available Colors:
";

53: while ($colors = mysqli_fetch_array($get_colors_res)) {

54: item_color = $colors['item_color'];

55: $display_block .= $item_color."
";

56: }

57: }

58: //free result

59: mysqli_free_result($get_colors_res);

60:

61: //get sizes

62: $get_sizes_sql = "SELECT item_size FROM store_item_size WHERE

63: item_id = ".$safe_item_id." ORDER BY item_size";

64: $get_sizes_res = mysqli_query($mysqli, $get_sizes_sql)

65: or die(mysqli_error($mysqli));

66:

67: if (mysqli_num_rows($get_sizes_res) > 0) {

68: $display_block .= "<p>Available Sizes:
";

69: while ($sizes = mysqli_fetch_array($get_sizes_res)) {

70: $item_size = $sizes['item_size'];

71: $display_block .= $item_size."
";

72: }

73: }

74: //free result

75: mysqli_free_result($get_sizes_res);

76:

77: $display_block .= "</div>";

78: }

79: //close connection to MySQL

80: mysqli_close($mysqli);

81: ?>

82: <!DOCTYPE html>

83: <html lang="en">

84: <head>

85: <title>My Store</title>

86: </head>

87: <body>

88: <?php echo $display_block; ?>

89: </body>

90: </html>

Line 3 makes the database connection, because information in the database forms all the content of this page. Line 5 starts the $display_block string, with some basic page title information.

Lines 11–13 create and issue the query to retrieve the category and item information, using the safe value created in line 8. This particular query is a table join. Instead of selecting the item information from one table and then issuing a second query to find the name of the category, this query simply joins the table on the category ID to find the category name.

Line 15 checks for a result; if there is no matching item in the table, a message is printed to the user—and that’s all this script does. However, if item information is found, the script moves on and gathers the information in lines 23–30.

In lines 34–36, you first create what’s known as a breadcrumb trail. This is simply a navigational device used to get back to the top-level item in the architecture. In other words, you’re going to print a link so the user can get back to the category. The category ID, retrieved from the master query in this script, is appended to the link in the breadcrumb trail.

In lines 37–40, you continue to add to the $display_block, setting up a display of information about the item. You use the values gathered in lines 23–30 to create an image link, print the description, and print the price. What’s missing are the colors and sizes, so lines 46–57 select and print any colors associated with this item, and lines 62–73 gather the sizes associated with the item.

Lines 77–78 wrap up the $display_block string and the master if…else statement. Because the script has nothing left to do after closing the connection to MySQL, it prints the HTML (lines 82–90), including the value of $display_block. Figure 20.3 shows the outcome of the script when the baseball hat is selected from the hats category. Of course, your display will differ from mine because you won’t have the same images I used, but you get the idea.

[image: Images]

FIGURE 20.3
The baseball hat item page.

That’s all there is to creating a simple item display that pulls information out of a database.

Using JavaScript with an Online Storefront

One of the biggest challenges to online stores is convincing customers to stay on the site long enough to purchase something. Every time a customer has to take an action, they have an opportunity to abandon the purchase. To prevent this, many online stores show as much information as possible without requiring any action on the part of the customer beyond clicking the Buy button.

In the simple store catalog interface you’ve created in this chapter, there are several steps before a customer can purchase an item: the customer must choose a category, then choose the item, then alternately a size and color, and then click to purchase or add to a shopping cart (the latter are outside of the scope of this chapter). By removing just one of those steps, you can reduce the abandonment rate and increase sales. And an easy way to do that is to redesign the category lists with a slideshow of the items displayed directly rather than after a click. Figure 20.4 shows how the store might change if you changed the display to a JavaScript slideshow, also referred to as a carousel.

[image: Images]

FIGURE 20.4
The store using carousels for the categories.

Although you can create your own carousel from scratch using JavaScript, there are many free and open source options that are much easier to use. For this example, I installed Kevin Batdorf’s Liquid Slider, found at https://github.com/KevinBatdorf/liquidslider. This slider has the advantage of being responsive and can include heading tabs as well as slider arrows to make the carousel more usable.

To use this slider library, you must download the library files and place them on your web server, then reference them in your script. Typically when you use third-party libraries they will include documentation for getting started, and this particular slideshow library is no different—at https://github.com/KevinBatdorf/liquidslider you will find download, installation, and sample use instructions.

After downloading the library and putting it in a directory called liquidslider in my web server document root, I then modified the seestore.php script to display the items directly on the category page in a slideshow format. Listing 20.3 shows this new script.

LISTING 20.3 Store Modified to Use a Slideshow

Click here to view code image

 1: <?php

 2: //connect to database

 3: $mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

 4:

 5: $display_block = "<h1>My Categories</h1>

 6: <p>Scroll through the items in each category.</p>";

 7:

 8: //show categories first

 9: $get_cats_sql = "SELECT id, cat_title, cat_desc FROM store_categories

10: ORDER BY cat_title";

11: $get_cats_res = mysqli_query($mysqli, $get_cats_sql)

12: or die(mysqli_error($mysqli));

13:

14: if (mysqli_num_rows($get_cats_res) < 1) {

15: $display_block = "<p>Sorry, no categories to browse.</p>";

16: } else {

17: while ($cats = mysqli_fetch_array($get_cats_res)) {

18: $cat_id = $cats['id'];

19: $cat_title = strtoupper(stripslashes($cats['cat_title']));

20: $cat_desc = stripslashes($cats['cat_desc']);

21:

22: $display_block .= "<h2>".$cat_title."</h2>\n<p>".$cat_desc."</p>";

23:

24: //get items

25: $get_items_sql = "SELECT id, item_title, item_price, item_desc,

26: item_image FROM store_items WHERE cat_id = '".$cat_id."'

27: ORDER BY item_title";

28: $get_items_res = mysqli_query($mysqli, $get_items_sql)

29: or die(mysqli_error($mysqli));

30:

31: if (mysqli_num_rows($get_items_res) < 1) {

32: $display_block = "<p>Sorry, no items in this category.</p>";

33: } else {

34: $display_block .= "<section class=\"liquid-slider\"

35: id=\"main-slider-".$cat_id."\">";

36:

37: while ($items = mysqli_fetch_array($get_items_res)) {

38: $item_id = $items['id'];

39: $item_title = stripslashes($items['item_title']);

40: $item_price = $items['item_price'];

41: $item_img = $items['item_image'];

42: $item_desc = $items['item_desc'];

43:

44: $display_block .= <<<END_OF_TEXT

45: <div>

46: <h2 class="title">$item_title</h2>

47: <p>

48: <img src="$item_img" alt="$item_title" style=" float: left;

49: margin-right:0.5rem;">

50: $item_desc

51: </p>

52: <p>Price: \$$item_price</p>

53: <p><button id="">Buy Now</button></p>

54: </div>

55: END_OF_TEXT;

56: }

57:

58: $display_block .= <<<END_OF_TEXT

59: </section>

60: <script type="text/javascript">

61: $(function(){

62: $('#main-slider-$cat_id').liquidSlider({

63: dynamicTabs: false,

64: hoverArrows: false

65: });

66: });

67: </script>

68: END_OF_TEXT;

69:

70: }

71: //free results

72: mysqli_free_result($get_items_res);

73: }

74: }

75:

76: //free results

77: mysqli_free_result($get_cats_res);

78:

79: //close connection to MySQL

80: mysqli_close($mysqli);

81: ?>

82: <!DOCTYPE html>

83: <html lang="en">

84: <head>

85: <title>My Categories</title>

86: <link rel="stylesheet" href="liquidslider/css/liquid-slider.css">

87: <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>

88: <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-easing/1.4.1/jquery.easing.min.js"></script>

89: <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.touchswipe/1.6.18/jquery.touchSwipe.min.js"></script>

90: <script src="liquidslider/js/jquery.liquid-slider.min.js"></script>

91: </head>

92: <body>

93: <?php echo $display_block; ?>

94: </body>

95: </html>

As you look through the code in Listing 20.3, you will see a number of changes from Listing 20.1. On line 6, the introductory text changed to indicate that you can browse the items in each category by scrolling through them. After each category is displayed with a title and description in line 22, you go right to the SQL statement to get all the items in the category, since no click and backend request is necessary to “open” the category as there was before.

In lines 34–35, a new HTML element is placed; this element will hold the slider contents that will be built up next by fetching the item results and displaying them in a <div> created in lines 44–55. This <div> now includes all item information so that the user can see it while scrolling on the single page you’ve displayed. In lines 58–68, the slider script is initialized and ready for action when the user clicks on one of the arrows that will be displayed on the page.

After the PHP code is finished out in line 81, there are a few changes to the HTML in lines 86–90. In these lines, you link to the slider’s CSS file, as well as to a few other script libraries that are necessary for the functionality to be complete.

Summary

In this chapter, you applied your basic PHP and MySQL knowledge to the creation of a storefront display. You learned how to create the database table and scripts for viewing categories, item lists, and single items. You also saw how integrating a third-party JavaScript library to adjust how the page displays and interacts with customers can make the whole application more usable and appealing.

Q&A

Q. In the item detail record, you use single filenames in the item_image field. What if I want to link to items on a different server?

A. You can enter a URL in the item_image field, as long as you define the field to hold a long string such as a URL.

Q. Why can’t I just build my entire storefront in JavaScript? Wouldn’t that be better?

A. It is possible to create an entire online shopping cart experience using only HTML and JavaScript, but that store could be hacked pretty easily since customers could change the prices on the front end (among other nefarious actions). It’s better to use JavaScript for interactivity and enhancement and keep the storefront features in the PHP and the database.

Workshop

The Workshop is designed to help you review what you’ve learned and begin putting your knowledge into practice.

Quiz

1. Which PHP function was used to uppercase the category title strings?

2. Why don’t the store_item_size and store_item_color tables contain any unique keys?

3. Why do you continue to use mysqli_real_escape_string() on values that will be used in database queries?

Answers

1. strtoupper()

2. Presumably, you will have items with more than one color and more than one size. Also, items may have the same colors or sizes, so the item_color and item_size fields must not be primary or unique either.

3. You should use mysqli_real_escape_string() to ensure values from the user that will be used in database queries are safe to use, no matter if you’ve created one script, 10 scripts, or 100.

Exercises

[image: Images] Create three more categories, with an item or two in each, by issuing queries of your own in MySQL.

[image: Images] Create some images (or use Creative Commons licensed images) for each of the items in your store and then put them in an images directory on your server. Doing so necessitates one change to the showitem.php script (or to the seestore_withJS.php script if you used the JavaScript carousel): adding the image directory to the file path of the generated tag.

CHAPTER 21
Creating a Simple Calendar

What You’ll Learn in This Chapter:

[image: Images] How to build a simple calendar script in both PHP and JavaScript

[image: Images] How to view and add events in your calendar

This chapter pulls together the skills you’ve learned so far regarding the PHP language and building small CRUD applications—those that create, retrieve, update, and delete data. In this chapter, you continue your learning in the context of creating a small calendar application.

Building a Simple Display Calendar

You’ll build upon language constructs and functionality you’ve learned throughout this book to build a calendar that displays the dates for any month between 1990 and 2020. Those are randomly selected years and have no significance—you can make your calendar go from 1980 to 2025 if you want, or any other range of dates that makes sense to you. The user can select both month and year with pull-down menus, and the dates for the selected month will be organized according to the days of the week.

In this script, we work with two variables—one for month and one for year—that are supplied by user input. These pieces of information are used to build a timestamp based on the first day of the selected month. If user input is invalid or absent, the default value is the first day of the current month.

Checking User Input

When the user accesses the calendar application for the first time, no information will have been submitted. Therefore, we must ensure that the script can handle the fact that the variables for month and year might not be defined. We could use the isset() function for this because it returns false if the variable passed to it has not been defined. However, let’s use the checkdate() function instead, which not only will see whether the variable exists but will also do something meaningful with it—namely, validate that it is a date. Listing 21.1 shows the fragment of code that checks for month and year variables coming from a form and then builds a timestamp based on them.

LISTING 21.1 Checking User Input for the Calendar Script

Click here to view code image

 1: <?php

 2: if ((!isset($_POST['month'])) || (!isset($_POST['year']))) {

 3: $nowArray = getdate();

 4: $month = $nowArray['mon'];

 5: $year = $nowArray['year'];

 6: } else {

 7: $month = $_POST['month'];

 8: $year = $_POST['year'];

 9: }

10: $start = mktime (12, 0, 0, $month, 1, $year);

11: $firstDayArray = getdate($start);

12: ?>

Listing 21.1 is a fragment of a larger script, so it does not produce any output itself. But it’s an important fragment to understand, which is why it sits all alone here, ready for an explanation.

In the if statement on line 2, we test whether the month and year have been provided by a form. If the month and year have not been defined, the mktime() function used later in the fragment will not be able to make a valid date from undefined month and year arguments.

If the values are present, we use getdate() on line 3 to create an associative array based on the current time. We then set values for $month and $year ourselves, using the array’s mon and year elements (lines 4 and 5). If the variables have been set from the form, we put the data into $month and $year variables so as not to touch the values in the original $_POST superglobal.

Once we are sure we have valid data in $month and $year, we can use mktime() to create a timestamp for the first day of the month (line 10). We will need information about this timestamp later on, so on line 11, we create a variable called $firstDayArray that stores an associative array returned by getdate() and based on this timestamp.

Building the HTML Form

We now need to create an interface by which users can ask to see data for a month and year. For this, we use SELECT elements. Although we could hard-code these in HTML, we must also ensure that the pull-downs default to the currently chosen month, so we will dynamically create these pull-downs, adding a SELECT attribute to the OPTION element where appropriate. The form is generated in Listing 21.2.

LISTING 21.2 Building the HTML Form for the Calendar Script

Click here to view code image

1: <?php

2: if ((!isset($_POST['month'])) || (!isset($_POST['year']))) {

3: $nowArray = getdate();

4: $month = $nowArray['mon'];

5: $year = $nowArray['year'];

6: } else {

7: $month = $_POST['month'];

8: $year = $_POST['year'];

9: }

10: $start = mktime (12, 0, 0, $month, 1, $year);

11: $firstDayArray = getdate($start);

12: ?>

13: <!DOCTYPE html>

14: <html lang="en">

15: <head>

16: <title><?php echo "Calendar:".$firstDayArray['month']."

17: ".$firstDayArray['year']; ?></title>

18: </head>

19: <body>

20: <h1>Select a Month/Year Combination</h1>

21: <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">

22: <select name="month">

23: <?php

24: $months = Array("January", "February", "March", "April", "May",

25: "June", "July", "August", "September", "October", "November", "December");

26: for ($x=1; $x <= count($months); $x++) {

27: echo"<option value=\"$x\"";

28: if ($x == $month) {

29: echo " selected";

30: }

31: echo ">".$months[$x-1]."</option>";

32: }

33: ?>

34: </select>

35: <select name="year">

36: <?php

37: for ($x=1990; $x<=2020; $x++) {

38: echo "<option";

39: if ($x == $year) {

40: echo " selected";

41: }

42: echo ">$x</option>";

43: }

44: ?>

45: </select>

46: <button type="submit" name="submit" value="submit">Go!</button>

47: </form>

48: </body>

49: </html>

Having created the $start timestamp and the $firstDayArray date array in lines 2–11, let’s begin to write the HTML for the page. Notice that we use $firstDayArray to add the month and year to the TITLE element on lines 16 and 17.

Line 20 is the beginning of our form. To create the SELECT element for the month pull-down, we drop back into PHP mode on line 22 to write the individual OPTION tags. First, for display purposes, we create in lines 23 and 24 an array called $months that contains the names of the 12 months. We then loop through this array, creating an OPTION tag for each name (lines 25–31).

This is an overcomplicated way of writing a simple SELECT element were it not for the fact that we are testing $x (the counter variable in the for statement) against the $month variable on line 27. If $x and $month are equivalent, we add the string SELECTED to the OPTION tag, ensuring that the correct month will be selected automatically when the page loads. We use a similar technique to write the year pull-down on lines 36–42. Finally, back in HTML mode, we create a submit button on line 45.

We now have a form that can send the month and year parameters to itself and will default either to the current month and year or the month and year previously chosen. If you save this listing as dateselector.php, place it in your web server document root, and access it with your web browser, you should see something like Figure 21.1. (Your month and year might differ.)

[image: Images]

FIGURE 21.1
The calendar form.

Creating the Calendar Table

We now need to create a table and populate it with dates for the chosen month. We do this in Listing 21.3, which represents the complete calendar display script.

Although line 2 is new, lines 3–64 should be familiar from your work with Listing 21.2, with some style sheet entries added in lines 19–35. That addition in line 2 simply defines a constant variable (in this case, ADAY—for “a day”) with a value of 86400. This value represents the number of seconds in a day, which the script uses later.

LISTING 21.3 The Complete Calendar Display Script

Click here to view code image

1: <?php

2: define("ADAY", (60*60*24));

3: if ((!isset($_POST['month'])) || (!isset($_POST['year']))) {

4: $nowArray = getdate();

5: $month = $nowArray['mon'];

6: $year = $nowArray['year'];

7: } else {

8: $month = $_POST['month'];

9: $year = $_POST['year'];

10: }

11: $start = mktime (12, 0, 0, $month, 1, $year);

12: $firstDayArray = getdate($start);

13: ?>

14: <!DOCTYPE html>

15: <html>

16: <head>

17: <title><?php echo "Calendar: ".$firstDayArray['month']."

18: ".$firstDayArray['year'']; ?></title>

19: <style type="text/css">

20: table {

21: border: 1px solid black;

22: border-collapse: collapse;

23: }

24: th {

25: border: 1px solid black;

26: padding: 6px;

27: font-weight: bold;

28: background: #ccc;

29: }

30: td {

31: border: 1px solid black;

32: padding: 6px;

33: vertical-align: top;

34: width: 100px;

35: }

36: </style>

37: </head>

38: <body>

39: <h1>Select a Month/Year Combination</h1>

40: <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">

41: <select name="month">

42: <?php

43: $months = Array("January", "February", "March", "April", "May",

44: "June", "July", "August", "September", "October", "November", "December");

45: for ($x=1; $x <= count($months); $x++) {

46: echo"<option value=\"$x\"";

47: if ($x == $month) {

48: echo " selected";

49: }

50: echo ">".$months[$x-1]."</option>";

51: }

52: ?>

53: </select>

54: <select name="year">

55: <?php

56: for ($x=1980; $x<=2010; $x++) {

57: echo "<option";

58: if ($x == $year) {

59: echo " selected";

60: }

61: echo ">$x</option>";

62: }

63: ?>

64: </select>

65: <button type="submit" name="submit" value="submit">Go!</button>

66: </form>

67:

68: <?php

69: $days = Array("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat");

70: echo "<table><tr>\n";

71: foreach ($days as $day) {

72: echo "<td>".$day.</td>\n";

73: }

74: for ($count=0; $count < (6*7); $count++) {

75: $dayArray = getdate($start);

76: if (($count % 7) == 0) {

77: if ($dayArray['mon'] != $month) {

78: break;

79: } else {

80: echo "</tr><tr>\n";

81: }

82: }

83: if ($count < $firstDayArray['wday'] || $dayArray['mon'] != $month) {

84: echo "<td> </td>\n";

85: } else {

86: echo "<td>".$dayArray['mday']."</td>\n";

87: $start += ADAY;

88: }

89: }

90: echo "</tr></table>";

91: ?>

92: </body>

93: </html>

We pick up the entirely new code at line 66 of Listing 21.3. Because the table will be indexed by days of the week, we loop through an array of day names in lines 71–73, printing each in its own table cell (on line 72). All the real magic of the script happens in the final for statement beginning on line 74.

In line 74, we initialize a variable called $count and ensure that the loop will end after 42 iterations. This is to make sure that we will have enough cells to populate with date information, taking into consideration that a four-week month might actually have partial weeks at the beginning and the end, thus the need for six 7-day weeks (rows).

Within this for loop, we transform the $start variable into a date array with getdate(), assigning the result to $dayArray (line 75). Although $start is the first day of the month during the loop’s initial execution, we will increment this timestamp by the value of ADAY (24 hours) for every iteration (see line 85).

On line 76, we test the $count variable against the number 7, using the modulus operator. The block of code belonging to this if statement will therefore be run only when $count is either zero or a multiple of seven. This is our way of knowing whether we should end the loop altogether or start a new row, where rows represent weeks.

After we have established that we are in the first iteration or at the end of a row, we can go on to perform another test on line 77. If the mon (month number) element of the $dayArray is no longer equivalent to the $month variable, we are finished. Remember that $dayArray contains information about the $start timestamp, which is the current place in the month that we are displaying. When $start goes beyond the current month, $dayArray["mon"] will hold a different figure than the $month number provided by user input. Our modulus test demonstrated that we are at the end of a row, and the fact that we are in a new month means that we can leave the loop altogether. Assuming, however, that we are still in the month that we are displaying, we end the row and start a new one on line 80.

In the next if statement, on line 83, we determine whether to write date information to a cell. Not every month begins on a Sunday, so it’s likely that our rows will contain an empty cell or two. Similarly, few months will finish at the end of one of our rows, so it’s also likely that we will have a few empty cells before we close the table.

We have stored information about the first day of the $firstDayArray; in particular, we can access the number of the day of the week in $firstDayArray['wday']. If the value of $count is smaller than this number, we know that we haven’t yet reached the correct cell for writing. By the same token, if the value of the $month variable is no longer equal to $dayArray['mon'], we know that we have reached the end of the month (but not the end of the row, as we determined in our earlier modulus test). In either case, we write an empty cell to the browser on line 84.

In the final else clause on line 85, we can do the fun stuff. We have already determined that we are within the month that we want to list, and that the current day column matches the day number stored in $firstDayArray['wday']. Now we must use the $dayArray associative array that we established early in the loop to write the day of the month and some blank space into a cell.

Finally, on line 86, we need to increment the $start variable, which contains our date stamp. We just add the number of seconds in a day to it (we defined this value in line 2), and we’re ready to begin the loop again with a new value in $start to be tested. If you save this listing as showcalendar.php, place it in your web server document root, and access it with your web browser, you should see something like Figure 21.2 (your month and year might differ).

[image: Images]

FIGURE 21.2
The calendar form in action.

Adding Events to the Calendar

Displaying the calendar is great, but with just a few extra lines of code, you can make it interactive—that is, you can add and view events on a given day. To begin, let’s create a simple database table that holds event information. For purposes of simplicity, these events will occur on only a single day and only their start date and time will be shown. Although you can make the event entries as complex as you want, this example is here just to show the basic process involved.

The calendar_events table will include fields for the start date and time, the event title, and an event short description:

Click here to view code image

CREATE TABLE calendar_events (

 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 event_title VARCHAR (25),

 event_shortdesc VARCHAR (255),

 event_start DATETIME

);

We can use the code in Listing 21.3 as our base (the script called showcalendar.php). In this new script, we add a link to a pop-up window as part of the calendar display. Each date is a link; the pop-up window calls another script that displays the full text of an event as well as provides the capability to add an event. To begin, add the following JavaScript code at the bottom of the HTML document, before the closing </body> tag (after line 90 of the original script in Listing 21.3):

Click here to view code image

<script type="text/javascript">

function eventWindow(url) {

 event_popupWin = window.open(url, 'event', 'resizable=yes, scrollbars=yes,

 toolbar=no,width=400,height=400');

 event_popupWin.opener = self;

}

</script>

This JavaScript function defines a 400 × 400 window that will call a URL we provide. We placed the JavaScript at the bottom of the document to give the rest of the page time to load. We use this JavaScript function to replace what was line 85 of the original script in Listing 21.3; we now wrap the date display in this link to the JavaScript-based pop-up window, which calls a script named event.php. The new code is as follows:

Click here to view code image

echo "<td><a href=\"javascript:eventWindow('event.php?m=".$month.

"&&d=".$dayArray['mday']."&&y=$year');\">".$dayArray['mday']."

".$event_title."</td>\n";

Not only do we call the event.php file, but we also have to send along with it the date information for the particular link that is clicked. This is done via the query string, and you can see we’re sending along three variables—what will become $_GET['m'] for the month, $_GET['d'] for the day, and $_GET['y'] for the year.

Only one change remains for this particular script before we tackle the event.php script—adding an indicator to this particular view, if events do indeed exist. The query that checks for existing events on a given day appears at the onset of the else statement that was originally found at line 85. An entirely new else statement is shown; you can see that the database connection is made, a query is issued, and, if results are found, text is printed within the table cell for that day:

Click here to view code image

} else {

 $event_title = "";

 $mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

 $chkEvent_sql = "SELECT event_title FROM calendar_events WHERE

 month(event_start) = '".$month."' AND

 dayofmonth(event_start) = '".$dayArray['mday']."'

 AND year(event_start) = '".$year."' ORDER BY event_start";

 $chkEvent_res = mysqli_query($mysqli, $chkEvent_sql)

 or die(mysqli_error($mysqli));

 if (mysqli_num_rows($chkEvent_res) > 0) {

 while ($ev = mysqli_fetch_array($chkEvent_res)) {

 $event_title = stripslashes($ev['event_title']);

 }

 } else {

 $event_title = "";

 }

 echo "<td><a href=\"javascript:eventWindow('event.php?m=".$month.

 "&&d=".$dayArray['mday']."&&y=$year');\">".

 $dayArray['mday']."
".$event_title."</td>\n";

 unset($event_title);

 $start += ADAY;

}

In Listing 21.4, you can see the entirely new script, which we’ll call showcalendar_ withevent.php.

LISTING 21.4 Calendar Display Script with Entry-Related Modifications

Click here to view code image

 1: <?php

 2: define("ADAY", (60*60*24));

 3: if ((!isset($_POST['month'])) || (!isset($_POST['year']))) {

 4: $nowArray = getdate();

 5: $month = $nowArray['mon'];

 6: $year = $nowArray['year'];

 7: } else {

 8: $month = $_POST['month'];

 9: $year = $_POST['year'];

10: }

11:

12: $start = mktime (12, 0, 0, $month, 1, $year);

13: $firstDayArray = getdate($start);

14: ?>

15: <!DOCTYPE html>

16: <html lang="en">

17: <head>

18: <title><?php echo "Calendar: ".$firstDayArray['month']."

19: ".$firstDayArray['year'']; ?></title>

20: <style type="text/css">

21: table {

22: border: 1px solid black;

23: border-collapse: collapse;

24: }

25: th {

26: border: 1px solid black;

27: padding: 6px;

28: font-weight: bold;

29: background: #ccc;

30: }

31: td {

32: border: 1px solid black;

33: padding: 6px;

34: vertical-align: top;

35: width: 100px;

36: }

37: </style>

38: </head>

39: <body>

40: <h1>Select a Month/Year Combination</h1>

41: <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">

42: <select name="month">

43: <?php

44: $months = Array("January", "February", "March", "April", "May", "June", "July",

45: "August", "September", "October", "November", "December");

46: for ($x=1; $x <= count($months); $x++) {

47: echo"<option value=\"$x\"";

48: if ($x == $month) {

49: echo " selected";

50: }

51: echo ">".$months[$x-1]."</option>";

52: }

53: ?>

54: </select>

55: <select name="year">

56: <?php

57: for ($x=1990; $x<=2020; $x++) {

58: echo "<option";

59: if ($x == $year) {

60: echo " selected";

61: }

62: echo ">$x</option>";

63: }

64: ?>

65: </select>

66: <button type="submit" name="submit" value="submit">Go!</button>

67: </form>

68:

69: <?php

70: $days = Array("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat");

71: echo "<table><tr>\n";

72: foreach ($days as $day) {

73: echo "<th>".$day."</th>\n";

74: }

75: for ($count=0; $count < (6*7); $count++) {

76: $dayArray = getdate($start);

77: if (($count % 7) == 0) {

78: if ($dayArray['mon'] != $month) {

79: break;

80: } else {

81: echo "</tr><tr>\n";

82: }

83: }

84: if ($count < $firstDayArray['wday'] || $dayArray['mon'] != $month) {

85: echo "<td> </td>\n";

86: } else {

87: $event_title = "";

88: $mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

89: $chkEvent_sql = "SELECT event_title FROM calendar_events WHERE

90: month(event_start) = '".$month."' AND

91: dayofmonth(event_start) = '".$dayArray['mday']."'

92: AND year(event_start) = '".$year."' ORDER BY event_start";

93: $chkEvent_res = mysqli_query($mysqli, $chkEvent_sql)

94: or die(mysqli_error($mysqli));

95:

96: if (mysqli_num_rows($chkEvent_res) > 0) {

97: while ($ev = mysqli_fetch_array($chkEvent_res)) {

98: $event_title .= stripslashes($ev['event_title'])."
";

99: }

100: } else {

101: $event_title = "";

102: }

103:

104: echo "<td><a href=\"javascript:eventWindow('event.php?m=".$month.

105: "&&d=".$dayArray['mday']."&&y=$year');\">".$dayArray['mday']."

106:
".$event_title."</td>\n";

107: unset($event_title);

108: $start += ADAY;

109: }

110: }

111: echo "</tr></table>";

112:

113: //close connection to MySQL

114: mysqli_close($mysqli);

115: ?>

116:

117: <script type="text/javascript">

118: function eventWindow(url) {

119: event_popupWin = window.open(url, 'event', 'resizable=yes,

120: scrollbars=yes, toolbar=no,width=400,height=400');

121: event_popupWin.opener = self;

122: }

123: </script>

124:

125: </body>

126: </html>

In Figure 21.3, you can see the new calendar, including the representation of the event title on a date that, for illustrative purposes here, I’ve prepopulated with an event in the calendar_events table.

[image: Images]

FIGURE 21.3
Showing the calendar with an event.

All that remains is adding the all-in-one event.php script used in the pop-up window to display and also add an event to the calendar (on a particular day). Listing 21.5 contains all the necessary code; the fun part starts at line 8, which connects to the MySQL database. Line 11 checks whether the event entry form has been submitted; if it has, database-safe values are created in lines 14–24, and an INSERT statement is created and issued to add the event to the calendar_events table before continuing (lines 29–34).

LISTING 21.5 Showing Events/Adding Events via a Pop-Up

Click here to view code image

1: <!DOCTYPE html>

2: <html>

3: <head>

4: <title>Show/Add Events</title>

5: </head>

6: <body>

7: <h1>Show/Add Events</h1>

8: <?php

9: $mysqli = mysqli_connect("localhost", "testuser", "somepass", "testDB");

10:

11: //add any new event

12: if ($_POST) {

13:

14: //create database-safe strings

15: $safe_m = mysqli_real_escape_string($mysqli, $_POST['m']);

16: $safe_d = mysqli_real_escape_string($mysqli, $_POST['d']);

17: $safe_y = mysqli_real_escape_string($mysqli, $_POST['y']);

18: $safe_event_title = mysqli_real_escape_string($mysqli,

19: $_POST['event_title']);

20: $safe_event_shortdesc = mysqli_real_escape_string($mysqli,

21: $_POST['event_shortdesc']);

22: $safe_event_time_hh = mysqli_real_escape_string($mysqli,

23: $_POST['event_time_hh']);

24: $safe_event_time_mm = mysqli_real_escape_string($mysqli,

25: $_POST['event_time_mm']);

26:

27: $event_date = $safe_y."-".$safe_m."-".$safe_d."

28: ".$safe_event_time_hh.":".$safe_event_time_mm.":00";

29:

30: $insEvent_sql = "INSERT INTO calendar_events (event_title,

31: event_shortdesc, event_start) VALUES

32: ('".$safe_event_title."', '".$safe_event_shortdesc."',

33: '".$event_date."')";

34: $insEvent_res = mysqli_query($mysqli, $insEvent_sql)

35: or die(mysqli_error($mysqli));

36:

37: } else {

38:

39: //create database-safe strings

40: $safe_m = mysqli_real_escape_string($mysqli, $_GET['m']);

41: $safe_d = mysqli_real_escape_string($mysqli, $_GET['d']);

42: $safe_y = mysqli_real_escape_string($mysqli, $_GET['y']);

43: }

44:

45: //show events for this day

46: $getEvent_sql = "SELECT event_title, event_shortdesc,

47: date_format(event_start, '%l:%i %p') as fmt_date

48: FROM calendar_events WHERE month(event_start) =

49: '".$safe_m."' AND dayofmonth(event_start) =

50: '".$safe_d."' AND year(event_start) =

51: '".$safe_y."' ORDER BY event_start";

52: $getEvent_res = mysqli_query($mysqli, $getEvent_sql)

53: or die(mysqli_error($mysqli));

54:

55: if (mysqli_num_rows($getEvent_res) > 0) {

56: $event_txt = "";

57: while ($ev = @mysqli_fetch_array($getEvent_res)) {

58: $event_title = stripslashes($ev['event_title']);

59: $event_shortdesc = stripslashes($ev['event_shortdesc']);

60: $fmt_date = $ev['fmt_date'];

61: $event_txt .= "".$fmt_date.":

62: ".$event_title."
".$event_shortdesc."";

63: }

64: $event_txt .= "";

65: mysqli_free_result($getEvent_res);

66: } else {

67: $event_txt = "";

68: }

69: // close connection to MySQL

70: mysqli_close($mysqli);

71:

72: if ($event_txt != "") {

73: echo "<p>Today's Events:</p>

74: $event_txt

75: <hr>";

76: }

77:

78: // show form for adding an event

79: echo <<<END_OF_TEXT

80: <form method="post" action="$_SERVER[PHP_SELF]">

81: <p>Would you like to add an event?

82: Complete the form below and press the submit button to

83: add the event and refresh this window.</p>

84:

85: <p><label for="event_title">Event Title:</label>

86: <input type="text" id="event_title" name="event_title"

87: size="25" maxlength="25"></p>

88:

89: <p><label for="event_shortdesc">Event Description:</label>

90: <input type="text" id="event_shortdesc" name="event_shortdesc"

91: size="25" maxlength="255"></p>

92: <fieldset>

93: <legend>Event Time (hh:mm):</legend>

94: <select name="event_time_hh">

95: END_OF_TEXT;

96:

97: for ($x=1; $x <= 24; $x++) {

98: echo "<option value=\"$x\">$x</option>";

99: }

100:

101: echo <<<END_OF_TEXT

102: </select> :

103: <select name="event_time_mm">

104: <option value="00">00</option>

105: <option value="15">15</option>

106: <option value="30">30</option>

107: <option value="45">45</option>

108: </select>

109: </fieldset>

110: <input type="hidden" name="m" value="$safe_m">

111: <input type="hidden" name="d" value="$safe_d">

112: <input type="hidden" name="y" value="$safe_y">

113:

114: <button type="submit" name="submit" value="submit">Add Event</button>

115: </form>

116: END_OF_TEXT;

117: ?>

118: </body>

119: </html>

Lines 45–52 create and issue the query and retrieve all records that correspond to events on this given day. The text block used to display entries is created in lines 54–67. However, users also need to see the form for adding an event, and this is built in lines 79–114, effectively the end of the script.

Figure 21.4 shows how a pop-up looks when a link is followed from the calendar and an entry is already present. In this example, we want to add another event on this day, so the form has been completed in preparation for adding the additional event.

[image: Images]

FIGURE 21.4
Showing the day detail, ready to add another event.

In Figure 21.5, a second event has been added to this particular day.

[image: Images]

FIGURE 21.5
A second event has been added.

Obviously, this is a simple example, but it shows that it is indeed easy to build a calendar-based application in just a few short scripts.

Creating the Calendar in JavaScript

In order to build the calendar in JavaScript, you do the same things that you do in the PHP:

[image: Images] Check the user input.

[image: Images] Build an HTML form.

[image: Images] Create a calendar table.

[image: Images] Add events to the calendar.

You just do them in different ways. For this chapter, you learn how to use jQuery to build your calendar in JavaScript; you learned about jQuery in Chapter 10, “The Basics of Using jQuery.”

Creating the HTML for the Calendar

Let’s start by creating the basic HTML for the calendar. Since you’ll be using jQuery and some unobtrusive JavaScript, you can create a very minimal HTML document. All of the work will be done by the script. You can find this basic HTML in Listing 21.6:

LISTING 21.6 Basic HTML for the JavaScript-based Calendar

Click here to view code image

1: <!DOCTYPE html>

2: <html lang="en">

3: <head>

4: <title>My Calendar</title>

5: <style type="text/css">

6: table {

7: border: 1px solid black;

8: border-collapse: collapse;

9: margin-top: 1rem;

10: }

11: th {

12: border: 1px solid black;

13: padding: 6px;

14: font-weight: bold;

15: background: #ccc;

16: }

17: td {

18: border: 1px solid black;

19: padding: 6px;

20: vertical-align: top;

21: width: 100px;

22: }

23: </style>

24: <script src="https://code.jquery.com/jquery-3.2.1.min.js"></script>

25: </head>

26: <body>

27: <h1>Select a Month/Year Combination</h1>

28: <form id="datePicker"></form>

29: <div id="myCal"></div>

30:

31: <script>

32: // script will go here!

33: </script>

34: </body>

35: </html>

Lines 6–23 are the styles that will be used for the calendar once it’s visible. The HTML consists of a header (line 27), a form (line 28), and a <div> container for the calendar (line 29). Lines 31–33 are where the JavaScript will go to build the entire page.

Building the Form to Accept User Input

The first form to place on the page is the date picker, which we’ll now build in JavaScript. This JavaScript function, using jQuery at its base, will go in the <script> area lines 31–33) of Listing 21.6 to build that form. Listing 21.7 shows this JavaScript function.

LISTING 21.7 The JavaScript Function for a Date Picker

Click here to view code image

1: function buildDateForm() {

2: var months = ["January", "February", "March", "April", "May", "June", "July",

3: "August", "September", "October", "November", "December"];

4: $('#datePicker').append('<select id="month"></select>');

5: for(var i = 0; i < months.length;i++) {

6: $('#month').append('<option value="'+i+'">'+months[i]+'</option')

7: }

8: $('#datePicker').append('<select id="year"></select>');

9: for(i = 1990; i < 2021; i++) {

10: $('#year').append('<option value="'+i+'">'+i+'</option>')

11: }

12: $('#datePicker').append('<button id="submit">Go!</button>');

13:

14: // set date to current month and year

15: var d = new Date();

16: var n = d.getMonth();

17: var y = d.getFullYear();

18: $('#month option:eq('+n+')').prop('selected', true);

19: $('#year option[value="'+y+'"]').prop('selected', true);

20: }

This script works very much like the PHP-based script from earlier in the chapter worked, except that it builds the HTML elements directly into the DOM. Line 4 of Listing 21.7 looks in the page for the element with the ID datePicker and adds a select element to select the months. Lines 5–7 walk through the array of months (lines 2–3) and place them as options for the drop-down menu. Lines 8–11 do the same thing for the year drop-down, except they use a for loop to populate the years. Line 12 adds a button to the date picker so that the new values can be submitted. Lines 14–20 set the drop-down menus to the current month and year so the calendar is more user friendly.

If we stopped at this point, the page would remain blank because there is nothing to tell the browser to run the script. For this we need to use the jQuery $().ready function, which you learned about in Chapter 10. As a reminder, using this function ensures that scripts only run after everything on the page has rendered; if you try to run scripts before the rest of the page has rendered, this can cause problems. For example, if we tried to run the script in Listing 21.6 before the HTML with the <form id="datePicker"></form> line had loaded, the script would fail because there would be no element with that ID on the page.

For our calendar, we want to call the buildDateForm() function once the DOM is ready, which looks like this:

Click here to view code image

$().ready(function(){

 // build the picker form

 buildDateForm();

});

We should add a listener to the function to tell the browser what to do when the form is submitted:

Click here to view code image

 // watch for clicks on the submit button

 $("#submit").click(function() {

 var newMonth = $('#month').val();

 var newYear = $('#year').val();

 var newDate = new Date(newYear, newMonth, 1);

 calendar(newDate);

 return false;

 });

This snippet of JavaScript checks for clicks on any element with the ID #submit. It then creates a new date with the submitted values and submits them to the calendar script, which redraws the calendar. The return false; is important so that the browser doesn’t try to submit the form to the server. Let’s put these pieces together in the next section.

Creating the Calendar

Once you have the date picker form displaying, you can build the calendar. Like we did with the form, we will add a calendar in a table right inside the empty div element in the HTML. The JavaScript functions in a similar way to how the PHP did when building the calendar. Listing 21.7 shows what it looks like.

LISTING 21.7 Building a Calendar with JavaScript

Click here to view code image

1: function calendar(date) {

2: $("#myCal").empty();

3: if (date == null) {

4: date = new Date;

5: }

6: day = date.getDate();

7: month = date.getMonth();

8: year = date.getFullYear();

9: months = new Array('January','February','March','April','May','June',

10: 'July','August','September','October','November','December');

11: this_month = new Date(year, month, 1);

12: next_month = new Date(year, month + 1, 1);

13: days = new Array('Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat');

14: first_week_day = this_month.getDay(); // day of the week of the first day

15: days_in_this_month = Math.round((next_month.getTime() - this_month.getTime())

16: / (1000 * 60 * 60 * 24));

17:

18: $('#myCal').append('<table id="myCalendar"></table>');

19: $('#myCalendar').append('<thead><tr></tr></thead>');

20: for (var i=0; i < days.length; i++) {

21: $('#myCalendar thead tr').append('<th>'+days[i]+'</th>')

22: }

23: $('#myCalendar').append('<tbody></tbody>');

24: $('tbody').append('<tr>');

25: for(week_day = 0; week_day < first_week_day; week_day++) {

26: $('tbody tr').append('<td id="'+week_day+'"></td>');

27: }

28: week_day = first_week_day;

29:

30: for (day_counter=1; day_counter <= days_in_this_month; day_counter++) {

31: week_day %= 7;

32: if (week_day == 0) {

33: // go to the next line of the calendar

34: $('tbody').append('</tr><tr>');

35: }

36: $('tbody tr:last').append('<td id="day'+day_counter+'">' +

37: day_counter + '</td>');

38:

39: week_day++;

40: }

41: }

The function begins by ensuring the #myCal element is empty (line 2) using the jQuery empty() method to remove everything inside the named element. Then we create the date (lines 3–8) using the JavaScript Date object. If the calendar function is called without any arguments, we use today’s date as the starting calendar entry.

Lines 9–16 create the calendar month and days-of-the-week arrays, as well as other variables about the specific calendar month, such as this month, next month, the first day of the month, and the day of the week of the first day. Finally, we use the Math object to determine the days in the month.

Lines 18–27 build the outermost tags of the calendar table. Because jQuery builds the HTML in the DOM, it creates each element separately and then appends it to the parent container. Line 18 adds the <table> element to the <div> element called #myCal and gives it an ID of myCalendar. Line 19 adds the table head and the first row. Lines 20–22 walk through the days-of-the-week array and make them table header cells. Then line 23 adds a tbody section to the table where the main calendar cells will go. Lines 24–27 walk through the empty cells at the beginning of the month before the first day. Then lines 30–39 create each week with a number in each cell indicating the day. To make the calendar display, add the calendar() call to the ready function so that it now looks like this:

Click here to view code image

$().ready(function(){

 // build the picker form

 buildDateForm();

 calendar();

 $("#submit").click(function() {

 var newMonth = $('#month').val();

 var newYear = $('#year').val();

 var newDate = new Date(newYear, newMonth, 1);

 calendar(newDate);

 return false;

 });

});

Let’s do a little cleanup and place both the buildDateForm() and calendar() functions into their own file, called calendar_functions.js. You can then include it in your HTML file much like you do the jQuery library:

Click here to view code image

<script src="calendar_functions.js"></script>

Your HTML file should now look something like Listing 21.8.

LISTING 21.8 Building a Calendar with JavaScript

Click here to view code image

1: <!DOCTYPE html>

2: <html lang="en">

3: <head>

4: <title>My Calendar</title>

5: <style type="text/css">

6: table {

7: border: 1px solid black;

8: border-collapse: collapse;

9: margin-top: 1rem;

10: }

11: th {

12: border: 1px solid black;

13: padding: 6px;

14: font-weight: bold;

15: background: #ccc;

16: }

17: td {

18: border: 1px solid black;

19: padding: 6px;

20: vertical-align: top;

21: width: 100px;

22: }

23: </style>

24: <script src="https://code.jquery.com/jquery-3.2.1.min.js"></script>

25: <script src="calendar_functions.js"></script>

26: </head>

27: <body>

28: <h1>Select a Month/Year Combination</h1>

29: <form id="datePicker"></form>

30: <div id="myCal"></div>

31:

32: <script type="text/javascript">

33: $().ready(function(){

34: // build the picker form

35: buildDateForm();

36: calendar();

37:

38: $("#submit").click(function() {

39: var newMonth = $('#month').val();

40: var newYear = $('#year').val();

41: var newDate = new Date(newYear, newMonth, 1);

42: calendar(newDate);

43: return false;

44: });

45: });

46: </script>

47: </body>

48: </html>

If you load this HTML file in your browser, you should see something like Figure 21.6, which looks strikingly like Figure 21.2 but with the current month’s calendar already displayed and none of it being driven by PHP.

[image: Images]

FIGURE 21.6
Showing the calendar created by JavaScript.

Summary

In this chapter, we pulled together the PHP date-related functions you learned about earlier in the book to work within a basic calendar application display. You learned how to test the validity of an input date using checkdate(), and you worked through a sample script that applied some of the tools you have learned. You also saw one method for adding and viewing events within your calendar application. You then learned how to build the same type of calendar using JavaScript and jQuery for a better (more efficient) user experience that avoids round-trips back from your web server to compile PHP code to render HTML.

Q&A

Q. Are there any functions for converting between different calendars?

A. Yes. PHP provides an entire suite of functions that cover alternative calendars. You can read about these in the official PHP Manual at http://www.php.net/manual/en/ref.calendar.php. There is also a jQuery plug-in called jQuery Calendars (http://keith-wood.name/calendarsRef.html) that can help you convert between calendars in JavaScript.

Workshop

The Workshop is designed to help you review what you’ve learned and begin putting your knowledge into practice.

Quiz

1. What PHP function did we use to create a timestamp?

2. What PHP function did we use to create an associative array of date-related information?

3. Why was it important to put the JavaScript function calls within the jQuery ready function?

Answers

1. mktime()

2. getdate()

3. If the function calls were placed outside of the jQuery ready function, there would be no guarantee that the required elements had been loaded before attempting to use them.

Exercises

[image: Images] Modify the calendar display script to show an entire year of the calendar—from January through December. After that, display the calendar as a 3 × 4 grid, or four rows of three months on each row.

[image: Images] Modify the JavaScript-based calendar script to combine it with actions based in PHP to add and display events.

CHAPTER 22
Managing Web Applications

What You’ll Learn in This Chapter:

[image: Images] Some best practices in web application development

[image: Images] How to write maintainable code

[image: Images] How to get started with version control

[image: Images] The value and use of HTML, CSS, JavaScript, and PHP frameworks

The bulk of this book has led you through the design and creation of basic static and dynamic web content, from text to graphics and multimedia, and with a little JavaScript interactivity and back-end PHP interpretation and database interaction thrown in for good measure. These chapters are the foundation for the next step in your personal and technical development process.

This chapter shows you how to think about developing and managing larger web applications than just the simple prototypes and basic structures you’ve seen in this book. You’ll learn about ways to work with other people on your projects, which includes adding comments and using version control so that you can innovate individually or as part of a team without overwriting work that you might want to have saved. Finally, you’ll learn a little bit about application frameworks, which exist so that you and others do not need to reinvent the wheel every time you start a new project—if that were the case, we’d never ship anything!

Understanding Some Best Practices in Web Application Development

If you’ve learned one thing in this book—and I hope you’ve learned more than one thing—it’s that you can create prototypes and make changes in web-based content and applications very quickly. Sometimes you may find yourself in a situation where you’re trying to solve a problem and you aren’t afforded the luxury of time to systematically approach the solution to your problem—you might end up fiddling around with your style sheets, your HTML, your JavaScript, or your PHP, and only after you’ve hit on a solution can you go back and say “I totally meant to do that from the beginning.” This is normal.

But that doesn’t mean you shouldn’t try to plan your web application development project, or that you shouldn’t follow some best practices along the way. You should. However— surprise!—there is no best methodology or project life cycle for web projects, but there are a number of things you should consider. You don’t have to follow all of them or in this order if it doesn’t suit your project, but be aware of these things and choose the techniques that work for you.

[image: Images] Before you begin, think about what you are trying to build. Think about the goal. Think about who is going to use your web application—that is, your targeted audience. Many technically perfect web projects fail because nobody checked whether users were interested in such an application in the first place.

[image: Images] Try to break down your application into components. What parts or process steps does your application have? How will each of those components work? How will they fit together? Drawing up scenarios, storyboards, and use cases will be useful for figuring out these components and steps.

[image: Images] After you have a list of components, see which of them already exist. This is where frameworks come in, or at least code snippets and libraries that may exist in the open-source community. Determine what code you have to write from scratch and roughly how big that job is, before committing to it. If you do use something from the open source community, be sure you understand what that code is doing—don’t use it blindly.

[image: Images] Make decisions about coding standards, directory structures, version control, development environment, and documentation. This step is ignored too often in web projects, and much time is wasted going back and retrofitting code to standards, documenting after the fact, and so on.

[image: Images] Throughout this process, try to separate content and logic in your application. When your team grows beyond just yourself, you are likely to have people who work on content and design, and people who work on logic; you’ll want to avoid collisions in your work.

[image: Images] Build a prototype based on all the previous information. Show it to users—design with them. Iterate almost incessantly, and test, test, test—but be mindful of a definition of “done” that works for your organization.

We’ll look at a few of these in more detail in the following sections.

Separating Logic and Content

For simple projects with a small number of lines of code or scripts, separating content and logic can be more trouble than it’s worth. As your projects become bigger, it is essential to find a way to separate logic and content. If you don’t do this, your code will become increasingly difficult to maintain. If you or the powers that be decide to apply a new design to your website and a lot of HTML is embedded in your code, changing the design will be a nightmare.

Three basic approaches to separating logic and content follow—some of these should be familiar to you by this point in the book:

[image: Images] Use include files to store different parts of the content. This approach is simplistic, but if your site is mostly static, it can work quite well.

[image: Images] Use a function or class API with a set of member functions to plug dynamic content into static page templates.

[image: Images] Use a templating system. The main advantage of this approach is that if somebody else designs your templates, he or she doesn’t have to know anything about PHP code at all. You should be able to use supplied templates with minimum modification. For PHP, a number of template engines are available, such as Smarty (http://www.smarty.net/), Twig (http://twig.sensiolabs.org/), and Plates (http://platesphp.com/).

Prototyping

A prototype is a useful tool for working out customer requirements. Usually, it is a simplified, partially working version of an application that can be used in discussions with clients and as the basis of the final system. Often, multiple iterations over a prototype produce the final application. The advantage of this approach is that it lets you work closely with clients or end users to produce a system that they will be pleased with and have some ownership of.

To be able to “knock together” a prototype quickly, you need some particular skills and tools. A component-based approach works well in such situations. If you have access to a set of preexisting components, both in-house and publicly available, you will be able to do this much more quickly. Another useful tool for rapid development of prototypes is templates, which often come from frameworks as discussed later in this chapter.

You will encounter two main problems using a prototyping approach, both easily overcome through communication and planning:

[image: Images] Developers often find it difficult to throw away the code that they have written for one reason or another. Prototypes are often written quickly, and you’ll want to throw code away—and ultimately you should. You can avoid this problem by doing a little planning, where you set the expectation with everyone that code will be thrown away at some point. Sometimes it is easier to scrap something and start again than to try to fix a problem.

[image: Images] What you thought would be a quick prototype could end up being an eternal prototype. For example, every time you think you’re finished, your client suggests some more improvements or additional functionality or updates to the site. This “feature creep” can stop you from ever signing off on a project. Avoid this by setting expectations and success criteria for your development milestones.

Testing

Reviewing and testing code is another basic point of software engineering that is often overlooked in web development. It’s easy enough to try running the system with two or three test cases and then say, “Yup, it works fine.” Don’t fall into that trap; ensure that you have extensively tested and reviewed several scenarios before making the project production ready.

Adopt a practice of code review within your team. Code review is the process in which another programmer or team of programmers looks at your code and suggests improvements. This type of analysis often suggests

[image: Images] Errors you have missed

[image: Images] Test cases you have not considered

[image: Images] Optimization

[image: Images] Improvements in security

[image: Images] Existing components you could use to improve a piece of code

[image: Images] Functionality defined in the requirements but missing in your work

Finally, find testers for your web applications who represent the end users of the product. The primary difference between web applications and desktop applications is that anyone and everyone will use web applications. You shouldn’t make assumptions that users will be familiar with computers. You can’t supply them with a thick manual or quick reference card. Instead, you have to make web applications self-documenting and self-evident. You must think about the ways in which users will want to use your application. Usability is absolutely paramount.

Writing Maintainable Code

If you’ve done any coding before reading this book, you already know how important it is to write code that can be maintained—that is, you or someone else should be able to look at your code later and not be utterly confused by it. The challenge is to make your code as immediately understandable as possible. A time will come when you’ll look back on a page that you wrote, and you won’t have a clue what you were thinking or why you wrote the code the way you did. Fortunately, there are ways to combat this problem of apparent memory loss.

Many organizations have coding standards for choosing file and variable names, guidelines for commenting code, guidelines for indenting code, and so on. If you are coding on your own or in a small team, you can easily underestimate the importance of coding standards. Don’t overlook such standards because your team and project might grow, and it might grow too quickly for you to reasonably document after the fact.

Defining Naming Conventions

The goals of defining naming conventions are twofold:

[image: Images] To make the code easy to read—If you define variables and function names sensibly, you should be able to virtually read code as you would an English sentence.

[image: Images] To make identifier names easy to remember—If your identifiers are consistently formatted, remembering what you called a particular variable or function will be easier.

As you learned in the early chapters of this book, variable names should describe the data they contain. If you are storing somebody’s surname, call it $surname. In general, strike a balance between length and readability. For example, storing the name in $n makes it easy to type, but the code is difficult to understand. Storing the name in $surname_of_the_current_user is more informative, but it’s a lot to type (and therefore easier to make a typing error) and doesn’t really add that much value.

Decide on capitalization. Variable names are case sensitive in PHP, as you learned earlier in this book. You need to decide whether your variable names will be all lowercase, all uppercase, or a mix—for example, capitalizing the first letter of words. One bad practice some programmers use is to have two variables with the same name but different capitalization just because they can, such as $name and $Name. I hope it is obvious to you by now why this practice is a terrible idea!

Function names have many of the same considerations as variable names, with a couple of extras. Function names should generally be verb oriented. Consider built-in PHP functions, such as addslashes() and mysqli_connect(), that describe what they are going to do to or with the parameters they are passed. This naming scheme greatly enhances code readability. Notice that these two functions have a different naming scheme for dealing with multiword function names. PHP’s functions are inconsistent in this regard, partly as a result of having been written by a large group of people, but mostly because many function names have been adopted unchanged from various different languages and APIs.

Unlike variable names, function names are not case sensitive in PHP. You should probably stick to a particular format anyway when creating your own functions, just to avoid confusion within the code (or your organization).

Additionally, you might want to consider using the module-naming scheme used in many PHP modules—that is, prefixing the name of functions with the module name. For example, all the improved MySQL functions begin with mysqli_, and all the IMAP functions begin with imap_. If, for example, you have a shopping cart module in your code, you could prefix the function in that module with cart_.

In the end, the conventions and standards you use when writing code don’t really matter, as long as you apply some consistent guidelines within your codebase and your team.

Documenting Code with Comments

Whenever you develop an HTML page, CSS snippet, JavaScript function, or PHP code, keep in mind that you or someone else will almost certainly need to make changes to it someday. Simple text web pages are usually easy to read and revise, but complex pages with graphics, tables, and other layout tricks can be quite difficult to decipher. The same is true for simple JavaScript or PHP versus longer and more complex code in either language.

Each of the technologies mentioned have a slightly different commenting syntax, and you’ve seen them all in use throughout this book. Here’s a refresher:

[image: Images] To include comments in a style sheet, begin with /* and end with */ (your commented code should be between these characters).

[image: Images] The HTML <!-- and --> comment syntax does not work in style sheets, JavaScript, or PHP, but works like a charm in plain old HTML.

[image: Images] To comment code in JavaScript or PHP, use // before single line comments, and surround multiline comments by /* and */.

To see what I’m talking about, visit just about any page in a web browser and view its source code. Using Internet Explorer, right-click any page and select View Source. Using Chrome or Firefox, right-click any page and select View Page Source. You might see a jumbled bunch of code that is tough to decipher as pure HTML. This might be because content management software systems have generated the markup dynamically, or it might be because its human maintainer has not paid attention to structure, ease of reading, code commenting, and other methods for making the code readable by humans. For the sake of maintaining your own pages, I encourage you to impose a little more order on your HTML markup, style sheet entries, and JavaScript code. And remember: Proper indentation is your (and your future development partner’s) friend.

As you have seen in several lessons throughout this book, you can enclose comments to yourself or your coauthors using the HTML beginning and ending comment syntax: <!-- and -->. These comments will not appear on the web page when viewed with a browser but can be read by anyone who examines the HTML code in a text editor or via the web browser’s View Source (or View Page Source) function. Here’s an example:

Click here to view code image

<!-- This image needs to be updated daily. -->

As this code reveals, the comment just before the tag provides a clue to how the image is used. Anyone who reads this code knows immediately that this is an image that must be updated every day. Web browsers completely ignore the text in the comment.

Generally, you should consider adding comments to the following items:

[image: Images] Files—Whether a complete script or include file, each file should have a comment stating what this file is, what it’s for, who wrote it, and when it was updated.

[image: Images] Functions—Specify what the function does, what input it expects, and what it returns.

[image: Images] Classes—Describe the purpose of the class. Class methods should have the same types and levels of comments as any other functions.

[image: Images] Any chunks of code within a script or function—This is especially the case if the code exists as a placeholder or set of pseudocode-style comments.

[image: Images] Complex code or hacks—This is especially the case for hacks or things you’ve have to do in a weird way. Write a comment explaining why you used that approach so that when you or a colleague next looks at the code, you won’t be scratching your head and thinking, “What on earth was that supposed to do?”

Finally, and perhaps most importantly: comment as you go. You might think you will come back and comment your code when you are finished with a project, but this is likely to be a luxury or rarity in your development life.

Indenting Code for Clarity

I have a confession. Throughout the book, I’ve been carefully indoctrinating you into an code development style without really letting on. You’ve no doubt noticed a consistent pattern with respect to the indentation of all the code in the book. For example, in HTML examples, each child tag is indented to the right two spaces from its parent tag. Furthermore, content within a tag that spans more than one line is indented within the tag.

The best way to learn the value of indentation is to see some HTML code without it. You know how the song goes: “You don’t know what you’ve got ’til it’s gone.” Anyway, here’s a very simple table coded without any indentation:

Click here to view code image

<table><tr><td>Cell One</td><td>Cell Two</td></tr>

<tr><td>Cell Three</td><td>Cell Four</td></tr></table>

Not only is there no indentation, but there also is no delineation between rows and columns within the table. Now compare this code with the following code, which describes the same table:

<table>

 <tr>

 <td>Cell One</td>

 <td>Cell Two</td>

 </tr>

 <tr>

 <td>Cell Three</td>

 <td>Cell Four</td>

 </tr>

</table>

This heavily indented code makes it plainly obvious how the rows and columns are divided up via <tr> and <td> tags.

In JavaScript and PHP, think about the way you lay out your curly braces. Here are two most common schemes followed:

if (condition) {

 // do something

}

and

if (condition)

{

 // do something else

}

Which one you use is up to you; just use it consistently. Consistent indentation and other stylistic matters might even be more important than comments when it comes to making your HTML code understandable and maintainable. The main point to take from this section is that it’s important to develop a coding style of your own (or your team’s own) and then ruthlessly stick to it.

Breaking Up Code

Giant monolithic code is awful. Some people create one huge script that does everything in one giant switch statement. Now, I love switch statements, and they have their place—especially when first figuring out logic that you want to employ—but it is far better to break up the code into functions and/or classes and put related items into include files wherever possible. You’ve seen the move from larger scripts to smaller scripts with include files as the book has progressed.

Reasons for breaking up your code into sensible chunks include the following:

[image: Images] It makes your code easier to read and understand, both for yourself later on and for anyone who might join your project later.

[image: Images] It makes your code more reusable and minimizes redundancy. For example, with a single file to set up your database connectivity in PHP, you could reuse it in every script in which you need to connect to your database. If you need to change the way this works, you have to change it in only one place.

[image: Images] It facilitates teamwork. If the code is broken into components, you can then assign responsibility for the individual components to team members. It also means that you can avoid the situation in which one programmer is waiting for another to finish working on GiantScript.php so that she can go ahead with her own work.

Implementing Version Control in Your Work

If you’ve ever used Google Docs, you have encountered a form of version control; when you’re using Google Docs, Google automatically saves revisions of your work as you are typing. This is different from simply automatically saving your work (although it does that too) because you can revert to any revision along the way. You might have encountered this concept when using popular blog-authoring software such as WordPress, or even when editing wikis—both of these types of applications also enable users to revise their work without overwriting, and thus deleting for all time, their previous work.

You might be wondering, “Well, what does that have to do with developing HTML, CSS, JavaScript, and PHP? You’re just talking about documents.” The answer is simple: everything. Just as you might want to revert to a previous edition of an article or a letter, you might want to revert to a previous edition of your HTML, CSS, JavaScript, or PHP code. This could be because you followed a good idea to the end, but your markup just proved untenable and you don’t want to start over entirely—you just want to back up to a certain point along your revision path. Or, let’s say you developed a particularly involved bit of JavaScript and discovered that something in the middle of it just doesn’t work with some browsers—you’ll want to build on and extend the work you did, not throw it away completely, and knowing what you did in the past will help you in the future.

Version control involves more than just revision history. When you start using version control systems to maintain your code, you will hear terms like these:

[image: Images] Commit/check in and check out—When you put an object into the code repository, you are committing that file; when you check out a file, you are grabbing it from the repository (where all the current and historical versions are stored) and working on it until you are ready to commit or check in the file again.

[image: Images] Branch—The files you have under version control can branch or fork at any point, thus creating two or more development paths. Suppose you want to try some new display layouts or form interactivity, but you don’t want an existing site to appear modified in any way. You might have started with one master set of files but then forked this set of files for the new site, continuing to develop them independently. If you continued developing the original set of files, that would be working with the trunk.

[image: Images] Change/diff—This is just the term (you can say “change” or “diff”) for a modification made under version control. You might also hear diff used as a verb, as in “I diffed the files,” to refer to the action of comparing two versions of an object (there is an underlying UNIX command called diff).

[image: Images] Fork—When you find an open-source repository that you want to use as the basis for your own work (or that you want to contribute to), you fork the repository to then create a copy of it that you can work on at your own pace. From the forked repository, you can push commits to your own version, fetch changes from the original repository, and issue pull requests to the owner of the original if you would like to contribute your changes to the original repository that you forked.

You will hear many more terms than just these few listed here, but if you can conceptualize the repository, the (local) working copy, and the process of checking in and checking out files, you are well on your way to implementing version control for your digital objects.

Using a Version Control System

Several version control systems are available for use: some free and open source, and some proprietary. Some popular systems are Subversion (http://subversion.apache.org), Mercurial (https://www.mercurial-scm.org/), and Git (http://www.git-scm.com). If you have a web hosting service that enables you to install any of these tools, you could create your own repository and use a GUI or command-line client to connect to it. However, for users who want to get started with a repository but don’t necessarily want, need, or understand all the extra installation and maintenance overhead that goes with it, there are plenty of hosted version control systems that can even be used free for personal and open-source projects. These hosted solutions aren’t just for individuals—all sorts of companies and organizations both big and small use hosted version control systems such as GitHub (http://www.github.com) and Bitbucket (http://www.bitbucket.org), just to name two. For a few dollars, you can turn your free, public account into a private account, and keep your code to yourself.

For anyone wanting to get started with version control, I highly recommend GitHub for relative ease of use and free, cross-platform tools. The GitHub Help site is a great place to start: See http://help.github.com/. An added benefit of the already-free GitHub account is the capability to use Gist (http://gist.github.com) to share code snippets (or whole pages) with others (those snippets themselves are Git repositories and, thus, are versioned and forkable in their own right). GitHub repositories, including Gist, are also excellent ways to get started with version control of your work.

Understanding the Value and Use of Code Frameworks

A code framework is nothing more than a set of libraries and templates that enable you to rapidly develop feature-rich dynamic sites and web applications without building every piece of the puzzle from scratch. These days, frameworks exist for every popular markup and programming language out there. The use of an application framework allows you to say, “I understand there are many ways to create a login sequence (or shopping cart, or discussion forum, and so on), and instead of starting from scratch, I will implement the [application framework] way of doing things.”

Some of these frameworks take the form of an all-encompassing content management system (CMS) such as WordPress (http://www.wordpress.org) or Drupal (http://www.drupal.org), but in the realm of custom web application development you can use frameworks for HTML and CSS, JavaScript, PHP, or any combination thereof. Many of these frameworks are open source and available for download or forking from GitHub repositories.

I recommend three popular HTML, CSS, and JavaScript frameworks:

[image: Images] Bootstrap—Developed internally by engineers at Twitter, this framework is open-source software for anyone who wants to use it to get started with modern design elements. Learn more at http://getbootstrap.com/, which includes a simple “Get Started” section that explains what is included and how to use it.

[image: Images] Foundation—Another open-source framework, Foundation emphasizes responsive design so that people with all kinds of devices, from desktops to phones, can enjoy and use your website. Learn more at http://foundation.zurb.com/, which includes an extensive “Getting Started” section that details the components of the display templates you can use.

[image: Images] HTML5 Boilerplate—One of the leanest frameworks out there, this might be the most useful for beginners because it provides the basics of what you need without overwhelming you with the possibilities. Learn more at http://html5boilerplate.com/ and see the documentation maintained within the GitHub repository.

Many HTML, CSS, and JavaScript front-end frameworks include jQuery, which you learned about in Chapter 10, “The Basics of Using jQuery.” I can’t emphasize enough how useful these frameworks can be for rapid prototyping, but beware of running the risk of falling into the “cookie cutter” trap, in which your site looks like all the others out there (at least, the ones using the same framework). With a little creativity, and ensuring your prototype doesn’t go directly into production, you can easily avoid that trap.

Using JavaScript-Specific Frameworks

There’s a big difference between JavaScript libraries—even big ones like jQuery—and JavaScript frameworks: Libraries offer ready-made pieces of code that provide functionality meant to enhance your custom architecture, and frameworks are larger, complicated, and impose an architectural pattern upon your application, such as the model-view-controller pattern. In a model-view-controller pattern, or MVC pattern, an application is conceived of as having three interconnected components:

[image: Images] The model—Acts as the central component, even though it’s listed first in the name. It holds application data, business rules, functions, and other logical elements.

[image: Images] The view—Requests information from the model to show to the user.

[image: Images] The controller—Sends information to the model for processing through user interactions.

You can think of it this way: In a web-based application, the user interacts with a controller that manipulates the underlying model, which updates the view, which the user then sees in the web browser.

In the traditional web-based application, you will likely have experienced it this way: Both the model and the controller components sit on the back end, away from the browser, and are invoked through form elements or other interactions by the user that say, “Hey, back-end script, go do something with logic and data based on this input I’m giving you, and send the result back to the screen.” The screen, in this case, would contain dynamically generated HTML (the view).

In a JavaScript-based MVC application, which most likely has been developed using one of the frameworks you’ll learn about in a moment, all three components can sit on the client side—that is to say, a user can interact with data that is stored and manipulated entirely within the front end, never touching a back-end script or database. Or most of the three components sit on the front end, and use AJAX requests to invoke a script on the back end, which then sends results back into the view.

If you are building a predominantly read-only website and using a little JavaScript or jQuery for some display features, a framework would be considerable overkill. But if you begin to think about ways to extend that website to include user interactivity, you might consider laying in a framework to handle that work for you.

Following are some major JavaScript frameworks in use today, all of which would be fine starting points for further exploration:

[image: Images] AngularJS (http://angular.io)—A very powerful and flexible framework that comes with a steep learning curve. However, it also comes with a very active user community ready to help new developers understand the framework.

[image: Images] React (https://facebook.github.io/react/)—Much like AngularJS, React is a powerful, flexible, and efficient component-based JavaScript framework—once you can wrap your brain around it. React has a very active user community and plenty of tutorials.

[image: Images] Backbone.js (http://backbonejs.org)—This framework has been around for quite some time (relatively speaking) and has served as the inspiration for many other frameworks. It enables a new developer to get started quickly, but the downside of that, for some, is that your applications will contain a lot of unused templating code.

[image: Images] Ember (http://emberjs.com)—Like Backbone.js, Ember enables a new developer to get started quickly. Although it appears “too magical” to some, Ember’s strong adherence to common programming idioms can be a benefit to new developers.

There are many more than these few JavaScript frameworks out there at the time of this writing, and I fully expect there will be more in years to come. To stay up to date or to get an overview of the core features of popular JavaScript frameworks and libraries, you can start by bookmarking and revisiting https://github.com/showcases/front-end-javascript-frameworks.

Using PHP-Specific Frameworks

Besides the benefit of reusing a stable codebase for common functionality, using a framework also helps a developer adhere to a consistent software architectural pattern. In the case of PHP frameworks, that pattern is typically the model-view-controller (MVC) pattern—yes, the same type of pattern discussed in the JavaScript section.

The MVC software architecture pattern is ready-made for web-based applications, and in fact many applications (or even just dynamic websites) adhere to some version of this pattern without even trying too hard. Each of the PHP frameworks mentioned explicitly in this section enables you to easily apply an MVC pattern to your software applications. Many other PHP frameworks do as well, and although you might not choose to adhere to the pattern, it is recommended that you do so to enable easier testing, development, deployment, and ongoing maintenance of your applications.

NOTE

For even more examples and explanations of the MVC pattern, see Jeff Atwood’s clear and concise blog post “Understanding Model-View-Controller” at http://www.codinghorror.com/blog/2008/05/understanding-model-view-controller.html.

Developers worldwide can choose from more than 20 PHP application frameworks, but the ones I call out here have a (relatively) long history and an active developer community with considerable uptake. In fact, those are three features unrelated to the code itself that you should think about when evaluating a framework for your own purposes: Has it been around a while and is it stable? Are people actively using it? Is the parent company or group of developers actively maintaining it?

Other considerations for selection include the following:

[image: Images] Determining whether the framework is best suited for the type of application you are creating; some frameworks are great for e-commerce, some for content publication, and some for both.

[image: Images] Determining whether the framework provides you with the opportunity to use a software architecture pattern, and if so, whether it is the one you want to use.

[image: Images] Determining whether the framework requires additional PHP modules or server libraries. If it does, but you do not control your server and therefore cannot modify the libraries and modules installed, that framework cannot work for you.

NOTE

You can find a well-maintained list of PHP application frameworks at http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#PHP.

The following PHP frameworks are recommended starting points for further exploration:

[image: Images] Zend Framework (http://framework.zend.com)—Zend, the company behind the Zend Framework, and its founders have been contributors to the PHP language itself almost since its initial creation. The core PHP engine is often referred to as the Zend engine. In other words, if evaluating the Zend Framework according to the criteria I previously mentioned, you would be hard-pressed to find a framework that is more stable, has been around longer, or has more people actively developing the framework and applications with it.

[image: Images] CakePHP (http://www.cakephp.org)—At its core, CakePHP is an MVC framework with components for common functionality such as database connections; authentication, authorization, and session management; and consuming and exposing web services—much like the Zend Framework and numerous other frameworks. One of CakePHP’s greatest selling points is its ease of use and integration, and it also wins points for having detailed and user-friendly documentation and tutorials.

[image: Images] Laravel (http://www.laravel.com)—This framework is a relative newcomer (although it has been around and in use since 2011) but has quickly become one of the most popular, due in part to it having been developed specifically to improve upon earlier popular and feature-rich frameworks such as CodeIgniter (http://www.codeigniter.org).

Regardless of the framework you choose to use—if you even do—remember to take a moment to understand the components of the code you’re using and don’t just follow the framework blindly.

Summary

This chapter discussed some foundational elements beyond pure code that will help you take the next step in your personal and technical development process. You learned the importance of making your code easy to maintain by adding comments and indentation, and generally following coding standards. Because you likely will soon need code-management tools either for yourself or for yourself and other developers in your group, this chapter introduced you to a few concepts of version control. Version control enables you to innovate without losing your solid, production-quality work and also provides more opportunities for other developers to work within your code base.

Finally, you learned a little bit about HTML, CSS, JavaScript, and PHP frameworks, of which there are many. These frameworks can help you speed up your web development project by giving you templates that already contain modern and validated markup and follow a strong software architecture pattern such as model-view-controller.

Q&A

Q. Won’t adding a lot of comments and spaces make my pages load more slowly when someone views them?

A. The size of a little extra text in your pages is negligible when compared to other, chunkier web page resources (such as large images and high-definition multimedia). You’d have to type hundreds of comment words to cause even one extra second of delay in loading a page. Also keep in mind that, with the broadband connections that many people use, text travels extremely fast. Multimedia components slow pages down, so whereas you need to optimize your images as best you can, you can use text comments freely. You can also learn more about the concept of “minifying” your HTML, CSS, and JavaScript at https://developers.google.com/speed/docs/insights/MinifyResources.

Q. Using version control seems like overkill for my tiny personal website. Do I have to use it?

A. Of course not—websites of any type, personal or otherwise, are not required to be under version control or other backup systems. However, most people have experienced some data loss or a website crash, so if you don’t use version control, I highly recommend at least performing some sort of automated backup of your files to an external system. By “external system,” I mean any external drive, whether a physical drive attached to your computer or a cloud-based backup service such as Dropbox (http://www.dropbox.com).

Workshop

The Workshop contains quiz questions and exercises to help you solidify your understanding of the material covered. Try to answer all questions before looking at the “Answers” section that follows.

Quiz

1. You want to say to future editors of a web page, “Don’t change this image of me. It’s my only chance at immortality.” But you don’t want users who view the page to see that message. How can you do this?

2. What are some of the benefits of using an application framework?

3. In the MVC pattern, what does the model do?

Answers

1. Put the following comment immediately before the tag:

Click here to view code image

<!-- Don't change this image of me.

 It's my only chance at immortality. -->

2. Working with a stable codebase, adhering to a software architecture pattern, and not reinventing the wheel.

3. The model stores and separates data from the controlling and viewing components.

Exercises

[image: Images] Open the HTML, CSS, and JavaScript files that make up your current website, and check them all for comments and code indentation. Are there areas in which the code needs to be explained to anyone who might look at it in the future? If so, add explanatory comments. Is it difficult for you to tell the hierarchy of your code—is it difficult to see headings and sections? If so, indent your code so that the structure matches the hierarchy and thus enables you to jump quickly to the section you need to edit.

[image: Images] Create an account at GitHub and then create a repository for your personal website or other code-based project. From this point forward, keep your repository in sync with your work on your personal computer by committing your changes to the GitHub repository.

[image: Images] Download and install at least one of the frameworks discussed in this chapter. (If you install more than one, delete the old ones first to avoid collisions.) Follow at least one of the tutorials provided by the developers of these frameworks so that you can gain some practical knowledge of using a framework as well as the MVC pattern.

APPENDIX A
Installation QuickStart Guide with XAMPP

What You’ll Learn in This Appendix:

[image: Images] How to install Apache, MySQL, and PHP from a third-party installation package on multiple platforms

[image: Images] How to test your installations

In case you want to get started quickly, this appendix steps you through installation from the all-in-one cross-platform installation package XAMPP. Then, the next three appendixes explain how to obtain and install MySQL, Apache, and PHP, respectively, from the Internet so that you can make sure your versions are up to date. In addition, those next three appendixes contain extended explanatory information about each step and other important information relevant to understanding how these technologies work together.

You should familiarize yourself with the extended information for each technology in those next three appendixes. However, if you just want to get started working on your local machine, that’s fine, too. The screenshots and instructions for XAMPP may refer to MariaDB and not MySQL, but for all intents and purposes here it is the same thing.

Using Third-Party Installation Packages

Third-party installation packages are those bundles of programs that are provided by a company or organization other than the original creator. In this appendix, you learn how to use the XAMPP installation package to install PHP, MySQL, and Apache simultaneously, on whichever operating system you are using (Linux/UNIX, Windows, or Mac).

Besides my own experience as an XAMPP user for several years, I selected it for use in this appendix because of the X in its name: the X indicates it is a cross-platform installation of AMPP—or Apache, MySQL, PHP, and Perl. (Note that Perl is not a topic of this book, so just consider it a bonus.)

Here are two other very good third-party installation packages for Apache, MySQL, and PHP that are specific to operating systems:

[image: Images] WAMP—Used for installation of Apache, MySQL, and PHP on Windows. See http://www.wampserver.com/ for more information.

[image: Images] MAMP—Used for installation of Apache, MySQL, and PHP on Mac. See http://www.mamp.info/en for more information.

One potential drawback to using third-party installation packages is that the version of the core technologies that are bundled together will always be a few revision versions behind. This happens because of the work that goes into creating and testing the bundle itself, to ensure that no conflicts exist between the latest versions of the technologies; it also has to go through a quality-assurance process. The upside of this process, however, is that when you install these technologies using a bundled installer, the upgrade process requires nothing more than running the new installer—it takes care of removing and updating all the files for you.

The next three sections describe the basic installation process of XAMPP. You only need to read the section that applies to your operating system. However, be sure to read the “Securing XAMPP” at the end of this chapter; it applies to all operating systems.

Installing XAMPP on Linux/UNIX

The following instructions were tested on Ubuntu Linux 17.04, but they should be the same for other Linux or commercial UNIX distributions. If you encounter unexpected error messages during installation, visit the XAMPP FAQ for Linux users at http://www.apachefriends.org/faq_linux.html.

Download the latest version of XAMPP from http://www.apachefriends.org/download.html. The file will be named similarly to xampp-linux-x64-VERSION-NUMBER-installer.run where VERSION-NUMBER is based on the bundled PHP release. At the time of this writing, the version is 7.1.6, so the filename is xampp-linux-x64-7.1.6-0-installer.run. Later versions will have a different filename, so be sure to adjust the commands accordingly.

Next, make the installer file executable so you can run it:

Click here to view code image

chmod +x xampp-linux-x64-7.1.6-0-installer.run

Now you can run the installer. It creates a subdirectory under the /opt system directory to install the software to, so you’ll need to use su or sudo to elevate your account privileges to run it:

Click here to view code image

sudo ./xampp-linux-x64-7.1.6-0-installer.run

You are presented with a few prompts as part of the XAMPP Setup Wizard. The wizard allows you to specify which components you want to install and set the installation directory. I recommend accepting the default values.

After the installation is complete, you’ll find everything under /opt/lamp (or wherever else you specified using the wizard). To start XAMPP (which launches Apache and MySQL), use the following command:

sudo /opt/lampp/lampp start

You’ll see a message such as this:

Click here to view code image

Starting XAMPP for Linux 7.1.6-0…

XAMPP: Starting Apache…ok.

XAMPP: Starting MySQL…ok.

XAMPP: Starting ProFTPD…ok.

To test whether the web server is running, open a web browser and enter http://localhost/dashboard/. The welcome page for the XAMPP service should display, as shown in Figure A.1.

[image: Images]

FIGURE A.1
The XAMPP welcome page.

That’s all there is to it; XAMPP has installed Apache, PHP, and MySQL on your machine, and you can read more information about XAMPP through the links at the top of the page when viewing http://localhost/dashboard/.

To stop XAMPP and its services, you can issue the following command at any time from the command line:

sudo /opt/lampp/lampp stop

Be sure to read “Securing XAMPP” at the end of this appendix for more information about locking down your XAMPP-powered machine (even if it is only for development).

Installing XAMPP on Windows

The following instructions were tested on Windows 10. Windows 2008, 2012, Vista, 7, 8, and 10 are supported, but earlier versions are not. Moreover, only 32-bit builds are available. Because of the nuances in the Windows operating system releases, and because of different security practices and programs that may be installed on Windows machines, if any of the installation steps do not go smoothly, visit the XAMPP FAQ for Windows users at http://www.apachefriends.org/faq_windows.html.

Download the latest version of XAMPP from http://www.apachefriends.org/download.html. The file will be named similarly to xampp-win32-VERSION-NUMBER-installer.exe, where VERSION-NUMBER is based on the bundled PHP release. At the time of this writing, the version is 7.1.6, so the filename is xampp-win32-7.1.6-0-VC14-installer.exe. Later versions will have a different filename.

Locate the downloaded file and double-click its icon to launch the wizard-based installer program. Depending on the security of your system, you may see a prompt asking you to confirm whether you want to allow the application to make changes to your system and a warning to avoid installing it in the C:\Program Files (x86) directory. After these prompts, you will see the welcome screen of the installer, as shown in Figure A.2.

[image: Images]

FIGURE A.2
The XAMPP installation main screen.

Click the Next button to continue the installation process. You should leave the default installation options as marked and click the Next button to move on past each screen. At this point, the installation process itself happens, as shown in Figure A.3.

[image: Images]

FIGURE A.3
The XAMPP installation continues as the files are extracted.

When the installation process finishes, click the Finish button to complete the installation. Before the XAMPP installation process completely closes, it asks whether you want to start the Control Panel for managing the installed services, as shown in Figure A.4.

[image: Images]

FIGURE A.4
The XAMPP installation is complete.

The XAMPP Control Panel, as shown in Figure A.5, provides you with one-click access to starting and stopping the Apache and MySQL server processes running on your machine. If you are running these server processes on your local machine for development purposes only, you might want to turn them on only when you need them; the Control Panel allows quick access to do just that.

[image: Images]

FIGURE A.5
The XAMPP Control Panel.

To test whether the web server is running, open a web browser and enter http://localhost/dashboard/. The welcome page for the XAMPP service should display, as shown in Figure A.6.

That’s all there is to it; XAMPP has installed Apache, PHP, and MySQL on your machine, and you can read more information about XAMPP through the links at the top of the page when viewing http://localhost/dashboard/.

Be sure to read “Securing XAMPP” at the end of this chapter for more information about locking down your XAMPP-powered machine (even if it is only for development).

[image: Images]

FIGURE A.6
The XAMPP welcome page.

Installing XAMPP on Mac OS X

The following instructions were tested on Mac OS X 10.11 (El Capitan) but they should be the same for other versions. Versions older than 10.6 (Snow Leopard) aren’t supported. If you encounter unexpected error messages during installation, visit the XAMPP FAQ for Mac users at http://www.apachefriends.org/faq_osx.html.

Download the latest version of XAMPP from http://www.apachefriends.org/download.html. The file will be named similarly to xampp-osx-VERSION-NUMBER-installer.dmg, where VERSION-NUMBER is based on the bundled PHP release. At the time of this writing, the version is 7.1.7, so the filename is xampp-osx-7.1.7-0-installer.dmg. Later versions will have a different filename.

Locate the downloaded DMG file and double-click its icon to mount the image. You will see a screen like that shown in Figure A.7.

[image: Images]

FIGURE A.7
The XAMPP installation wizard's icon is shown after the DMG image is mounted.

Double-click the installation wizard’s icon to launch the wizard-based installer program. Depending on the security of your system, you may see a prompt asking you to confirm whether you want to run the program because it was downloaded from the Internet. You may also need to enter your username and password to give the installer permission to access the Applications directory. After these prompts, you will see the welcome screen of the installer, as shown in Figure A.8.

Click the Next button to continue the installation process. You should leave the default installation options as marked and click the Next button to move on past each screen. At this point, the installation process itself happens, as shown in Figure A.9.

[image: Images]

FIGURE A.8
The XAMPP installation wizard’s main screen.

[image: Images]

FIGURE A.9
The XAMPP installation continues as the files are extracted.

Before the XAMPP installation process completely closes, it asks whether you want to launch XAMPP, as shown in Figure A.10.

[image: Images]

FIGURE A.10
The XAMPP installation is complete.

Once the software is installed, you can find a link to the XAMPP Control Panel in the /Applications/XAMPP folder as manager-osx, as shown in Figure A.11.

[image: Images]

FIGURE A.11
Find the link to the XAMPP Control Panel.

Double-click this link to start the XAMPP Control Panel, shown in Figure A.12, through which you can start and stop the Apache and MySQL server processes running on your machine. If you are running these server processes on your local machine for development purposes only, you might want to turn them on only when you need them; the Control Panel allows quick access to do just that.

[image: Images]

FIGURE A.12
The XAMPP Control Panel.

To test whether the web server is running, open a web browser and enter http://localhost/dashboard/. The welcome page for the XAMPP service should display, as shown in Figure A.13.

That’s all there is to it; XAMPP has installed Apache, PHP, and MySQL on your machine, and you can read more information about XAMPP through the links at the top of the page when viewing http://localhost/dashboard/.

Be sure to read “Securing XAMPP,” next, for more information about locking down your XAMPP-powered machine (even if it is only for development).

[image: Images]

FIGURE A.13
The XAMPP welcome page.

Securing XAMPP

The primary purpose of XAMPP is to provide a quick-and-easy installation method for Apache, MySQL, and PHP within a development environment. One of the tradeoffs for this quick-and-easy installation is that some security settings are left incomplete—or, at least, up to the user to determine whether they are important enough to set.

Using the installation right out of the box, the following are some potential security issues:

[image: Images] The MySQL administrator user has no password set. (You can use a blank password.)

[image: Images] Some services are accessible to the network unless you specifically disallow access through your personal firewall.

[image: Images] ProFTPD (an FTP server included in the bundle) uses the password “lampp” for the user “daemon.”

However, XAMPP provides a utility for each operating system that you can run to step through the process of securing your XAMPP system, even in a development environment, as follows:

[image: Images] On Linux/UNIX, run the utility by entering the following on the command line:

Click here to view code image

sudo /opt/lampp/lampp security

[image: Images] On Windows, open the Security Console by navigating to http://localhost/xampp/index.php in your web browser and selecting Security from the navigation menu on the left side.

[image: Images] On Mac, open a terminal window and enter the following on the command line:

Click here to view code image

sudo /Applications/XAMPP/xamppfiles/xampp security

Troubleshooting

If you experience installation problems, first check that you have followed the steps exactly as given in the appendix. Then, check the XAMPP website at http://www.apachefriends.org/ for FAQs specific to this installation package.

If these processes still don’t work and you want to try another all-in-one third-party installation package, feel free to try WAMP or MAMP (mentioned at the beginning of this chapter).

You could also try the installations the “long” way, using the extended information found in the next three appendixes. They provide troubleshooting tips and links to additional sites that can help you work through your installation issues.

APPENDIX B
Installing and Configuring MySQL

What You’ll Learn in This Appendix:

[image: Images] How to install MySQL

[image: Images] Basic security guidelines for running MySQL

[image: Images] How to work with the MySQL user privilege system

This is the first of three appendixes in which in which you learn how to set up your development environment. We tackle the installation of MySQL first because on some systems compiling PHP requires bits of the MySQL installation to be in place if you’re going to use MySQL with PHP.

Current and Future Versions of MySQL

The installation instructions in this appendix refer to MySQL Community Server 5.7.18, the current production version of the software. This version number can be read as “revision number 18 of minor release 7, of the major version 5 of the MySQL server software.” Revisions and minor releases do not follow a set release schedule. When enhancements or fixes are added to the code and thoroughly tested, a new version is released with a new revision or minor version number.

By the time you purchase this book, the version number might have changed to 5.7.19 or later. If so, read the documentation at https://dev.mysql.com/doc/refman/5.7/en/installing.html for any installation/configuration process changes. These processes make up the bulk of this appendix.

Although it is unlikely that any installation instructions will change between minor version updates, always check the changelog of software that you install and maintain. If a minor version change does occur while you are reading this book but the changelog notes no installation changes, just make a mental note and substitute the new version number wherever it appears in the installation instructions and accompanying figures.

How to Get MySQL

MySQL AB was the name of the company that developed, maintained, and distributed the MySQL database server; through a series of acquisitions (Sun Microsystems purchased MySQL AB, and Oracle Corporation purchased Sun Microsystems), database giant Oracle now owns MySQL. However, the MySQL Community Edition of the software remains open source, is supported by open-source developers, and is freely available on the MySQL website at http://www.mysql.com. Binary distributions for all platforms, installer packages for Mac OS X, and RPM and DEB packages for Linux platforms are all available.

NOTE

Linux and Mac OS X distributions usually contain some version or another of the open-source MySQL software, although these are usually several revisions or minor versions behind the current release.

The installation instructions in this appendix are based on the official MySQL 5.7.x Community Server distribution.

Installing MySQL on Linux/UNIX

Oracle provides up-to-date packages, such as RPMs for Red Hat/CentOS–based distributions and DEBs for Debian/Ubuntu-based distributions, all running on different processor types, such as x86 32- and 64-bit. Although you can download the server and client packages from http://dev.mysql.com/downloads/mysql/5.7.html and install them using rpm or dpkg, you must have any dependencies already in place. A better option is to register Oracle’s MySQL software repositories with your system’s online package manager. Then you can use tools like yum and apt-get to install MySQL, and the dependencies will be installed automatically.

To register the repository for Red Hat/CentOS–based Linux distributions, download the appropriate configuration RPM for your system from http://dev.mysql.com/downloads/repo/yum. The file will be named similarly to mysqlVERSION-community-release-PLATFORM.noarch.rpm where VERSION is the major and minor number of MySQL and PLATFORM denotes the operating system. The file for Red Hat Enterprise Linux 7, for example, is named mysql57-community-release-el7-11.noarch.rpm. Be sure to adjust the name accordingly.

Then, install the RPM with the following:

Click here to view code image

sudo rpm -i mysql57-community-release-el7-11.noarch.rpm

To register the repository for Debian/Ubuntu-based Linux distributions, download the appropriate configuration DEB from http://dev.mysql.com/downloads/repo/apt. The file will be named similarly to mysql-apt-config_VERSION_all.deb, where VERSION is the version number of the configuration package. At the time of this writing, the file is named mysql-apt-config_0.8.6-1_all.deb.

Then, install the DEB with the following:

Click here to view code image

sudo dpkg -i mysql-apt-config_0.8.6-1_all.deb

The configuration interface appears as shown in Figure B.1. The default settings are fine, so use the arrow keys to highlight the Ok option and press Enter.

[image: Images]

FIGURE B.1
The settings to register the Oracle MySQL repository.

After you install the DEB, you should update the package manager’s index files with the following command so it knows to download packages from the new repository. (Note that this isn’t necessary on Red Hat systems because yum will automatically refresh its indexes.)

sudo apt-get update

Now it’s time to install MySQL. On Red Hat, this is done with the following command:

Click here to view code image

sudo yum -y install mysql-community-server mysql-community-client

On Debian/Ubuntu, use the following:

Click here to view code image

sudo apt-get -y install mysql-community-server mysql-community-client

As the installation gets underway, Debian/Ubuntu-based users will be prompted for a password for MySQL’s root user, as shown in Figure B.2. Type the desired password, press the Tab key to highlight the <Ok> button at the bottom of the screen, and press Enter.

[image: Images]

FIGURE B.2
The prompt to set the root account’s password.

You’re then prompted to enter the password a second time to make sure you didn’t make a mistake. Again, type the password, highlight <Ok>, and press Enter.

Red Hat/CentOS–based users will need to perform a few extra setup steps. First, start the MySQL server using the following:

Click here to view code image

sudo systemctl start mysqld

When MySQL starts for the first time, a temporary password is generated for the root account. It records the password in its log file, and you can find out what the password is with the following command:

Click here to view code image

sudo grep 'temporary password' /var/log/mysqld.log

The output will look something like this:

Click here to view code image

2017-06-26T17:3046.293052Z 1 [Note] A temporary password is generated for root@

localhost:

>XEsegz9q+dn

In this case, >XEsegz9q+dn is the root password. To change it, run the mysqladmin command as follows:

Click here to view code image

mysqladmin password -u root -p

You will be prompted to enter the temporary password and then to enter and confirm the new password. Type carefully, because the characters won’t be displayed on the screen for security purposes.

Now that MySQL is installed and running, skip to the “Basic Security Guidelines” section later in this appendix. If you experienced any issues with your installation, check the “Troubleshooting Your Installation” section.

Installing MySQL on Mac OS X

The MySQL installation process for Mac OS X is fairly straightforward—there is an installation package for Mac OS X. Go to the MySQL downloads page at http://dev.mysql.com/downloads/mysql/5.7.html and select Mac OS X from the drop-down list. The file will be named similarly to mysql-VERSION-PLATFORM.dmg, where VERSION is the release number of MySQL and PLATFORM denotes the version of the Mac OS X operating system. The current file at the time of this writing is named mysql-5.7.18-macos10.12-x86_64.dmg. Be sure to adjust the name accordingly.

When you have downloaded the DMG file, double-click the archive. After you open the DMG archive, you will see a package, as shown in Figure B.3.

[image: Images]

FIGURE B.3
Showing the contents of the MySQL DMG archive.

Double-click the *.pkg file in that folder and follow these installation steps to complete the process:

1. The MySQL installer launches automatically, as shown in Figure B.4. Click Continue to move to the next step.

[image: Images]

FIGURE B.4
The MySQL Installer for the Mac has started.

2. The next few screens contain general information regarding installation and the MySQL license. Read these screens and click Continue to move through them.

3. The next screen verifies your installation location selection and requires you to click the Install button to continue. At this point, you might be prompted to enter the administrator username and password before the installation process continues.

4. A temporary root password will be generated for the MySQL root account and displayed to you during the installation process, as shown in Figure B.5. Write this password down so you can change it after the installation is complete.

5. MySQL is now installed and you can close the installer and eject the DMG archive.

To change the root account’s password, use the mysqladmin utility found in the /usr/local/mysql-VERSION-PLATFORM/bin directory, as follows:

Click here to view code image

/usr/local/mysql-5.7.18-macos10.12-x86_64/bin/mysqladmin password -u root -p

You will be prompted to enter the temporary password and then to enter and confirm the new password. Type carefully, because the characters won’t be displayed on the screen for security purposes.

[image: Images]

FIGURE B.5
A temporary password is generated for the root account.

Now that MySQL is installed and running, skip to the “Basic Security Guidelines” section later in this appendix. If you experienced any issues with your installation, check the “Troubleshooting Your Installation” section.

Installing MySQL on Windows

The MySQL installation process on Windows uses an all-in-one installer to walk you through the installation and configuration of a variety of MySQL products on your Windows Server 2003, Windows Vista, Windows 7, Windows 8, or Windows 10 machine. The following steps detail the installation of MySQL 5.7.18 on Windows 10; however, the installation sequence follows the same steps regardless of your Windows environment.

Go to the MySQL downloads page at http://dev.mysql.com/downloads/mysql/5.7.html and select the Windows option from the drop-down menu. Then, download the Windows MSI Installer file. Although the installer is 32-bit, it is capable of installing 32- or 64-bit software. When this file has been downloaded, double-click it to begin the installation process.

NOTE

A ZIP Archive version is also available for Windows users. If you want to install the ZIP Archive version, be sure to read the descriptions and instructions in the MySQL Manual at http://dev.mysql.com/doc/refman/5.7/en/windows-choosing-package.html.

Jumping right into the installation sequence, just follow these steps:

1. The first screen of the wizard displays the license agreement, as shown in Figure B.6. Accept the terms of the license and then click Next to continue.

[image: Images]

FIGURE B.6
The first step of the MySQL Setup Wizard for Windows.

2. After agreeing to the terms and conditions, you are asked to choose a setup type (see Figure B.7). The Custom option allows you to pick and choose the elements of MySQL to install, whereas the Full option installs all the components of MySQL, which range from documentation to benchmarking suites to integration libraries. Select Custom as the installation method and click Next to continue.

[image: Images]

FIGURE B.7
Select an installation type.

3. Navigate the list of products to select the MySQL server version suitable for your system as well as the desired version of MySQL Shell, as shown in Figure B.8. For each selection, click the right arrow between the windows to move the selection to the To Be Installed list. Then click Next to continue.

[image: Images]

FIGURE B.8
Select the MySQL Server and MySQL Shell.

4. The installer will check to make sure the necessary dependencies are installed on your system, as shown in Figure B.9. If any are missing, the installer will try to download and install them automatically. Click the Execute button to continue.

[image: Images]

FIGURE B.9
The installer will identify and install missing dependencies.

5. After the dependencies are in place, the installer will list the requested applications it will install on your system, as shown in Figure B.10. Click Execute to proceed.

[image: Images]

FIGURE B.10
The installer is ready to install the requested software.

6. When the server and shell installation completes, the wizard will guide you through the initial configuration and create a custom my.ini file tailored to your particular needs. The first of these screens is Type and Networking. Select Standalone MySQL Server, as shown in Figure B.11, and click Next.

[image: Images]

FIGURE B.11
The server will be configured as a standalone MySQL server.

7. Your selection on the next screen, shown in Figure B.12, determines the allotments for memory, disk, and processor usage. If you are using MySQL on your personal machine for testing purposes, select the Developer Machine option. If MySQL is running on a machine with other server software and can take up more system resources than if you were running it on your personal machine, select the Server Machine option. Select the Dedicated MySQL Server Machine option if MySQL is the primary service running on the machine and can take up the bulk of the system resources. Then click Next to continue.

[image: Images]

FIGURE B.12
The default config type and port settings.

8. You are then asked to provide a password for the root account. It is important to have a secure password for the root account because it is used to manage the server. You can also create any number of user accounts. Although adding additional accounts is optional (and they can easily be created later), it is convenient to create at least one other account for your own use at this time, as shown in Figure B.13.

[image: Images]

FIGURE B.13
A non-root user is created.

9. The default values for the remainder of the wizard’s prompts are appropriate, so you’re free to click Next, as necessary, until you reach the end of the process. As shown in Figure B.14, the wizard applies the configuration settings, and you may click Finish to close out the process.

[image: Images]

FIGURE B.14
The wizard applies the configuration settings.

Now that MySQL has been started, skip to the “Basic Security Guidelines” section later in this appendix. If you experienced any issues with your installation, check the “Troubleshooting Your Installation” section.

Troubleshooting Your Installation

If you have any problems during the installation of MySQL, the first place you should look is the “Problems and Common Errors” section in the MySQL Manual, which is located at http://dev.mysql.com/doc/refman/5.7/en/problems.html.

The following are just a few of the common installation problems:

[image: Images] On Linux/UNIX and Mac OS X, incorrect permissions do not allow you to start the MySQL daemon. If this is the case, be sure that you have changed owners and groups to match those indicated in the installation instructions.

[image: Images] If you see the message Access denied when connecting to MySQL, be sure that you are using the correct username and password.

[image: Images] If you see the message Can't connect to server, make sure that the MySQL daemon is running.

If you still have trouble after reading the “Problems and Common Errors” section in the MySQL Manual, sending an email to the MySQL mailing list (see http://lists.mysql.com/ for more information) will likely produce results. You can also purchase support contracts from MySQL AB.

Basic Security Guidelines

Regardless of whether you are running MySQL on Windows, Linux/UNIX, or Mac OS X, and no matter whether you administer your own server or use a system provided to you by your Internet service provider, you must understand basic security guidelines. If you are accessing MySQL through your Internet service provider, there are several aspects of server security that you, as a non-root user, should not be able to modify or circumvent. Unfortunately, many Internet service providers pay no mind to security guidelines, leaving their clients exposed—and for the most part, unaware of the risk.

Starting MySQL

Securing MySQL begins with the server startup procedure. If you are not the administrator of the server, you cannot change this, but you can certainly check it out and report vulnerabilities to your Internet service provider.

If your MySQL installation is on Linux/UNIX or Mac OS X, your primary concern should be the owner of the MySQL daemon—it should not be root. Running the daemon as a non-root user such as mysql or database limits the ability of malicious individuals to gain access to the server and overwrite files.

TIP

You can verify the owner of the process using the ps (process status) command on your Linux/UNIX or Mac OS X system.

If you see that MySQL is running as root on your system, immediately contact your Internet service provider and complain. If you are the server administrator, you should start the MySQL process as a non-root user or specify the preferred username in the startup command line:

Click here to view code image

mysqld --user=non_root_user_name

For example, if you want to run MySQL as user mysql, use this command:

mysqld --user=mysql

However, the recommended method for starting MySQL is through the mysqld_safe startup script in the bin directory of your MySQL installation:

Click here to view code image

bin/mysqld_safe --user=mysql &

Securing Your MySQL Connection

You can connect to the MySQL monitor (command-line interface) or other MySQL applications in several different ways, each of which has its own security risks. If your MySQL installation is on your own workstation, you have less to worry about than users who have to use a network connection to reach their server.

If MySQL is installed on your workstation, your biggest security concern is leaving your workstation unattended with your MySQL monitor or MySQL GUI administration tool up and running. In this type of situation, anyone can walk over and delete data, insert bogus data, or shut down the server. Use a screensaver or lock-screen mechanism with a password if you must leave your workstation unattended in a public area.

If MySQL is installed on a server outside your network, the security of the connection should be of some concern. As with any transmission of data over the Internet, data can be intercepted. If the transmission is unencrypted, the person who intercepted the data can piece it together and use the information. Suppose that the unencrypted transmission is your MySQL login information; a rogue individual now has access to your database, masquerading as you.

One way to prevent this from happening is to connect to MySQL through a secure connection such as Secure Shell (SSH), through which all transmissions to and from the remote machine are encrypted. Similarly, if you use a web-based administration interface, such as the highly recommended phpMyAdmin (see http://www.phpmyadmin.net/ for more information, and note that phpMyAdmin is installed as part of the XAMPP-based QuickStart installation in Appendix A, “Installation QuickStart Guide with XAMPP”) or another tool used by your Internet service provider, access that tool over a secure connection.

In the next section, you learn about the MySQL privilege system, which helps secure your database even further.

Introducing the MySQL Privilege System

MySQL maintains its own set of user accounts and privilege system separate from the operating system. Moreover, the MySQL privilege system is always on. The first time you try to connect, and for each subsequent action you perform, MySQL checks the following three things:

[image: Images] Where you are accessing the database from (your host)

[image: Images] Who you say you are (your username and password)

[image: Images] What you’re allowed to do (your command privileges)

All this information is stored in the database called mysql, which is automatically created when MySQL is installed. There are several privilege-related tables in the mysql database, such as the following:

[image: Images] columns_priv—Defines user privileges for specific fields within a table

[image: Images] db—Defines the permissions for all databases on the server

[image: Images] host—Defines the acceptable hosts that can connect to a specific database

[image: Images] procs_priv—Defines user privileges for stored routines

[image: Images] tables_priv—Defines user privileges for specific tables within a database

[image: Images] user—Defines the command privileges for a specific user

These tables will become more important to you later as you add a few users to MySQL. For now, just remember that these tables exist and must have relevant data in them for users to complete actions.

Understanding the Two-Step Authentication Process

As you’ve learned, MySQL checks three things during the authentication process. The actions associated with these three things are performed in two steps:

1. MySQL looks at the host you are connecting from and the username and password pair you are using. If your host is allowed to connect, your password is correct for your username, and the username matches one assigned to the host, then MySQL moves to the second step.

2. For whichever SQL command you are attempting to use, MySQL verifies that your user has permissions to perform that action for that database, table, and field.

If step 1 fails, you see an error about it and you cannot continue on to step 2. For example, suppose that you are connecting to MySQL with a username of joe and a password of abc123, and you want to access a database called myDB. You will receive an error message if any of those connection variables is incorrect for any of the following reasons:

[image: Images] Your password is incorrect.

[image: Images] Username joe doesn’t exist.

[image: Images] User joe can’t connect from localhost.

[image: Images] User joe can connect from localhost but cannot use the myDB database.

You may see an error like the following:

Click here to view code image

mysql -h localhost -u joe -pabc123 test

Error 1045: Access denied for user: 'joe@localhost' (Using password: YES)

If user joe with a password of abc123 is allowed to connect from localhost to the myDB database, MySQL checks the actions that joe can perform in step 2 of the process. For our purposes, suppose that joe is allowed to select data but is not allowed to insert data. The sequence of events and errors would look like the following:

Click here to view code image

mysql -h localhost -u joe -pabc123 test

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 12 to server version: 5.7.18-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT * FROM test_table;

+----+------------+

| id | test_field |

+----+------------+

| 1 | blah |

| 2 | blah blah |

+----+------------+

2 rows in set (0.0 sec)

mysql> INSERT INTO test_table VALUES ('', 'my text');

Error 1044: Access denied for user: 'joe@localhost' (Using password: YES)

Action-based permissions are common in applications with several levels of administration. For example, if you have created an application containing personal financial data, you might grant only SELECT privileges to entry-level staff members, but INSERT and DELETE privileges to executive-level staff with security clearances.

In most cases, when you are accessing MySQL through an Internet service provider, you have only one user and one database available to you. By default, that user has access to all tables in that database and is allowed to perform all commands. In this case, the responsibility is yours as the developer to create a secure application through your programming.

However, if you are the administrator of your own server, or if your Internet service provider allows you to add as many databases and users as you want and to modify the access privileges of your users, you can do so as described in the following subsections.

Adding Users to MySQL

Administering your server through a third-party application might afford you a simple method for adding users by using a wizard-like process or a graphical interface. However, adding users through the MySQL shell is not difficult, especially if you understand the security checkpoints used by MySQL, which you just learned.

To add a new user account, connect to MySQL as the root user and use the ADD USER command. The syntax is shown here:

Click here to view code image

ADD USER 'username'@'hostname' IDENTIFIED BY 'password';

If, for instance, you want to create a user called john with a password of 99hjc!5, and you want this user to be able to connect from any host, use this command:

Click here to view code image

ADD USER 'john'@'%' IDENTIFIED BY '99hjc!5';

Note the use of wildcard %. In this example, % replaces a list of all hosts in the known world—a very long list indeed.

Here’s another example of adding a user with the ADD USER command, this time to add a user called jane with a password of 45sdg11. This new user can connect only from a specific host:

Click here to view code image

ADD USER 'jane'@'janescomputer.company.com' IDENTIFIED BY '45sdg11';

If you know that janescomputer.company.com has an IP address of 63.124.45.2, you can substitute that address in the hostname portion of the command, as follows:

Click here to view code image

ADD USER 'jane'@63.124.45.2' IDENTIFIED BY '45sdg11';

One note about adding users: Always use a password and make sure that the password is a good one!

After you create a user, you use the GRANT command to assign that user privileges. The simple syntax of the GRANT command is shown here:

Click here to view code image

GRANT privileges ON databasename.tablename TO 'username'@'host';

For example, to grant all privileges to john on the myCompany database, use this command:

Click here to view code image

GRANT ALL ON myCompany.* TO 'john'@'%';

Note the use of the wildcard * this time, which represents all tables. The * can also be used to indicate all databases, like so:

Click here to view code image

GRANT ALL ON *.* TO 'john'@'%';

Here’s another example, giving jane permissions to issue SELECT, INSERT, UPDATE, and DELETE commands on all tables in the myCompany database:

Click here to view code image

GRANT SELECT, INSERT, UPDATE, DELETE ON myCompany.* TO 'jane'@'janescomputer.

company.com';

The following are some of the common privileges you can grant users. For a complete list, see the GRANT entry in the MySQL Manual at http://dev.mysql.com/doc/refman/5.7/en/grant.html.

[image: Images] ALL—Gives the user all common privileges.

[image: Images] ALTER—User can alter (modify) tables, columns, and indexes.

[image: Images] CREATE—User can create databases and tables.

[image: Images] DELETE—User can delete records from tables.

[image: Images] DROP—User can drop (delete) tables and databases.

[image: Images] INDEX—User can add or delete indexes.

[image: Images] INSERT—User can add records to tables.

[image: Images] PROCESS—User can view and stop system processes; only trusted users should be able to do this.

[image: Images] REFERENCES—User can create foreign keys.

[image: Images] RELOAD—User can issue FLUSH statements; only trusted users should be able to do this.

[image: Images] SELECT—User can select records from tables.

[image: Images] SHOW DATABASES—User can retrieve a list of databases managed by MySQL.

[image: Images] UPDATE—User can update (modify) records in tables

After you add users and grant them privileges, you can issue the FLUSH PRIVILEGES command in the MySQL monitor to reload the privilege tables to have them take effect.

Removing User Privileges

Removing privileges is as simple as adding them; instead of the GRANT command, you use REVOKE. The REVOKE command syntax is as follows:

Click here to view code image

REVOKE privileges ON databasename.tablename FROM 'username'@'host';

To revoke the ability for user john to INSERT items in the myCompany database, you issue this REVOKE statement:

Click here to view code image

REVOKE INSERT ON myCompany.* FROM 'john'@'%';

Again, for the server to be aware of your changes, issue the FLUSH PRIVILEGES command in the MySQL monitor.

APPENDIX C
Installing and Configuring Apache

What You’ll Learn in This Appendix:

[image: Images] How to install the Apache server

[image: Images] How to make configuration changes to Apache

[image: Images] Where Apache log and configuration files are stored

In this appendix, you install the Apache web server and familiarize yourself with its main components, including log and configuration files.

Before installing Apache, make sure you are not currently running a web server (for instance, a previous version of Apache or Microsoft Internet Information Services) on your machine. You might want to uninstall or otherwise disable existing servers. You can run several web servers, but they must run in different address and port combinations.

Current Versions of Apache

The Apache HTTP server website at http://httpd.apache.org shows announcements for releases of the Apache 2.2.x and Apache 2.4.x versions. The Apache Software Foundation maintains both versions, but the features in Apache 2.4.x include the latest and greatest; it is the version used here. However, if you choose to install (or already have installed either in a local or external development environment) Apache 2.2.x, all the PHP and MySQL code in this book will still work as described. In fact, you will find a number of hosting providers still using Apache 2.0.x—not even Apache 2.2.x, let alone the newest Apache 2.4.x branch. The installation instructions in this appendix refer to Apache HTTP server version 2.4.26, except where noted, which is the best available version of the software at the time of this writing.

The Apache Software Foundation uses minor and revision numbers for updates containing security enhancements or bug fixes. Neither minor nor revision releases follow a set release schedule. When enhancements or fixes are added to the code and thoroughly tested, the Apache Software Foundation releases a new version.

By the time you purchase this book, the version number might have changed to 2.4.27 or later. If so, read the list of changes, which is linked from the download area at http://httpd.apache.org/download.cgi, for any installation/configuration process changes. These processes make up the bulk of this appendix.

Although it is unlikely that any installation instructions will change between version updates, always check the changelog of software that you install and maintain. If a minor or revision change does occur while you are reading this book but the changelog notes no installation changes, just make a mental note and substitute the new version number wherever it appears in the installation instructions and accompanying figures.

Choosing the Appropriate Installation Method

You have several options when it comes to getting a basic Apache installation in place. Apache is open source, meaning that you can have access to the full source code of the software, which in turn enables you to build your own custom server. In addition, prebuilt Apache binary distributions are available for most modern UNIX platforms. Finally, Apache comes already bundled with a variety of Linux distributions, and you can even purchase commercial versions with support packages from vendors. The examples here teach you how to build Apache from source if you are using Linux/UNIX, and how to use the installer if you plan to run Apache on a Windows system.

Building from Source

Building from source gives you the greatest flexibility because it enables you to build a custom server, remove modules you do not need, and extend the server with third-party modules. Building Apache from source code enables you to easily upgrade to the latest versions and quickly apply security patches, whereas updated versions from vendors can take days or weeks to appear. The process of building Apache from source is not especially difficult for simple installations, but can grow in complexity when third-party modules and libraries are involved.

Installing a Binary

Linux/UNIX binary installations are available from vendors, or you can download them from the Apache Software Foundation website. Binary installations provide a convenient way to install Apache for users with limited system administration knowledge or with no special configuration needs. Third-party commercial vendors provide prepackaged Apache installations together with an application server, additional modules, support, and so on. The Apache Software Foundation provides an installer for Windows systems—a platform where a compiler is less commonly available than in Linux/UNIX systems.

Installing Apache on Linux/UNIX

This section explains how to install a fresh build of Apache 2.4.26 on Linux/UNIX. The general steps necessary to successfully install Apache from source are as follows:

1. Download and uncompress the software distribution file.

2. Run the configuration script.

3. Compile the code and install it.

The following sections describe these steps in detail.

Downloading the Apache Source Code

The official Apache download site is located at http://httpd.apache.org/download.cgi. You can find several versions of the Apache source code packaged with different compression methods. The distribution files are first packed with the tar utility and then compressed with either the gzip tool or the bzip2 utility. Download the *.tar.gz version if you have the gunzip utility installed on your system. This utility comes installed by default in open-source operating systems such as FreeBSD and Linux. Download the *.tar.bz2 file if gunzip is not present on your system (it isn’t included in the default installation of many commercial UNIX operating systems).

The file you want to download will be named something similar to httpd-VERSION.tar.gz, where VERSION is the most recent release of Apache. For example, Apache version 2.4.26 is distributed as a file named httpd-2.4.26.tar.gz.

Uncompressing the Source Code

If you downloaded the tarball compressed with gzip (it will have a tar.gz suffix), you can uncompress it using the gunzip utility (part of the gzip distribution).

NOTE

Tarball is a commonly used nickname for software packed using the tar utility.

You can uncompress and unpack the software by typing the following command:

Click here to view code image

gunzip < httpd-2.4.26.tar.gz | tar xvf -

Uncompressing the tarball creates a structure of directories, with the top-level directory named httpd-VERSION. Change your current directory to this top-level directory to prepare for configuring the software.

Preparing to Build Apache

You can specify which features the resulting binary will have by using the configure script in the top-level distribution directory. By default, Apache is compiled with a set of standard modules compiled statically and is installed in the /usr/local/apache2 directory. If you are happy with these settings, you can issue the following command to configure Apache:

./configure

However, in preparation for the PHP installation in Appendix D, “Installing and Configuring PHP,” you need to make sure that mod_so is compiled into Apache. This module, named for the UNIX shared object (*.so) format, enables the use of dynamic modules such as PHP with Apache. To configure Apache to install itself in a specific location (in this case, /usr/local/apache2/) and to enable the use of mod_so, issue the following command:

Click here to view code image

./configure --prefix=/usr/local/apache2 --enable-so

The purpose of the configure script is to figure out everything related to finding libraries, compile-time options, platform-specific differences, and so on, and to create a set of special files called makefiles. Makefiles contain instructions to perform different tasks, called targets, such as building Apache. The make utility reads these files and carries out the targets’ tasks. If everything goes well, after executing configure, you will see a set of messages related to the different checks just performed and will return to the prompt:

Click here to view code image

…

configure ok

creating test/Makefile

config.status: creating docs/conf/httpd.conf

…

config.status: executing default commands

$

If the configure script fails, warnings appear, alerting you to track down additional software that must be installed, such as compilers and libraries. After you install any missing software, you can try the configure command again, after deleting the config.log and config.status files from the top-level directory.

CAUTION

If the configuration process ends with a warning that you do not have APR installed, go to http://apr.apache.org/ and download both the APR and APR-util packages, and unpack them in the srclib subdirectory of your httpd-VERSION source directory. Once they are installed, rerun the configure command.

Similarly, if the configuration process ends with a warning that you do not have PCRE installed, go to http://www.pcre.org and download the files and install PCRE on your system according to the instructions found at the website. Once PCRE is installed, rerun the configure command.

Both of these requirements are changes in the requirements for the Apache 2.4.x installation process, different from the Apache 2.2.x process.

Building and Installing Apache

The make utility reads the information stored in the makefiles and builds the server and modules. Type make at the command line to build Apache. You will see several messages indicating the progress of the compilation, and you will end up back at the prompt.

make

After compilation is finished, you can install Apache by typing make install at the prompt. Because make will attempt to install Apache under a system directory (/usr/local), you may need to elevate your account privileges using sudo or su for this step.

sudo make install

The makefiles then install files and directories and return you to the prompt:

Click here to view code image

…

Installing header files

Installing build system files

Installing man pages and online manual

…

make[1]: Leaving directory '/usr/local/bin/httpd-2.4.26'

$

The Apache distribution files should now be in the /usr/local/apache2 directory, as specified by the --prefix switch in the configure command. To test that the httpd binary built correctly, type the following at the prompt:

Click here to view code image

/usr/local/apache2/bin/httpd -v

You should see the following output (your version and build date will be different):

Click here to view code image

Server version: Apache/2.4.26 (Unix)

Server built: June 26 2017 19:56:22

Unless you want to learn how to install Apache on Mac OS X or Windows, skip ahead to the “Apache Configuration File Structure” section to learn about the Apache configuration file.

Installing Apache on Mac OS X

Lucky you, Apache is already installed on Mac OS X. By default, the Apache server binary is located at /usr/sbin/httpd. Configuration files such as httpd.conf, the master configuration file for Apache, are in /etc/httpd. Because Apache is ready to go and fully prepared to use PHP, skip ahead to the “Apache Configuration File Structure” section to learn more about the Apache configuration file and how to use it.

NOTE

If you want to use an all-in-one package installer for Mac OS X, you can do so as shown with XAMPP in Appendix A, “Installation QuickStart Guide with XAMPP,” or you can install the MAMP package from http://www.mamp.info.

Installing Apache on Windows

Apache 2.4 runs on most Windows platforms and offers increased performance and stability over earlier versions for Windows. You can build Apache from source, but because not many Windows users have compilers, this section deals with installing precompiled binaries.

The Apache Software Foundation does not provide compiled binary releases for Windows. However, there are many reputable third-party sites that compile and maintain releases for the benefit of Windows users who want to run a version of the Apache server. One such site is Apache Lounge at http://www.apachelounge.com.

Different sites may package Apache differently. Apache Lounge provides ZIP archives you can download and extract, so the installation process is really nothing more than moving the contents of the archive to the appropriate directory.

When you’re ready to begin, go to http://apachelounge.com/download/, look for the download link appropriate for your system, and download the ZIP archive. The file you want to download will be named something similar to httpd-VERSION-NN-VC-.zip, where VERSION is the most recent release of Apache, NN indicates 32- or 64-bit binaries, and VC is the version of the Visual C compiler library the software was compiled against. For example, Apache version 2.4.26 for 64-bit systems using VC 15 is distributed as a file named httpd-2.4.26-Win64-VC15.zip.

Once the download is complete, right-click the archive and select Extract All… from the context menu, as shown in Figure C.1.

A dialog box will prompt you to specify the extraction destination. For now, leave the default path and click Extract. The archive will be extracted to a new folder in the current directory named similarly to the archive.

After Windows has extracted the contents of the ZIP archive, enter into the new directory. You’ll see an Apache24 folder and some other accompanying distribution files, as shown in Figure C.2.

[image: Images]

FIGURE C.1
Extracting the downloaded Apache archive.

[image: Images]

FIGURE C.2
The extracted contents.

Right-click the Apache24 folder and select Cut from the context menu. Then, type C:\ in File Explorer’s address bar and press Enter to navigate to the root directory of the C drive. Right-click in any of the white area in the window and select Paste from the context menu to move it to that directory (see Figure C.3).

[image: Images]

FIGURE C.3
The Apache24 folder after it has been moved to the root of the C drive.

In the next section, you learn about the Apache configuration file and eventually start up your new server.

Apache Configuration File Structure

Apache keeps all its configuration information in text files. The main file is httpd.conf. This file contains directives and containers that enable you to customize your Apache installation. Directives configure specific settings of Apache, such as authorization, performance, and network parameters. Containers specify the context to which those settings refer. For example, authorization configuration can refer to the server as a whole, to a directory, or to a single file.

Directives

The following rules apply for Apache directive syntax:

[image: Images] The directive arguments follow the directive name.

[image: Images] The directive arguments are separated by spaces.

[image: Images] The number and type of arguments vary from directive to directive; some have no arguments.

[image: Images] A directive occupies a single line, but you can continue it on a different line by ending the previous line with a backslash character (\).

The Apache server documentation offers a quick reference for directives at http://httpd.apache.org/docs/2.4/mod/quickreference.html. You’ll soon learn about some of the basic directives, but you should supplement your knowledge using the online documentation.

The Apache documentation for directives typically follows this model:

[image: Images] Description—This entry provides a brief description of the directive.

[image: Images] Syntax—This entry explains the format of the directive options. Compulsory parameters appear in italics; optional parameters appear in italics and brackets.

[image: Images] Default—If the directive has a default value, it appears here.

[image: Images] Context—This entry details the containers or sections in which the directive can appear. The next section explains containers. The possible values are server config, virtual host, directory, and .htaccess.

[image: Images] Override—Apache directives belong to different categories. The Override field specifies which directive categories can appear in .htaccess per-directory configuration files.

[image: Images] Status—This entry indicates whether the directive is built in Apache (core), belongs to one of the bundled modules (base or extension, depending on whether they are compiled by default), is part of a multiprocessing module (MPM), or is bundled with Apache but not ready for use in a production server (experimental).

[image: Images] Module—This entry indicates the module to which the directive belongs.

[image: Images] Compatibility—This entry contains information about which versions of Apache support the directive.

Further explanation of a directive follows these entries in the documentation, and a reference to related directives or documentation might appear at the end.

Containers

Directive containers, also called sections, limit the scope for which directives apply. If directives are not inside a container, they belong to the default server scope (server config) and apply to the server as a whole.

The following are the default Apache directive containers:

[image: Images] <VirtualHost>—A VirtualHost directive specifies a virtual server. Apache enables you to host different websites with a single Apache installation. Directives inside this container apply to a particular website. This directive accepts a domain name or IP address and an optional port as arguments.

[image: Images] <Directory>, <DirectoryMatch>—These containers allow directives to apply to a certain directory or group of directories in the file system. Directory containers take a directory or directory pattern argument. Enclosed directives apply to the specified directories and their subdirectories. The DirectoryMatch container allows regular expression patterns to be specified as an argument. For example, the following allows a match of all second-level subdirectories of the www directory that are made up of four numbers, such as a directory named after a year and month (0217 for February 2017):

Click here to view code image

<DirectoryMatch "^/www/.*/[0-9]">

[image: Images] <Location>, <LocationMatch>—These containers allow directives to apply to certain requested URLs or URL patterns. They are similar to their Directory counterparts. LocationMatch takes a regular expression as an argument. For example, the following matches directories containing either "/my/data" or "/your/data":

Click here to view code image

<LocationMatch "/(my|your)/data">

[image: Images] <Files>, <FilesMatch>—Similar to the Directory and Location containers, Files sections allow directives to apply to certain files or file patterns.

Containers surround directives, as shown in Listing C.1.

LISTING C.1 Container Directives Example

Click here to view code image

<Directory "/some/directory">

 SomeDirective1

 SomeDirective2

</Directory>

<Location "/downloads/*.html">

 SomeDirective3

</Location>

<Files "\.(gif|jpg)">

 SomeDirective4

</Files>

Directives SomeDirective1 and SomeDirective2 apply to the directory /some/directory and its subdirectories. SomeDirective3 applies to URLs referring to pages with the .html extension under the /downloads/ URL. SomeDirective4 applies to all files with a .gif or .jpg extension.

Conditional Evaluation

Apache provides support for conditional containers. Directives enclosed in these containers are processed only if certain conditions are met:

[image: Images] <IfDefine>—Directives in this container are processed if a specific command-line switch is passed to the Apache executable. The directive in Listing C.2 is processed only if the -DMyModule switch is passed to the Apache binary being executed. You can pass this directly or by modifying the apachectl script, as described in the “Apache-Related Commands” section later in this appendix.

IfDefine containers also allow you to negate the argument. That is, directives inside a <IfDefine !MyModule> section—notice the exclamation point before the MyModule name—are processed only if no -DMyModule parameter is passed as a command-line argument.

[image: Images] <IfModule>—Directives in an IfModule section are processed only if the module passed as an argument is present in the web server. For example, Apache ships with a default httpd.conf configuration file that provides support for different MPMs. Only the configuration belonging to the MPM compiled into Apache is processed, as you can see in Listing C.3. The purpose of the example is to illustrate that only one of the directive groups will be evaluated.

LISTING C.2 IfDefine Example

Click here to view code image

<IfDefine MyModule>

 LoadModule my_module modules/libmymodule.so

</IfDefine>

LISTING C.3 IfModule Example

Click here to view code image

<IfModule prefork.c>

 StartServers 5

 MinSpareServers 5

 MaxSpareServers 10

 MaxClients 20

 MaxRequestsPerChild 0

</IfModule>

<IfModule worker.c>

 StartServers 3

 MaxClients 8

 MinSpareThreads 5

 MaxSpareThreads 10

 ThreadsPerChild 25

 MaxRequestsPerChild 0

</IfModule>

The ServerRoot Directive

The ServerRoot directive takes a single argument: a directory path pointing to the directory where the server lives. All relative path references in other directives are relative to the value of ServerRoot. If you compiled Apache from source on Linux/UNIX, as described earlier in this appendix, the default value of ServerRoot is /usr/local/apache2. The ServerRoot for Mac OS X users defaults to /Library/WebServer. If you used the Apache Lounge binaries on Windows, the ServerRoot is C:\Apache24.

Per-Directory Configuration Files

Apache uses per-directory configuration files to allow directives to exist outside the main configuration file, httpd.conf. These special files can be placed anywhere in the file system. Apache processes the content of these files if a document is requested in a directory containing one of these files or any subdirectories under it. The contents of all the applicable per-directory configuration files are merged and processed. For example, if Apache receives a request for the /usr/local/apache2/htdocs/index.html file, it looks for per-directory configuration files in the /, /usr, /usr/local, /usr/local/apache2, and /usr/local/apache2/htdocs directories, in that order.

CAUTION

Enabling per-directory configuration files has a performance penalty. Apache must perform expensive disk operations looking for these files in every request, even if the files do not exist.

Per-directory configuration files are named .htaccess by default. This is for historical reasons; they originally protected access to directories containing HTML files.

The AccessFileName directive enables you to change the name of the per-directory configuration files from .htaccess to something else. It accepts a list of filenames that Apache will use when looking for per-directory configuration files.

To determine whether you can override a directive in the per-directory configuration file, check whether the Context: field of the directive syntax definition contains .htaccess. Apache directives belong to different groups, as specified in the Override field in the directive syntax description. Here are the possible values for the Override field:

[image: Images] AuthConfig—Directives controlling authorization

[image: Images] FileInfo—Directives controlling document types

[image: Images] Indexes—Directives controlling directory indexing

[image: Images] Limit—Directives controlling host access

[image: Images] Options—Directives controlling specific directory features

You can control which of these directive groups can appear in per-directory configuration files by using the AllowOverride directive. AllowOverride can also take an All or None argument. All means that directives belonging to all groups can appear in the configuration file. None disables per-directory files in a directory and any of its subdirectories. Listing C.4 shows how to disable per-directory configuration files for the server as a whole. This improves performance and is the default Apache configuration.

LISTING C.4 Disabling Per-Directory Configuration Files

 <Directory />

 AllowOverride none

</Directory>

Apache Log Files

Apache includes two log files by default. The access_log file is for tracking client requests. The error_log file is for recording important events, such as errors or server restarts. These files don’t exist until you start Apache the first time. The names of the files are access.log and error.log on Windows platforms.

The access_log File

When a client requests a file from the server, Apache records several parameters associated with the request, including the IP address of the client, the document requested, the HTTP status code, and the current time. Listing C.5 shows an example of access_log entries.

LISTING C.5 access_log Entries

Click here to view code image

127.0.0.1 - - [26/Jun/2017:20:12:18 -0700] "GET / HTTP/1.1" 200 44

127.0.0.1 - - [26/Jun/2017:20:12:18 -0700] "GET /favicon.ico HTTP/1.1" 404 209

The error_log File

The error_log file includes error messages, startup messages, and any other significant events in the life cycle of the server. This is the first place to look when you have a problem with Apache. Listing C.6 shows an example of error_log entries.

LISTING C.6 error_log Entries

Click here to view code image

Starting the Apache2.4 service [The Apache2.4 service is running.]

Apache/2.4.26 (Unix) configured -- resuming normal operations

[Mon Jun 26 20:29:34 2017] [notice] Server built: Jun 26 2017 19:56:22

[Mon Jun 26 20:29:34 2017] [notice] Parent: Created child process 3504

[Mon Jun 26 20:29:35 2017] [notice] Child 3504: Child process is running

[Mon Jun 26 20:29:35 2017] [notice] Child 3504: Acquired the start mutex.

Additional Files

The httpd.pid file contains the process ID of the running Apache server. You can use this number to send signals to Apache manually, as described in the next section. The scoreboard file, which is found with Linux/UNIX Apache installations, is used by the process-based MPMs to communicate with their children. In general, you do not need to worry about these files.

Apache-Related Commands

The Apache distribution includes several executables. This section covers only the server binary and related scripts.

Apache Server Binary

The name of the Apache executable is httpd in Linux/UNIX and Mac OS X, and httpd.exe in Windows. It accepts several command-line options, some of which are described in Table C.1. You can get a complete listing of options by typing /usr/local/apache2/bin/httpd -h on Linux/UNIX, by typing /usr/sbin/httpd -h on Mac OS X, or by typing httpd.exe -h from a command prompt on Windows.

TABLE C.1 Some httpd Options

	Option

	Meaning

	-D

	Allows you to pass a parameter that can be used for <IfDefine> section processing

	-l

	Lists compiled-in modules

	-v

	Shows the version number and server compilation time

	-f

	Allows you to pass the location of httpd.conf if it differs from the compile-time default

After Apache is running, you can use the kill command on Linux/UNIX and Mac OS X to send signals to the parent Apache process. Signals provide a mechanism to send commands to a process. To send a signal, execute the following command:

kill -SIGNAL pid

In this syntax, pid is the process ID, and SIGNAL is one of the following:

[image: Images] HUP—Stop the server.

[image: Images] USR1 or WINCH—Graceful restart. Which signal you use depends on the underlying operating system.

[image: Images] SIGHUP—Restart.

If you make some changes to the configuration files and you want them to take effect, you must signal Apache that the configuration has changed. You can do this by stopping and starting the server or by sending a restart signal. This tells Apache to reread its configuration.

A normal restart can result in a momentary pause in service. A graceful restart takes a different approach: Each thread or process serving a client continues processing the current request, but when it finishes, it is killed and replaced by a new thread or process with the new configuration. This allows seamless operation of the web server with no downtime.

On Windows, you can signal Apache using the httpd.exe executable. Some commands are listed here:

[image: Images] httpd.exe -k restart—Tells Apache to restart

[image: Images] httpd.exe -k graceful—Tells Apache to do a graceful restart

[image: Images] httpd.exe -k stop—Tells Apache to stop

You can access shortcuts to these commands in the Start menu entries that the Apache installer created. If you installed Apache as a service, you can start or stop Apache by using the Windows service interface: In Control Panel, select Administrative Tasks and then click the Services icon.

Apache Control Script

Although it is possible to control Apache on Linux/UNIX using the httpd binary, it is recommended that you use the apachectl tool. The apachectl support program wraps common functionality in an easy-to-use script. To use apachectl, type the following:

Click here to view code image

/usr/local/apache2/bin/apachectl command

In this syntax, command can be stop, start, restart, or graceful. You can also edit the contents of the apachectl script to add extra command-line options. Some OS distributions provide you with additional scripts to control Apache; check the documentation included with your distribution.

Starting Apache for the First Time

Before you start Apache, verify that the minimal set of information is present in the Apache configuration file, httpd.conf. The following sections describe the basic information needed to configure Apache and to start the server.

Check Your Configuration File

You can edit the Apache httpd.conf file with your favorite text editor. In Linux/UNIX and Mac OS X, this probably means vi or emacs. In Windows, you can use Notepad or WordPad. You must remember to save the configuration file in plain text, which is the only format Apache understands.

You might need to change just two parameters so that you can start Apache for the first time: the name of the server and the address and port to which it is listening. The name of the server is the one Apache will use when it needs to refer to itself (for example, when redirecting requests).

Apache can usually figure out its server name from the IP address of the machine, but not always. If the server does not have a valid DNS (domain name service) entry, you might need to specify one of the IP addresses of the machine. If the server is not connected to a network (you might want to test Apache on a standalone machine), you can use the value 127.0.0.1, which is the loopback address. The default port value is 80. You might need to change this value if a server is already running in the machine at port 80 or if you do not have administrator permissions—on Linux/UNIX and Mac OS X systems, only the root user can bind to privileged ports (those with port numbers lower than 1024).

You can change both the listening address and the port values with the Listen directive. The Listen directive takes either a port number or an IP address and a port, separated by a colon. If you specify only the port, Apache listens on that port at all available IP addresses in the machine. If you provide an additional IP address, Apache listens at only that address and port combination. For example, Listen 80 tells Apache to listen for requests at all IP addresses on port 80. Listen 10.0.0.1:443 tells Apache to listen at only 10.0.0.1 on port 443.

The ServerName directive enables you to define the name the server will report in any self-referencing URLs. The directive accepts a DNS name and an optional port, separated by a colon. Make sure that ServerName has a valid value. Otherwise, the server will not function properly; for example, it will issue incorrect redirects.

On Linux/UNIX and Mac OS X platforms, you can use the User and Group directives to specify which user and group IDs the server will run as. The nobody or www-data user is a good choice for most platforms. However, there are problems in the HP-UX platform with the nobody user ID, so you must create and use a different user ID, such as www.

Starting Apache

To start Apache on Linux/UNIX, execute the following command:

Click here to view code image

/usr/local/apache2/bin/apachectl start

If Apache listens on a port lower than 1024, you’ll need to elevate your account privileges using su or sudo, like so:

Click here to view code image

sudo /usr/local/apache2/bin/apachectl start

Mac OS X users can type the following at the prompt:

/usr/sbin/httpd

To manually start Apache on Windows, click the Start link in the Control Apache Server section, within the Apache HTTP Server 2.4 program group in the Start menu. If you installed Apache as a service, you must start the Apache service instead.

If everything goes well, you can access Apache using a browser. A default installation page displays, such as the one shown in Figure C.4. If you cannot start the web server or an error page appears instead, consult the “Troubleshooting” section that follows. Make sure that you are accessing Apache in one of the ports specified in the Listen directive—usually port 80 or 8080.

[image: Images]

FIGURE C.4
Apache has been installed.

Troubleshooting

The following subsections describe several common problems that you might encounter the first time you start Apache.

Visual C Libraries Not Installed (Windows)

On Windows, Apache cannot start successfully if the Visual C libraries it was compiled against are not installed. If they are not installed, you will see a message similar to the one shown in Figure C.5.

[image: Images]

FIGURE C.5
The redistributable Visual C libraries are not installed.

To solve this problem, you need to download and install the missing libraries. For VC14 and VC15, you can use download the library installer from Microsoft at http://go.microsoft.com/fwlink/?LinkId=746571 for 32-bit versions and http://go.microsoft.com/fwlink/?LinkId=746572 for 64-bit versions.

Already an Existing Web Server

If a server is already running on the machine and is listening to the same IP address and port combination, Apache cannot start successfully. You will get an entry in the error log file indicating that Apache cannot bind to the port:

Click here to view code image

[crit] (48)Address already in use: make_sock: could not bind…

[alert] no listening sockets available, shutting down

To solve this problem, you need to stop the running server or change the Apache configuration to listen on a different port.

No Permission to Bind to Port

You will get an error if you do not have administrator permissions and you try to bind to a privileged port (between 0 and 1024):

Click here to view code image

[crit] (13)Permission denied: make_sock: could not bind to address 10.0.0.2:80

[alert] no listening sockets available, shutting down

To solve this problem, you must either log on as the administrator before starting Apache, elevate your account privileges using su or sudo when invoking the command, or change the port number. 8080 is a commonly used non-privileged port.

Access Denied

You might not be able to start Apache if you do not have permission to read the configuration files or to write to the log files. You will get an error similar to the following:

Click here to view code image

(13)Permission denied: httpd: could not open error log file

This problem can arise if the user who built and installed Apache is different from the user trying to run it.

Wrong Group Settings

You can configure Apache to run under a certain username and group. Apache has default values for the running server username and group. Sometimes the default value is not valid and you will get an error containing setgid: unable to set group id.

To solve this problem on Linux/UNIX and Mac OS X, you must change the value of the Group directive in the configuration file to a valid value. Check the /etc/groups file for existing groups.

APPENDIX D
Installing and Configuring PHP

What You’ll Learn in This Appendix:

[image: Images] How to install PHP

[image: Images] How to test your PHP installation

[image: Images] How to find help when things go wrong

In this appendix, you acquire, install, and configure PHP and make some basic changes to your Apache installation.

Current and Future Versions of PHP

The installation instructions in this appendix refer to PHP version 7.1.6, which is the current version of the software.

The PHP Group uses revisions and minor releases for updates containing security enhancements or bug fixes. These releases do not follow a set release schedule; when enhancements or fixes are added to the code and are thoroughly tested, the PHP Group releases a new version with a new revision number.

It is possible that by the time you purchase this book the minor version number will have changed to 7.1.7, or beyond. If that is the case, you should read the list of changes at http://php.net/ChangeLog-7.php for any installation/configuration process changes. These processes make up the bulk of this appendix.

Although it is unlikely that any installation instructions will change between minor version updates, always check the changelog of software that you install and maintain. If a revision does occur while you are reading this book but the changelog notes no installation changes, just make a mental note and substitute the new version number wherever it appears in the installation instructions and accompanying figures.

Building PHP on Linux/UNIX with Apache

This section examines one way of installing PHP with Apache on Linux/UNIX. The process is more or less the same for any UNIX-like operating system. Although you might be able to find prebuilt versions of PHP for your system, compiling PHP from source gives you greater control over the features built in to your binary.

To download the PHP distribution files, go to the home of PHP, http://www.php.net/, and follow the link to the Downloads section. Grab the latest version of the source code—for this example, we are using 7.1.6. Your distribution will be named something similar to php-VERSION.tar.gz, where VERSION is the most recent release number. This archive will be a compressed tar file, so you need to unpack it:

Click here to view code image

gunzip < php-7.1.6.tar.gz | tar xvf -

Uncompressing the archive creates a structure of directories, with the top-level directory named php-VERSION. Change your current directory to this top-level directory to prepare for configuring the software.

In your distribution directory, you will find a script called configure. This script accepts additional information that is provided when the configure script is run from the command line. These command-line arguments control the features that PHP supports. This example includes the basic options you need to install PHP with Apache and MySQL support. We discuss some of the available configure options later in the appendix and throughout the book as they become relevant.

Click here to view code image

./configure --prefix=/usr/local/php \

--with-mysqli=/usr/local/mysql/bin/mysql_config \

--with-apxs2=/usr/local/apache2/bin/apxs

CAUTION

If you have installed MySQL or Apache in a different location than the paths indicated in the configuration shown here, ensure that you substitute the appropriate directory paths in the command.

If you have installed MySQL via the Oracle repositories as described in Appendix B, “Installing and Configuring MySQL,” you will also need to install the mysql-community-dev package to make mysql_config available.

After the configure script has run, you are returned to the prompt. Here’s an example:

Click here to view code image

…

creating libtool

appending configuration tag "CXX" to libtool

Generating files

configure: creating ./config.status

creating main/internal_functions.c

creating main/internal_functions_cli.c

+--+

| License: |

| This software is subject to the PHP License, available in this |

| distribution in the file LICENSE. By continuing this installation |

| process, you are bound by the terms of this license agreement. |

| If you do not agree with the terms of this license, you must abort |

| the installation process at this point. |

+--+

Thank you for using PHP.

config.status: creating php7.spec

config.status: creating main/build-defs.h

config.status: creating scripts/phpize

config.status: creating scripts/man1/phpize.1

config.status: creating scripts/php-config

config.status: creating scripts/man1/php-config.1

config.status: creating sapi/cli/php.1

config.status: creating sapi/cgi/php-cgi.1

config.status: creating ext/phar/phar.1

config.status: creating ext/phar/phar.phar.1

config.status: creating main/php_config.h

config.status: executing default commands

$

CAUTION

If the configure script fails and returns the error

Click here to view code image

xml2-config not found. Please check your libxml2 installation.

then you can install it using your system’s package manager. Users of Debian/Ubuntu-based systems should run the command sudo apt-get install libxml2-dev, and Red Hat/CentOS users should run sudo yum install libxml2-devel.

From the prompt, issue the make command:

make

The command will then compile the PHP source code and return you to your prompt:

Click here to view code image

…

Generating phar.php

Generating phar.phar

invertedregexiterator.inc

clicommand.inc

pharcommand.inc

directorytreeiterator.inc

directorygraphiterator.inc

phar.inc

Build complete.

Don't forget to run 'make test'.

$

Then issue the make install command. For this, depending on the target installation location you specified via the configure script, you may need to elevate your account’s privileges using sudo or su:

sudo make install

The command installs the newly compiled binaries to the appropriate directories.

You need to ensure that two very important files are copied to their correct locations. First, issue the following command to copy the development version of php.ini to its default location (you learn more about php.ini later in this appendix):

Click here to view code image

sudo cp php.ini-development /usr/local/php/lib/php.ini

Next, copy the PHP shared object file to its proper place in the Apache installation directory, if it has not already been placed there by the installation process; it usually will be, as you can see in the make install output:

Click here to view code image

sudo cp libs/libphp7.so /usr/local/apache2/modules/

You should now be able to configure and run Apache, but let’s cover some additional configuration options before heading on to the “Integrating PHP with Apache on Linux/UNIX” section.

Additional Linux/UNIX Configuration Options

In the previous section, when we ran the PHP configure script, we included some command-line arguments that determined some features that the PHP engine will include. The configure script itself gives you a list of available options, including the ones we used. From the PHP distribution directory, type the following:

./configure --help

This command produces a long list, so you might want to add it to a file and read it at your leisure:

Click here to view code image

./configure --help > configoptions.txt

If you discover additional functionality you want to add to PHP after you install it, simply run the configuration and build process again. Doing so creates a new version of libphp7.so and places it in the Apache directory structure. All you have to do is restart Apache to load the new file.

Integrating PHP with Apache on Linux/UNIX

To ensure that PHP and Apache get along with one another, you need to check for—and potentially add—a few items to the httpd.conf configuration file. First, look for a line like the following:

Click here to view code image

LoadModule php7_module modules/libphp7.so

If this line is not present or only appears with a pound sign (#) at the beginning of the line, you must add the line or remove the #. This line tells Apache to use the PHP shared object file created by the PHP build process (libphp7.so).

Next, look for this section:

Click here to view code image

#

AddType allows you to add to or override the MIME configuration

file mime.types for specific file types.

#

Add the following line to that section:

Click here to view code image

AddType application/x-httpd-php .php

This statement ensures that the PHP engine will parse files that end with the .php extension. Your selection of filenames might differ; you might want to parse all files ending with *.html as PHP, for example.

Save this file and then restart Apache. When you look in your error_log, you should see something like the following line:

Click here to view code image

[Fri Jun 30 18:03:47 2017] [notice] Apache/2.4.26 (Unix) PHP/7.1.6 configured

PHP is now part of the Apache web server. If you want to learn how to install PHP on a Mac OS X or Windows platform, keep reading. Otherwise, you can skip ahead to the “Testing Your Installation” section.

Installing PHP on Mac OS X

There are a few different options for installing PHP with Apache on Mac OS X, including building from source, as described in the previous section. Some users may find the simplest method is to install PHP from a precompiled binary package, such as one from MacPorts (at http://www.macports.org/), or as part of the all-in-one installation packages from XAMPP (as shown in Appendix A, “Installation QuickStart Guide with XAMPP”) or MAMP (at http://www.mamp.info). However, if you are comfortable with the command line, I recommend following the instructions in the previous section, “Building PHP on Linux/UNIX with Apache.”

Installing PHP on Windows

Installing PHP on Windows requires nothing more than downloading the distribution archive and extracting its contents to the appropriate directory. To download the PHP distribution files, go to http://windows.php.net/download and grab the latest version of the thread-safe ZIP package—for this example, we are using 7.1.6. Your distribution will be named something similar to php-VERSION.zip, where VERSION is the most recent release number.

Right-click the archive and select Extract All… from the context menu, as shown in Figure D.1.

[image: Images]

FIGURE D.1
Extracting the downloaded PHP archive.

A dialog box will prompt you to specify the extraction destination. Change the path to C:\php and click Extract, as shown in Figure D.2. The archive will be extracted to a new folder named php in the root directory of the C drive.

Next, go to the C:\php\ directory and copy the php.ini-development file to php.ini.

Now, to get a basic version of PHP working with Apache, you need to make a few minor modifications to the Apache configuration file.

[image: Images]

FIGURE D.2
Specifying the destination for the extracted files.

NOTE

On some Windows systems, you might need to set an explicit environment variable in order for PHP to run correctly; setting it will not cause any harm, so even if you are unsure if it is necessary, there’s no reason not to. For information on adding the PHP directory to the PATH environment variable, see the entry in the PHP FAQ at http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath.

Integrating PHP with Apache on Windows

To ensure that PHP and Apache get along with one another, you need to add a few items to the httpd.conf configuration file. First, find a section that looks like this:

Click here to view code image

Example:

LoadModule foo_module modules/mod_foo.so

#

LoadModule access_module modules/mod_access.so

…

#LoadModule vhost_alias_module modules/mod_vhost_alias.so

At the end of this section, add the following:

Click here to view code image

LoadModule php7_module C:/php/php7apache2_4.dll

At In addition, add the following to ensure Apache knows where php.ini resides:

PHPIniDir "C:/php/"

Next, look for this section:

Click here to view code image

#

AddType allows you to add to or override the MIME configuration

file mime.types for specific file types.

#

Add the following line:

Click here to view code image

AddType application/x-httpd-php .php

This statement ensures that the PHP engine will parse files that end with the .php extension. Your selection of filenames might differ; for example, you might want to parse all *.html files as PHP files.

Save the httpd.conf file and then restart Apache. The server should start without warning; PHP is now part of the Apache web server.

php.ini Basics

After you have compiled or installed PHP, you can still change its behavior with the php.ini file. On Linux/UNIX systems, the default location for this file is /usr/local/php/lib or the lib subdirectory of the PHP installation location you used at configuration time. On a Windows system, this file should be in the PHP directory or another directory as specified by the value of PHPIniDir in the Apache httpd.conf file.

Directives in the php.ini file come in two forms: values and flags. Value directives take the form of a directive name and a value separated by an equal sign. Possible values vary from directive to directive. Flag directives take the form of a directive name and a positive or negative term separated by an equal sign. Positive terms include 1, On, Yes, and True. Negative terms include 0, Off, No, and False. Whitespace is ignored.

NOTE

On Windows systems, it is important to explicitly provide the value for the extension_dir directive. If you installed PHP in C:\php, then the value of extension_dir should be "C:\php\ext".

You can change your php.ini settings at any time, but after you do, you need to restart the server for the changes to take effect. At some point, take time to read through the php.ini file on your own to see the types of things you can configure.

Testing Your Installation

The simplest way to test your PHP installation is to create a small test script that uses the phpinfo() function. This function produces a long list of configuration information. Open a text editor and type the following line:

<?php phpinfo(); ?>

Save this file as phpinfo.php and place it in the document root of your web server—the htdocs subdirectory of your Apache installation or the /Library/WebServer/Documents directory on Mac OS X. Access this file using your web browser, and you should see something like what is shown in Figure D.3.

[image: Images]

FIGURE D.3
The results of phpinfo().

The exact output of phpinfo() depends on your operating system, PHP version, and configuration options.

Getting Installation Help

Help is always at hand on the Internet, particularly for problems concerning open-source software. Wait a moment before you click the Send button, however. No matter how intractable your installation, configuration, or programming problem might seem, chances are you are not alone. Someone has probably already answered your question.

When you hit a brick wall, your first recourse should be to the official PHP site at http://www.php.net/ (particularly the annotated manual at http://www.php.net/manual/). If you still cannot find your answer, don’t forget that the PHP site is searchable. The advice you are seeking may be lurking in a press release or an FAQ file. You can also search the mailing list archives at http://www.php.net/search.php. These archives represent a huge information resource, with contributions from many of the great minds in the PHP community. Spend some time trying out a few keyword combinations.

If you are still convinced that your problem has not been addressed, you might well be doing the PHP community a service by exposing it. You can join the PHP mailing lists at http://www.php.net/mailing-lists.php. Although these lists often have high volume, you can learn a lot from them. If you are serious about PHP scripting, you should certainly subscribe to at least a digest list. After you’ve subscribed to the list that matches your concerns, consider posting your problem.

When you post a question, it is a good idea to include as much information as possible (without writing a novel). The following items are often pertinent:

[image: Images] Your operating system

[image: Images] The version of PHP you are running or installing

[image: Images] The configuration options you chose

[image: Images] Any output from the configure and make commands that preceded an installation failure

[image: Images] A reasonably complete example of the code that is causing problems

Why all these cautions about posting a question to a mailing list? First, developing research skills will stand you in good stead. A good researcher can generally solve a problem quickly and efficiently. Posting a naive question to a technical list often results in a wait rewarded only by a message or two referring you to the archives where you should have begun your search for answers in the first place.

Second, remember that a mailing list is not analogous to a technical support call center. No one is paid to answer your questions. Despite this, you have access to an impressive pool of talent and knowledge, including that of some of the creators of PHP itself. A good question and its answer will be archived to help other coders. Asking a question that has already been answered several times just adds more noise.

Having said this, don’t be afraid to post a problem to the list. PHP developers are a civilized and helpful breed, and by bringing a problem to the attention of the community, you might be helping others to solve the same problem.

Index

Symbols

+= (addition assignment) operator, 178, 184

&& (and) operator, 301, 313

= (assignment) operator, 308–309

[] (brackets), 318, 395

: (colon), 475

<!-- --> comment syntax, 572

// comment syntax, 119–120, 133–134, 572

/* */ comment syntax, 119–120, 133–134, 572

. (concatenation) operator, 309–310

.= (concatenation) operator, 419

+ (concatenation) operator, 183–184

" (double quotation marks), 240

= (equality) operator, 176, 448

== (equivalence) operator, 312

> (greater than) operator, 313, 448

>= (greater than or equal to) operator, 313, 448

=== (identical) operator, 312

!= (inequality) operator, 312, 448

< (less than) operator, 313, 448

<= (less than or equal to) operator, 313, 448

!== (nonequivalence) operator, 313

! (not) operator, 314

|| (or) operator, 313

% (percent sign), 449

. (period), 64

–– (post-decrement) operator, 178, 311–312

++ (post-increment) operator, 178, 311–312

(pound sign), 639

; (semicolon), 57, 113, 300

' (single quotation mark), 240

-= (subtraction assignment) operator, 178

<?…?> tag, 130

_ (underscore), 449

A

<a> element, 31

abs() function, 329

absolute positioning, 79–84, 105

access denied errors, 634

access_log file, 629

AccessFileName directive, 628

accessing

browser history, 149–151

cookies, 368–369

numeric arrays, 189

PHP variables

global variables, 334–336

session variables, 374, 375–379

action attribute (<form> element), 386

Adaptive Path, 280

ADD USER statement, 614

addEventListener function, 242

addFive() function, 341

addfive2.php script, 341

addfive.php script, 340

addition assignment (+=) operator, 178, 184

addNums() function, 331–332

addtopic.html, 503

AJAX (Asynchronous JavaScript and XML), 112, 279

debugging, 290

examples of, 281–282

JavaScript client, 280

jQuery functions for, 295–296

libraries

ajaxRequest() function, 284

ajaxResponse() function, 284–285

example of, 283–284

including in documents, 285

sample listing, 283–284

live search form, 290

HTML form, 290–291

JavaScript front end, 292–294

PHP back end, 291–292

quiz application, 285–286

HTML file, 285–286

JavaScript file, 287

testing, 289

XML file, 287

requests

creating, 282

sending, 282

responses

awaiting, 283

interpreting, 283

server-side scripts, 280–281

URLs, opening, 282

XML (Extensible Markup Language), 281

XMLHttpRequest object, 280

creating, 282–283

onreadystatechange event handler, 283

open() method, 282

send() method, 282

ajax.js script, 284

ajaxRequest() function, 284

ajaxResponse() function, 284–285

alert() method, 145

ALL privilege, 615

AllowOverride directive, 629

ALTER privilege, 615

American Standard Code for Information Interchange (ASCII), 248

anchors, 32, 149

and operator, 313

animate() method, 271

animating page elements, 270–275

animation effects, 271

animation example, 272–275

fading elements in/out, 270

sliding elements up/down, 271

Apache

Apache Lounge, 622

configuration

access_log file, 629

apachectl tool, 631

checking, 631–632

conditional evaluation, 626–627

containers, 625–626

directives, 624–625, 627

error_log file, 629

httpd binary, 630–631

httpd.conf file, 624

httpd.pid file, 629

per-directory configuration files, 628–629

scoreboard file, 629

directives, 624–625

AccessFileName, 628

AllowOverride, 629

Group, 634

overriding, 628–629

ServerRoot, 627

downloading, 619, 622

installation

binary installations, 618

building from source, 618

on Linux/UNIX, 584–586, 619–621

on Mac OS X, 589–593, 621–622

on Windows, 586–588, 622–624

integrating with PHP

on Linux/UNIX, 639

on Windows, 641–642

starting, 632–633

troubleshooting, 633–634

versions of, 617–618

Apache Lounge, 622

apachectl tool, 631

append() method, 268

appendChild() method, 156

Apple Safari, 12

applications. See web applications

arguments, default values for, 338–340

arithmetic functions, 478–480

arithmetic mean, 215

arithmetic operators, 309

array() function, 318–319

array operator, 318

array_keys() function, 323

array_merge() function, 323

array_pop() function, 323

array_push() function, 323

array_shift() function, 323

array_unshift() function, 323

array_values() function, 323

arrays

JavaScript

looping through, 233–235

numeric arrays, 188–191

string arrays, 189–192

two-dimensional, 195

PHP, 317

array-related functions, 322–324

associative arrays, 319

creating, 318–319

multidimensional arrays, 320–322

user-defined arrays, 410–411

arraysession.php script, 377–378

<article> element, 39, 48

articles, 48

ASCII (American Standard Code for Information Interchange), 248

<aside> element, 40, 49–50

.aspx file extension, 26

assign() method, 152

assigning values

to String objects, 183–184

to variables, 177–178

assignment operators, 178, 308–309

associative arrays, 319

Asynchronous JavaScript and XML. See AJAX (Asynchronous JavaScript and XML)

attr() method, 268–269

authentication, 612–613

autofocus attribute (<input> element), 391

avoiding SQL injection, 492–493

B

back() method, 149

background-color property (CSS), 62

Batdorf, Kevin, 535

Berners-Lee, Tim, 6

BETWEEN operator, 448

bighello() function, 331

BIGINT data type, 438

binary Apache installations, 618

BINARY keyword, 449

binding to ports, 634

blank space, 119

BLOB data type, 440

blur() method, 401

<body> element, 27–31

Boolean data type, 180, 195

border properties (CSS), 61–62

bottom property (CSS), 80

box model (CSS), 75–79

Boyce-Codd normal form, 436

 element, 33–36

brackets ([]), 318, 395

breadcrumb trails, 533

break statement, 359–361

breaking up code, 574

browsers

Apple Safari, 12

code blocks and browser output, 134–136

event properties, 243–244

Google Chrome, 12

history, accessing, 149–151

local storage, 381–382

Microsoft Edge, 13

Microsoft Internet Explorer, 13

Mozilla Firefox, 13

session storage, 381–382

testing web content with, 12–13

buildDateForm() function, 560

builds. See installation

built-in constants, 317

built-in objects, 115

Date, 216–218

extending, 210–212

Math, 212–216

buttons, radio, 397–398

C

calendar application, 541

calendar() function, 561

calendar_functions.js, 562–563

calendars

converting, 564

JavaScript calendar

building, 560–564

HTML form, 558–559

user input, accepting, 559–560

PHP calendar

calendar table, 544–548

events, adding, 548–558

HTML form, 542–544

user input, accepting, 541–542

calling

JavaScript functions, 200–201

PHP functions, 328–329, 365

capitalization, 571

carousels, 534–538

case sensitivity, 118–119

casting data types, 305–307

casttype.php script, 305–306

categories of items, displaying, 527–530

ceil() method, 212

changeTitle() function, 165

CHAR data type, 440

CHAR_LENGTH() function, 462

CHARACTER_LENGTH() function, 462

charAt() function, 187

check boxes, 394–396

checkAnswer() function, 289

checkdate() function, 541–542

checked attribute (<input> element), 397

childNodes property, 156

children (DOM), 154

Chrome, 12

Classic FTP, 14

clauses (MySQL). See also keywords

LIMIT, 446–447

ORDER BY, 445–446

WHERE

basic syntax, 447–448

operators in, 448–449

clear property (CSS), 86–87

.click() event handler, 275

click events, 245–248, 251–257

click() method, 398

click.js script, 246

clients (FTP)

selecting, 14–15

transferring files with, 15–18

client-side scripting, 140

cloneNode() method, 157

closing elements, 29–31

code blocks, browser output and, 134–136

code frameworks, 576–577

JavaScript-specific frameworks, 577–579

PHP-specific frameworks, 579–580

code listings. See scripts

colon (:), 475

color property (CSS), 62, 63

cols attribute (<textarea> element), 400

column value updates, 458

columns

fixed/fluid hybrid layout

defining, 94–96

height of, 97–103

selecting, 445

columns_priv table, 612

combined assignment operators, 310–311

command chaining, 271

commands. See also functions and methods; statements

configure, 620, 638

kill, 630

make, 637

make install, 638

mysqladmin, 600

mysqld, 610

sudo

MySQL installation, 598–600

XAMPP installation, 584–586

comments

JavaScript, 119–120, 572–573

PHP

syntax, 133–134

when to use, 137

comparison operators, 312–313

compiled languages, 108

CONCAT() function, 462–463

CONCAT_WS() function, 462–463

concatenating strings, 462–464

concatenation (.) operator, 309–310

concatenation functions, 462–464

concatenation operators

.= operator, 419

+ operator, 143, 183–184

conditional operators, 219–220

conditionals

Apache, 626–627

JavaScript, 115

conditional operators, 219–220

shorthand conditional expressions, 222–223

MySQL conditional updates, 457

configuration

Apache

access_log file, 629

apachectl tool, 631

checking, 631–632

conditional evaluation, 626–627

containers, 625–626

directives, 624–625, 627, 628–629

error_log file, 629

httpd binary, 630–631

httpd.conf file, 624

httpd.pid file, 629

scoreboard file, 629

troubleshooting, 633–634

cookies, 369–372

PHP, 638–639, 642

session variables, 374–379

configure command, 620, 638

configure script, 636–638

connections (MySQL), 611

constants, 315–317

constructors, 348

containers, 625–626

<Directory>625–626

<DirectoryMatch>625–626

<Files>626

<FilesMatch>626

<IfDefine>626

<IfModule>627

<Location>626

<LocationMatch>626

<VirtualHost>625

continue statement, 361–362

continuing loops, 232

$_COOKIE, 301

cookie property (document object), 146

cookies, 367

accessing, 368–369

deleting, 373

disabling, 382

server-side sessions

destroying, 380

local storage, 381–382

overview of, 373–374

registered users, 380–381

session storage, 381–382

session variables, 374–379

user preferences, 381

setting, 369–372

structure of, 368

count() function, 322

count.php script, 496–497

CREATE privilege, 615

CREATE TABLE statement, 441

createElement() method, 156

createTextNode() method, 156

CSS (Cascading Style Sheets), 25, 51–53

basic style sheet example, 54–59

box model, 75–79

content selection with jQuery, 267

formatting properties, 61–63

how it works, 51–53

inline styles, 66–68

internal style sheets, 66–68

layout properties, 59–60

multiple style sheets, 72

positioning

current line, 86

elastic layouts, 105

fixed layouts, 87–89

fixed/fluid hybrid layout, 92–103

fluid layouts, 89–92

relative versus absolute, 79–84, 105

stack order, controlling, 84–86, 105

text flow, 86–87

responsive web design, 103–104

scripts

layout.css, 93, 100–103

styles.css, 55–56

style classes, 64–65

style IDs, 66

CURDATE() function, 480

current line, 86

CURRENT_DATE() function, 480

CURRENT_TIME() function, 480–481

CURRENT_TIMESTAMP() function, 481

CURTIME() function, 480–481

custom objects, 115

Cyberduck, 14

D

DailyRazor, 11

data types

JavaScript, 180–182

Boolean, 180, 195

numeric arrays, 188–189

string arrays, 189–191

strings, 182–188

MySQL

date and time, 439–440

definition of, 437–438

numeric, 438–439

string, 440–441

PHP, 302–304

casting, 305–307

changing with settype(), 304–305

databases

design, 425

design process, 434–435

importance of, 425–426

normalization, 431–433

table relationships, 426–430

discussion forum application, 501–502

normalization, 431

definition of, 425

first normal form, 432

flat tables, 431–432

other normal forms, 436

second normal form, 432–433

third normal form, 433

online storefront application, 523–525

store_categories table, 525

store_item_color table, 527

store_item_size table, 526–527

store_items table, 526

schemas, 425

tables

adding records to, 442–444

creating, 441

deleting records in, 459–461

flat tables, 431–432

joins, 452–454

primary keys, 426

relationships, 426–430

replacing records in, 458–459

retrieving records from, 444–455

updating, 455–458

date and time data types, 439–440

date and time functions

JavaScript, 217–219

MySQL

date arithmetic functions, 478–480

date/time formatting functions, 476–478

day-related functions, 470–472

hours/minutes/seconds functions, 475

month/year functions, 472–473

special functions and conversion features, 480–484

week functions, 473–475

DATE data type, 439

Date object, 216–218

DATE_ADD() function, 478–480

DATE_FORMAT() function, 476–478, 509

DATE_SUB() function, 479

dateselector.php script, 543

DATETIME data type, 439

DAYNAME() function, 471–472

DAYOFMONTH() function, 470–471

DAYOFWEEK() function, 470

DAYOFYEAR() function, 471

day-related functions, 470–472

db table, 612

db_include.php script, 502–503

dblclick event, 245

.dblclick() event handler, 276

ddnums.php script, 332

debugging

AJAX (Asynchronous JavaScript and XML), 290

JavaScript, 122

DECIMAL data type, 439

decrement (--) operator, 178

default values for arguments, 338–340

DELETE privilege, 615

DELETE statement, 459–461

deleting

cookies, 373

MySQL privileges, 615

records, 459–461

delivery of web content, 7–9

design. See also positioning

databases, 425

design process, 434–435

discussion forum databases, 501–502

importance of, 425–426

normalization, 431–433

online storefront application, 523–525

table relationships, 426–430

responsive web design, 103–104

destroying server-side sessions, 380

directives

Apache, 624–625

AccessFileName, 628

AllowOverride, 629

Group, 634

ServerRoot, 627, 628–629

/etc/httpd, 621

overriding, 628–629

PHP, 642

<Directory> container, 625–626

<DirectoryMatch> container, 625–626

disabling

cookies, 382

per-directory configuration files, 628–629

discussion forums

database table design, 501–502

forum display, modifying, 518–520

include files, 502–503

input forms and scripts, 503–507

multiple forums, 520

posts

adding, 514–518

displaying, 510–514

topic list, 507–510

display calendar. See calendar application

display() function, 406–408

display property (CSS), 59–60

displayKey() function, 248–249

displayResults() function, 294

<div> element, 251–257

do_addtopic.php script, 504–505

do…while loops, 357–358

<!DOCTYPE> element, 27

document object, 146–148

Document Object Model (DOM), 115

documentation

comments, 572–573

MySQL, 597

PHP, 643–644

DOM (Document Object Model), 115, 144–145

anchor object, 149

content selection with jQuery, 267

document object, 146–148

history object, 149–151

link object, 148–149

location object, 151–152

structure of, 152–157

children, 154

nodes, 154, 155–157

parents, 154

siblings, 154

window objects, 145–146

domain field (cookies), 368

DOUBLE data type, 439

double quotation marks ("), 240

downloading

Apache, 619, 622

jQuery, 261

MySQL, 598

PHP, 636

XAMPP, 584, 586, 589

DROP privilege, 615

dynamic websites, 139

DOM (Document Object Model), 144–145

anchor object, 149

document object, 146–148

history object, 149–151

layers, 157–158

link object, 148–149

location object, 151–152

structure of, 152–157

window objects, 145–146

hiding/showing objects in, 162–164

images, changing based on user interaction, 168–170

positioning

controlling with JavaScript, 158–162

layers, 157–158

random content, displaying, 140–144

text

adding to pages, 166–168

modifying, 164–166

E

echo statement, 131, 322, 329

Edge, 13

editors, text, 137

effects, creating with JavaScript, 112

elastic layouts, 105

elements (HTML). See also input controls

<a>31

<article>39, 48

<aside>40, 49–50

<body>27–31

33–36

definition of, 52

<div>251–257

<!DOCTYPE>27

<fieldset>393

<footer>39, 50–51

<form>386–390

<h1>-<h6>36–38

<head>27–31

<header>39–43, 45–46

<html>27–31

<input>390–391, 394. See also input controls

<label>392–393

<legend>393

<nav>39, 48–49

opening/closing elements, 29–31

<p>31, 33–36

<script>109–110

<section>39, 46–47

<select>398–400

67–68

<tbody>519

<title>27–31

elements of arrays, 406

accessing, 189

definition of, 188

else keyword, 222, 351–352

elseif clause, 352–353

email

addresses, linking to, 33

sending on form submission, 416–420

embedcondition.php script, 134–135

empty() function, 561

ENUM data type, 441

$_ENV, 301

equality (=) operator, 176, 448

equivalence (==) operator, 312

error messages (MySQL), 491

error_log file, 629

escaping loops, 231–232

/etc/httpd directory, 621

event handlers

JavaScript, 116–117, 239

creating, 240–241

defining, 241–242

onBlur, 401

onChange, 401

onClick, 398

onclick, 245, 251–254

onFocus, 401

onkeydown, 296

onkeypress, 242

onload, 245

onmouseover, 116–117

onreadystatechange, 283

onSelect, 401

supporting multiple, 242

jQuery, 275–276

Event object, 242–244

event.php script, 554–556

events (JavaScript), 240

keyboard events, 248–250

load/unload events, 250–251

mouse events, 244–247

showing/hiding content with, 251–257

executables, httpd binary, 630–631

existence of functions, testing for, 341–343

exists.php script, 342

expiration field (cookies), 368

expressions, 307–308

extending JavaScript objects, 210–212

Extensible Markup Language (XML), 281

external JavaScript files, 110–111

F

fadeIn() method, 270

fadeout() method, 270

fading elements in/out, 270

feedback.html form

creating, 417–418

sending mail on form submission, 418–420

Fetch, 14

fields, hidden, 414–415

<fieldset> element, 393

fifth normal form, 436

file extensions

.aspx, 26

.htm, 26

.html, 26

.js, 110–111

.jsp, 26

.php, 26

File Transfer Protocol. See FTP (File Transfer Protocol) clients

$_FILES, 301

files. See also scripts

access_log, 629

configure, 636–638

error_log, 629

external JavaScript files, 110–111

.htaccess, 628

HTML files

creating, 13

index pages, 21

management of, 19–21

transferring, 14–18

httpd binary, 630–631

httpd.conf, 624

httpd.pid, 629

include files, 502–503

index files, 21

makefiles, 620–621

php.ini, 638, 642

scoreboard, 629

<Files> container, 626

<FilesMatch> container, 626

FileZilla, 14

Firefox, 13

FireFTP, 14

first normal form, 432

firstChild property, 155

firstpage.html, 27

fixed layouts, 87–89

fixed/fluid hybrid layout, 92–103

basic layout structure, 92–94

column definitions, 94–96

column height, 97–103

minimum width of, 96–97

flag directives, 642

flat tables, 431–432

FLOAT data type, 438

float property (CSS), 86

floor() method, 212

flow control (PHP), 134–136, 350. See also loops

if statement, 350–353

switch statement, 353–355

ternary operator (?:), 355–356

flow of text, 86–87

fluid layouts, 89–92

focus() method, 401

.focusout() event handler, 276

font properties (CSS), 62–63

fontWrap() function, 339–340

fontwrap.php script, 339

<footer> element, 39, 50–51

footers, 50–51

for loops, 227–229, 358–359

for statement, 116

foreach() function, 322

form object, 405–406

<form> element, 386–390

formatting date and time, 476–478

formatting properties (CSS), 61–63

forms, 385

accessing elements of

with JavaScript, 405–406

with PHP, 408–410

check boxes, 394–396

combining HTML and PHP code in, 411–413

creating, 386–390

for discussion forums, 503–507

displaying data from, 406–408

feedback.html form

creating, 417–418

mail, sending on form submission, 418–420

form element groups, 393

hidden data, 394

hidden fields, 414–415

how they work, 385–386

labels, 392–393

live search form, 290

HTML form, 290–291

JavaScript front end, 292–294

PHP back end, 291–292

mail, sending on form submission, 416–420

PHP calendar, 542–544

radio buttons, 397–398

selection lists, 398–400

simpleform.html, 408–409

submitting, 404–405

text areas, 400–402

text fields, 400–402

text input, 390–391

user-defined arrays, 410–411

validating, 112, 402–404

variable names, 391–392

forums. See discussion forums

forward() method, 149

fourth normal form, 436

frameworks, 576–577

JavaScript-specific frameworks, 577–579

PHP-specific frameworks, 579–580

FROM_UNIXTIME() function, 482

fromCharCode() method, 248

FTP (File Transfer Protocol) clients, 14

selecting, 14–15

transferring files with, 15–18

function calls

definition of, 113

saving state between, 336–338

function statement, 330

function_exists() function, 341–342

functions and methods

JavaScript, 115

addEventListener(), 242

ajaxRequest(), 284

ajaxResponse(), 284–285

alert(), 145

appendChild(), 156

assign(), 152

back(), 149

blur(), 401

calling, 200–201

ceil(), 212

changeTitle(), 165

charAt(), 187

checkAnswer(), 289

click(), 398

cloneNode(), 157

createElement(), 156

createTextNode(), 156

defining, 198–199, 206–207

definition of, 113–114

display(), 406–408

displayKey(), 248–249

displayResults(), 294

DOM node methods, 156–157

floor(), 212

focus(), 401

forward(), 149

fromCharCode(), 248

function calls, 113

getDate(), 217

getElementById(), 156, 158, 241, 406

getElementsByTagName(), 156

getFullYear(), 217

getHours(), 217

getKey(), 243

getMilliseconds(), 217

getMinutes(), 217

getMonth(), 217

getQuestions(), 289

getQuote(), 142

getSeconds(), 217

getTime(), 217

getTimeZoneOffset(), 218

getUTCDate(), 218

getUTCDay(), 218

getUTCFullYear(), 218

getUTCHours(), 218

getUTCMilliseconds(), 218

getUTCMinutes(), 218

getUTCMonth(), 218

getUTCSeconds(), 218

go(), 149

hasChildNodes(), 157

indexOf(), 187

insertBefore(), 156

join(), 190

lastIndexOf(), 188

liveSearch(), 294

mail(), 416–420

mousealert(), 241

mouseStatus(), 246

nextQuestion(), 289

numbercompare(), 191

open(), 282

parse(), 218

parseFloat(), 182

parseInt(), 182

random(), 143, 213–215

reload(), 152

removeChild(), 157

replace(), 152

replaceChild(), 157

reset(), 405

return values, 201–203

round(), 212

select(), 401

send(), 282

setDate(), 217

setFullYear(), 217

setHours(), 217

setMinutes(), 217

setMonth(), 217

setSeconds(), 217

setTime(), 217

setTimeout(), 258

setUTCDate(), 218

setUTCFullYear(), 218

setUTCHours(), 218

setUTCMilliseconds(), 218

setUTCMinutes(), 218

setUTCMonth(), 218

setUTCSeconds(), 218

showHide(), 163

sort(), 191

sortTable(), 520

split(), 190–191

startSearch(), 294

submit(), 405

substring(), 186

toLocalString(), 218

toLowerCase(), 185

toUpperCase(), 185

toUTCString(), 218

updateThenDisplay(), 242

UTC(), 218

write(), 109, 148

writeln(), 148

jQuery

animate(), 271

append(), 268

attr(), 268–269

fadeIn(), 270

fadeout(), 270

get(), 295

hide(), 269–270

html(), 267–269

load(), 295

post(), 296

show(), 269–270

slideDown(), 271

slideUp(), 271

text(), 268

toggle(), 270

MySQL

FROM_UNIXTIME(), 482

CHAR_LENGTH(), 462

CHARACTER_LENGTH(), 462

CONCAT(), 462–463

CONCAT_WS(), 462–463

CURDATE(), 480

CURRENT_DATE(), 480

CURRENT_TIME(), 480–481

CURRENT_TIMESTAMP(), 481

CURTIME(), 480–481

DATE_ADD(), 478–480

DATE_FORMAT(), 476–478

DATE_SUB(), 479

DAYNAME(), 471–472

DAYOFMONTH(), 470–471

DAYOFWEEK(), 470

DAYOFYEAR(), 471

HOUR(), 475

LCASE(), 468

LEFT(), 467

LENGTH(), 462

LOCATE(), 466

LPAD(), 466

LTRIM(), 464–465

MINUTE(), 475

MONTH(), 472

MONTHNAME(), 472–473

MySQL functions and methods in PHP, 498–499

NOW(), 480, 481, 506

OCTET_LENGTH(), 462

REPEAT(), 469

REPLACE(), 469

RIGHT(), 467–468

RPAD(), 466

RTRIM(), 464

SECOND(), 475

SUBSTRING(), 467

SYSDATE(), 481

TRIM(), 465–466

UCASE(), 468–469

UNIX_TIMESTAMP(), 481–482

WEEK(), 474–475

YEAR(), 473

naming conventions, 571

PHP, 345–346

abs(), 329

addFive(), 341

addNums(), 331–332

array() function, 318–319

array_keys(), 323

array_merge(), 323

array_pop(), 323

array_push(), 323

array_shift(), 323

array_unshift(), 323

array_values(), 323

bighello(), 331

buildDateForm(), 560

calendar(), 561

calling, 328–329, 365

checkdate(), 541–542

constructors, 348

count(), 322

creating include files for, 502–503

date_format(), 509

default values for arguments, 338–340

defining, 330–331

each(), 322

echo(), 329

empty(), 561

fontWrap(), 339–340

foreach(), 322

function_exists(), 341–342

getdate(), 542, 547

header(), 369

is_object(), 344

isset(), 541–542

list(), 322

mktime(), 542

mysqli_close(), 489, 497

mysqli_connect(), 488

mysqli_connect_error(), 488

mysqli_error(), 491

mysqli_fetch_array(), 497–498

mysqli_free_result(), 497

mysqli_get_host_info(), 488

mysqli_insert_id(), 506

mysqli_num_rows(), 496–497

mysqli_query(), 490–491

mysqli_real_escape_string(), 539

naming conventions, 330

numberedHeading(), 337–338

passing variable references to, 340–341

phpinfo(), 129

print(), 329

ready(), 560

reset(), 323

return values, 332

saving state between function calls, 336–338

serialize(), 377

session_destroy(), 380

session_id(), 374

session_save_path(), 376

session_set_save_ handler(), 373

session_start(), 374, 378–379

setcookie(), 369–373

setName(), 348

settype(), 304–305

shuffle(), 323

sizeof(), 322

stripslashes(), 509–510, 642–643

strtoupper(), 328, 528, 531, 536

testing for existence of, 341–343

user-defined functions, 332

G

Garrett, Jesse James, 280

$_GET, 301

get() method, 295

getdate() function (PHP), 542, 547

getDate() method (JavaScript), 217

getElementById() method, 156, 158, 241, 406

getElementsByTagName() method, 156

getFullYear() method, 217

getHours() method, 217

getKey() function, 243

getMilliseconds() method, 217

getMinutes() method, 217

getMonth() method, 217

getQuestions() function, 289

getQuote() function, 142

getSeconds() method, 217

getTime() method, 217

getTimeZoneOffset() function, 218

getUTCDate() function, 218

getUTCDay() function, 218

getUTCFullYear() function, 218

getUTCHours() function, 218

getUTCMilliseconds() function, 218

getUTCMinutes() function, 218

getUTCMonth() function, 218

getUTCSeconds() function, 218

global statement, 334–336

global variables, 176–177, 334–336

go() method, 149

Google Chrome, 12

GRANT statement, 614–615

granting MySQL privileges, 613–615

greater than (>) operator, 313, 448

greater than or equal to (>=) operator, 313, 448

Group directive, 634

grouping form elements, 393

groups, troubleshooting, 634

gunzip utility, 619, 636

H

<h1>-<h16> elements, 36–38

hasChildNodes() method, 157

hash property (location object), 152

<head> element, 27–31

header() function, 369

<header> element, 39–43, 45–46

headers, 45–46

headings, 36–38

height property (CSS), 60

helloclass2.php script, 347

helloclass3.php script, 347

helloclass.php script, 346

helloworld.php script, 131

hidden data, including in forms, 394

hidden fields, 414–415

hide() method, 269–270

hiding

content, 251–257

page elements, 162–164, 269–270

history

browser history, 149–151

of HTML (Hypertext Markup Language), 6

of WWW (World Wide Web), 6

history object, 149–151

home pages, 21

host property (location object), 152

host table, 612

hostname property (location object), 151

HOUR() function, 475

href attribute (<a> tag), 31

.htaccess files, 628

.htm file extension, 26

HTML (Hypertext Markup Language). See also CSS (Cascading Style Sheets)

anchors, 32

combining with PHP, 131–132, 411–413

comments, 572

content manipulation with jQuery, 267–269

ease of use, 22

elements. See also input controls

<a>31

<article>39, 48

<aside>40, 49–50

<body>27–31

33–36

<!DOCTYPE>27

<fieldset>393

<footer>39, 50–51

<form>386–390

<h1>-<h16>36–38

<head>27–31

<header>39–43, 45–46

<html>27–31

<input>390–391, 394

<label>392–393

<legend>393

<nav>39, 48–49

opening/closing elements, 29–31

<p>31, 33–36

<script>109–110

<section>39, 46–47

<select>398–400

showing/hiding content in, 251–257

67–68

<tbody>519

<title>27–31

files

creating, 13

index pages, 21

management of, 19–21

transferring, 14–18

forms, 385

accessing elements of, 405–406, 408–410

check boxes, 394–396

combining HTML and PHP code in, 411–413

creating, 386–390

displaying data from, 406–408

feedback.html form, 417–420

form element groups, 393

hidden data, 394

hidden fields, 414–415

how they work, 385–386

JavaScript calendar, 558–559

labels, 392–393

mail, sending on form submission, 416–420

PHP calendar application, 542–544

radio buttons, 397–398

selection lists, 398–400

simpleform.html, 408–409

submitting, 404–405

text areas, 400–402

text fields, 400–402

text input, 390–391

user-defined arrays, 410–411

validating, 112, 402–404

variable names, 391–392

headings, 36–38

history of, 6

HTML5. See also semantic elements

application development, 170–171

form validation, 402–404

local storage, 381–382

session storage, 381–382

Web Storage API, 381–382

including JavaScript scripts in, 109–110

line breaks, 33–36

for live search form, 290–291

paragraphs, 33–36

for quiz application, 285–286

scripts

addtopic.html, 503

firstpage.html, 27

insert_form.html, 494

simpleform.html, 408–409

sort.html, 192

timegreet.html, 224

semantic markup, 39–44

simple web page example, 26–28

.html file extension, 26

html() method, 267–269

<html> element, 27–31

httpd binary, 630–631

httpd.conf file, 624

httpd.pid file, 629

hyperlinks, 31

to email addresses, 33

to external web content, 32–33

within pages, 32

Hypertext Markup Language. See HTML (Hypertext Markup Language)

I

identical (===) operator, 312

IDs, style, 66

if statement

JavaScript, 115

conditional operators, 219–220

else keyword, 222

logical operators, 220–221

PHP

else clause, 351–352

elseif clause, 352–353

if…elseif…else control structure, 413

syntax, 350–351

<IfDefine> container, 626

<IfModule> container, 627

images, changing based on user interaction, 168–170

images property (document object), 146

include files, 502–503

increment (++) operator, 178

indentation in code, 573–574

index pages, 21

INDEX privilege, 615

indexOf() function, 187

inequality (!=) operator, 312, 448

infinite loops, 231–232, 358

inheritance, 348–350

inheritance2.php script, 349

inheritance.php script, 348

inline styles, 66–68

INNER JOIN statement, 452

input controls

check boxes, 394–396

input forms, 503–507

other input types, 401–402

radio buttons, 397–398

selection lists, 398–400

text areas, 400–402

text fields, 400–402

text input, accepting in forms, 390–391

<input> element, 390–391, 394. See also input controls

INSERT privilege, 615

INSERT statement, 442–444

insert_form.html, 494

insertBefore() method, 156

insert.php script, 494–495

installation

Apache

binary installations, 618

building from source, 618

on Linux/UNIX, 584–586, 619–621

on Mac OS X, 589–593, 621–622

versions of, 617–618

on Windows, 586–588, 622–624

MySQL

on Linux/UNIX, 584–586, 598–601

on Mac OS X, 589–593, 601–603

troubleshooting, 609–610

versions of, 597

on Windows, 586–588, 603–609

PHP

help, 643–644

on Linux/UNIX, 584–586, 635–639

on Mac OS X, 589–593, 639–640

testing, 642–643

versions of, 635

on Windows, 586–588, 640–642

third-party installation packages, 583–584

XAMPP

on Linux/UNIX, 584–586

on Mac OS X, 589–593

on Windows, 586–588

instantiating JavaScript objects, 207–208

instruction terminator, 300

INTEGER data type, 438

internal style sheets, 66–68

Internet Explorer, 13, 243

interpreted languages, 108

is_object() function, 344

isset() function, 541–542

items in online storefront

categories of items, 527–530

displaying, 531–534

JavaScript carousel, 534–538

J

JavaScript. See also AJAX (Asynchronous JavaScript and XML); jQuery

accessing form elements with, 405–406

best practices, 120

calendar application

building, 560–564

HTML form, 558–559

user input, 559–560

capabilities of, 108, 111–112

carousel, 534–538

comments, 572

conditionals, 115

conditional operators, 219–220

shorthand conditional expressions, 222–223

controlling positioning with, 158–162

cookies, 367. See also server-side sessions

accessing, 368–369

deleting, 373

setting, 369–372

structure of, 368

data types, 180–182

numeric arrays, 188–189

string arrays, 189–191

strings, 182–188

debugging, 122

discussion forums, modifying display for, 518–520

displaying form data with, 406–408

DOM (Document Object Model), 144–145

anchor object, 149

document object, 146–148

history object, 149–151

link object, 148–149

location object, 151–152

structure of, 152–157

window objects, 145–146

event handlers, 116–117, 239

creating, 240–241

defining, 241–242

onBlur, 401

onChange, 401

onClick, 398

onclick, 245, 251–254

onFocus, 401

onkeydown, 296

onkeypress, 242

onload, 245

onmouseover, 116–117

onreadystatechange, 283

onSelect, 401

simple event handler, 111

supporting multiple, 242

events, 240

keyboard events, 248–250

load/unload events, 250–251

mouse events, 244–247

showing/hiding content with, 251–257

form validation, 112

functions. See functions and methods

JSON (JavaScript Object Notation), 121–122, 281

live search form, 292–294

loops, 116

continuing, 232

escaping, 231–232

for, 227–229

infinite, 231–232

looping through arrays, 233–235

looping through object properties, 232–233

while, 229–230

methods. See under functions and methods

objects, 203–204

advantages of, 205

creating, 204

Date, 216–218

defining, 206

definition of, 114–115

Event, 242–244

extending, 210–212

form, 405–406

instantiating, 207–208

Math, 212–216

methods, 205, 206–207

properties of, 114, 204

storing data in, 208–210

String, 182–188

XMLHttpRequest, 280, 282–283

operators

assignment operators, 178

logical operators, 220–221

precedence, 179–180

table of, 179

remote scripting, 112

scripts, 108

ajax.js, 284

calendar_functions.js, 562–563

click.js, 246

external JavaScript files, 110–111

loops.js, 233–235

order of execution, 118

position.js, 158–162

quiz.js, 287–289

simple script example, 109–110

sort.js, 193

timegreet.js, 224–225

special effects, 112

statements, 113

if, 219–223

switch, 225–227

syntax, 118–120

case sensitivity, 118–119

comments, 119–120

naming conventions, 119–124

reserved words, 119

spacing, 119

testing, 124

third-party libraries, 261–262

variables, 175

assigning values to, 177–178

definition of, 114

global variables, 176–177

local variables, 176–177

naming conventions, 176

JavaScript-specific frameworks, 577–579

join() method, 190

Join-Projection normal form, 436

joins

inner joins, 452

left joins, 452–453

right joins, 454

jQuery, 261. See also functions and methods

AJAX functions, 295–296

capabilities of, 261

command chaining, 271

CSS content selection, 267

DOM content selection, 267

downloading, 261

event handling, 275–276

HTML content manipulation, 267–269

jQuery Calendars, 564

methods

animate(), 271

append(), 268

attr(), 268–269

fadeIn(), 270

fadeout(), 270

get(), 295

hide(), 269–270

html(), 267–269

load(), 295

post(), 296

show(), 269–270

slideDown(), 271

slideUp(), 271

text(), 268

toggle(), 270

page elements

animating, 270–275

showing/hiding, 269–270

$().ready handler, 265–267

remotely hosted versions, 263

size of, 277

storing, 264–265

third-party libraries, 277

.js file extension, 110–111

JSON (JavaScript Object Notation), 121–122, 281

.jsp file extension, 26

K

keyboard events, 248–250

.keydown() event handler, 276

keypress event, 248

.keypress() event handler, 276

keys, primary, 426

.keyup() event handler, 276

keywords. See also functions and methods; statements

BINARY, 449

else, 222, 351–352

elseif, 352–353

new, 183

var, 176, 195

kill command, 630

L

<label> element, 392–393

labels, 392–393

lastChild property, 156

lastIndexOf() function, 188

lastModified property (document object), 146

layers, 157–158

layout properties (CSS), 59–60

layout.css script, 93, 100–103

layouts. See also positioning

elastic, 105

fixed, 87–89

fixed/fluid hybrid, 92–103

basic layout structure, 92–94

column definitions, 94–96

column height, 97–103

minimum width of, 96–97

fluid, 89–92

LCASE() function, 468

LEFT() function, 467

LEFT JOIN statement, 452–453

left property (CSS), 80

<legend> element, 393

length

length functions, 462–464

of numeric arrays, 189

of strings, 184–185, 462

LENGTH() function, 462

length property

anchor object, 149

history object, 149

link object, 148–149

less than (<) operator, 313, 448

less than or equal to (<=) operator, 313, 448

libraries

AJAX

ajaxRequest() function, 284

ajaxResponse() function, 284–285

example of, 283–284

including in documents, 285

sample listing, 283–284

JavaScript third-party libraries, 261–262, 277

minified versions, 264

Visual C libraries, 633–634

LIKE operator, 449

LIMIT clause, 446–447

line breaks, 33–36

line-height property (CSS), 63

link object, 148–149

links. See hyperlinks

Linux

Apache installation on, 619–621

MySQL installation on, 598–601

PHP installation on, 635–639

PHP/Apache integration, 639

XAMPP installation on, 584–586

liquid layouts, 89–92

Liquid Slider, 534–538

list() function, 322

"Little Bobby Tables" comic strip, 492

live search form, 290

HTML form, 290–291

JavaScript front end, 292–294

PHP back end, 291–292

liveSearch() function, 294

load events, 250–251

load() method, 295

local storage, 381–382

local variables, 176–177

LOCATE() function, 466

location functions, 466

location object, 151–152

<Location> container, 626

<LocationMatch> container, 626

log files (Apache)

access_log, 629

error_log, 629

logic, separating from content, 568–569

logical operators, 220–221, 313–314

LONGBLOB data type, 440

LONGTEXT data type, 440

loops

JavaScript, 116

continuing, 232

escaping, 231–232

for, 227–229

infinite, 231–232

looping through arrays, 233–235

looping through object properties, 232–233

while, 229–230

PHP, 356

breaking out of, 359–361

do…while, 357–358

for, 358–359

infinite loops, 358

nesting, 362–364

skipping iterations, 361–362

while, 356–357

loops.js script, 233–235

loose typing, 302

lowercase, converting strings to, 185, 468

LPAD() function, 466

LTRIM() function, 464–465

Lunarpages, 11

M

Mac OS X

Apache installation on, 621–622

MySQL installation on, 601–603

PHP installation on, 639–640

XAMPP installation on, 589–593

mail() function, 416–420

mailing lists, 644

main pages, 21

maintainable code, 570

breaking up code, 574

comments, 572–573

indentation, 573–574

naming conventions, 571

make command, 637

make install command, 638

make utility, 620–621

makefiles, 620–621

MAMP, 584

management of HTML files

basic file management, 19–21

index pages, 21

many-to-many relationships, 429–430

Marcotte, Ethan, 103

marked up text, 7. See also HTML (Hypertext Markup Language)

Math object, 212–216

maxlength attribute (<input> element), 391

mean, 215

MEDIUMBLOB data type, 440

MEDIUMINT data type, 438

MEDIUMTEXT data type, 440

method attribute (<form> element), 386

methods. See functions and methods

Microsoft Edge, 13

Microsoft Internet Explorer, 13

minified versions, 264

MINUTE() function, 475

min-width property (CSS), 96–97

mktime() function, 542

mod_so module, 620

modifying

strings, 468–469

text, 164–166

modules, naming, 571

MONTH() function, 472

month functions, 472–473

MONTHNAME() function, 472–473

mouse events, 244–247

mousealert() function, 241

.mousedown() event handler, 276

.mouseenter() event handler, 276

.mouseleave() event handler, 276

.mousemove() event handler, 276

mouseout event, 244–245

.mouseout() event handler, 276

mouseover event, 244–245

.mouseover() event handler, 276

mouseStatus() function, 246

.mouseup() event handler, 276

Mozilla Firefox, 13

multidimensional arrays, 320–322

multiple attribute (<select> element), 398

multiple discussion forums, creating, 520

multiple event handlers, supporting, 242

multiple style sheets, 72

multiple tables, selecting from, 449–452

multiple third-party libraries, combining, 277

multiple web browsers, testing web content with, 12–13

MySQL

clauses

LIKE operator, 449

LIMIT, 446–447

ORDER BY, 445–446

WHERE, 447–449

data types

date and time, 439–440

definition of, 437–438

numeric, 438–439

string, 440–441

documentation, 597

downloading, 598

functions. See under functions and methods

installation

on Linux/UNIX, 584–586, 598–601

on Mac OS X, 589–593, 601–603

troubleshooting, 609–610

on Windows, 586–588, 603–609

mysql_* extension, 487, 499

mysqli extension, 487

mysqli_* extension, 499

PHP interaction

avoiding SQL injection, 492–493

connecting to MySQL with PHP, 487–490

data insertion with PHP, 493–496

data retrieval with PHP, 496–498

error message retrieval, 491

MySQL functions in PHP, 498–499

query execution, 490–491

privileges

granting, 613–615

privilege system, 612–615

revoking, 615

security

authentication process, 612–613

MySQL connection, 611

privilege system, 611–615

server startup procedure, 610–611

statements

CREATE TABLE, 441

DELETE, 459–461

INNER JOIN, 452

INSERT, 442–444

LEFT JOIN, 452–453

REPLACE, 458–459

RIGHT JOIN, 454

SELECT, 444–455

UPDATE, 455–458

tables

adding records to, 442–444

creating, 441, 490

deleting records in, 459–461

joins, 452–454

replacing records in, 458–459

retrieving records from, 444–455

updating, 455–458

users

adding, 613–615

granting privileges to, 613–615

revoking privileges from, 615

versions of, 597

mysql_* extension, 487, 499

mysqladmin command, 600

mysqld command, 610

mysqli extension, 487. See also MySQL

mysqli_* extension, 499

mysqli_close() function, 489, 497

mysqli_connect() function, 488

mysqli_connect_error() function, 488

mysqli_error() function, 491

mysqli_fetch_array() function, 497–498

mysqli_free_result() function, 497

mysqli_get_host_info() function, 488

mysqli_insert_id() function, 506

mysqli_num_rows() function, 496–497

mysqli_query() function, 490–491

mysqli_real_escape_string() method, 539

mysqlinsert.php script, 493

N

\n (newline) character, 419

name attribute (<form> element), 386

naming conventions

code maintenance and, 571

form data, 391–392

JavaScript, 119–124, 176

PHP

functions, 330, 571

variables, 324

<nav> element, 39, 48–49

navigational elements, 48–49

nesting PHP loops, 362–364

new keyword, 183

newline (\n) character, 419

nextQuestion() function, 289

nextSibling property, 156

nodes (DOM), 154

methods, 156–157

properties of, 155–156

relationships, 155

nonequivalence (!==) operator, 313

normal forms

first normal form, 432

second normal form, 432–433

third normal form, 433

normalization, 431

definition of, 425

first normal form, 432

flat tables, 431–432

other normal forms, 436

second normal form, 432–433

third normal form, 433

not operator, 314

novalidate attribute (<form> element), 402

NOW() function, 480, 481, 506

null values, 181

numbercompare() function, 191

numberedHeading() function, 337–338

numberedheading.php script, 336

numbers

number data type, 180

random number generation, 213

rounding, 212–213

numeric arrays, 188

accessing elements of, 189

creating, 188

length of, 189

sorting, 191

numeric data types, 438–439

numguess2.php script, 414–415

numguess.php script, 413

O

object-oriented languages, 124

objects, 203–204. See also DOM (Document Object Model)

JavaScript, 114–115

advantages of, 205

creating, 204

Date, 216–218

defining, 206

Event, 242–244

extending, 210–212

form, 405–406

instantiating, 207–208

JSON (JavaScript Object Notation), 281

looping through object properties, 232–233

Math, 212–216

methods, 205, 206–207

properties of, 114, 204

storing data in, 208–210

String, 182–188

window, 145–146

XMLHttpRequest, 280, 282–283

PHP

constructors, 348

creating, 343–344

inheritance, 348–350

methods, 345–346

properties of, 345–346

showing/hiding, 162–164

objproperties2.php script, 346

objproperties.php script, 345

OCTET_LENGTH() function, 462

onBlur event handler, 401

onChange event handler, 401

onClick event handler, 245, 251–254, 398

one-to-many relationships, 428

one-to-one relationships, 427–428

onFocus event handler, 401

onkeydown event handler, 296

onkeypress event handler, 242

online storefront application

categories of items, displaying, 527–530

database table design, 523–525

items, displaying, 531–534

JavaScript carousel, 534–538

store_categories table, 525

store_item_color table, 527

store_item_size table, 526–527

store_items table, 526

onload event handler, 251

onmouseover event handler, 116–117

onreadystatechange event handler, 283

onSelect event handler, 401

open() method, 282

opening elements, 29–31

opening URLs, 282

operands, 307–308

operators

JavaScript

addition assignment, 178, 184

concatenation, 143, 183–184

conditional, 219–220

decrement, 178

increment, 178

logical, 220–221

precedence, 179–180

subtraction assignment, 178

table of, 179

MySQL

LIKE, 449

in WHERE clauses, 448–449

PHP, 307–308

arithmetic, 309

assignment, 308–309

combined assignment, 310–311

comparison, 312–313

concatenation, 309–310, 419

logical operators, 313–314

post-decrement, 311–312

post-increment, 311–312

precedence, 314–315

ternary, 355–356

or operator, 313

ORDER BY clause, 445–446

overflow property (CSS), 86–87

overriding directives, 628–629

P

<p> element, 31, 33–36

padding property (CSS), 63

padding strings, 464–466

page elements

animating, 270–275

animation effects, 271

animation example, 272–275

fading elements in/out, 270

sliding elements up/down, 271

hiding/showing, 162–164

positioning

controlling with JavaScript, 158–162

current line, 86

elastic layouts, 105

fixed layouts, 87–89

fixed/fluid hybrid layout, 92–103

fluid layouts, 89–92

layers, 157–158

relative versus absolute, 79–84

stack order, controlling, 84–86, 105

text flow, 86–87

showing/hiding, 269–270

paragraphs, 33–36

parentNode property, 155

parents (DOM), 154

parse() function, 218

parseFloat() function, 182

parseInt() function, 182

passing variable references to functions, 340–341

path field (cookies), 368

pathname property (location object), 152

pattern attribute (<input> element), 403

PDO (PHP Data Objects), 493

percent sign (%), 449

period (.), 64

PHP

accessing form elements with, 408–410

arrays, 317

array-related functions, 322–324

associative arrays, 319

creating, 318–319

multidimensional arrays, 320–322

code blocks, browser output and, 134–136

combining with HTML, 131–132, 411–413

comments

// comment syntax, 572

syntax, 133–134

when to use, 137

configuration on Linux/UNIX, 638–639

constants, 315–317

cookies, 367. See also server-side sessions

accessing, 368–369

deleting, 373

setting, 369–372

structure of, 368

data types, 302–304

casting, 305–307

changing with settype(), 304–305

directives, 642

documentation, 643–644

downloading, 636

expressions, 307–308

flow control, 350

if statement, 350–353

switch statement, 353–355

ternary operator (?:), 355–356

functions. See functions and methods

how it works, 127–128

installation

help, 643–644

on Linux/UNIX, 584–586, 635–639

on Mac OS X, 589–593, 639–640

testing, 642–643

on Windows, 586–588, 640–642

integrating with Apache

on Linux/UNIX, 639

on Windows, 641–642

for live search form, 291–292

loops, 356

breaking out of, 359–361

do…while, 357–358

for, 358–359

infinite loops, 358

nesting, 362–364

skipping iterations, 361–362

while, 356–357

MySQL interaction

avoiding SQL injection, 492–493

connecting to MySQL with PHP, 487–490

data insertion with PHP, 493–496

data retrieval with PHP, 496–498

error message retrieval, 491

MySQL functions in PHP, 498–499

query execution, 490–491

objects

constructors, 348

creating, 343–344

inheritance, 348–350

methods, 345–346

properties of, 345–346

operators, 307–308

arithmetic, 309

assignment, 308–309

combined assignment, 310–311

comparison, 312–313

concatenation, 309–310

logical, 313–314

post-decrement, 311–312

post-increment, 311–312

precedence, 314–315

ternary, 355–356

PDO (PHP Data Objects), 493

php.ini file, 642

scripts. See scripts

statements

blocks of, 129–130

breaking out of, 359–361

definition of, 131

do…while, 357–358

echo, 131

flow control statements, 134–136

for, 358–359

function, 330

global, 334–336

if, 350–353

print, 131

skipping iterations, 361–362

static, 336–338

switch, 353–355

while, 356–357

syntax, 129–130

text editors, 137

variables

global variables, 301, 334–336

naming conventions, 324

scope, 333–334

superglobal variables, 301

syntax, 299–300

versions of, 635

.php file extension, 26

<?php…?> tag, 130

phpinfo() function, 129, 642–643

php.ini file, 638, 642

phpMyAdmin, 611

PHP-specific frameworks, 579–580

points, 57

pop-up windows, displaying form data in, 406–408

port property (location object), 151

ports, binding to, 634

position functions, 466

position property (CSS), 80

positioning

controlling with JavaScript, 158–162

current line, 86

elastic layouts, 105

fixed layouts, 87–89

fixed/fluid hybrid layout, 92–103

basic layout structure, 92–94

column definitions, 94–96

column height, 97–103

minimum width of, 96–97

fluid layouts, 89–92

layers, 157–158

relative versus absolute, 79–84, 105

responsive web design, 103–104

stack order, controlling, 84–86, 105

text flow, 86–87

position.js script, 158–162

$_POST, 301, 409

post() method, 296

post-decrement (––) operator, 311–312

post-increment (++) operator, 311–312

posts, discussion forum posts

adding, 514–518

displaying, 510–514

pound sign (#), 639

precedence, operator, 179–180, 314–315

previousSibling property, 156

primary keys, 426

print statement, 131, 329

printbr.php script, 331

privileges (MySQL)

granting, 613–615

privilege system, 611–612

revoking, 615

proc_priv table, 612

PROCESS privilege, 615

proofofclass.php script, 344

protocol property (location object), 151

prototyping, 569

pull-down pick lists, 398–400

Q

queries (MySQL), executing with PHP, 490–491

questions.xml, 287

quiz application (AJAX), 285–286

HTML file, 285–286

JavaScript file, 287

testing, 289

XML file, 287

quiz.js script, 287–289

Quotable Quotes page, 140–144

quotation marks, 240

R

radio buttons, 397–398

random content, displaying, 140–144

random() method, 143, 213–215

random number generation, 213

readiness, 265

ready() function, 560

$().ready handler, 265–267

readyState property, 283

records

adding, 442–444

deleting, 459–461

online storefront application

store_categories table, 525

store_item_color table, 527

store_item_size table, 526–527

store_items table, 526

replacing, 458–459

retrieving

all records, 444–445

basic syntax, 444–445

columns, 445

limited number of records, 446–447

rows, 447–449

subqueries, 454–455

updating

basic syntax, 455–457

column value updates, 458

conditional updates, 457

REFERENCES privilege, 615

referrer property (document object), 146

registered users, 380–381

registering MySQL repositories, 598

relationships, 426–427

DOM nodes, 155

many-to-many, 429–430

one-to-many, 428

one-to-one, 427–428

relative positioning, 79–84, 105

reload() method, 152

RELOAD privilege, 615

remote scripting, 112, 279

examples of, 281–282

JavaScript client, 280

requests

creating, 282

sending, 282

responses

awaiting, 283

interpreting, 283

server-side scripts, 280–281

URLs, opening, 282

XML (Extensible Markup Language), 281

removeChild() method, 157

removing. See deleting

REPEAT() function, 469

REPLACE() function, 469

replace() method, 152

REPLACE statement, 458–459

replaceChild() method, 157

replacing records, 458–459

replytopost.php script, 515–516

$_REQUEST, 301

requests (AJAX)

creating, 282

sending, 282

reserved words, 119

reset() function, 323

reset() method, 405

responses (AJAX)

awaiting, 283

interpreting, 283

responsive web design, 103–104

respositories (MySQL), registering, 598

retrieving records

all records, 444–445

basic syntax, 444–445

columns, 445

limited number of records, 446–447

rows, 447–449

subqueries, 454–455

return values

JavaScript functions, 201–203

PHP functions, 332

REVOKE statement, 615

revoking MySQL privileges, 615

RIGHT() function, 467–468

RIGHT JOIN statement, 454

right property (CSS), 80

round() method, 212

rounding numbers, 212–213

rows, retrieving, 447–449

rows attribute (<textarea> element), 400

RPAD() function, 466

RTRIM() function, 464

S

Safari, 12

saving state

between function calls, 336–338

with hidden fields, 414–415

schemas, 425

scope, variable, 333–334

scopetest2.php script, 334

scopetest3.php script, 335

scopetest.php script, 333

scoreboard file, 629

<script> element, 109–110

scripts. See also files; remote scripting

client-side scripting, 140

CSS (Cascading Style Sheets)

layout.css, 93, 100–103

styles.css, 55–56

HTML

addtopic.html, 503

firstpage.html, 27

insert_form.html, 494

simpleform.html, 408–409

sort.html, 192

timegreet.html, 224

JavaScript

ajax.js, 284

calendar_functions.js, 562–563

click.js, 246

loops.js, 233–235

order of execution, 118

position.js, 158–162

quiz.js, 287–289

sort.js, 193

timegreet.js, 224–225

PHP

addfive2.php, 341

addfive.php, 340

arraysession.php, 377–378

casttype.php, 305–306

combining HTML and PHP code in, 131–132

comments in, 133–134, 137

count.php, 496–497

dateselector.php, 543

db_include.php, 502

ddnums.php, 332

do_addtopic.php, 504–505

embedcondition.php, 134–135

event.php, 554–556

exists.php, 342

fontwrap.php, 339

helloclass2.php, 347

helloclass3.php, 347

helloclass.php, 346

helloworld.php, 131

inheritance2.php, 349

inheritance.php, 348

insert.php, 494–495

mysqlinsert.php, 493

numberedheading.php, 336

numguess2.php, 414–415

numguess.php, 413

objproperties2.php, 346

objproperties.php, 345

printbr.php, 331

proofofclass.php, 344

replytopost.php, 515–516

scopetest2.php, 334

scopetest3.php, 335

scopetest.php, 333

seestore.php, 527–530

select.php, 497–498

send_simpleform.php, 409

session_checkid.php, 374

settype.php, 304

showcalendar_withevent.php, 550–553

showcalendar.php, 545–546

showitem.php, 531–534

showtopic.php, 511–513

testcontinue.php, 362

testdowhile.php, 358

testfor2.php, 360

testfor3.php, 360

testfor.php, 359

testifelseif.php, 353

testifelse.php, 351

testif.php, 351

testnestfor.php, 363

test.php, 128–129

testswitch.php, 354

testtern.php, 355

testtype.php, 303

testwhile.php, 356

text editors for, 137

topiclist.php, 507–509

server-side scripting, 140

scrolling lists, 398–400

search property (location object), 152

SECOND() function, 475

second normal form, 432–433

<section> element, 39, 46–47

sections, 46–47

Secure Shell (SSH), 611

security

MySQL

authentication process, 612–613

MySQL connection, 611

privilege system, 611–615

server startup procedure, 610–611

XAMPP, 594–595

seestore.php script, 527–530

select() method, 401

SELECT privilege, 615

SELECT statement

basic syntax, 444–445

LIKE operator, 449

LIMIT clause, 446–447

multiple tables, selecting from, 449–452

ORDER BY clause, 445–446

subqueries, 454–455

WHERE clause

basic syntax, 447–448

operators in, 448–449

<select> element, 398–400

selection lists, 398–400

selectors, 64

select.php script, 497–498

semantic elements, 39–44

advantages of, 72

<article>39, 48

<aside>40, 49–50

<footer>39, 50–51

<header>39–43, 45–46

<nav>39, 48–49

<section>39, 46–47

semicolon (;), 57, 113, 300

send() method, 282

send_simpleform.php script, 409

sending

AJAX requests, 282

email on form submission, 416–420

sendmail, 416–417

serialize() function, 377

$_SERVER, 301, 412

ServerRoot directive, 627, 628–629

server-side scripting, 140, 280–281

server-side sessions

local storage, 381–382

overview of, 373–374

registered users, 380–381

session storage, 381–382

session variables

accessing, 375–379

destroying, 380

setting, 374–379

unsetting, 380

user preferences, 381

$_SESSION, 381

session storage, 381–382

session_checkid.php script, 374

session_destroy() function, 380

session_id() function, 374

session_save_path() function, 376

session_set_save_handler() function, 373

session_start() function, 374, 378–379

sessions. See server-side sessions

SET data type, 441

setcookie() function, 369–373

Set-Cookie header (cookies), 368

setDate() method, 217

setFullYear() method, 217

setHours() method, 217

setMinutes() method, 217

setMonth() method, 217

setName() function, 348

setSeconds() method, 217

setTime() method, 217

setTimeout() function, 258

settings. See configuration

settype() function, 304–305

settype.php script, 304

setUTCDate() function, 218

setUTCFullYear() function, 218

setUTCHours() function, 218

setUTCMilliseconds() function, 218

setUTCMinutes() function, 218

setUTCMonth() function, 218

setUTCSeconds() function, 218

shopping carts. See online storefront application

shorthand conditional expressions, 222–223

SHOW DATABASES privilege, 615

show() method, 269–270

showcalendar_withevent.php script, 550–553

showcalendar.php script, 545–546

showHide() function, 163

showitem.php script, 531–534

showtopic.php script, 511–513

shuffle() function, 323

siblings (DOM), 154

sidebars, 49–50

signed data types, 438

simpleform.html, 408–409

single quotation marks ('), 240

size attribute

<input> element, 391

<select> element, 398

sizeof() function, 322

skeleton pages, 30

slideDown() method, 271

sliders (JavaScript), 534–538

slideshow displays, 534–538

slideUp() method, 271

sliding elements up/down, 271

A Small Orange, 11

SMALLINT data type, 438

sort() method, 191

sort.html script, 192

sorting arrays

numeric arrays, 191

string arrays, 191–192

sort.js script, 193

sortTable() function, 520

source, building Apache from, 618

 element, 67–68

special effects, creating with JavaScript, 112

split() method, 190–191

splitting strings, 190–191

SQL injection, avoiding, 492–493

SQL statements. See statements

src attribute (<input> element), 405

srclib subdirectory, 620

SSH (Secure Shell), 611

stack order, controlling, 84–86, 105

starting

Apache, 632–633

MySQL, 610–611

startSearch() function, 294

state, saving

between function calls, 336–338

with hidden fields, 414–415

statements

JavaScript, 113

conditional statements, 115

for, 116

if, 115, 219–223

switch, 225–227

MySQL

ADD USER, 614

CREATE TABLE, 441

DELETE, 459–461

GRANT, 614–615

INNER JOIN, 452

INSERT, 442–444

LEFT JOIN, 452–453

REPLACE, 458–459

REVOKE, 615

RIGHT JOIN, 454

SELECT, 444–452, 454–455

UPDATE, 455–458

PHP

blocks of, 129–130

break, 359–361

continue, 361–362

definition of, 131

do…while, 357–358

echo, 131, 322, 329

flow control statements, 134–136

for, 358–359

function, 330

global, 334–336

if, 350–353

print, 131

static, 336–338

switch, 353–355

while, 356–357

static statement, 336–338

storage

local, 381–382

session, 381–382

store_categories table, 524, 525

store_item_color table, 524, 527

store_item_size table, 524, 526–527

store_items table, 524, 526

storefront. See online storefront application

storing

data in JavaScript objects, 208–210

jQuery, 264–265

string arrays, 189–191

creating, 190

sorting, 191–192

splitting strings, 190–191

string data types, 440–441

String object, 182

assigning values to, 183–184

calculating length of, 184–185

converting case of, 185

creating, 183

substrings, 185–188

strings

JavaScript, 182

assigning values to, 183–184

calculating length of, 184–185

converting case of, 185

creating, 183

string arrays, 189–191

substrings, 185–188

MySQL

concatenating, 462–464

length of, 462

padding, 464–466

string modification functions, 468–469

substring functions, 467–468

trimming, 464–466

stripslashes() function, 509–510

strtoupper() function, 328, 528, 531, 536

style classes (CSS), 64–65

style IDs (CSS), 66

style sheets

/* */ comment syntax, 572

basic style sheet example, 54–59

formatting properties, 61–63

inline styles, 66–68

internal style sheets, 66–68

layout properties, 59–60

multiple style sheets, 72

style classes, 64–65

style IDs, 66

styles.css, 55–56

submit() method, 405

submitting forms, 404–405

subqueries, 454–455

SUBSTRING() function, 467

substring() function, 186

substrings, 185–188, 467–468

subtraction assignment (-=) operator, 178

sudo command

MySQL installation, 598–600

XAMPP installation, 584–586

switch statement, 225–227, 353–355

SYSDATE() function, 481

T

tables

adding records to, 442–444

columns, selecting, 445

columns_priv, 612

creating, 441, 490

db, 612

deleting records in, 459–461

discussion forum application, 501–502

flat tables, 431–432

host, 612

joins

inner joins, 452

left joins, 452–453

right joins, 454

online storefront application, 523–525

store_categories, 525

store_item_color table, 527

store_item_size table, 526–527

store_items table, 526

PHP calendar

calendar table, 544–548

calendar_events table, 548–558

primary keys, 426

proc_priv, 612

relationships, 426–427

many-to-many, 429–430

one-to-many, 428

one-to-one, 427–428

replacing records in, 458–459

retrieving records from

all records, 444–445

basic syntax, 444–445

columns, 445

limited number of records, 446–447

rows, 447–449

subqueries, 454–455

tables_priv, 612

updating

basic syntax, 455–457

column value updates, 458

conditional updates, 457

user, 612

tables_priv, 612

tags. See elements (HTML)

targets, 620

<tbody> element, 519

templates, 30

ternary operator (?:), 355–356

testcontinue.php script, 362

testdowhile.php script, 358

testfor2.php script, 360

testfor3.php script, 360

testfor.php script, 359

testifelseif.php script, 353

testifelse.php script, 351

testif.php script, 351

testing, 570

JavaScript, 124

PHP

functions, 341–343

installation, 642–643

quiz application, 289

web content

importance of, 23

multiple web browsers, 12–13

testnestfor.php script, 363

test.php script, 128–129

testswitch.php script, 354

testtern.php script, 355

testtype.php script, 303

testwhile.php script, 356

text

adding to pages, 166–168

modifying, 164–166

strings

length and concatenation functions, 462–464

padding, 464–466

string modification functions, 468–469

substring functions, 467–468

trimming, 464–466

text areas, 400–402

text fields, 400–402

text input, accepting in forms, 390–391

text areas, 400–402

TEXT data type, 440

text editors, 137

text fields, 400–402

text flow, 86–87

text input, accepting in forms, 390–391

text() method, 268

text-align property (CSS), 62

text-decoration property (CSS), 63

text-indent property (CSS), 62

third normal form, 433

third-party installation packages, 583–584

MAMP, 584

WAMP, 584

XAMPP

installation on Linux/UNIX, 584–586

installation on Mac OS X, 589–593

installation on Windows, 586–588

security, 594–595

troubleshooting, 595

third-party JavaScript libraries, 261–262

time and date functions

JavaScript, 217–219

MySQL

date arithmetic functions, 478–480

date/time formatting functions, 476–478

day-related functions, 470–472

hours/minutes/seconds functions, 475

month/year functions, 472–473

special functions and conversion features, 480–484

week functions, 473–475

TIME data type, 440

timegreet.html script, 224

timegreet.js script, 224–225

TIMESTAMP data type, 440

TINYBLOB data type, 440

TINYINT data type, 438

TINYTEXT data type, 440

title property (document object), 146

<title> element, 27–31

toggle() method, 270

toLocalString() function, 218

toLowerCase() function, 185

tools. See utilities

top property (CSS), 80

topic lists for discussion forums, 507–510

topiclist.php script, 507–509

toUpperCase() function, 185

toUTCString() function, 218

transferring files with FTP, 14–18

TRIM() function, 465–466

trimming strings, 464–466

troubleshooting

Apache, 633–634

HTML files, 71

MySQL installation, 609–610

XAMPP, 595

two-dimensional arrays, 195

type attribute (<input> element), 391, 394

check boxes, 394–396

other input types, 401–402

radio buttons, 397–398

text areas, 400–402

text fields, 400–402

typed characters, displaying, 249–250

U

UCASE() function, 468–469

uncompressing Apache source code, 619

underscore (_), 449

UNIX

Apache installation on, 619–621

MySQL installation on, 598–601

PHP installation on, 635–639

PHP/Apache integration, 639

XAMPP installation on, 584–586

UNIX_TIMESTAMP() function, 481–482

unload events, 250–251

unsetting session variables, 380

unsigned data types, 438

UPDATE privilege, 615

UPDATE statement

basic syntax, 455–457

column value updates, 458

conditional updates, 457

updateThenDisplay() function, 242

updating tables

basic syntax, 455–457

column value updates, 458

conditional updates, 457

uppercase, converting strings to, 185, 468–469

URL property (document object), 146

URLs, opening, 282

user table, 612

user-defined arrays, 410–411

user-defined functions, 332

users

MySQL

adding, 613–615

granting privileges to, 613–615

revoking privileges from, 615

preferences in server-side sessions, 381

registered, 380–381

user input, accepting

JavaScript calendar, 559–560

PHP calendar, 541–542

/usr/sbin/httpd directory, 621

UTC() function, 218

utilities

apachectl, 631

gunzip, 619, 636

make, 620–621

V

validating

forms, 112, 402–404

style sheets, 68

value directives, 642

var keyword, 176, 195

VARCHAR data type, 440

variables

JavaScript, 175

assigning values to, 177–178

definition of, 114

global variables, 176–177

local variables, 176–177

naming conventions, 176

PHP

$_POST, 409

$_SERVER, 412

$_SESSION, 381

global variables, 301, 334–336

naming conventions, 324, 571

passing to functions, 340–341

scope, 333–334

session variables, 374–380

superglobal variables, 301

syntax, 299–300

version control, 575–576

versions

of Apache, 617–618

of MySQL, 597

of PHP, 635

<VirtualHost> container, 625

visibility property, 162

Visual C libraries, 633–634

W

WAMP, 584

web applications, 567

best practices, 567–568

prototyping, 569

separation of logic and content, 568–569

testing, 570

calendar, 541

code frameworks, 576–577

discussion forums

adding posts to, 514–518

database table design, 501–502

displaying posts in, 510–514

include files, 502–503

input forms and scripts, 503–507

modifying forum display, 518–520

multiple forums, 520

topic list, 507–510

HTML5, 170–171

JavaScript calendar

building, 560–564

HTML form, 558–559

user input, 559–560

maintainable code, 570

breaking up code, 574

comments, 572–573

indentation, 573–574

naming conventions, 571

online storefront

categories of items, displaying, 527–530

database design, 523–525

items, displaying, 531–534

JavaScript carousel, 534–538

store_categories table, 525

store_item_color table, 527

store_item_size table, 526–527

store_items table, 526

PHP calendar

calendar table, 544–548

events, adding, 548–558

HTML form, 542–544

user input, 541–542

quiz application (AJAX), 285–286

HTML file, 285–286

JavaScript file, 287

XML file, 287

version control, 575–576

JavaScript-specific frameworks, 577–579

PHP-specific frameworks, 579–580

web applications, 567

web browsers. See browsers

web content. See also dynamic websites; page elements; web applications

creating, 7

delivery, 7–9

discussion forums

adding posts to, 514–518

database table design, 501–502

displaying posts in, 510–514

include files, 502–503

input forms and scripts, 503–507

modifying forum display, 518–520

multiple forums, 520

topic list, 507–510

dynamic websites, 139

forms, 385

accessing form elements with JavaScript, 405–406

accessing form elements with PHP, 408–410

check boxes, 394–396

combining HTML and PHP code in, 411–413

creating, 386–390

for discussion forums, 503–507

displaying data from, 406–408

feedback.html form, 417–420

form element groups, 393

hidden data, 394

hidden fields, 414–415

how they work, 385–386

labels, 392–393

mail, sending on form submission, 416–420

radio buttons, 397–398

selection lists, 398–400

simpleform.html, 408–409

submitting, 404–405

text areas, 400–402

text fields, 400–402

text input, 390–391

user-defined arrays, 410–411

validating, 402–404

variable names, 391–392

headings, 36–38

home pages, 21

HTML files

creating, 13

index pages, 21

management of, 19–21

transferring, 14–18

hyperlinks, 31

to email addresses, 33

to external web content, 32–33

within pages, 32

images, changing based on user interaction, 168–170

line breaks in, 33–36

paragraphs, 33–36

semantic elements, 39–44

advantages of, 72

<article>39, 48

<aside>40, 49–50

<footer>39, 50–51

<header>39–43, 45–46

<nav>39, 48–49

<section>39, 46–47

simple web page, 26–28

testing

importance of, 23

multiple web browsers, 12–13

text

adding to pages, 166–168

modifying, 164–166

web hosting providers

DailyRazor, 11

Lunarpages, 11

selecting, 10–12

A Small Orange, 11

web hosting providers

DailyRazor, 11

Lunarpages, 11

selecting, 10–12

A Small Orange, 11

web pages. See web content

web servers

file organization on

basic file management, 19–21

index pages, 21

PHP with, 127–128

web sockets, 170–171

Web Storage API, 381–382

WEEK() function, 474–475

week functions, 473–475

what-you-see-is-what-you-get (WYSIWYG) editors, 26

WHERE clause

basic syntax, 447–448

operators in, 448–449

while loops, 229–230, 356–357

whitespace, 119

width property (CSS), 60

wildcard characters, 449

window objects, 145–146

Windows

Apache installation on, 622–624

MySQL installation on, 603–609

PHP installation on, 640–642

PHP/Apache integration, 641–642

XAMPP installation on, 586–588

windows, displaying form data in, 406–408

wizards, XAMPP Setup Wizard, 584

write() method, 109, 148

writeln() method, 148

WWW (World Wide Web), history of, 6

WYSIWYG (what-you-see-is-what-you-get) editors, 26

X

XAMPP

downloading, 584, 586, 589

installation

on Linux/UNIX, 584–586

on Mac OS X, 589–593

on Windows, 586–588

security, 594–595

troubleshooting, 595

XAMPP Setup Wizard, 584

XML (Extensible Markup Language), 281, 287

XMLHttpRequest object, 280

creating, 282–283

onreadystatechange event handler, 283

open() method, 282

send() method, 282

xor operator, 314

Y-Z

YEAR data type, 105, 440

YEAR() function, 473

year functions, 472–473

z-index property (CSS), 84–86

Code Snippets

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

images/00503.jpeg

images/00502.jpeg
Hooray!

I'm

images/00505.jpeg
<rphp
it
srexr o

iy
(smn0 =

chn nsrexre;

meppyn

2ot aman

5 zeea

needr

73 smaod mood v

images/00504.jpeg

images/00501.jpeg
<z
P
ESTRE
Cau "aappy"s
o Hosrayl T
brsak;
Casa "sad's

4 4 good wovdi;

ache “Awnw. Don'U ze downt’s

brssk;
W cetaul

1 acho vim reither happy nox seé, bat Smood.”
i}

images/00500.jpeg
case resultl:
// execute this if expression results in resultl

break;
case result2:
// execute this if expression results in result2
break;
default:
// execute this if no break statement
// has been enccuntered hitherto

images/00187.jpeg
<section>
<header>
<h3>Section 1 Heading</h3>
</header>
<p>Section 1 content here.</p>
</section>
<section>
<header>
<h3>Section 2 Heading</h3>
</header>
<p>Section 2 content here.</p>
</section>

images/00186.jpeg
<header>

<hl>The finest widgets are made here!</hl>

< /header>

images/00189.jpeg
<section>
<header>
<hl>Super Headings/hl>
</header>
<p>Super content!</p>
< /sections

images/00188.jpeg
<article>
<header>
<h2>Article Heading</h2>
</header>
<section>
<header>
<h3>Section 1 Heading</h3>
</header>
<p>Section 1 content here.</p>
</section>
<section>
<header>
<h3>Section 2 Heading</h3>
</header>
<p>Section 2 content here.</p>
</section>
<footer>
<psArticle footer goes here.</p>
</footer>
P T

images/00183.jpeg
<UDOCTYPE heril>

ntml amgerens
P

<LitiesSeantic Bunplae/title
</hess
<>

<hascers
<kts:

OR %GR 1050 GOES HERE</RL»
</hescers

<areicles
<keadsr-

“hzsarticle Headice:/his
~/rander

aders
en3sSectiod 1 Eeadingsinss

images/00182.jpeg
<EEE Tangs
<hsais
<Eizlashy Widgetee/tit
<haads

<wsaps
<ULy Widgerse/id>
<oolly widgels wze ke beul Lo Lae Lad, Conlious twadlag
cara wmre aboul wy wiswels.<fo>

cnzoaiger Featiece/hts
gaTf T had any waturss bo discuns, you can bet T da

atspricinge/nis
cosHare, T woule ta)

apzut wy widger pricing </o>

Conpariscns=/a3s
<poiere, I would ali about how ay widgets compare o my
competitor's widgess. =/p:

< /bodys

e

images/00185.jpeg
<header>

</header>

images/00184.jpeg
«/header->
<pszection 1 conent hare.cip
<ccorions
hoaers
idaBsilion 2 Fadings/iis
<fheadars

<pasaction

ent hare.</ps

e
<pohrzicle footer goes here.</pr

<siesters

“jarticies

ooters

S Ox sGe sUoIEK Rese
<rpoay.

</nzm

images/00181.jpeg
CIDOCTYFE Ler

anenl “angatents
creecs
<riflesthe advarising Acency 21
Iheacs.
“body-
P

WEer veur clisn's heppiny mad,

put Eia picture in the ad

we refrastery

2f he aell saculd
64 3 pisears of hls fa

rary
<o
cbr.

»
Fnen your client’s happins rad,brs

4t ais plcture in the ad

P
Z€ he scill showld prove rafractory,

add a piczure of his factory.

images/00180.jpeg
Send me an
ST DERRENE ¢

images/00176.jpeg
Go to Top of Page

images/00175.jpeg
<a href="/elsphants/african.html®-Learn about African elephants.</a
i REaRa et ol At an - Rl Ayl Aa ANOHE: RREAR & LanBa g vl g

images/00178.jpeg
"http://www.takeme2thezoo.zom/slephants/african. hzml#photos®

the Atrican Elephant Photod!</as

images/00177.jpeg

images/00172.jpeg
<a href="/downloads/artfolio.zip"Download my art portfoli«

images/00171.jpeg
<IDOCTYTE bbul>
ctibas>
<ticats
<LitiesBsllo Horldie/Lit
</hosds
<body»
ety ~aligr: ceatersHello wor
veleone to Wy Web Sexver.</bs>
</bodss
</nzmls

images/00174.jpeg

images/00173.jpeg
<IDOCTYTE bbul>
clilwl Lergmrsat>

<ticads
<LitiesThe Fire Web Pagec/Uotles

/o>

“bo

e
16 the segianing, Tin created the Mypsivsst Nareup Lensusce, Tie
internst was without forr aad void, srd text was upom the fase of

zacs of tae

the monicor and the Hands Of Tim wers noviag over the
Lot there be liaks; and thev

and “im sepavatec the lizts

and the text le

ex was the first

wers links.

Kevbzard, wad Tim sail,
Zin saw chat the liaks wers good
tim calied tae links Avckers

A the vhole thicz tag:

wen £ag:

e
<rbodys

</mzmls

images/00179.jpeg
Check out the
African Elephant Photos!

images/00170.jpeg
<img alt="Cooglc® hoight="92" widthe'3ve® fde=
g ' ght drh=r2ven idmt'hploga® ero="/images/branding/

geogleloge,2x/guogelogo celor 372x92d0. prghs

images/00165.jpeg
5 tocaihos:

< O
It works!

x B

locathost

images/00164.jpeg
| 4 [= | Local Disk ()
W e e e
e TRC s LoD
Name. -
Pr—
et
mow e
ool £ [y
Bosaros # W
& Pictures # [Windows
B M] Windons10Uporade.
o Wrcot
@ onoie
e
Netwrk
* %
Faems: | iemsdibered

v 0| Sewchlccal sk (C)

Date mediied
1167016 447 40
622017 1005 M
5200171005 PM
2207 52 PM
6227017 604PM
6227017 10420
201785200

e
Filefolder
Filefoder
Fiefoder
Fefolder
Filefoder
Filefoder
Fi folder

Sae

images/00167.jpeg
ComarisedFodarTeds Downleadk - o x

~ B TR+ D “e
Nome. h Dats modified

T rapd 2426 WinGe VG5 63020 5
Bt comeuntyS1181 001 5
Pt R
- ‘

s
o it s

Bk

it

voav

Openinnewvindow
Eenaht.
pote s
3 Scam it WindowsDefncer.

Openvita

staenn 5
@ Ntk Festoepraiouserions

& oniive

e

Siars it scted 214 M sevito >

o

oy

[
|

Dt
e

Propertes

images/00166.jpeg
The program can't start because VCRUNTIME140.dll is missing from
your computer. Ty reinstaling the program o fix this problem.

images/00161.jpeg
Apply Configuration
e confurtioncpeaion s oppes
Contaurn 53 Lo

@ Sonping Sone[§ crcons]
@ Weting conbipuion e

@ Updatn revat

R e —
Ly r—

Sating Snes

FrT—

R —
@ Updating St Mersline

Iping Fmelfor NS0 Decurmrt Dt o St

Fnh

images/00160.jpeg
P
R Usemame [dowser]
=8 o

e

Authentication @ MySQL.
Password
Confim Password

images/00163.jpeg
Quikoccess
B Deseop
B Dovelosts
 Decuments
= Pt

B e

B vdess

& onedive
=

& Network

ks

snare

An s

111 B 1= | hepa-2426-winsa-vets

Name

1| Apached
svCrs -

€ L Downonds > Hp2AZEWBACTS >

V10 | Serchhipd 2426 Winki V.. P
Daemedfied Type Sae

H20ITEROM Fiefolder
G25TESIPM Fie
F2GITESIPM e Document

images/00162.jpeg
2items e selected 15018

Properties

¥IEHs Compressed FolderTools Cownloads - 0 x
MW o e vew ene °
S e h B TG+ Dolasds <T8] | Seach Dounionds »
Name - Date modifed Type Sae
+ Quickaceess —
g e
3 mysqlS.T 18 winid Open
& Downloads # Open in new windew
& Documents # BinctAlL.
ET— sntosn 1
b e Seonvith WindowsDefender..
B vides
@ oneote B
= s S
& Nevork =
Cory
fe—
Delee
< Rereme

images/00169.jpeg
(=
e

I it yourdomain o o e e

s 531742844 N SR 1 0 118815 50
Ceabars it ot SO g G

P o e o o - Oy
o s o et g AR

s v

iccmort

ot

)

e

e

i o i e

o i e a0 1D 112

ooty 1 g RO 507t o e

images/00168.jpeg
11 Etact Compressed i) Foders

Files wil be extracted to this folder

EShow extracted s when complete:

images/00154.jpeg
MySL nstaller

MySQL. Installer

Adding

munty

Chousing a Setup Type

Pesesectibe

o Troethat suts veusus s

© eveioparDetaue ap ypencenpion

© Serverany

e

<ok Mot

Gl

images/00153.jpeg
] SO Isialler

MySQL. Installer license Agreement

dding Comaruity

et Concel

images/00156.jpeg
[MyEQL nstelles

MySQL. Installer Check Requirements
Addirg Comu
o oot v g e Thelasabs il e some

i el QUi morced 4 A 60t 65044 Sk .

ForProdust Recurenet S

5 M2 5het 109 isrosot sl C-

01 s

Fperi | e i G

images/00155.jpeg
£ MyS0L Instaber

MySQL. Installer

Adding Communty

Select Products and Features

Peseselctthe peaducts andfstres you would he sl cn ths macine

e =

N Seners7

3 iaiote P

MsauFerc
1t o St
wasat v

el
& sashan 10

<ok Net» =

images/00150.jpeg
| ® © ® L mysql-5.7.18-macos10.12-x86_64

e

mysql-5.7.18-macos10.12-
x86_64.pkg

images/00152.jpeg
temEorary password is gererated for

ro0i®localhiost: oy Yit6z:Jw

irodotion 2017-06-29T16:14:30 9967557 1 [Note] A
License

Destination S
" 1f you lose this password, please consult the

© Instaliation Ty section How to Reset the Root Password in the.

. o MySQL reference ranual.

© summary oK

MySQL:

images/00151.jpeg
« Introduction
Licersa
Destination Selec
Installation Type
Instaletion

Summary

MySQL.

% Install MySQL 5.718-commurity
Wielcome to the MySQL 5 718-comiunity Insteller

Thank you for choosing MySQL Server, the popular open
source databese system by Oracle. This package will
install the MySQL Server software on your systern.

Online resources:

= www.MySQL.com
» www.Oracle com

Cantinue

images/00158.jpeg
(- s instater

MysQL Instalier Tyoe and Networking

rver 5718

® stacaone st sever
Chooset

e st ctiation
ne e et sandaine

0 o068 Gt sandbes it et st oo
The laacD2 s

e opardtha

ot G

images/00157.jpeg
[MySQUnstaller

MySQL. Installer installation
i
[———
oo e —
5] wiocsorszis oo
(] s sias Rertosinin

Gl et 10t 1 upeat e otomegpacages

chze [omam]| e

images/00159.jpeg
2] s irstale

MySQL. Installer Type and Networking
Q. Server 57, SuvrCongurton ype

CortiaTipe | Deveogmen

Gty
@ Porthumbes (3%
9 OsenFrali oo nenerk secest
0 hamearipe pe e 15
O shordMemory My v MVCL
Abances Confgusten

0 Show Advonced Opins:

Gk =0 G

images/00143.jpeg
LR) [setup

Welcome to XAMPP!

XAMPP is an easy to install Apache distribution
containing MySQL, PHP and Perl

Instaling

images/00142.jpeg
ene . setup
Setup - XAMPP

Welcome to the XAMPP Setup Wizard.

images/00145.jpeg
e 1 XAMPP

¢ B = % % 2 Soart

e e) Mo i S e e
ey B e

53 < e =Py

i) @ QuickTima Playar oo

AT Rerieden ks

Ol @ TS

G uoes @ sami B it

A Agplications. =§T‘T = amoptise

8 Destzp. ‘Sopnos AnEVIuG.

Documents @ Soueetes

o . Stickies.

©oomnosts spnanioc
ol @ St Prbemoces

@ reraretiss | o

Clxaee + © TmeMachne TGRS

© e - 29 oy
sramea N Victusifox o
e ot e 20 0
Brorm @ a st 5o 2z

3 seeCTRUM,
@

Loskonened ENOIE 1262 M1
i T

images/00144.jpeg
LN) Setup
Completing the XAMPP Setup Wizard

Setup has finiched installing XAMPP on your
computer.

Launch XAMPP

Cancel ~ <Back

images/00141.jpeg

images/00140.jpeg
[Z] XAMPP Apache + MariaDB + PHP + Perl

Welcome to XAMPP for Windows 7.1.6

ouhave succesiuy nstaloc XAMPP onhissysomiNow yos ca st uing Apache, MaisDB, PHP and other conposents. You
can i mor efoin 1 FAQS Secton o check he HOW-T0 Gadesfor Getig sard i PHP appicatons

XAMPP is meant ol o covelopment purtoses I ha coran confpurationsetngs That mate o2y 10 dovcop ocaly bl It e
irsacio { youwantfohave your rstalato accessbloto oher. I ou want have your JAMPP sccessibo fam e larmel,maks urs
you undestan the molcatonsard you checked 1o FACS 60 how o otect your s, Alemately you canuse WAVP, MAM o
LAMF whe re smier packages whichar mcrs sutabia o pocctor

Sort o XAMPP Contol Tt o chock the sarvr st

Community

AP 1 b o o o 10 - e 4N CYntY DG .Y G 6L HSG3 Kinin) ukFOURTS
Contribute to XAMPP translation at translate.apachefriends.org.

Can o i adte AP forthrconmantymeribe's? W recd yor hl st XAMPP i e ianquigs. Wa

v 504 540, i a0 00, WO Usrs A COn s oas.

Install applicetions on XAMPP usng Bitnami

sache Frends and Binami ar ccoperatg tomabe dezers of open ourcaapplcaions el or XA, s e Birar.
packegad appicatons nciade WosprEss, DU, domial nd 4026 o ors Andcanbe Gepioyeswih -k i Vit .
Dinons XANFP g or dtat orth cuonty avatio 795

QOO
[ME et S

images/00147.jpeg
[Z] XAMPP Apache + MariaDB + PHP + Perl

Welcome to XAMPP for 0S X 7.1.7

o ool b XANPP syt o s o i Bpsche, MaB,PHP sl o o . Y
€an T i FACA 6, ech e HOW.-TO ks o getng stata i PP i &

AP s e oo for devocmentpisoses. 120 crtain crfquation sefgs fat make 1 sy 1o vl el but e
rocere o0 want o Bt vourrsttaton acess 0 s, You wen: e your XAMTT accessle e e et i
2t you UnGetons e mplcarns ard you chcko: 2 FAQS oS ow oo o . AemaeY Y04 20 10 WA,
AN or LANS W 1 S Ackages Wi 0 7o s ot EroAicn,

11 3 XAV Canvet Pant 1 chck s st

Gommunity
NP Fasben s formors e 0y~ e i GETy B . Y 8t oK ok S e
S0 st o i e, e 0 sk, oowg T st ot o aGana e 1y Goodr e
Contribute to XAMPP translation at t-anslate. apachefiands.og.

oy e XAMP for s o morars? Wo e o hlp o s e XAPP o lorrt e, e
e e i . vens s asscnanda 7. et s can oot Fraitins

Install appl cations on XAMP? using Bitnami

images/00146.jpeg
L) XAMPP 7.1.7-0

ussmey v

e Servers

Welcome to XAMPP 7.1.7-0

5o To Applcation
Follow XAMPP
Open Application Folder
Vsit Apache Friends.

Get Started

images/00149.jpeg
——————1 Configuring mysal-community-server —— 9|
| Please provide a strong passmord Lhat will be set for the root account

| of your MysoL database. Leave 1t blank to enagle password less Login

| using UNZX socket based authenticati

|

| Frter root password:

images/00148.jpeg
—————————— Configuring mysel-spt-config
MySQL APT Repo features NySQL Server zlong with 3 varfety of MysQL I
conponents. You may select the appropriate product to choase the version |
<hat you wish to receive I

Once you are satisfied with the configuration trer select last option |
'ok' to save the configuration. Advanced users can always change the I
configurations later, depending on t

© own necds.

W Servi & lussar (Currantly salecteds wyeglse.m)
STt e et e e
g R e R
|

|
|

|

|

|

|

|

|

| Which MysQl product do you wish ta configurez
|

|

|

|

|

|

|

| <0

|

images/00132.jpeg
[Show/Add Events - Google Chrome.

[httpy//www.yourdomain.com/event php?m=88id=68y=2017

Show/Add Events

Today's Events:

* 1:00 PM: Go to the Zoo
‘Time to see the red pandas!

Would you like to add an event?
Complete the form below and press the submi button to add the event and
sefiesh this window.

Event Title:

Event Description:

‘Event Time (hhvmm):
[

Add Event

images/00131.jpeg
3 Coencbrduguae 2017 x

€ 5 @[3 httpy//wwyourdomain.com/shov

alendar_ithe

Select a Month/Year Combination

Augt] 2017 v [Gol

Sun Mon Tue Wed Thu sat
1 2 B i s

s 1 s [10 1 2

Goto the Zoo

L 1 15 Ji] 1 19

20 2 2 2 26

2 28 29 a1

images/00134.jpeg
0 My Coensa

c

«

i/ /wwyourdomain.com

Select a Month/Year Combination

ndar_infS html

Auqust v (2017 v [6a
Sun Mon Wed Thu i Sat
1 1 3 3 5
6 7 s B 10 i 2
) 1 s 16 17 s 15
) bl n E) 2 3 %
27 s » B El

images/00133.jpeg
[Show/Add Events - Google Chrome
[hitp://www.yourdomain.com/event.php

Show/Add Events

Today's Events:

o 1:00 PM: Go to the Zoo
Time to see the red pandas!

o 4:00 PM: Leave the Zoo
‘Time to go home :(

Would you like to add an event?
Complete the form below and press the submit button to add the event and
sefresh this window.

Event Title:

Event Description:

Event Time (hh:mm)
[

‘Add Event

images/00130.jpeg
D) Catendar Auguat 2017 x

€ - € [D3 http//wwwyourdomain.com/showcalendar.php

Select a Month/Year Combination

August v [2017 v G|
Sun Mon Tue wea Thu £ Sac
1 2 3 [s
s 7 s > 10 11 12
13 13 15 s 17 15 15
20 B B B 24 25 26
27 2 » 0 31

images/00139.jpeg
P [main]
1 fmai]
{main}
' [main)
{main)
{main)
\ {main]
{main]
{man]

[E) XaMPP Contro Panel 322 [Compiled: Nov 12th 2015]

= XAMPP Control Panel v3.2.2

sorwcs Mode PGS Pors) Actins
pe st
wsat S
= s
erry s
st s

P

aamn

.

s

Conty

‘most appiication stuffbut whenever you do someting with senvces

there wil be a securiy dalogue or things vill break! So think

about running tis appication with administrator rights!
XAMPP Ins:alaton Directory: "c-\xampp\”

Checking for prerequisites
Al prerequisies found
Iniilizing Modules
Staring Check-Timer
Control Panel Ready

images/00136.jpeg

images/00135.jpeg
[Z XAMPP Apache + MariaDB + PHP + Perl

Welcome to XAMPP for Linux 7.1.6

Younave suscesiuy a1 XANIE” O 1 S5 Now you 48 617 Ushg AP, MaraU, P 810 ODor componens. You
o0 find e o inthe A aston o oot th HOW-TO G o oting atsd i PHP soplaatns.

XAMPPis reant o for deviopmont puposse. | has crainconfguration setiogshatmatef 60yt deveop besly bt et ae
Insccure iy vt 0 hav sour st a:cossiie o oths. yousiathareyeir XAMPP azcess o hy rne, ke
501 Y0 Undersn e pECaons 410U OCK e A 68 oW 0BIOGGHY0U S10, ALBIAIYEY YOUCINUSE WAL,
AP o LISAP i v i P25 i ar mors i or progustin.

Stat the XAUPF GontrlPans t check ho srver st

Gommunity

XAMPP hasiooo aroundformoe thn 10yers ~ hre . hugo commndtybeindit. Yu can gt ivolved by oing o Frus,
‘g Yol 1 th Mesing i, and g e onFacabook, oo o xpits on Tt or a4 toyout Gorgos Gl

Gontribute to XAMPP translation et trarsite apachefriends.org.

(Caryou el i XAMPP fo torcomutymemars? Wo nood your ot arlats XAMPP inc difivon anguages. o
e 61 p i, ransito sachefiendson wher sers cancot Uansbions.

Install applications on XAMPP sing Bitami

ApicheFriexds and i arocoopat o ko o200 fopenscurce appicarsonsavalabls on AP, o oo, Ba-
ackagedappicatons rcuds iordpvss, Dupa,Joomat and dezens o tvers ancicanio dpioyod with one ik talrs, st o
[N S

OHQOQ)

¥ £

images/00138.jpeg
Completing the XAMPP Setup Wizard

Setup has iished nstaling XAVPP on your computer
[Do you want to start the Control Panel now?

bitnami

images/00137.jpeg
Welcome to XAMPP! w

XAMPP is an easy to install Apache distribution
containing MySQL, PHP and Perl

v instaler
<sack Next> Cancel

images/00121.jpeg
3 Posts i Topic x
€ & € [http//wwwyourdomain.com/showtopic php?topic_id=5

Posts in Topic

You have selected an invalid topic.
Please 1y again

images/00120.jpeg
D TopisinMyforum X
y

€ = € |[3 hiip//wwwyourdomain.com)topiclst.php

Topics in My Forum

TOPIC TITLE

Created on Aug 6 2017 at 02:17:16 PM by janc@doc.com

#0f POSTS
Where can I find a good mentor? 1
Created on Aug 6 2017 ar 02:25:38 PM by john@doe.com

How did you get started in technology? 1

Would you ke to add a topic?

images/00123.jpeg
D) Post Your Replyinkow e x

€ = C [hiip//www.yourdomain.com/replytopost.php?post_id

Post Your Reply in How did you get started
in technology?

Your Email Address

Post Text

Add Post |

images/00122.jpeg
) Pests n Topic

H - o

x

€ - C [hitp//www.yourdomain.com/showtopic.php?topic_id=1

Posts in Topic

Shovwing posts for the How did you get started in technology? topic.

AUTHOR

POST

jane@doe.com

created on
Aug 62017
0217:16PM

I'm interested in knowing how people got started in techuology ~ did you
tinker with household electronics? Did you learn about it in school? Did
‘your parents buy you a computer and tell you to have at it?

When did you stast hacking on thing:
REPLY TO POST

images/00129.jpeg
[Colendur: August 2017 X

€ = € [[1 hitp//www.yourdomain.com/dateselector.php

Select a Month/Year Combination

August v (2017 v][Gol

images/00128.jpeg
5 1t/ wewn.yourdormain.com/seestore_aithJs oo

tegories
el g the s o coch categery
BOOKS

EEm——

O

Chicago Manual of Style

Goed fo copyriters
Pries: $6.99

[Burmow]

HATS

Fuaky bavs i ll shapes and sizes

Baseball Hat

images/00125.jpeg
[My Categories x

€ 5 € [htip:/wwwyourdomain.com/seestore php

My Categories
Selecta caregory o se fs tems

BOOKS
‘Paperback. hardback. books for school or play

HATS
Funky hatsin all shapes and sizes!

SHIRTS
From t-shitts to sweatshirts o polo shirts and beyond

images/00124.jpeg
[Posts inTopic x
€ & € [hupsmwwyourdomeincom/showiopic.pl =
Posts in Topic
Showing posts for the How did yon get started in technology? topic:
AUTHOR POST
jne@doecom | Im interested in kniowing how people got started in rechnology did you tinker

createc or:
Aug 62017
@:17:16PM

with household electronics? Dxd you leam about it 1 school” D your parents
buy you acomputer and tell you to have at t?

When did you start hacking on things?

REPLY TOPOST

‘anna@able.com

ereated or:
Aug 62017
02:4:06 PM

My parens gave me a TRS-80 when I was 11. and I played all sorts of ext
adventures and leamed a lirle BASIC! I always found computers fascinating
and used them wheneve T could.

REPLY TO POST

images/00127.jpeg
[Mystore x

€ = € [hitp//wwwyourdomain.com/she

My Store - Item Detail

You o viewing:

HATS > Baseball Hat

Descripti
Faney. low.profile baseball hat

Price: 1200

Available Calors:
black

blue

red

Available Sizes:
One Size Firc All

images/00126.jpeg
) My Categories x
Sic

My Categories
Selecta cegory t se it s

BOOKS
Paperback hardback. books for school or play

HATS
Funky hats in all shapes and sizes!

« Baschall Hat (12.00)
+ Conboy Hat (852.00)
« TopHat (5102.00)

SHIRTS

From tshifs to sweatshiss fo polo shists and beyond

tp://www yourdomain.com/seestore php?cat_id=1

images/00110.jpeg
students
@ studentid

StudentName.

student_courses
StudentiD

CourselD
CourseDescription
Courselnstructor

images/00594.jpeg
CREATE TABLE table name (column name column type) ;

images/00593.jpeg
e
gptant maiing the el string

P Tt e

o = ME WAL %8 PRST(remail 1] e

R

Be fmg e e SR

ke Srscipieat = Myousyourdcmai. cout

9: Snubject. = "Forw Scbninsi Teelters

100 §usilhaadsrs - tFrom vy ush Site <dstaulbaddrsssyourdsraia.soms \ns
saders = weply-c: t3_ROSTUenail]

ipienc, $eubjact, jmeg. $mailbeaters);

R
L0 <heals

s ereads
19 -Sending nail trom the form in Listing 15.5-/tit
20,
21
2. ~paThanks, «strong:Tshy echo _POSTI'name'l; /s

© tor your message./p
24: spovour e-matl ecress
25: wstrong.ciphp echo £_ESSTIiemallll: Tas/atronge:/pn
26: wpavour message: «br/e «7php echo ¢ PISTl'wessage’’; T
27: pvodye

200 </no

images/00112.jpeg
students
@ siens

Sudentiame

student_courses

Saden >
Gty

courses

1@ ciassi
Gnsstscrpton
[

Instructors

@ st

ettorores

images/00596.jpeg
INSERT” INTC table name (column list) VALUES (column wvalues) ;

images/00111.jpeg
students

@ studertin
StudentNamo

student_courses.

Siudenti

courses.

® ClassD
Classuscriplion
Courselstucior

Classin

images/00595.jpeg
CREATE TABLE grocery_ inventory (
id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
item name VARCHAR (50) NOT NULL,
item desc TEXT,
item price FLOAT NOT NULL,
curr_gty INT NOT NULL

images/00590.jpeg
sendmail from

youraddress@yourdomaln.com

images/00592.jpeg
<1DOCTYIE oul>
PR ——
<ta>

CLLoe3IHail Fozue/L_Llos
s esteads
<bosy>
<Lokn action-"senciasl.php! wethod-"posLs
“pselavel for- nane sans: - (lebelscbis
“inpus Cypettextt sizenis’ id
spaslabel for-tera:ltsE-Mail Address:e/labelabrs
cimzaz typesttextr size nailt names emeiltsc/ps
12 wprilabel for-mezteuessage::/labslicors
s “textarsa 1d4-'msa’ name-"msg’ cols-TIUP rows bin:/Cextarsan:p.
Sukmict mame submit® valis-'send'-fens tessage./buttor

ane® aame=nawe /s

images/00591.jpeg

images/00118.jpeg
[AddaTopc x

€ > € [1) hutp://mwwwyourdomain.com/addtopic hul

Add a Topic

it il

Topic Tile:
How didyou get stared i techmology

Post Text

T'a interested in knoving how pecple got
storced ir technology — 4id you tirker
it housenola eieceronics? Did you
Tearn bort 4t in schaol? Did your
parents by you & comuter and tell you
o have at 487

nen 16 you sxart nacking on <hings?

AdiTope|

images/00117.jpeg
[Adaa T

€ > € [hitpy/wwwyourdamain.com

Add a Topic

Your Email Address
Topic Tie

Post Text.

AddTopic

images/00119.jpeg
3 New Tope Added

eac

../ yourdomain.com/

New Topic Added

The How did you get started in technology? topic has been created.

images/00114.jpeg
[Record InsertionForm X

e C [3 http://www.yourdomain.com/insert_form.html

Text to Add:
Litle Bobby Tables

Insert Record |

images/00598.jpeg
INSERT INTO tabls neme (columnn name) VALUES ('O\ 'Connor said "Boo'

images/00113.jpeg
[) Record InzertionForm

* C | [http://www.yourdomain.com/insert_form.html

Text to Add:

Insert Record

images/00597.jpeg
TNSERT TNTO

("0'Connaor said \"Boco\

hle name (cclumn nam=) VALITES

images/00116.jpeg
D) ec254-158-122-146.com X

€« € | [} http://www.yourdomain.com/select.php

The ID is 1 and the text is: some value

The ID is 2 and the text is: Little Bobby Tables

The ID is 3 and the text is: I really like cheese!

The ID is 4 and the text is: Don't you think kittens are the best?

images/00115.jpeg
[ec2-54-158-122- 6o X

€ - € [httpy//www,yourdomain.com/insert php

A record has been inserted.

images/00599.jpeg
INSERT INTO grocery_inventory
(id, item name, item desc, item price, curr_gty)

VALUES (1, 'Apples', 'Beautiful, ripe apples.', 0.25, 1000);

images/00583.jpeg
<1DACTYIE azls
P —
<teat>
<LLLoon PR nuber gusssiug soriple/Uiles
<frmats
<bosys
ALEerphy scho Swessage; 7a<iNL>
<Lk astion-"<7php sl § SERVER['PEE SELF'l; ¥>" meLLod"oost >
apra_asel Lor-"guess™>Type your guess hersi</labelacbiz
IPUE ype- Lext” i5-"guess’ meme-"Sussste/ps
“ButEon type. subnit nane-submit® value 'submit’
W sgerm
2. ibodye
s0: /nenc

images/00582.jpeg
<ot
$ni Lo yuess - 42
L (loaelis 208T(s) |

Suuiage = Welvons Lo Lhe guessiny aachae!
Leell (1is numeric (S FOST guesc'l i)
Stussage - "1 don’t widarsiand LEaL respoiss

} esell (3 POSTI'susss'] -- $num Lo susssl { ¢ matchest
Snessage - "Well dcne.;

} eiseif (3 psTI'suess'l > Smun_to_suess) {
snessage - $_govrl gusss'].” is too ki3l try a smaller murer

} siseif (3_swsriicuess'] - Saun_to_gusss) |
snessage - §_puil'guess'l.’ is too smalli tzy a lexser aumder.

} sise (// some other cendizien
snessage - 'L en ters:

5 contusea

{47 1 not nuneric

images/00101.jpeg
1M Gmail - Form Submission

€ - C | @ hips//mail.google.com/mail ui=28ik=201412efd3&vi $7 |

Gmail

jcmeloni@gmail.com>

Form Submission Results

My Web Site <defaultaddress@yourdomain.com> Sun, Jan 29, 2012 at 237 PM
Reply-To: jane@doe com
To: femeloni@gmail.com

Name: Jane Doe
Mail: jane@doe com

Message: | think your site is great! | wll visit again soon

Also, can | have a pony?

images/00585.jpeg
<p><gtrong>Cueege number:<,/strong> <?php echo $num trieg; ?></p>

images/00100.jpeg
[Sencing mai from the fo. X

= € [) http://www.yourdomain.com/sendmail.php

‘Thanks, Jane Doe, for your message.
Your e-mail address: jane@doe.com

Your message:
Itk your ste i great! I willvisit again soon. Also, can I have a pony?

images/00584.jpeg
Snum triee = (igget($ POST(['aum t:

1;

images/00581.jpeg
1

<1DACTYIE azls

2 antmss

<t

<Libioohn HTMD fozu Liab

<freats
“bodys
<Loun action-"<7phy scho § SERVER[PHE 2zt nethod=rpost s
~pelabel £ esansiype yous guess hers::/labelscbrs
#NPAT Lype-'text’ Ld-'guess’ rame-*guess’ w:/p
“EUEten Type-"sUbA® Mame- SubmEtT valis-"submitesSubmits/ouston:
«Eoem
< fbsap
o

images/00580.jpeg
<?php
if (lempty($_POST['products'])) {
echo "
foreach ($_POST['products'] as $value) {
echo "$value</1i>";

}

echo "</uls";
} else {

echo "None

images/00107.jpeg
students

@ stdentid
FirstName
LastName

classes

@ Classip

ClassDesc

images/00106.jpeg
class

cLass

1 swocows

images/00109.jpeg
STUDENTID CLASSID
STUDENT 1 CLASS A
STUDENT 2 CLASS A
STUDENT 3 CLASS A
STUDENT 4 CLASS A
STUDENT 5 CLASS B
STUDENT 6 CLASS B
STUDENT 7 CLASS C
STUDENT 1 CLASS B
STUDENT 2 CLASS B
STUDENT 3 CLASS C
STUDENT 4 CLASS C

images/00108.jpeg
students

®

et
FitsiName
LasiNams

students_classes_map

StudortD
ClassiD

classes

ClassiD
ClassDoso

images/00103.jpeg

images/00587.jpeg
1 <rphp
Pe G Ui gusna = 425

3+ Gunm Lrivo = (n0eL(§ FOET It Lrie
deEf (eset i3 posTUgiees 1)

5. Swenags = MHeloww b the guecning wicking
5o} slesit

fuumeic:(8_POST Ulguenat])} © /7 Ln aon numesi
Sneauage = 11 dor't cndaratand chat réepsaze.’;

B+) eleeif i3 POSTU'guecs'| == Smum co_guseel | // matcheet

> Sneasage = "Well donslt;

10: } sleett 3 POST('guece’] » Saum to guece

1. $neseas:

3 208" zus

1
} sleeit i3 POSTI'guece’] « Saum to guece)
Susssags = § 20ST(50

o b

Try a smaller neazer.t;

10 is Loo maalo. Tey a larser sutber.’s
}ulse 4/ some ollsz coud_Lion

Swmswagy = 1 aw Lazsonly coulused."

images/00102.jpeg
employees
@ s5_Number

departments

@ DeptiD

DeptName

DeptiD
FirstName
LastName

images/00586.jpeg
cinput -vpe="h_ddsn" n num tries" value="<?php e 5 TAm

images/00105.jpeg
DEPARTWENT
A

EMPLOYEE 1

EWPLOYEE 2 EWPLOYEE 3

EMPLOYEE 4

images/00589.jpeg
s, TRNnaony
For @ia32 wly
LU/ /plp Uity

S - Localaast
bEEp://phe rat/entp-port

amep ot - 26

For Wiad2 o
 Bttp: //php et /esnduazl-fron
serdmail_from - mesexarple.com

; var Umew ovy. en may aupply avumenta am wall (Asfamir
© BTED:fphp rar/esndmas1-parh
serdmail path =

‘menénail

images/00104.jpeg
employees

@ sS_Number
DeptiD
FirstName
LastName
ComputerlD

computers

@ ComputeriD
ComputerDesc

images/00588.jpeg
A b2 munber cusssing soripte/titlcs

s </beads
250 <bodys
o 7555 scho imeseae; 7a</RLs

Strong-Guess mumberi</strongs -ipks fon

265 = action- <prp scho §_SERVEK['VEE_SELs'l; ©»' metkod-'zoss >

2 Ladel for-'susss'sType your Suess ke

2 excr d-tquess’ name-"gusss’ s

2 icdsns name- mum_tries® valus-'<7php ecto $aum_tries: 7ats
> "subnitt name. submit® valus-' submittSUbrAE:/Button::

™
s
1
2.

images/00572.jpeg
"reset" value="Clear This Form and Start QOver"s

images/00571.jpeg

images/00574.jpeg
name

document .getElementByvId("name

L

images/00573.jpeg

images/00570.jpeg
"text" 1«

<input type "the_text" name="the text"
placeholder="Please enter only letters and numbers!"

size="50" pattern="[a-z,A-Z,0-9]" required >

images/00579.jpeg
<pr<span class="question"~Please check all that apply:<bx>
<input type-"checkbox" id-'like_it" name-"soms_statements (]"
value="I really like your Web site."s
<label for="like it">I really like your Web size.</label>

<input type-'chackbox! id-'the best! name-"some_statements []"

value='It's one of the best sites I've ever ssen's
<label for="the best'>IZ's ome of the best sizes I ve ever
seen_</labalschrs

<input type=ncheckbox" id='jealous' name="goms_statenent[]"
value="I sure wish my site looked as good as you
<label for="jealous">l sure wish my site looked as good &s
yours ¢/labelschrs

5.

<input type-"checkbox" id-Tno_taste" mame="some_statements (17
value="T have 1o Laste and T'w pretty demse, so your site
aian't do much for me.">
<label for-'rc_taste'sI have mo taste and I'm pretty demse, sc
your site didn't do much

g

me .</label>

images/00576.jpeg
20 et
1 chesds

& <Eilean cirpls HC Torme/titlss

50 ciheads

s <oars

7 <form rethidstpont! action-tesnd_simplefomm.phpts

N <p><laisl Lors'usur >Tams: </Labsl><ors

5 cimour type'text! i-tuser’ name-'usertac/p

1 cperlanel for- massacer-Mazzage:c/lebels<brs

n “textarss 1. meseages nane.tmessage ous."ST Zolsi'a0 s/ textarenssins
120 “buteon tye. submit® mame "submit valte-"send-s3end Messese-/butec:

130 astorms
1. sboay
150 </nenl

images/00575.jpeg
<IDOCTYTE hbul>

clilal Lergarsans
<ticats
“UitiesForn Display Brawgles/Licles
“soripl Lype=r sext/Javasciiptt
tunction alsplay() |
aispain = window.open(*, Sewnin',

toolbar=no, ssatusrc, «2dCh=500, height=200)

message - ulilisAn -
aocurent Eormi.nene . valus,
messazs + flinADDRESS:Y -

aocument. forml.adaress valse:
[——
document . torml.phore valus,
messans 4 fofulen
aispin domment writs (nessage)
¥
<jaeripes
</t
by
A>Tors Siusley Beplsc/ils

<e>Buler Lie lollowisy ialormalion. Wheu you press Ul D_uglay

button, L
<Lk e Lol " asllod=Tgel ! aclive="">
cpRAE:

LUpuL Lype-"Lont” name="cans® sLie='50">/p>

dala you culored will be gioslayed in e pop-ug. </

GABDDRESST <LNPLL Lypu-"Uexl' haws-*addiass’ size-"S0Ts</ps

Lona® size= 507 /p

ZGSFHONZ: <lnpul Lype-"Lan.' nawe
" value="Dispiay”
Sisgplayin: aeipn

images/00578.jpeg

images/00577.jpeg
<1DACTYIE azls

1.
2 entws
3 <heats

<LLLoh simple seuponuse/itles

i </beats
Bi o beuys

“<psHaLiome, <stion
: cp¥our message is
5. ~strongs<iphp echo 3 FC3T['message
TP —

11: </henc.

<76 welo § PIST[usert] s Trefelivysl</os

Istrongss/p

images/00561.jpeg
<input type="radio" id-
arel

"vote_yes" name="vote" valas="yes"

"wore_yestsvesc/1abels chrs

<input "vole' valuss'oo's

<lakel

Ld="vole_no' nay
“No</labels

checzad>

images/00560.jpeg

images/00563.jpeg
zan class="qusstion"sHow can I

KEaclanal foos®hos Japreorg™ o

improve my weh =ite?</=pano</label

crelrct i

Wy roven s inestan aulliples

how_improue nemes"he_

coptlon valus="Vou can't. TL couldn'l e bebber."sYon can't
To coulin't be belter.</options

£ the cats."sMore about the cats.e/options
e abcut the family. 'sMore azout the

=fopsions
coption valus-nore about Elvis.'sMcre about Elvis.c/options
e T ey xa

images/00562.jpeg

images/00569.jpeg
<p><label class="question" for="the email®>What 1s your e-mail
adéress?</label>

<input type
placeholder="rlease use a real cne!"

"E0" requireds</p>

emailn i

"the_email" name='the_email"

images/00568.jpeg
cinpal Lyvpe="Lexl " pneusE="0LexL1l" ouChaiiys

"windoew.dlert ["Changed, ') s "~

images/00565.jpeg
ind = document.mvform.choice.selectedIndex;
val

document .mvform.choice.options [ind] .value:

images/00564.jpeg
<select name 'vote">
<option value="yes">Yes</option>
<option value="no">No</option>

S P R

images/00567.jpeg
<textarea id="messag=" name="message"
message here.</textareas

images/00566.jpeg
<select name="grades">
<optgroup label="Good Grades'"s
<option value="A">A</option>
<option value="B">B</option>

</optgroup>

<optgroup label="Average Grades">
<option value="C">C</option>

</optgroup>

<optgroup label="Bad Grades">
<option value="D">D</options

<option value="F'>F</option>
</optgroup>
</select>

images/00550.jpeg
question" fo:
cAnput typestrextt 4=
placeh

~p><label class: "the JanetsWbat is your‘name?</label>

fe_namat aans=trhe_ramet

ae:

Eater your full aane.®
</Dx

E0% requived autokoc:as

images/00552.jpeg
<p><label cless="question" for="the narve">What is your neme?</label.

cinpur type=trext® id=rthe_nave' nave="the_namen

placeholder-rkntsr your full nave."
Al meshERN - veguired aubotocumhe o

images/00551.jpeg
\me .value

images/00558.jpeg
<p>P.ease check all that apply:

<input type-"checkbox® id-"like_ it" name-*liked_size" value-"yes"
value="T really like your Wek site.”>

<label for='like_iL">T really like your Wsb site.</label>

cAnput typestcheckbmx® 1d=nrhe_bestr name="hasr_giTer values

value=tlt's ome of the hest sites L'va ever sesn's
<label tor-"zhe_best’>Tt's one of the best sites I've ever

seen. </lakel>

“checkbox® id="jealous” name="my_size_sucke’ value="yes!

<inout type
value="I sure wish my size looked as good as yours.'»

<label for="jealous">I sure wish ny site looked as good as
yours_ </1abel>

cAnout typestcheckbox® 1d="no_taste’ mame=ram_dense’ values'yes®

value="l have no taste and L'm pretty dense, o your sits
didn'z do much for me.'s

fortnc_tastc'>I have no tastc and 1'm prctzy dense, 50 your
didn't do much for me.</labels</ps

images/00557.jpeg
<input type="checkbox" name="mini">

<label>Mini Piano Stool</labels

images/00559.jpeg
"liked site' valua=Tyes”

€Iapnr EypasTonanichox? Athetllee S LY Tam
value="I really like your Web cite." checkeds
<label for="like it*>1 really like your Web site.</labels<brs
<iaput ig="the_best' name="best_site" value='ves'
of the best sites I've ever seen’s
<label for-"the best">It's ons of the best sites I've ever
BHan . < PSR v b

images/00554.jpeg
REIeloset
<ledend>pergonal Iaormations/lsgends
cpselabal clas:
<imput type=rtext® id-Tthe_namsn nam

plasehalder="8--er your Fill name
i3s-"50" reguired autofosiss</p>

qaestion® farstthe mamstoRhat fs pour

"tne_naver

S ELALABALS.

name?e /12061

images/00553.jpeg
"preepan olase-"quact lontablaase chaok all thar applyre/Spame=cbes

~input

c1anel

cinpat

<label

<inpat

<labsl

cinpac

<label

type-'checikbox! id-'like_it' name-"sone statemenzs ("
value-"I really like your Web site.
like_irnsi really like your weh site.c/1abels<brs

type=rcheckbox" id=Tthe best" name=nsone_stazements (]
value='Tr's ore of tha hest sites T've ever seen's

best sites I've ever

type-"checkbox" id-"jsalous” name-'scme_statements[]®
value="T surc wish my cite looked a3 good as yours.ns
for-Tjealous">I sure wish my site locked as good as
yours . </labslacbrs
typa=*checkbox! id='na_tascte’ name

“sone_stazements (1"

values='1 have no rasta and I'm pretry dense, s yonr site
didn't do much for me.">
for="uo_tasze">I have no taste and I'm pretty cense, o your

site didn't do mach for me.</label»</p>

images/00556.jpeg
<p>Please check all that apply:
<input type=tcheckkox' id="like_it! name="gome_ecatemerte (1"
value="I real.y like your Veb size.s

</ span><bxr>

~labsl for-'like_it'sL really like your Web site.s/labels<brs

cinput type='checkkox! id="rhe_best® nam

*gome_srarements (]
value="It's ome of the best sites 1 ve ever seern'>

<label foz=
seen. </labsl><be>

checkbox" id="jealous' mam

Lbie_b=sL7>IU"s one of Lhe besl siles T've ever

<input type "some_statemerts (1"
value="I sure wich my site locked as good as yours."

clabel to:

jealous'sI sure wish ny sita looked as goed as
yours_</labelschrs

<imput type:
value="1 have 1o taste and I'm pretty demse, sc your site
didn'z do much for me. ">

checkbox” id="ro_taste" names"scme_statementsil"

<label for-"no taste"-I have no taste aad I'm pratty demss, so your
sibo Midnlt o mogk

for mc.</labols</p>

images/00555.jpeg
len" name="mailto" value="me@mysite.com">

images/00541.jpeg
localStorage.setitem("loggedIn®, true);
sessionStorage.setitem("displayName", "Jane") ;

images/00540.jpeg
EOUICH HLATLALS

¢ sEAsToNl renr']

sesicn deszzav (),
Lies (5_SESSTON " Lest'1)
he & SESSICNI'test'l;

S ek selhine T i Rt S e

images/00547.jpeg
cprelabel class-"guestion’ Lo:-"Uhe ewail’sWhal is your e-mail

<dnpee typestemedl! ide"the_email’ name=the_emailt
Placehslder-"Please use & real one!
stzetto requivedi:ips

«/ziclasets

<tisiceets
<lugendsSuriey Quest ione/logends

<pesper Class-tcuesrion'sSlense checc A1l Shat apnly e/ Anans<ars
heckbos! 1d-"like_ic! name- o

'I zeally ike your Web site. '~

for-'like_it"sI veally like your Web siz
€ype-"checkbos' 1d-'the bes: name-'some staterents(]
the best sizes 1've ever seen’

<anpee

label o

values"It's one

<label for-'the best'-It's one of the best izes 1've sver
ceer. </1abal> cbrs

NP byposTeloib ! =’ jualonst nmes! s stasemenci (10
alee T e il wite Toood i good i pour 1

<lahel for-'fealoustT sure wish my site looked az good as
yours .« ilabel b

cinpre cypesicheckbo’ id='no_taste’ name='some_statemens!]
value-'1 have no taste and I'm presty denss, 5o your sits
AN 45 i Bl o

images/00546.jpeg
span.question |

£ont-weight: bold,

Srpar, rextaves, selece [
Eorder: ipx sa7id §eco
pattiag: px

eatrene |
rargio-top: 12e%;

Loy Susst Eoske/ELs
<1010 sane="GUFOIN" WELhoc-"gosL action="URL Lo scripts

e

enmPersonal Teformtione/legords

abel class-rauestion’ for-'the name
What is vour names./label.

PuE Eypesrtext! d-'the rame' names the_rame

Flacetolser

LlesTEO suguisud aulolceusse />

“ircer your Zull name.

images/00549.jpeg
<pe<label fon

haw_irpravatseapan olaas.
improve my web aite?fapanc/lapzlzrs

= Ld-vhou_inprove" nare_*hys_inpreva size.nat muleipd
option value-"¥ou San't. It cculdn ¢ be better.®iYou
can't. 1t couldnt ke Better.:/stion

<opzion value=thore about the cats.’sWors akout the cats
</options

csele

<opmion valas=tMors anoan Lis Lanily.sVars aroik the

Vamitp. <foplins

<omminn Talmetiars aboan Rlv . taers aEsur F1vn

<foprion-
<raslactacinn

crzielases

~Fieldsets

<legendssras for All1c/laguads

<prelusel for-'messagels<span slass P

more praive, yilt oft

"qusstientsFas
40 et e upans o oatiz L

AT e T T e N T] eSS
<irertareaseins
<rfielases

-aiv 14 Durzenst.
«<input type-'submist valus-"Clics dere to SusTitts or
<inpus sypes resss valus

Erace aad start overts

<ipodys
c/heml

images/00548.jpeg
~lakel for-'no_taste -1 have no taste and I'm prec:ty dense, so
your site didn't do mich for me.:/labeluipe

<pscisbel fors choose ecala'sespan classs'question!sPlease rate ny

Site on w seele o2 1 (poor o 10 (aweuone) : </apans </ Lazels

Sinpet ypos et id=
M- 107 srep-'1" value-"3 seip

s el somostchoose_seal !

i

Cpocsper class-'question'-Zlease choose the cme Thing you leve
Eest ahout my web site:</spans<brs
ZL6PUL Lypes"2adio” id-"Uhe piciurs” naws-'besi Lalng"

el for-

"the_pictuee SThar amazing picmurs of yonc/lanels<ors
“Anpt typestzadmiol ie"the_eats’ names"bes_taing
Zabel for-'the_cats':AlL the cat phosos. of course:/labelubr.
~inper "radio’ id='the_story’ name='best_ching

PN —-—
Abel Loz="Uie slosy">The iuspiring recay oL your saburbas

<irper

e 1A e the_mrezsurent mames henr_-hing!

"Elvis treasures s
‘the_tresauresisthe detailed lis
nemozabiliax/label e/ps

s

of all your 2lvis

images/00543.jpeg
<form name«"my form" nethod«"po:

action-"myprocecoingocoript.ghp'">

images/00542.jpeg
var loggedIn = localStorage.getltem({"loggedIn'");

var displayName = sessionStorage.getItem("displayName

images/00545.jpeg
<IBOCTYPR htwls

“benl Lermerents
“heaz
“titiecuest Book:/titlen

<etyie typesitextices’s
Frelier {
weden: ey
Eordsr: 2px 83714 fefocco:
}
ontowsaghts beld,
Font-wiens 125%;

2abel.question

wadet
oat. lett
Cext-alicn: leftr

Eont-wsight: bold,

images/00544.jpeg
<form namne="my fcrm" method="poet" actia

images/00539.jpeg
session_start();
$_SESSION(['test'] =
session_destroy () ;
echo § SESSION['test'l; // prints 5

images/00530.jpeg

images/00536.jpeg
<xphp

<rpocrrE bemls

<hta Lasgraats

<haze-
<titiesStoriag a array Witk a
<ihescs
<bociys
n Cacice Pages/hls
<tphe
(eset (5 PCIT["torm prosucts' 1)) {
i= (lerstyi$ S28SI0K['preducts'])) |

srodicts - array vasgus

avray rerge (unse: £3_SHSSION " procucts' 1}
=_FOST* Eorm producea11);

= sESSION["products 1 - serializs($procucts);

images/00535.jpeg
productl|s:17:"Sonic Screwdriver";product2|s

images/00538.jpeg
10 copip

20 sowsion start ()

CinOCTIPR B
hrm 1
“hesds
e

e coeaning Seanion Verisklsse/nizles
B: eime
2 <body>

10: enisContent Fagee/als

1 o
(zest i8_szosION ['produsea’])) {

s
fazen:

Ercnous cazt /st roacol ot
® Camserialfze (5_Specmoyoroduerarl] as &2)
Re sl gp e/t

}

cre nejnian,

)

<pica brefotarrayssssion.phptorstura
<o
b

produce che:

Eagec/an

images/00537.jpeg
19: 5_SE3STON['products’] - serialize(_POST[form products')

e)
e echn pvenr producrs Fave tesn reqiateved <pat;
220)
235 25

orm merknAspost! actions®<nkz adho §_ARPVERLBF_SRLT|I; 250
poeiake” £

<amlcor <

! Frorm_procuore s Selann some praducts: < akelschrs
*crm_producta’ ranastEorm products L0 rlbiplestmiltiples aize=t3ts
<option valuse'Somic Sorewir-vartsSoic Seredrivere/mtions

HAl 2000 5H 2003¢/ops

copticn valns

OB icn vl Tardi STz e o s
OBt icn vl e IORACT SORACE /et 2>

Copticn vl Teanuporter br: L

S Tranuporter

vl doptions

UL pginmTuieni LY ramim St LY vl i oY s it . Forse /o Lins
33: <paca href-'ssssionl.php »30 to Scntea: pages/as/p

351 < /bodys

37: </nemt

images/00532.jpeg
0
TR = T —
SaRSETIN L mrodera s - aTar 2300

coho "Ihs Treducts heve hisn registersd.®;

images/00531.jpeg

images/00534.jpeg
sess_5918a1cd676c96986ce2933726466b070
sess_76cae8ac1231bllafa2c69935c11dd9s
sess bb50771a769c605ab77424d59c784ea0

images/00533.jpeg
<zt
Gesuion ular_ i)

<IDOCTYFE Linds

pr——
<hescs
“titiesvour Productse/tities

1 ehisvur sroductse(ELs
LL: epevcur chosen products arsiips

<oz echo ¢ skse
Ry

[produces], 2asf1in
[progust:

e flin

images/00529.jpeg
10 <ophy

2+ renrion_srart();
3+ echn semuvewr seasior T fa . sesstor_141) * </

dim

images/00528.jpeg
Jdocuanz=nl .covk_= = "vecelables

explres=Thu, Cl Ja:1 1870 D20:01

images/00525.jpeg
WAUEME SONER LY PR PE S AP SR) R O SR SURT AR ORI Ny)
N e L S

images/00524.jpeg
yulabler, Tarlicioke!, LiwsD)13593, "/, 0

C (sselis COONIED vegatasls'IN) {
b: ot "padello agais

o) sise |

ecko "apuello, you. Ihis may be v

o3 have chosen: *

- CooRIET vecetanle]t e/pat s

e First visd

.

images/00527.jpeg
sctcookic ("vagetable”, "M, timc() 60, "/", ", yvourdonain.com", 0);

images/00526.jpeg
1: <1DOCTYPE atuls
lu Langarears
<t
<LUesBeliing = Couhoee/Lides
“serip Lype-Lext/javascript's
documeit cookle - "vegeleble-artichohs; sxpliss-Sal
pata-/; dowsi

5 gul 2017 15100500 GHT

vourdorain.cow ;

</esrips
b cibeads

10: wbodys

1 kagor a Cookier:/hi

12; buteon onclick-"elert {document cookie) ;"sLet's Seels/buttem:

images/00521.jpeg
L. £ AT L
Cenraction: Keeo-alive

Mozille/t.u (Wendews K 1.0, MOAL4) Appledekiit/
Chrore/51.0.2704.106 Safari/€37.38

st w7

7,36 (ML, 13

douain, con

epL: Lant/hbal, agplicaion/sEbu_+inl, applocation /i ;
heoept-Broodings geop, deflate, sdehi

ept-Languags: x-S
SRUE: URERCR I <A

9. Lmags fwap, 4/ 4 14-C

images/00520.jpeg
HTTP/1.1 200 OK

Date: Sat, 15 Jul 2017 10:50:58 GNT

Apache/2.4.18 (Chunlu] PHR/7.1.5

X-Fowered-Dy: PUP/7.1.6

Set-Tockie: vegetablemartichoke; path=/; domain=.yourdomain.com
Connsction: close

Content-Tvpe: text/html

Serve

images/00523.jpeg
SBRARTy | SetLDakia)
el

SgREAULO=AIVIORONG] EHALRR=ERL, 1R ORL 30T T3 U010 S

g e e e

images/00522.jpeg
echo: 3. SERVER ['HTID COOKIR!]: /74 will ‘print Syscetable-ariichoks!
echo getenv ('HITP_COOXIE'}; // will print 'vegetabl
echo & COOKIE['vegetable']; // will print "artichoke®

reichoke!

images/00518.jpeg
Srrewgtring = "I purchased" . numPurchases (Ssomenum) . ' items

images/00517.jpeg

images/00519.jpeg
vage = 22;

if (($age >= 18) && ($age <= 35)) |
echo "Youth message";

} else {

echo "Generic message";

images/00514.jpeg
<zt
feountar -

o G Sevunler <n
fSeous

Gentdnver

Sasanterint {

Stenp - 4000 / Scouatur;
echo "sudy diviced sy * . counter

"L sterp . mors

images/00513.jpeg
4000 divided by -4
4000 divided by -3
4000 divided by -2
4000 divided by -1

is.
is.
is.
is.

-1000
-1333.33333333
-2000
-4000

images/00516.jpeg
<tptp
Los (ey = i 8y <= 125 gy 0) |
[
on (5% = 17 $x e 125 Sxen) |
030 Ted sUples\Thorders 1px sonod K00 widin: 25x;

o Tebable soyles\ihoracr: fpx solid #000;\%> \al

[N
scae i35 ¢ s

5 scae Titds Ant
W}

L ks sefzen n
)

Lo echo wafeablent;
Wi o

images/00515.jpeg
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
1000
4000
4000

divided
divided
divided
divided
divided
divided
divided
divided
divided
divided
divided
divided
divided
divided

-4 1s
-3 is..
-2 is
-1 is.
1is
2! L8a
3 LB
4is...
5 is...
6 is...

7 i

-1000
-1333.33333333
-2000
-4000

4000

2000

1333.33333333

1000

800

666.666666667

571.428571429

500

444.44444444444
400

images/00510.jpeg
10 erphy
2 fur (Smter = 15 Scounter s 107 Seonntero) (
+ erewn - 433 4 scomnrer;

“chn %007 africed by 0 gcounrer v a gremp . werrat;

images/00512.jpeg
+ erpry

+ Seounter = 4

e

brear;

¢ <n 10; Scountares)

e—

00075
“4000 Alvided by ¢

images/00511.jpeg
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000

divided
divided
divided
divided
divided
divided
divided
divided
divided
divided

is..

Fo®a e w N e

4000
2000
1333.33333333
1000
800
666.666666667
571.428571429
500
444.444444444
400

images/00507.jpeg
10 erphy

2 g = 1y
=cha *The member fa- % fum . tebrat

) wkale gmm s Zoc) e

am < acer)

images/00506.jpeg
10 <ophy
22 georter - 1,

S Wk oo e 12)

T

[—

s
5. ccounterss;
:

images/00509.jpeg
¢ feunter en 13

corc Stowntor L v tiaca 3 fn L iSonunear ¢ 2) L iekrsn

[r—

images/00508.jpeg
for (initialization expression; test sxpreasion, mcdification exprsssiom |
/¢ code te be executed

images/00860.jpeg
28/Tun 3017120012018

I2s/cun/ze17:20.22:20

-amea)
o7co)

WEET / HTTR/1.10 200 44
"oET /gavicen.dco (ITE/L.L

a0

208

images/00866.jpeg
EELLY 154 FCLELBELON GRIRBRL Neth BRGicl CGOULG, fot Dul
AT TS SRR S e b A

images/00865.jpeg
lcrit] (48)Address already in use: make_sock: could not bind...
'alert] no listening sockets available, shutting down

images/00868.jpeg
gunzip < php-7.1.6.tar.gz | tar xvf -

images/00867.jpeg
(13) Permission denied: httpd: could not open errxor log file

images/00862.jpeg
/usr/local/apache2/bin/apachectl command

images/00861.jpeg
T I — e Apeche? 4 wervive in curnicg]

Mpacie/a 4,26 Maint conliaired - 1

iniy vl ool farc
[Hon Jur 26 23:29:3: 2017) [rcrinel Server busir: dwn 26 2017 15:88:22

[Hon Jur 26 30:20:3 2017) Ircrinel Parent: Crearad caild process 1924
[Hon Jur. 26 20:20:35 2017) [rctisa] Child 2€04: Child process i3 rumaing

[Hon Zue 26 20:20:35 2017] [rctise] Child 2€04: Beguired the start mace:

images/00864.jpeg

images/00863.jpeg
/usr/local/apache2/bin/apachectl

start

images/00859.jpeg
odule prafe

&
HinspursServss
R ——
ManCliuaL:
HarBegusstsParciild

</ Tibomes

AL-Module workar.os

s

Y —

Startsarvers
Maxcllunts
Minsparsitreads
Haxsparsinreads
‘hreacaFercaild
Haxkequestsserhila

i1fnoduies

10
20
©

3
'

1

[

images/00858.jpeg
TMeTine Myrodlos
onAMe = my_module modi =a/1 {bmmodi = an

images/00855.jpeg
<DirectoryMatch "*/www/.*/[0-9]{4}">

images/00854.jpeg
Server version: Apache/2.4.26 (Unix)
Server built: June 26 2017 19:56:27

images/00857.jpeg
“Dizcotory *faome/dizecteryts

SomeDirsctivel

SomeDirsctivas
< Mizectorys
Alacarion v/dounlosdass helns

omentrazriva)

“Tiles "\ imie]ipm
Somenirsstives

</Piles:

images/00856.jpeg
<LocationMatch "/ (my|your) /data"s

images/00851.jpeg
configure ok

creating test/Makefile

config.status: creating docs/conf/httpd.conf
config.status: executing default commands

3

images/00850.jpeg

images/00853.jpeg
/usr/local/apache2/bin/httpd -v

images/00852.jpeg
Installing header files
Installing build system files
Installing man pages and online manual

make [1] : Leaving directory '/usr/local/bin/httpd-2.4.26"
3

images/00848.jpeg

images/00847.jpeg
REVOKE privilegos ON databagcname.tablenams FROM 'ugername'@ 'hoat'!;

images/00849.jpeg
gunzip < httpd-2.4.26.tar.gz | tar xvf -

images/00844.jpeg

images/00843.jpeg
GRANT praivileces ON databaserams.tableram=s TO 'username'a'host! ;

images/00846.jpeg
GRANT SELECT, INSSRT, UPDAIE, DELETE ON myCumgacy.® TO "Jaug'®'juwscumputer
s Ry

images/00845.jpeg

images/00840.jpeg

images/00842.jpeg

images/00841.jpeg
ADC USEER 'jJanc'@'jancasconouteoer . comoany.com'! IDENTIF.

images/00837.jpeg
¥ R 1 AOGELIRG: TN I08: SRENOLYS TRl
Bivis 1005 Accesn denled Foi umer: "1éaplotilbost’y Weing Saiswsed: vEs]

images/00836.jpeg

images/00839.jpeg
ADD USER 'username’'

'hostname' IDENTIFIED BY 'password';

images/00838.jpeg
=h localhost -u joe -pabcli3i test
table inf

ation for complation of

e and solum namss

Lusw off Uhis [ealuze Lo gel a quivker slaslup wilh -A

Welcome to the MySCL monitcr. Commands end : or \a.
Your MySL connsction id is 12 to sarver versicn: 5.7.1%-log
Type 'help;! or '\h' for help. Typs '\c' to slear the bufZer

nysql> SELECT » ROM test_table;

1a | test_fiela |
1| tlan |
2 | Flah blak |

2 rows in set (0.0 se

nysql> INBERT INTC test_table VALUES ('!, 'ay text'l:
I

N T TSt O S SO—"

YES)

images/00833.jpeg
mysgladmin password -u root -p

images/00832.jpeg
6 -ARL AT ARd8B, R9LOSA 4 o
ot

S TONPOESLY PRORNOES AR SHIMIALEL S0E: S0LEN

N

images/00835.jpeg
mysgld --user=non root user name

images/00834.jpeg
Juar;ocal/myeql-5.7.18-macoald.12-x85 64/bin/myeqladmin password -u root -p

images/00831.jpeg

images/00830.jpeg
sudo systemctl start mysglad

images/00829.jpeg
sudo apt-gebt -y install mysgl-communlitby-server mysql-cormunity-client

images/00826.jpeg

images/00825.jpeg
sudo /Applications/XAMPP/xamppfiles/xXampp security

images/00828.jpeg
pudo yum -y inctall mysgl community cerver mysgl community client

images/00827.jpeg
sudo dpkg -1 mysgl-apt-config 0.8.6-1 all.deb

images/00822.jpeg

images/00821.jpeg
chmod +x xampp-linux-x64-7.1.6-0

images/00824.jpeg
sudo /opt/lampp/lampp security

images/00823.jpeg
Starting XAMPP for Linux 7.1.6-0
XKAMPP: Starting Apache...ok.
XAMPP: Starting MySQL...ok.
XAMPP: Starting ProFTPD...ok.

images/00820.jpeg
Don't change this image of me.
It's my only chance at immortality. —->

images/00819.jpeg
<table><tr><td>Cell One</td><td>Cell Two</td></tr>
ctr><td>Cell Three</td><td>Cell Four</tds</trs</tables

images/00818.jpeg
This image needs to be updated daily.

images/00815.jpeg

images/00814.jpeg
3 ().ready(function(){
// build the picker form
buildbateForm() ;
calendar () ;

$("#submit") .click (function() {
var newlMonth = §('#month').val();
var newYear = $('#year').val();
var newDate = new Date(newYear, newMonth, 1);
calendar (newDate) ;
return false;

images/00817.jpeg
+

/svyies
sscript sre-'https://cods. jquery.con/iquery-J. 2. Lmir. 3s"ss/script

sscript sre-calerdar_functions.js i /esrizs

ihead

scs a Month/gear tomsinatione/kls
forn id vdazesickestos/gamm-
v ddemmycal e it

et favaser

00 rmadyiEametion(i |
£/ buld the pieker fery
[—
cutindar)
§ ("huunniLr) L eLick (lusctivalt {
var seoniis = $C Bacul) val (s
var seoar = $(Mysart).vallls
Vai nawbate - nww Dataluewiear. cewNeath, 1)

Calundar (nevDaLs!
ratura Lalse
n
1

iacrizen

sri elbodyn
N

images/00816.jpeg
1
31 ety Colendare/titios

o fipom Lmt fisisn
7 barders Y T black
> berdar sollapse: esllapas:
> maraia top: irem

e}

e g

12 berdsr: Ipx 80116 black
13, Foadina: st

14 fenrueigss bold:

15: Eackaround: socor
W}

el

1. berdars Ipc eolia boack,
19. Fa33ing: A

20: vere:caloslign: rop,

21 widbhs 130p)

images/00811.jpeg
// watch for clicks on the submit button
$ ("#submit") .click (function() {

var newMonth = $('#month').val();

var newYear $('#year') .val();

var newbate

new Date (newYear, newMonth,
calendar (newDate) ;
return false;

b

1);

images/00810.jpeg
$ () .ready (function() {
// build the picker form
buildDateForm() ;

b

images/00813.jpeg
G (#myCal') append('ceanls ld= mpCalsréart.c/tables’
alendart | .pperd (' ctheadsetioc/troe/theadst |
fwar 1=3; § < dave lenath; deel |

£ (Bnyalendar thead £xt) appendlietks -daya[ileteseks

)

$0gmymalendart) appord {1 etaodyse/thatys

SCIEI) append (121 r5)

Tar fussk_day = 07 wesk_day « T3 roL_wask_Jays wask_day i1}
SULhody Let)append (<l idmt omsrh Gay 1 102e/L 155

+

wsek_day = Eivet_wesk_dsy;

Zox day_counzer
weels_day t= 71
if Cusek_day

77 %6 to the rext 1:ins of the calendar
I
'

(emcay tridaset)

dave_in |

03[ced id-riay -day_counter-' s

Say_counzer + to/tin)

his_month; day_couaterst)

images/00812.jpeg
T funet o caleuar it

P S TyTaln) emply

+

Ay = dategeibate() s

et = daba.gattiorth(

year = daza.getPull¥esrl);

mortha = naw Array(Jauary!,'ebruary | Mareh!,!
1July', TRuguet!, 'Sestanser !, \Getobex |, ovanbe:

thie xa: new Data(ysar, month, 1

new Data(ysar, month + 1

daye - mew Array('Sw’, 'Neal, "Tue', Wed', 'Ta'. 'Eril, 'Sat!):

LisU weus day - Uids aculh.gelDey (i1 // day ol Lie wesk ol L Lizsl day

el Tiue 11

next

Uaps Lo Luis wonll = Mallirowd((esl uooli.gelTine() - Lo nu
00 4 50 % 60« 2211

images/00808.jpeg
19 padding: 6px:

sical-alice: to:
Leop

+
eiyies
it arasthetpes//oads.jqusry.

com/3qusry-4. 4. 1nin. Jera < aaripts

</hascs

<boar>
<hissalscs a Homth/vear Combinations/bis
<form i4='dazesickexts</Eorms

rryeal e fdive

images/00807.jpeg
15 <IDACTYPR hrmls
2: <nem langerents

3 cheas

$: <b-tlesy Colendare/t:tlss
5: <styls typomrleat/conts

et
borders 1pe solid slacy
botes-volLapre: collapser

rargln-op: Lrew
}

o

1= boders 1ps slid slack;

1 padding: 6px.

1 Eeaz-weight: bold;

1 ackground; deoo:

e}

vy

1% e SN S DI

images/00809.jpeg
R

PSs—

st

> S0 Umenzht) appera (- ccprion vali

ver v
S0
S0

e

Sokert) .appeni!

e {1 <aslect. i

pera{tcaslact i

angthyive

14

/¢ set daze zo current renth and year
vax 3 - new Date(

var o - 4.gesHonth(i
d.gezrullvear(
£a opioniec(
x ootionivel,

"5 timonthalils <
yeartsefealactst

i cjoprions

e v, ey

images/00804.jpeg
55 num_rows ({gecEvent_res) > 0) {
2 favent oz - el

. weils Thev - omysqli_farch_sreay getevent_res)) {

0 Gevanz_tile - srripslashesiger(evere_ririal);

= Gevent_shovrdesc - srrivslashes (gevl evenr_shordesc:
0 afrr_dace - fer(fre_sata'l,;

" Sevant_tar - 1< earrang.

52 + gevert_riria senrus

Sfmr_asre v arrengs
et

Sevent_sherrisa

Al t_Free_restlt (sgertvent_rea) ;

}etss |

¥

£4 wioms semneetion to MyeQL
[T

o
Sihs TepsesLiongsToay s B
Seveal L

i (Sevenl _al ¢

e

74 ehos form for adding an sveat
eCks < c<ENC_OF_TEKT

images/00803.jpeg
gaafe m. "-1.Grafe_d.¢

sevent_date = gmafe_y

¥ gante_evont_ri%e_hh :0_gaate_evert_bine_mn.tii0t;
Siasbvent_sal - *INSERT DNTO calendar_svents (svent_sitls
vont_sterkdese, cvent_stert) VALUEE
(10 fens_oveas_tizlent, 10 faafe svent_shostd
" fevent_date 1),
FIHEOGIE Fi = naL i SR, ARSI
or i tm i sl i)

]

fénrance dstabsce-rafs stringn
Saafar = myagls_real_ascapa_strirc(sayes s, 5_67T(imi)
S3afad = myaql:_real_ascape_strirc(sayay s, 6aTlYAl)

Seats y = myogli sea eocaps soringSuyeyli, $GZT0YN1

for this Zay

= SELECE event_citle, event_chartdsse,
date_fornat (sveat_scars, 'A1:ti ig) as fmc_date

WERE menth svans_szavt:

2D dayotmontk (svaat_szart)

2 year(evert start] -

-3saze y." CRORR B

scetBvent res - mysqli guery(3rysqli. Sgetivent sgu)

ot dosingsqli exzor (Saysylid);

overt stare";

images/00806.jpeg
195
10
107
10
103
1
1
1
13
12
115

<option value-"15"»15</option=

200

<option valu
<option valu
<fasteces

<izielasees

<inpee eypestaiddent
cinpet typestaiddont
cinpee typestaiddont

“butran rype-tsuomic
=p_op_text,

</modir
</nea

30-/options
<snisejoption

neme-net val

rame- e

"isate ms
riaate dis

riaate,

value-

Submi£r2340 Fsace bustons

images/00805.jpeg
80: <form mcthod="post” activee®$ EEIVER [PHD SELF] ">

Bl: <psestrongsRould you Like Lo add 4 erencte/olzoags<brs
82: Compluts ths Form below aid preoo b submit button to

. </

pr<TakieT Farmiavent LiLTsosPecal Ti TosefTabel sebra

size-725" maxlength-"25%sw /5

[T

LIS s svent_t-t1s0

paclabel for=tevent_shortde

input typestiexts id-e:
size=rz> maxlength-

slesers

v3: <legerdsevent time iWhmm i</lec

se: <select ramesreven:_time hhes

930 2ok _rexr

crskveat bescription:e/lavelairs
_shortdese” names"evert_shoridese
2stesninn

<0d-

2w 240 gmeed |

«option value-) "\ sgn</options”

W1 echo
Loz: <iselects
1035 eselect tans:
D ——

kno_ce_

evenz_tine_ants
00" 200< foptions

images/00800.jpeg
} ela= {

e

wiay) || Sesyhezay o] e Smonts {

vl Lille - 1ny

Swreall = myngli_camect {lozalhork®, Mtentunsr!, Soonssanct, |hesDRY ;

SciRusnt_nal = 'SELEST avent_title PROM calsadar_svents WEERR
monchievert_start) = 10 Smorth. ! KX

Aavofaonth (svant_szar

= gssyheray Limtay 10
IND year(evert_start) = !0 Syesr.t CRDER B
SeucBeent ces = uymso gaery (Sm

vent_gtare;

sali, SoEKEvent sul)
02 dictuygis srron Swsgli))

L1 agsadi nun zows (SCbREveul resi >)

it e (864 = myigl 1 1. array (§onkBuanL vail) |
el Uit e .n sLripntanhes ey [“svenl LiLle']) Vet
+
1. }oetea
. Sovan_ticle = 0y
1022 P

103¢

images/00802.jpeg
<hlaSira /A Tvente/hls

15 = ryeqli_comnect (ocalaost!, Ttectus

aay new event
at (5_rosm |

/eraace dasabace-sate strings

15 Ssats m - mysqli real sscape string(ayesii, § POST['m')
Ssats d - mysqli veal sscape string(Sayegii, § POSTI'a')

Ssats y - mysqli real sscape string(aysgii, § POSTI'y']
Ssats sven: title - rysgli veal escape stringidmysqli.

ot _vitie'T)
20 _shortdssc - mysqli_veal e ringitmysqli
10 35 POSTIevent_shortdese1) ;
w2 time kb = Tysqli_real_escepe_stringi$wysqli
cor $_posT[event_tine b 1):
ca Ssafe_sven:_time_m - Tysqli_real_ssceps_stringlfwysqli

4 post [avent_tins_x='1);

4%, Meomepssel, MEasEDRY);

images/00801.jpeg
aohe Memdsen href=\"javasorinr:evertWirdew (' ovanr, phpimst Smoreh
Fanmsdas Sdngarrey g vsan. e
“brsn sovens_ritie ne/rdsint;

art s ST [rdey] < fas

o (§avent_ritel

)

feho te/rrae/ranient;

Jrelose coansstion so WYSQL

myali_clozs Smpaalil;

170 <script typ:
LB function

o

Savascriptts

tizadow tarl) (

evert_popugiita - window.openfurl, ‘event!, 'resizasle-yes,
scral_sars—yes, coolbar-re,usdsho200,height-10C };

evert_popupiin.opener - seit;

isexipts

cover.jpeg
PHP, MySQL
& JavaScript

nOne

images/00002.jpeg

images/00001.jpeg
@ Pearson

images/00004.jpeg

images/00003.jpeg
—

Request made from
web browser to web server

' Server sends response
1o web browser

images/00006.jpeg
T - | uscoorect Lt dbat

(Loa/hend soots e

% @ Cuemutnomies <] e =€ G/ Bl
ime T | I e =
[E-F i rcesios o e
= prtee ac i e
(i v o pregeiey
oo s Norsosa. i i .
o Imineas it i1t
[Craavorin et] [i e
e 353 feos o i ez
[HIKE o3 e E)| Sty 18 Nyt
(e at s T3 17208 - s
O ——
frie

C]

e

Loca Listing 3 SRjeciE), 393 1, Do Spars ARG IS @

-

images/00005.jpeg
o B e

o amar
€ 5 Q[micebonkcom 082 6T ronteraye ek nmiTpos ingin- 65T 7791718) K A

g 108 80157
G ssaim e

B sesiomere

images/00008.jpeg
T i FP P Uricenes) Non-commercie hor e ony

R R W
T e “@e] [e
lmex= adeom| EE T EIN TN

G Akt
e

b ettt ey

ks ey v coveion

P v ey

images/00007.jpeg
3 Casic T Plus Ulcerses) Nom-<cmmercal home wse <y | ey

Tt e o
@ - 3 L @
& T i it
FE—— B E e
IRXESF0ON IRXI| SOOR
e o r——) e P
e PR S
&
bt

e s e, o S A

[P—_

images/00009.jpeg
5 clasl 72 P Uraraed) Noncommarcial o wieony.

@ .| 4 . 4| El a g
] I e N T)
= el [er
|lnexxe2008 mexkEseor|
i [i e amens
s ot pord it

St
oo
i s
i
Iniwsiessn

images/00495.jpeg
if (expression) {

// code to execute if the expression evaluates to true
} else {

// code to execute in all other cases

images/00494.jpeg
10 <Tphp
S g ——
3247 (smond ae Thappyt)

eckz tisoray! T'm in 2 g moodt

images/00497.jpeg
if (expression) {
// code to execute if the expression evaluates to true
} elseif (another expression) {
// code to execute if the previous expression failed
// and this one evaluates to true
} else {
// code to execute in all other cases

images/00496.jpeg
<php
[
17 (snoos

ecre wTanray

) etse |

o vimiaa

“opmys

Tmr 8 zeed oot

Smood mosd.

images/00491.jpeg
My name 18 Baby Benson

images/00490.jpeg
" ‘e
25 clany myClaon {

N Pt -

a Fuboo fansrion mclann(en)

s Senin same - gn;

6 !

i pubiie fanstion sayiellod |

5 Gohe IELLOY By name is 0. Sthiz
w0 |

11: clesa chiliClsss sxrends myclass (

12: Jjcade coee hers

13:)

1. Soblectl - rew chi
15: Sabecti-.

Class i aaby Benson’

images/00493.jpeg
if (expression) {
// code to execute if the expression evaluates to true

images/00492.jpeg
1 <php
& ryeians
publiz Sname - "Benmont;

prenis funesion mclzes g |

Staia sname - gr;

¥
pblin Cunssion sayHesini) {
sca0 THELION Wy nats is T.$this-susis;

Class childClass extends nyclass [
public Lwetion savEslleD {
echo "1 will not Ll vou m

}

Sobjecti - new childClass ("Basy Benson®
1r: Sobjecti-sayiellol

10: 8

images/00499.jpeg

images/00498.jpeg
<tptp
Suwu = Tad s
i (S = Thapey) {
el "Hovray! 1'w it & govd weodt”
}oslselt (swood - "eadm {
chic Awes. Don't ke doun
) sise

“L'm neithes hapsy nor sad, but

srecd.

images/00484.jpeg
1 <tphp
2 elose myoar {

prblis feolor - Mhluse
PULin Smaee = eept
PrETis Gmadel - *Renszad

$ear = mew myzari);
eho v

areve 2

images/00483.jpeg
class myCar {

public $color = "silver";
public $make = "Mazda';
public $model = "Proteges"

images/00486.jpeg
I drive a:°*

red

Porsche Roxster

images/00485.jpeg
<t

clase aygar {
BULG Gevlor = TLluet;
PUELC fmas = et
LG Swodel - "Rensgads”;

v
10: foar-smodal - "woxster+
11: ecko *1 drive & Sear-ucolor . ¢ v . Sear-meke .t v, Scar-omodel

images/00480.jpeg
1 <pip

2: Cucstisa tagirep(§tug, SLab, Shuc = 0%

s

1 L {itempoy (SULaLi) 8 ILunclion eaista{Stue))) |
5t Stal = $unc(stat);

o KELUER "< SLag. "o SRl e/ Stag. "o el

7 Felo |

5 Fetum estIOHG® $UXD. < fStEOngEs

v

i}

10

1z 5 nderline (stxe)

1. revura ‘ospen style-\tsss-decovaticauaderline;\'st Stxc.'</spans’
150)

L6: scks cagNraplistronc' maka me bold!

17: eoks tagNrapitent. underline and ieal:
18: ecks cagWrapitent. maks rs izalic and guste wet,
e_fanotfon(1SEXE!, ¥atarm Tacot; SEXESGUOE;

22 rer, tunderiinat);

images/00482.jpeg
sobjectl 1s an object.
Really! I swear Sobjectl is an object!

images/00481.jpeg
1 <rpky
clace ayClass (
s will 9o bers
'
$objects = new mycass ()
is an *.gertype(Sobject.) 7. buats

ceko "ysoktecs:

8: if (:s_omjess (Sobjectal) |
s echo "reallyt I swear \isbiectl is an sbjactit
100)

images/00488.jpeg
<ot
clase nyclass {

3 public Suane = "Jiuk

s public fuacsion saym t

5 ca0 "HELLOI Wy mate is ¢ . $this-wnare:
i}

o}

Ui Sobjectl - new mycless(

9: tobjecti-zsayiellol
e

images/00487.jpeg
publie fanetion sevEellel)
L

)

sebfect: - mss myClass(

ebiect: saayislla(l

images/00489.jpeg
1 <iphp
2: class mye
3

s f
peblic Snane - rTimbat;
bl funotion st (60}

5 Srnin sname - rr
s}

7 publie fusscien sapiella] [

5 EILO! By name ie *ithis-oaane
T

: }

1L: jobfectl - new rySlass(;
12: Soblecti-zsetxare iTulle |
13: fobfecti-saaviellol);

images/00473.jpeg
2
3 Funetion nsaningOfLife(

¢
5 rckal glife;
5 eche *Tha meantra of Tifs is ©clifer
™)

meaninnofLitel);

images/00472.jpeg
 eophs
Lgiee e,
inorson meaningo:

(

atel
echo The meanics of 1ife is ".flifsr;

eLife)

images/00475.jpeg
<tptp
wetlion aumbsedfiaiog ($Lal)

f
EUabic Saum of calis = 3
Suun:
sehos "Lostat.ma/nls
'
¥ nuibersddsading ("Wiczetst);

y: ecko cpuue build @ Fine range of widgets
10: runbersdisading!"voodadst) ;
11: ecko puvinest in the werld, «/p.

images/00474.jpeg
1 <prp

2 salla = 05

3 furstion mmberedieating |t

o

5 slobal Saum of_calie;

6 St oL vallse

7 Ul TeNL>T.$uun SL calls.t T.SLal.Te/uls
s: b

9: nunbsradHsading (" NiczeLs®

10, ecto "-poie ouild & fine rangs of widzets.</p.
11: rusberedisading!"Dooads™) ;

12/ ecko "pskinest in the werldip:

10w

images/00471.jpeg
“pip
Function test ()

t

frestvariable - this fs 3 tasc verishles

© varianle: stestvariasls. b

images/00470.jpeg

images/00477.jpeg
1 <o
2: _urelion LontMeap(SUal, Sloalvise = "125L0)

s {

1 b mespan sUyles\TLoabosive st SLonluie, 1y TS T SUAL T sgansT s
5i)

6: ortirapinreally biz Lextenrs, zdpt

7i Zocliray"some bods Lext<irat);

v Zorturas
y: Zorturas
10

smallex body tetuors'l
en smeiier sedy textbs

images/00476.jpeg
<tptp
Lunclivn Loallrap (SUAL, SLonlsise)
(

OLs Tospan BLylem\TLonlesiaes LS 10Nk . T TS0 SLALL T ks s
)
Lontiap ("really big Usxtebe/s", 2apL
LontiLap ("sone body Lextebr/>","16pL"1
Fontwrag ("smaller body textube/s',"1pte),
Sontwrap ("even smalles boy ternibr/’ "0pET);

images/00479.jpeg
<zl
Lo aadFie {&nu

¢

]

Soviguun = 105
eedrive iserignum) .
scho soriguum:

images/00478.jpeg
1 <rpny
Zuncticn addzive Saun

3 Suu - 37
5)
o: Sorigaut - 1u;

7: acavive isorignuml
b: echo sorigmm:
y

images/00462.jpeg
stest_val = 5.5466;
settype ($test_val, "integer");
echo $test val;

images/00461.jpeg
va_value_submitted by a user
$666666xyz

$xy2666666

5. counter

sthe first

sfile-name

images/00464.jpeg
some function($an argument, Sanother argument) ;

images/00463.jpeg

images/00460.jpeg

images/00469.jpeg
1 <rpny
L

4 A §L Lo, Suscondua

Srasale - Siirstour + $sscondaims
etury Srssult

ik
7: echo adduams (5,51

images/00466.jpeg
FEnotion sohe. tunotlonisacgunentl, Sargunencd)

{

//function code here

images/00465.jpeg

images/00468.jpeg
<zt
Luwtion priataRistat)

[

ot SLaLrabesty

5)

5: printR{"ILis is a lirs.”
7 printeE{"This is a new L
U: printsk("ihis is yet anctker line.
5 in

images/00467.jpeg
Eianella

eobn HeRLNEIION 15

bichelis) ;

images/00451.jpeg

images/00450.jpeg
<rprg
“nae = v
scozmgation’ = "euperhare
agar = 50,

“epazial powsst - “xoray vision'

swzayt
“nazer - vsally’
rcczzation - “eupezherc!
——
“spectal power' -» "superauman strensth”
“namer . "Jane®
receuzation
ager - &

“special power: -

images/00453.jpeg
ack",

"red",

"green") ;

images/00452.jpeg
foreach ($characters as $c) {
while (list($k, $v) = each ($c)) {
echo "$k ... $v
";

)

echo "<hr>";

images/00459.jpeg
ckeysArray = array keys($SexistingArray) ;

images/00458.jpeg
JNnewArray = array merge(Sarrayl, Sarrayl);

images/00455.jpeg

images/00454.jpeg
array push($exictirghrrav, "z2lement 1", 'element 2V, "elemant 3M) ;

images/00457.jpeg

images/00456.jpeg
elray unslbifl (Sexicslinjfirray, "elemenl 1", "eleqeal 2", "eleaowsal 3V);

images/00440.jpeg

images/00442.jpeg
++5x; // $x is incremented by 1
$x; // $x is decremented by 1

images/00441.jpeg

images/00448.jpeg
)
8

m
a
5
]
5
a
o
o
5
0
a
2

5
5
a
]

images/00447.jpeg
rainbcow

PR

arrayl("red", "oramge®, “yellow", “grzem", "blue”, "indigo".;

- Mdeiger

images/00449.jpeg

images/00444.jpeg
2017
o TR

images/00443.jpeg

images/00446.jpeg
Srainhnvw = arrav."'red¥, *oranget, *vellow", "green”, "kRlue", "i1ndign", '"'violat¥)

images/00445.jpeg
define ("THE YEAR", "2017

images/00431.jpeg
<pbp

Sundees g

$hotéer

Sncer -
e i
honcer -
cenn

shotger =

e
shotger -

et

- s
dbler frndesidad,

older n s Suab1e? 1 dot e (Sheldor) ebrsty 4f doble
Sring) Sundee g

Blder.t 4 ol ving? L in_Lrina(Sheldar) T ebist; £/ ALrivg
inreqer! gunsecidad;

$holder 1 an inEagar? T ia_frregerisholder] tebrst; // integer
Aibla) seeasr:dad;

Sholder.n @ 2naE1s? 1 in ok e (Snelder) . <hrat; // dmible
Boolean) fenseridad;

holder.n o baclaan? ©ois boot isholder) ' <bests /7 Boolean

ey

Scho "original vaziable Lyge of Suicscided: '

ceto

setigpe sundecioed)

77 dowle

images/00430.jpeg

images/00437.jpeg
45
$x + 4; // $x now equals 8

images/00436.jpeg
scm = 212;
acho "the width is " . ($cm/100) . " meters"

images/00439.jpeg
/J/ $x is incremented by 1

images/00438.jpeg

images/00433.jpeg
Snewtest = (integer) Stes!
echo "Your imaginary box has a width Of Snewtest centimeters.

images/00432.jpeg
is 3.14 a double? 1
is 3.14 a string? 1

is 3 an integer? 1

is 3.14 a double? 1

is 1 a boolean? 1

original variable type of 3.14: double

images/00435.jpeg
Your imaginary box has a width of 30cm centimeters.

images/00434.jpeg
width of 30 centimeters.

images/00429.jpeg
"is M.undeciced.” a doubler
S isundecided, 'etilag’);
"is ".Sundeciced.” a scringt *.
Sundecided, ‘integer')
"is ".Sundeciced ® an insegert
{sundecided, 'dsutlet):
+ _tundeciced. a double:
107 seteype (undecided, 'kooll);
1: ks nis -

*.ie gsusle iSuidecided

triagisundecided:

25_iateger (undec:.

+.is_sousle (fundecided

+.is_kool [undeciaea)

oa)

£ dounlz

i s

/1 ictege

i/ aoupia

7 boslean

images/00420.jpeg
L Tangaents
<hmas
CHATLEAINE Liva Search Teamplec/ror
<acripr tupsstbexs/davascripth arestajax jatse/aerines
</

Py

CHISATAX Live Search Seomploc/hls

prentrengzearsy fors<sprronas

ATPNE fypsstEaxet aize-ta0r 14-rmearchliverseips

“aty 12 rrssulesns

cul sderiisens

Lis(gearsh resulze will Alsplay hers]</liw
pries
wscsipt tynetrax:/avascript’ sre-tsearsa.s
< /body.
facm.

wefsceipts

images/00426.jpeg
v.post ("serverScript.php",
{paraml: "valuel", param2: "value2"},
function (data) {
alert ("Server responded: " + data);

images/00425.jpeg
v.get ("serverScript.php",

{paraml: "valuel", param2: "value2"},
function (data) {

alert ("Server responded: " + data);

images/00428.jpeg

images/00427.jpeg
—
Stanting; // declae a KTLL value

ceha wi w1 1oin Rl (Stastingly (/ shesks 16 il

e

Stacting - o

b: echo "ia an iacegert *.ie int(§temtingl; // checxs if irteger
scho eprst;

5+ $resting - veive's

5: echo "ia a stringt *.is_stringifresting; // chesis if sering

10+ scha -
Li: greseing - 5.0
L. echo *is a double? '.is_feublalfresting

L. echa “abr
14: Stesezag - srue;
15 echo *is boolean? *.is_beeliStesting!: // checks 1f boolear

16: echo mabrs,
17: fresting - arrayi‘epple’, ‘crange’, 'pesr'l;

£s an awray? o.is_arrayifzesting). [/ checks if exzay
19: scho skr:
20: echo *ig mumerict * s rumericifrestingl; // chacks 12 ru

*.is_resource(trestinzl: // checks 1% a

abzars

images/00422.jpeg
7/ global varials i manage the ©imeowt

§§ Start s tivacut with each keyprese
Function stastSearshii {
IF) window e e eaon (1)

= = window . setTirmmat (V1 LvaSearch 1, 20 1

I —
Function LiveSsazebl) §
ey = ot g F Ll BT e e v
Tilirams = Tocarch-phydauerya® © quarys

77 DisplayRerults w11 handle the Max rerpones
afaxcallbsck = £:eplayRamice;

77 Sena tre nj
ajaRequeet (Filsmars) ;

reana

£ miap Pe—
Pt jon displiyRosits D) {

20 remove 0l 1o

W1 = o el BTt 2T

@i = decument gL KT sl AT {Trean Lot ;

BN R T

images/00421.jpeg
<t
headsr {"Coatent-Lype: Leal/snd)s
Staw = arrar ¢

"ol Su_Lat, "John Jouse, "Tane Swillt, " Tillwet,
“Dbrabar Lincoln', "Saly Jomason’, "Kigors Trous'
"Bob Atkagon', 'Cos Cool, *Dorolhy Batieet,
"Elizabeln Carlson’, "Frais dlson', "Seiliude Zas<"
"hervey Frank', ‘Inigo Moatoya', 'Geif Austia’,
"Lycn Ariington’. "Nichasl #ashington’. “Haacy West' |
echo "erxml version=\ti o* ravar:
eco "rzamessin’;
While (izst (3%, $v)-each ($nanes)) |
i2 (seriserige.s o ligeery 1) |

s

1
echo te faamasint;

images/00424.jpeg
5 (function() {
$ ("#newContentHere") .1load ("newContent .html") ;

}y;

images/00423.jpeg
7/ make & new gt
1 = doctmert crzatsslenent (*u
uliarlietn;

'

hames = ajexres. resscnssiNL getTlanert By Taskars uaret] ;

For (1= 0 3« naves.lengba; ies) |
14 = cosmen crsatsElanent (V13
peme = s (2] atChiLd e
Loal = docuusat . caealuTen Hode (uae| 1

1 apperdcni d Lol s
il agpessieni al) 1

A5 (ramer.dergrbeo) {
15 = Gooument _creatamlemens (113
11 appensCi® 4 tccmans - creazeTextNode (o T2aultan)) ;
Vi

il appe

[Fasuitey HR T

@t zpperack=1a (a1 ;

/1 sat up event kandler
obj=deemert 7etElsnentayId |t ssarenl v
obj omkeydowr. = atareszarsh;

images/00419.jpeg
/4 creck the user's answer

urcrion chazins
arsusre - atareq. zesponssiil. getklemertaiy-aghame | answert)
answers [questisavumaor] 2iretCh:14 acdevalue
dcunect g cElenentRyIe (")
answertield value |

eretncorrect | The corract a

ersusreisld valus-'r,

rexcguestient);

// £et wp tha event herdlers for the buttsns
rent gerSlenent ByTA {Ratars_quist] ;
Quest i

crent gotSlemont ByTA (Maumic |+

images/00418.jpeg
/7 wlobul variable qustiso¥arber i U currsat guestion suibse

var guseloatabir=0;

£/ Loed W queslions Liow Lue 96 Lile
Questions () {
b= ducurien . geLELanenL By 1 quest ol
©bj . 1-raLEalld nodsValuse" (glsage walli®;
sieatalloack = nertuestica;

52 questions xnlh) ;

surction

P p—

/7 cispiay tae next questisa
urcrion nexccueszion(! {
Guestzzns = ajecreg. TespoassNiL.getile
ument getElenenciyLd ! question.
esticnitumber « guestions.lengek)
estion - questions [giestioniumbes
o0y 2$1_cadevalue-question
) oetze {
abf.frazcalla. nadevalue=r no moze o

acssyTagans ('questicat) :

ok

£ rerinild nodevalue

aetons)

images/00415.jpeg
£7 global variables bo keep Cracs of U rquist

Fh fanotion te el s don

vt jxrmtali, ajixCal vk

B ajanRequents BeLo up & requsa
Wnekian ajaxequet (1 enane) {

A

e HLEEEERS s
ten terror) |
ratura falser

+

ajaxreg.open (rusr, filazars);

ajaxreq.onrsadyeats
e R————]

TR

// ajexsesgonse: Waits for response and calls a funcsion
funceisn sporse |
2 (ajoureq.veadystate |-4) reus

2 (ajanreq.szarus--2000 {

7 LE tae request suscesded.

4f ajaxcallback! ajascalloack(i:
) eise alersirmequest faled: v+ efaw
E—

3. seazusTestt

images/00414.jpeg

images/00417.jpeg
<2l versisnst1.00 2>

<auis>

<questism WAl DO object soataine URL defsiusion Loz L wudow?c/guestions
<anowess oualivne s>
<ques Lo aion meltos ol Lis docusent objecl Liade Lhe

bjuct Lor an elewsnt?</questions
“answsrgesZlement By TG ausats
“questicusTL you declaze # variable oulsiss & Lwistion,

is it clopal or local?-/questions
answersgicbal./ans:
questionunat is the formal ssanderd for the Javascript lancusoe
caliecrs/question:
ansueruotAseript- fanguers

iquize

images/00416.jpeg
<UDCCTYTE hiul>
L Lsngareats
i
<LLLLBIN Quis Tele/Lilles
<btiEL LypestLeal/ javascriplh 2om"ejan. 137> </b0ripls
<lac
<boar>
<LISAJAX Quis Exanples/ils
“button Ld'start quistsStars Quize/buttcas

30ues Lios /3 EroAgaeb s
questionts[Fress Sutton to Start Cuizle/spense/ss

“passtrongsAnsKes te /SErCag b
“izpur type-

i
“butesa L4t submitesSummic Answer /button.
cesrint type-itext/davascrips’ are-iziiz.iat.c/scripts

.
< ments

images/00411.jpeg
var ajaxreq

images/00410.jpeg
function hello() {
alert ("Hello from jQuery");

b

“("a") .click(hello) ;

images/00413.jpeg

images/00412.jpeg
ajaxreqg.open("GET",

"filename

images/00408.jpeg
v ("#animateMe") .text ("Changing shape...").animate(
{
width: "400px",
height: "200px"
}, 5000, function() {
$(this) .text ("Fading away...") .fadeOut (4000) ;

images/00407.jpeg
P BEEAPES

images/00409.jpeg
("a").click(function() {
// execute this code when any anchor element is clicked

13N

images/00880.jpeg
Exampl:
LoadModule foo_module modules/mod_foo.so

#

LoadModule access_module modules/mod_access.so

#LoadModule vhost alias module modules/mod vhost alias.so

images/00882.jpeg
W

AIAType allows you to add to or ovarride the MINE corfiguration
£ils mime.types for epecific file types.

y

images/00881.jpeg
LoadModule php7 module C:/php/php7apache2 4.dll

images/00404.jpeg
S("#theElement") .text ("Hello from JQuery") .fadeQut () .fadelnl) ;

images/00403.jpeg

images/00406.jpeg
Brc-"htrp://ajax cocqleanis.com/ajex/liks/Jquery/s
Fype_treut Aavaseriprts

<rmarprs

<eeripr Fynestext Aavancrines
) raady (Funoticn G {

Flanint Mot Loxt f Thanging dhaps 1) animate

{

widehs 11copx®

SN ————
}. st feeceieal) {
$ichic! cext ("bading away

sz

/imery.min. 4s*

images/00405.jpeg
<UDOCTYPE heril>

entm angarents

anas
<styles
[—

prustion:
[
Lerbs loap
wldla: 10

10cpns
Spx s0lid blac
backgroud-coloss ted;
paddiag: sopn;

[
sstyies
titiesmairation Exanples/titles
R

images/00400.jpeg
¢ ("#theElement") .slideDown (150, function() {
// do something when slideDown() is finished executing

});

images/00883.jpeg
AddType application/x-httpd-php

images/00402.jpeg
v ("#theElement") .animate(
f
width: "400px",
height: "500px"
}, 1500, function() {
$ (this) . fadeOut ("slow");

images/00401.jpeg
v ("#theElement") .slideUp("slow", function() {
// do something when slideUp() is finished executing

13N

images/00871.jpeg
xml2-config not found. Please check yvour libxmlZ installation.

images/00870.jpeg
Crealing Tiblool

sppending configuratior tag "CKX" to libto
Gensrating [iles

configure. creating ./confiz.status
creating main/internal_functions.c

creating main/internal_functions cli.c

License

| |
| This software is subicet to the PHP Liceasc, aveilable in thio |
| distribution in the fils LICsNSE. by continuing th: llacion |
| process, you are brund by the rerms of rhis 1icense agreevent |
I |
| [

If you da not agree with the terms of this license, vou must abort
the installation process at this point.

Thask you for using BHP

config.ecatus: creating php?.ep:
config.status: creating mair/build-defs.h

config. scatus
config.status:
contig.szatus
config.szatus

ating
reating scripts/manl/phpize.1
ating scripts/shp-contig
ating soripts/manl/php-cenfig.
config slalus: ©realing Jphy
config.status: creating /eai/php cgi.1
contig.ecatus: creating ext/phar/phar.
config.status: creating ext/phar/phar.phar.l
config.status: creating main/pap_config.h
config.status: sxecuting default commends

3

images/00877.jpeg
*
4 AAITyve allows you Lo add Lo or override Uhe NINE conficuration
£ile mime.types for specific file types.

4

images/00876.jpeg
LoadModule php7 module modules/libphp7.s0

images/00879.jpeg
[notize]

26 [(Tmaix)y FEPRS7.1.6 configured

images/00878.jpeg

images/00873.jpeg

images/00872.jpeg
Generating phar.php
Generating phar.phar
invertedregexiterator.inc
clicommand. inc
pharcommand . inc
directorytreeiterator.inc
directorygraphiterator.inc
phar. inc

Build complete.
Don't forget to run 'make test'.

s

images/00875.jpeg

images/00874.jpeg

images/00869.jpeg
-/configure
with-mysql.

prefix=/usr/local/php \
usr/local/mysql/bin/mysql config \
with-apxs2=/usr/local/apache2/bin/apxs

images/00745.jpeg

images/00744.jpeg
mprp

¥

11 = gt oot {8 locatont, skt
Gyt oot wrenol))
prinLE Gt 4o &, w

i - "IELECT + PRGN cestTable's
ires - mysqli_quesy(snysali, Sclt

ie orem |
saumser_of _zows - mysqli_num_rous (
Srincei Resvlt set has td rows.\mr
petse |
SrinceicCoule ror retrieve records

fys3ti_free_restlt(rras)
fys3ti_slose fayeaiil:

woer?, gt FECutRY
sres

Smumber_of_zows)

Ssiar, myseld_srroriSmysqlil s

images/00747.jpeg
CREATE TABLE forum topics (

);

topic_id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
topic_title VARCHAR (150),

topic_create_time DATETIME,

topic_owner VARCHAR (150)

CREATE TABLE forum posts (

post_id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
topic_id INT NOT NULL,

post_text TEXT,

post_create_time DATETIME,

post_owner VARCHAR (150)

images/00746.jpeg
<ot
suyue

- sl comneet (" Losatbos

i vegs comect exzaof) ¢
Eriatfl Cornect failed: vain!, mezii
exie);

ELECT + FROM toasTablens

cli_cuery igrysali,

e (

while (Sucubrray = wysqli ZoLik arvay|$res, MYEQLT
Sid = Suwahrray'id) s
SLesLELLL - Sawwiczay [1LestE_sld'] s

$id.” and the sexs s 7.5t

Goho "The 12 is

1

alse {

Lr, Mestuser, tsomepanst

L MLesioen
assoch) |
CEisld. ebzs

BEAASE"UONL a0t resrieve records: isia. mysqli_srroridwselill

rysali_eree_result (sras):
rysali_close (snysaiil;

images/00741.jpeg
1 erpry

Syt = wpali_eoncect (Lacalhontt,

(nyet_conect_evvo (1)
printeitionnect Zailad: iain, my ’
} siee
o Seqt - "issser INEU tssriable (cestvield)
5 swes - mysqli_quesy(snysali, $eqlls
1.
I 1t (sres ——- TrCE:
1z scho ‘A vecord has been inserced.t;
L }oezes {
L. Srincei Could ror inserc recorf: Ss\a’, mrsqli_erroridmysqlilis
15
15
1 mysqii_close smyeq:
0.)

images/00740.jpeg
$8ql = SELECT * FROM users
WHERE name = '".$§ POST['username from form']."

images/00743.jpeg
1
o

<zptp

Pty

myaali_vonne

{Mocalhostt, Ttestaser’, somepasat, foestDEU

Gyl i eonneet_czenol))

Erint i Coment Talod: s, n e oozt
il
SiTean Ul = oy _rea]_encspe_t ving {avaqli, §_POST[1Lao.Mi61d0]

Sl - INSERT “KT restTable (ranrField)
UTAS {10 $cTaan_resr 1110

Sron = myncli_ouery (Sryaali, ool

£ tsren amn TRCES
acho ‘& zecord has been inserced.
} oz {

SEnEE("Coulé not dnsers rec

2 weian, mysqli_essorSnysaldl)

nysats_close imysaiil

images/00742.jpeg
<100

TE aials
<tw Langerents
e

ord Tneslivn Pusne/Lilles

<ok actlon-"insert.php” method=
paclasel For-'testfislde~Test to
LGpUC Type-tLext® id-"cestield’ mene-'Cesifield’ sizet30ta/ps
“button type- submite hame."submit valus-*insert:insert dscord:/BLttor:

s

images/00738.jpeg
| inta1) | No | BRI | NULL

| testrield | varchar(7s) | ¥8s | | wzn | [

images/00737.jpeg
12 <rn
S+ gmyralt = myaali_connet (tlocThot ", Stpakasar, ‘asmepans?, *estDnY)
i+ 5 Gy et esene) |

: Friakt (" Camk faileds WY, oy

§ 0 exien;

7t }poetec |

‘ Seal - "CRERTE TRBLE Les.Table

. (i TNT EOT STIE PAIMRRY KEY AUTO THCRSMEN.

10 i ———

n Seas - mysll uery (Snysali. $slls

1

1 it isres - TRGE: {

1 schio "Iable testTable seccssatally creatsd.”

15 else {

10 Srinct ("Coula net create table. vs\n’, mysqli_errox (Smysalil)
w0

19: moysali closeiaysati)

20)

images/00739.jpeg

images/00734.jpeg
a UNIX socket

images/00733.jpeg

images/00736.jpeg
1 <ron
Suyoesi = aes myeqli("1ocalloss’, "Lestiber”, "oomepasst, "LeelDd

i yegs comect eszaof) ¢

PENGEi"Connect Zailsd: S\, Wysyli_scalect error(il
exit;
}oeise {
s: pracceitacsc in: ssin Gmysqii)) ;

9: mysqli_close(smy
W)

sai

images/00735.jpeg
Csnnect fallel: ACcess

images/00730.jpeg
"paseword", "datakbase") ;

images/00732.jpeg
<zphp
Suyug L = dew mybqli("ecallios., Mleslieer, Toomepaut, "LeulD3N s

1
3

fpey_- vornsel ezzus(l) §

prinlL"Couect Laile: $SWA", WySGLi Comass Srroz(
st
7i) slse
v LEviost informal s ost_info(snysali))
si)

images/00731.jpeg
amysagqli = mvsgli cornect ("localhost", "testusar",

images/00727.jpeg
, firstname, lastname)) |

é
w
a
g
3
1
k]
=
&

JOHN SMITH
JANE SMITH
JIMBO JONES
ANDY SMITH

ANNA BELL
JIMMY CARR
ALBERT SMITH
JOHN DOE

| |
| |
| |
| |
| CHRIS JONES |
| |
I |
| |
| |

8 rows it Bak (0208 mEch

images/00726.jpeg
SELECT UCACE (CONCAT WS(' ', firpgtname, lastname)) FROM master name;

images/00729.jpeg
CONCAT_WS(' ', firstname, UCASE(lastname)) |

John SMITH
Jane SMITH
Jimbo JONES
Andy SMITH
Chris JONES
Anna BELL

Jimmy CARR |
Albert SMITH |
John DOE |

9 rows in set (0.00 sec)

images/00728.jpeg
S ELECT CONCAT WS(' ', firetname, UCASE(laestname)) FROM maester name;

images/00723.jpeg
| FROM_UNIXTIME ('1473782880')

| 2016-09-13 16:08:00.000000
g =
1 row in set (0.00 sec)

images/00722.jpeg
SELECT FROM UNIXTIME('1473782880');

images/00011.jpeg
/T e e x
A7 € | [httpy//www.youdomain.com/firstpage.html

Inthe begunning. Tim created the HyperText Markup Language. The laternet was without form
and void. and text was upon the face of the monitor and the Hands of Tim were moving over the
face of the keyboard. And Tim said, Let thers be links: and thers were links. And Tim saw that
the links wwese good: and Tim separated the Links fom the text. Tim called the links Auchors.
and e text He called Otlier Stuff. Aud the whole thing together was the first Web Page.

images/00725.jpeg
| FROM_UNIXTIME (UNIX_TIMESTAMP(), '%D

| 13th September 2016 at 04:09:13
s

1 e A GEE: (O D0 BEnY

images/00010.jpeg
[Fello wer

€ »eD

*p//wankyoirdomain comy/sam

Hello World!
Welcome to My Web Server.

images/00724.jpeg
SELECT FROM UNIXTIME (UNIX TIMESTAMP (), '"$D %M %Y at %h:%i:%s');

images/00013.jpeg
H - o x

[The Advertising Agency & X

€ = € [hito//wwwyourdomain.com/acsong il =

When your clients hopping mad, put his picture in the ad. If e still should prove refractory. add.
a picturs of his factory.

When your client hopping mad.
‘put his pictuse in the od.

Ifhe still should prove refractory.
add a pictuse of his factery.

images/00012.jpeg

images/00015.jpeg
<header>

<section>

<header>
<nav>

<footer>

<aside>

<footer>

images/00721.jpeg
N
1 row in set (0.00 sec)

4

images/00014.jpeg
[My Widgets x

& = @ [[3 htip/Amwyourdomain.com/widgets htmi

My Widgets

My widgets are the best in the land. Continue reading to learn more about my widgets.
‘Widget Features

T6Thad any feanres to discuss, you can bet Td do it here.

Pricing

Here. T would talk about my widgst pricing

Comparisons

Here, Twwould talk about how my widgets compase fo my compeitor's widgets.

images/00720.jpeg
SELECT UNIX TIMESTAMP('1573-12-30"');

images/00719.jpeg
HOW ()

e Ak wet 6. 68 et

images/00716.jpeg
SELECT CURTIME(), CURRENT TIME() ;

images/00715.jpeg
| CURDATE ()

| 2016-09-13 | 2016-09-13 |

g

S o

1 o Last (0.0 sacy

images/00718.jpeg
SELECT NOW(), SYSDATE(), CURRENT TIMESTAMP() ;

images/00717.jpeg
| CURTIME() | CURRENT_TIME() |

| 13:07:23 | 13:07:23 |
.
3 vent At set: L0500 SeE)

images/00712.jpeg

images/00711.jpeg
| 2015-12-31 12:00:00
.
1 row in set (0.00 sec)

S A |

images/00714.jpeg
SELECT CURDATE (), CURRENT DATE();

images/00713.jpeg
| '2015-12-31' + INTERVAL 1 DAY

| 2016-01-01
. "
1 row in set (0.00 sec)

images/00710.jpeg
SELECT DATE ADD('2015-12-31', INTERVAL 12 HOUR);

images/00709.jpeg
| DATE_ADD('2015-12-31', INTERVAL 1 DAY) |

| 2016-01-01 |
oz
1 row in set (0.00 sec)

images/00708.jpeg
SELECT DATE ADD('2015-12-31"', INTERVAL 1 DAY);

images/00705.jpeg
DATE_ADD (NOW() , INTERVAL 21 DAY) |

2016-10-04 16:03:41 |

i~ S S

row in set (0.02 sec)

images/00704.jpeg
SELECT DA-

\TE ADD (NOW() ,

INTERVAL 21

DAY) ;

images/00707.jpeg
ZCéd: Yo, heve an e:10, ur SQL syvnlax nsar "DAYS) ' ab lines 1

images/00706.jpeg
.
1 row in set (0.00 sec)

images/00031.jpeg
GTOYB" v2.0.2: Main Page y t
g 2 V2.0

Experiznce Coloz, WeARIG Swapes o Grat

What's GrayBit Do? GrayBtvz02

Grayaitis an onfine accassibilty fostng EileraWab B LR

teol designed fo convert o ful-color
wets page inl @ grayscale renition 1o
holp visually fost he pago's porcoived

confrast. More baio

How's GrayBit Work?

In the supplied GrayBit form, enfer the.
URL of @ nage you wish fo tast. Submit
the form. Walt for results.

TERmow] [MANEAGE] [CONAGTIOF

| Grayhilv20.2 = Copyraht 2006
toted & Marvinec b Jos Dol — Creare by Jans Fenp

Gront com, Al rghiereserved
& Mike Cherim — Select Do

Help out Supoon Graki

images/00701.jpeg
SELECT DATE_FORMAT (NOW(),'%W the %D of %M, %Y
around %1 o\'clock %p') AS sample time;

images/00030.jpeg

images/00700.jpeg
SELECT DATE FORMAT('201€¢-01-09

TSW, M %D, %Y']) AS sgampla time;

images/00033.jpeg
GrayBit 202 win page

Whal's Grayei Dc? ‘

How s Grayai workz

images/00703.jpeg
DATE_ADD (date, INTERVAL value type,
DATE SUB(date, INTERVAL value type)

images/00032.jpeg
Exremience Cotor, Weazing

What's GrayBit Do2

GrayBit s an online
accessibility festing fool
designed to convert a fulk-
colorweb page into a
grayscale rendiion o help
visually fest the page’s
perceived confrast.

More Infon

How's GrayBit Work?

In the supplied GrayBit form,
enter the URL of a page you
wish to test. Submit the form.
Wait for results.

EARii vioRE] [MAIEAGE] [CONACT ICE]
=" Grayit v2.02 - Conyight @ 200:

Al ights reservecd mlE—.

Hosled & Maiicined by Jos Dolion — Created by Jaza F

2016, GroyBit com

cocchi & Mike €

— Seluct Doylights Theme

images/00702.jpeg
N
3 e Sanaiacee

O L O S—

F o —.

images/00035.jpeg
I H - o x
/T sample Loyout x\,

€ = € [D hitp//wwwyourdomain.com/layout him!
ADER

images/00034.jpeg
) Somple Loyout x

€2c

HEADER
CONTENT
LEFT SIDE
RIGHT SIDE
FOOTER

" htepy/www.yourdomain.com/layout himl

images/00037.jpeg
[somleLayot

&

c

x

hitpy/wwmyourdomaincom/laycut il

aam

L

Widgets

‘elcome to ACME Widgets!

cncw ipsusa doon st e consectet sdipiscie il N
i, posuere miesuda, Suspeadise o felis ac an ot
sllascorper. Nul vise Levla vitse . hoacns sdipiciag. Tisss
congue felis id aute semmper st mperdet messa sempor. Solla
beadsent fermentun sevln, o sraot pelleatesque purs S i
Sed molesti lacue v, otizes sconmias semn. Phasells facilc
malesuads sem. nee craace speven A concecterue

Ul ibero nisl consectear eget accumsan veL inreru. vise enim
it milla Feugiat dignissi t st et o0 Nuac 0o 2nim id sem
Soucibus cougac. Ticger ac i s cuisaod sodlcs. Acucaan
paaciet vesabulon aucior, Sed ulicorper congue s, czet
Sulpurate sea sclerisque ia. Dowes orae vestbulum congue. Ttam
sapien malla,fulrum 2ot et ot pelleesque ezet gt Proka
et e, useipit quis clement e, vestbulusa quis facus. Ut
Cactsto vitas wna vars sodales,

Copmgitmaion sialy goas ava i i fooias

images/00036.jpeg
.ADER

images/00028.jpeg
[) Postoning the CelorBe. X

C DOt

wwsyourdomain.comzin

exchtml

images/00027.jpeg
[3 Poztioning the Colr B
« 3 http

x

www.yourdomain.com/posi

oning

images/00029.jpeg
wgivedy

SJSU rrr—

Discover SISU

New Schaol Year Begins.

Mesks Vo VOW s prorams 3ad events s the it ot weeks fthe foll
o ko g daots sl e sl e e . 50, it

Canpus Tour News Spartan Pride

Currert Studerts - Facuky and Staff - Nlummi ar

=
0 o
W T
in uk
@ Fon

images/00020.jpeg
[abou savst x
+. c

hitpy/wwwyourdomain.com/mainpage html

About BAWSI

The Bay Area Women's Sports Initiative (BAWSI) is &
oublic benefit, nonprofit cerparation with 8 mission to
Creete programs and dartnerships Urough which woren
athlstes bring heaith, fiope and wholeness to our
community. Founded i 2005 by Diymaic and viorld Cup.
saccar stars Brandi Chastain and Julle Foudy and Marlane
Bjornsrud, fermer genaral manager of the San Jose

Cyberhoys women's rofessionat eccor team, BAWSL —
provides & maninghl pah for woraen abiates b bacorne

2 more isiie and valoed partof the Bay Area sports

L WOMEN ATHLETES

MAKING A
Tha concept of BAWSI was inspired by ona of the most. DIFFERENCE

Spectacular achievements in wemen's sgorts istory and born out of one ite biggest
disappointments.

BAWST's History

contirue raading]

Copyright © 2005-2017 BAWSI (v bow:019). All rights reserveds Used with permission,

images/00022.jpeg
[——

o

3 € 8 hupsiigsana3 org/css-validator/validator o

The W3C CSS Valldalron ervice

Jumpto: _ Validated CSS

W3C CSS Validator results for TextArea (CSS level 3)

Congratulations! No Error Found.

This document validates as CSS level 3|

o show your readars that you've taken the care o creats an interoparable Web pags,
you may cisplay this ican on any page thet velidates. Here is the XHTML you could
use to add his icon to your Web page

€3 PR 3 o NN e reserars

RIS e e
Walsenyt R R e

s HE Sty

images/00021.jpeg
) Aot B The eter, X

€ & € [hitps/wnviyourdomain.com/secondpage himl

About BAWST: The History, continued

In the summar of 1999, the U.S, Women's National Soccar
Team cefaated China to win the Woman's World Cup in the
Rose Boal, the climox of thrce-wock, 16-team tourrament
that remains history's mast successful women's sports.
event, drawing mere than 600,000 spestators. It also
represented the most visible achievement of the women's
sports movement in the United States since the 1572
enactment of federal Titls LX, which required schodls and A7 ARER WEMEN 5 3ol HTIATAE
colleges to prvide equal sports opporturiteities to giis

and weman. athlates fike Brandi Chastain and Jalie Foudy,

Who Tad that tazr to the World Cup, spawnad the Womans WOIMIEN ATHLETES
United Seccer Associaion in 2001, the world's firstwomen's [\ A\ I NI G A
prefassionsl soccer league. But in 2003, sfter only thres

Leazons, the lesgue falded, and team organizavems e I FFERENCE
by some of the most accomplished athietes and

administratars in women's sports were disbanded.

The Bay Area Women's Sgerts Initiativa - BAWSI - aross from the remnants of that effort, created to
ensure that the WUSA would not be the zenith of 3 short-lived goldon age of women's <ports but rather
another step toward wemen's full achieverent in the sports world. BAWSI's programs began with »
crical look at the unmat needs in our community ard tock shape after imagining a profound change
for 4 better world.

return to beginning]

Copyright © 2005-2017 BAWST (wwmbansiorg). Al ights reservea. Used with permission.

images/00024.jpeg
/ D3 Asimple DIV

R

html

images/00023.jpeg
BORDER

images/00026.jpeg
[Positoning ¢ x

Cac www.yourdomain.com,

images/00025.jpeg
D) A Simple DIV plus a seco

c

«

x

www.yourdomain.com

images/00017.jpeg
[) Semantic Example x;

€ - C [httpy//www.yourdomain.com/semantichtml

SITE OR PAGE LOGO HERE

SITE OR PAGE NAV GOES HERE

Article Heading

Section Heading 1
Section 1 content here

Section Heading 2

Section 2 content here

Article footer goes here.

SITE OR PAGE FOOTER HERE

m

images/00016.jpeg
<header>

<nav>

<article>
<header>

<section>
<header>

<section>
<header>
<footer>

<footer>

images/00019.jpeg
[~

« 2 € [[hupi/Anwwyourdomain.com/pullouote.htm

An excerpt from "Wild Wool"

by John Mu

No dogran taught by the present civilization seesas to form 5o insuperable aa obstocle in the oy of a right
uadessianding of he relations which culure sustains to wildacss 25 that whick regards the world as made
especially for the uses of . Every ammal. plat. ard crysial coutroverts it in the plainst tens. Yet it is
taught fiom cenny to century as something ever new and precious. and in the resulting darkniess the
enommous conceit is allowed 10 g0 unchallenged.

[have neves yer happened upon a race of evidence tha seemed (o show thar any one animal was ever made
for anches 25 much as 1 s made for tse'f Not that Narure manifests ary such thing s selfish iselarion In
the making of every animal the presence of every other smimal has been recognized. Indead. every afom in
creation may be saic o be acquainted vath and masmied to every other, but wath uesversal usion there s 2
dvasion sufficient s degres for the pusposes of the faost tenss idsviduality. no matier, therefore, whatmay
be the nore which any crenrure foma: s the song of exsitence, it i made first for 1€ then more and more
remotely for all the world and workls,

Were it not for the exercise of individualizing cares on the part

of Natue, the uaiverse wonld be &elied together ke o flecce of | = o
teme wocl. But we exe govemed more than we know, aad most Ihm“'mfdlw’nzpwtd wona
whea we e wiklest, Plants, auiials, aund stars e all ket i froce o) videce flux semid o
ploce, bridied along appointed ways, with one anotlier. and show that any one animal vvas ever
through the midst of one another ~ killing and beig killed. made for another as muci as it
eating and being caten. in haronious proportions and was made for tiself.”
cpanites. Aret 6 right thatwe should o reciprocaliy make

ase 0f one another.gob, cook: and consume. to the nmost of
our healhy abilities and desires. Stars stzact one another as they are able, and hamycry results. Wild aarbe
eat as many wild flovers a¢ they can find or desire, and men and woives eat the lnubs to just the same exteat,

“Wild Wocl" fist appeared in Overland Monry. Apal 1875 and was reprinted in Sregp Traile (1915),

images/00018.jpeg
[Outline

x

€ - C |8 https/gsnedders htmls.org/outliner/process py

1. SITE OR PAGE LOGO HERE
1. Untitled Section
2. Article Heading
1. Section Heading 1
2. Section Heading 2

images/00051.jpeg
document

head
html body
title h1 P
"This is a simple “Thisis a “This is a
HTML Level-1 simple
Document.” Heading." paragraph.”

images/00050.jpeg
[Using Custom Go Back - X

buttons.html

€ 5 C [httpy//wwwyourdomain.com/cus

Using Custom Go Back and Go
Forward Buttons

Buttons on this page allow you to go back or forward in your history list

These buttons should be the equivalent of the back and forward arrow buttons in your
‘browser's toolbar.

Go Back | Go Fonward

images/00053.jpeg
o X
[Posiicning Bement it X

& c

3 http://www.yourdomain.com/mavecontairer.htm|

Positioning Elements

This square is an ebsolutely
positioned container that you

can move using the buttons
above.

images/00052.jpeg
EREY
[0 Postiing Hlemens witl X
= C D h

/o yourdomain.com/movecontainer. himl

Positioning Elements

Left|[Right || Up | [Down | Hide | Show

This square is an absolutely
positioned container that you
can move using the buttons
abore.

images/00055.jpeg
[Dynamic Text in JvaSerpt X

€ = € [[htip//www.yourdomain.com/changetitle.html

Hi! I'm new around here.

Using the W3C DOM. you can dynamically change the heading at the top of this page.
Enter a new title and click the Change! button.

il Fm new around here [Changsi |

images/00054.jpeg
[Hiding or Showing Objec. X

€ - € [[httpy//www.yourdomain.com/hideshow.html

n

This is the second heading

Using the W3C DOM., you can choose whether to show or hide the headings on this page using
the checkboxes belorw

Show first heading
@ Show second heading

images/00057.jpeg
€36 g
Swapping Images
i <

Clcken il g conge g sz oo,

il

W seveal medred mane el o e oe T

e oo e o e et by s
157wk Gl Cok d S o b
i o v S Coen
i e e e .

Ao s et oG e

Teron Witk phows s e ator

images/00056.jpeg
[Adding TexttoaPage X

€ = € [htipy//wwwyourdomain.com/addtext html

Create Your Own Content

Using the W3C DOM. you can dynamically add sentences to this paragraph. Lorem ipsum
dolor sit zmet. consectetur adipiscing elit. Integer fringilla ante sit amet dui accumsan lacinia
Curabitur vitae eleifend metus. a imperdiet lorem Fusce varius vulputate lacus eget venenatis
Pellentesque habitant morbi tristique sencctus et netus et malesuada fames ac turpis egestas.
Proin quis fermentum nulla, in mattis diam. Aliquam gravida nec magna at gravida. Quisque ac
lorem quam. Duis ultrices dignissim auctor

Type a seatence and click the Add! button

Addl |

images/00059.jpeg
~ SwingText x

€ - % | [3htip//wwwyourdomain.com/stringtest html

& This page says:
String .o cameiane

Prevent this page from creating additioral dislogs.

images/00058.jpeg
Do %
& = ¢ L mw s mancon

Swapping Tmages

o T e g . 3 g G S e et

T oo G 5 it by can e 1697 b G sk o M
ot v i e s S bt i e o b

Ababan Ll g 11 Ac o Conmvs o e 30, 45 g Yo Gr sad
et e et el ool e bl o Fve Kot Pk

Tt oo N R

oo Wi s b

images/00049.jpeg
[) Displaying the Last Modi X

€ - € [httpy//www.yourdomain.com/lastmodified htm! =

Displaying the Last Modified Date

This page was last modified on: 04/08/2017 11:04:50

images/00040.jpeg
D ASperscularTmel X

€ = € 1) hiip//www yourdomain com/simalescript himl

It is a Spectacular Time!

What time is it, you ask?

Well. indzed it is: Sun Jul 17 2016 10:23:46 GMT-0400 (Eastern Dayligh Time)

images/00042.jpeg
3 kit %\

cse

3 Aitpi/weveorudomain com/sirplescrint

Itis a Spectacular Time!

Wt aome st o 7

Well ndesdiic

I e S e g e g sty

Sor Conec 1 Sopers |3 sl amoint x
I B
O e e

Cscmvanpos | 2
B et o mciorns
sl | 3 et - e s

B et ettt

bl sy
B

) e 13 comn 7

e

» Cou e
[,
' et by

images/00041.jpeg
D A spectacular Time: x
« € [htep://wwwyerudomaincom/simplescript_error htmi
It is a Spectacular Time!

What tiome 5. you ask?

Vel indeed it is

R] | Semens Conee Soces’ Network Teveine roics Revries Sty

© ¥ oo v Dieeneicy
© runcaugre symtamsrror: stssivg) avier argumeet itst

At

images/00044.jpeg
[) Some PHP Embedded In
€ c

x

[hitp://wwwyourdomain.com/h

1d.php

Hello Warld!

images/00043.jpeg
0 e B

«

€ [T hsp/wwyourdomain com/test ph

e e
B

[e i s

e —

ey ==

[Sssmou

s &

reasons Ermy

[i =

s =

s s =

P =

Ty —

i s e
[t i o o o i A s
v e

R L e

zendenging

Cconfiguration
apachazhardie

images/00046.jpeg
/D) More PHP Embedded in: X |
€ =

o

€ [http://www.yourdomain.com/embedcondition.php

today's prices
14.00]32.00[71.00)

images/00045.jpeg
[viewsource x

&

= € [[view-source:yourdomain.com/helloworld.php

1 <!DOCTYPE htm

2| <html>

3| cheats

4 <titlersone PP Cabedded Inside HTHLC/titler
5| </hesd>

o <body>

7 cbHello verlate/mn
8 </ooy>

o <Ininl>

0

H

images/00048.jpeg
window

I

document

location

history

navigator

images/00047.jpeg
o H - o x

[Quotable Quotes. x

€ - € [httoy//www.yourdomain.com/randomquote htm!

Quotable Quotes

Following is a random quotable quote. To see a new quote just reload this page.

images/00039.jpeg
3 Ssmle Lot *

© 5 @ | hipi/Awewyourdomain.omlayouthir

‘elcome to ACME Widgets!

orenn s delor it amet. consecteme adpuseing el Nam
inc it posiers msleamda Srperclces a2 i o it rncicuat
ullarxcorper. Nullavine ligula vitae i thoncus adpiscing. Etian:
ougue flis id ante semuper a mperdie: massa tempor. Nullam
sendrest ormentum ligula, st amet pellentesque purus ficibus i
e ot lacos s, e aconases s Pl Gcilis
salesnda s, e riae s dices comectetu,

13 lbsso mis consectenr eget cccnamca vel. nterdnan vitoe eaion
tae i feagiat digaisvim o et odio, Nune nen e s
huciun congue. lntsger ¢ i ucts 2usmod sodales. Acnera
operier st anctor el wlmSorper cor gue . <
ulpate sem selerisq e i Dines omare vestbaihom congrie Eism)
apien tula, P matts marts ut. pellentesque eget mugte Prcin
i5| maurs, suscipt Quis elemertom ac. vesibuan qui facus, Ut
et justo itae A varias sodales

Copyeight formenion isially goes e i s foster

images/00038.jpeg
3 ssmpe oy x

€ > €[hitp/wwwyourdomaincom/!

A
Widgats
Lc

Htore Welcome to ACME Widgets!

Woeem ipan dotor sit amer. contectetr adipising <. Nom
ncidunt posuere malecvada Suspendisce o fes 3¢ aate tocidu:
llamcorper Null viae Ligule wtze £ shoocns adipscing. Etars
-ongv s it sersper at maperchet maess emper. Nollaza
endrers: termentum lgula, s asaet pellestasqua prsss faucitus
1 Sed maleiie s mannie s accnmen sen Phaseline
Facicis malesuads e mec omars s disnm concerten

Nuth Ltero i, consecterur cpes accumsan vel ingerdun viac
e vitac mula fugias digaissan vt i amet odio. Nus

s fuvcibus cougue. Tatezer s i justo uistuod scdaies
cncon emperdic: vestbuiven anctor Sed wllameorper zongve
hpsu. cect ulputae sean sceierisque m. Done omare ~estibaluan
Conzve. Chim snpicn mlla, st st st . pellentesqre
lezct o, Proun el savans, sseipt quis clementuan
estbuluen e lncus. Ut ezet jto vtas oo varms sodales.

Copvright farviation il goes ers i 16 Joo'e

images/00071.jpeg
Captee Do x

€ = € [[) hup/wwwyourdomein.com/ondick.ntml

Steptoe Butte

General Information

which was lter increased to over 130 acres (0,61 ki) Stepioe Butie is curseatl cecognized as a Naticnal Narural

Steproe Bune is quertzie sland juring out of the sily loes of the
Palouse Lulls s Wit County, Waskington The ck that fonas the
it i over 400 milior: vears old. i coutas it tae 13-7 mllion year
91d Columbia River Uasells at underle dhesest of the Palouse (sucl
aasds” of ancient ock ke conne 1o be called Luites. a bute being
defncd as & sunll hil with 2 flat top. whose ikl a1 10p does uot exceed
s eigh),

A hotel buie by Cachup Davi stoad atop Steptoe buts rcum 1858 to 1905,
oming dovn several yeses after i slosed. In 19145, Virgil MeCrozkey
donsted 120 acees 0,49 kaud) of land to form Steptos Bute State Pack,

Landiank bacnnce of s vnique geelogieal valne. 1t samed in honar of Colonel Edvezrd Stoptoe.

Elevation
»Show Elevation

Photos

» Sliow Photos frous the Top of Stepioe B

Text from Wikipedia photos by the alor

images/00070.jpeg
D) Dispaying Keypresses X

€ - € [} httpy//www.yourdomain.com/keypress. himl

Displaying Typed Characters

‘This document includes a simple script that displays the keys you type as a new paragraph
below. Type a few keys to try it

‘This is typing characters in real time. hard to see in a static image.

images/00073.jpeg
Steptoe Butte

General Information

5 0 Navionsl Netuun! Laacdinar besex

Steptac.

Elevation

J/venn yourdemain comone ik i

Steptoe Bite s o quartit slond jrting out of e sy Joess of the Palouse
s s Whtaaon Conaty. Woshintan The sck taat forms the butte i over
100 milion yeacs 1. s comtrct wichthe 13 7 mallion oo cld Columb
Rives besaks that uncerie the re2tofthe Palovse (such "ilands of anc
eock e come o be caled buties, 3 bute besng defured zs sl il
1t top, whose width 3t top does ot exceed s hesght).

A hotel buil by Cashup Davis stood atop Srepree burte from 1888 10 3908,
buxing down sexeral yeas afe it losed. In 1946 Vil McCroskey denired
120 acies (0.49 k) of and to o Seproe Durce Sate Pack, which was later
increased to over 150 asres (061 kan2). Steptos Dure is curcatly recognized
of it uaiqus goologeal velne. It s masred in honor of Colonel Edward

3612 fcr (1101), pproxiasoncly 1,000 fct (00) above th saseouading coustryside

Photos

. Hid: Photes from the Top of Steptos Butte

-=

Tess fom Wikipadia, photos by e anvlos:

images/00072.jpeg
Captee e x

& = € [[) hup/wwwycurdomein.com/ondick.ntml =

Steptoe Butte

General Information

Steproe Bute is a quartzie sland juting out of the sily loes of the
k. Palouse Lulls n Wit County, Waskington The cck that fonas the

it i over 400 millior: vears old. i contas i tae 13-7 mllion year

914 Columbia River Lsells at underle e 1est of the Palouse (sucl
aasls” of ancicut ock hive conme 10 b called Lustes. a bute beine
defncd as & sunll bl with 2 flat top. whose wickh a1 t0p docs ot exceed
s g,

Aot bui by Cachup Davi stood atep Stapiosbuit o 1838 o 1905,

bumiag down several yeas after 3

donated 120 acres (099 o) of ané o form Steptos Bute Stae Park.
‘which wa laterincrensed t cxer 150 acees (0.6 ki) Steproe Buti s curreatly recogn:zed ae.
Laaduask because of s unique geclogics] valne. I s £amed s komar ¢ Colonel Edvwsrd Steptoe.

Elevation

» Hide Elevation
3,612 et (1101 m), appreximately 1 000 feet (300) above the suwrounding coveryside.

Photos

» Show Photos from the Top of Stepioe Batte
Taxt rom Wikpedia, phoses by the author:

images/00075.jpeg
[aviontarpe %

€ 5 €T i/ oucmaineom aninale i =

images/00074.jpeg
0 Pt *

4 = @ 13 higy/mweyourdomaincem/ready hirl

Tlello World!
Are you ready?

images/00077.jpeg
D A QuizTest x

€ 5 © [hiipy/w ec2-54-158-122-146 compute-1.amazonaws.com says:

Incntc The comect snswris: gelementyid
Ajax QuizE
[Start Quiz =2

Question:
Which method of the document obiect finds the object for an element?

Answer:
blah biah

Subrmit Arswer

images/00076.jpeg
[

€

= g/ yourcGanaineonnaninale. i

images/00079.jpeg
D) ec2-5é-156-122-14bcom X \

€ - C | hitpz//www.yourdomain.com/mdarray.php

name . Bob
occupation ... supesbero

age .30

special power .. x-rzy vision

name .. Sally

occupation ... superbero

age.. 24

special power .. superhuman stength
name . Jane

occupation ... arch villam

age 45

special power ... nanotechnology

images/00078.jpeg
[AJX L Search Example. X

>0

1 http//www.yourdomain.com/i

AJAX Live Search Example

Search for: [Sm

« Johs Smith
o Tane Smith

html

n

images/00060.jpeg
[) AmaySorting Brample. X

€« c http://www.yourdomain.com/sort. html

Sorting String Arrays

Enter two or more names in the field below. and the sorted list of names will appear in the
textarea.

Name: John Jacob Schmidt [Add

Sorted Names

Emna Saith

Harry Potter

Jane Doe

John Doe

John Jacob Schmidt

images/00062.jpeg
[Function Example: Avera:. X

€ >cibt

/wweew.yourdomain.com/average htm

Function Example: Average

The following is the result of the function call.

The average is: 4.5

images/00061.jpeg
) Functions. x
€ - C [httpy//www.yourdomain.com/greetings html
Functi

Grestings, Ethel!

revent this page from crating addions dslogs.
Who are you? — > 9! i

Tamere][]

images/00064.jpeg
Tt feadng Vetd | X

€ c

This is a heading 1

This is a heading 3

p://wvw.yourdemain com/headings

images/00063.jpeg
D) JovaScrip Business Cords X

€« € [http://www.yourdomain.com/cards.html

JavaScript Business Cards

‘External script output coming up.

Name: Sue Suthers

Email: sve@suthers com

23 Elm Street, Yourtown ST 95999
876

fanboy com
33 Oak Lane. Sometown ST 95399
5-4444

Email: jimbo@jones com
Address: 233 Walnut Circle. Anotherville ST §8999
Phone.

‘External script output has ended.

images/00066.jpeg
[TmeGreetBample X

€ - € [hitp//www.yourdomain.com/ i

Current Date and Time

13:35:12

Good day.

images/00065.jpeg
[Math baample x

€ - € [httoy//www.yourdomain.com/random.html

Math Example

‘How random are JavaScript's random numbers?
Let's generate 5000 of them and find out.

Generated 0 numbers
Generated 1000 nubers
Generated 2000 numbers
Generated 3000 mubers...
Generated 4000 numbers
Generated 5000 numbers

Average of 5000 numbers is: 0,501

images/00068.jpeg
) Loops Bxomple x

€ - € [htto//www.yourdomain.com/

Loops Example
Enter a series of names and JavaScript will display them in a numbered list

4 names entered

Jane Doe
Joha Doe
Steve Smith
Jake Jones

images/00067.jpeg
[Using for Loop x

€ - € |[3 htto//www.yourdomain.com/forloop.html

Using a for Loop

The following is the output of the for loop

This is line 1
This is line 2
This is line 3
This is line 4
This is live 5
This is line 6
This is line 7
This is line $
This is line 9

images/00069.jpeg
) Mouse Clck Text x

€ - € [[httpy//wwwyourdomain.com/mouseclick himl

Mouse Click Test

Click the mouse on the test link below. A message will indicate which button was clicked.

Test Link

‘mousedown : Left

images/00091.jpeg
) Accesing Sesson Varisb X

& C' | [3 htipy//www.yourdomain.com/session1.php

Content Page

Your cart:
1. Hal 2000

setum to product choice page

images/00090.jpeg
» HincedDd 1
- oo srsce | |

> 8 s S

- cosies |

|
|
Hooemme | |
o sonin e

|

L I

0 s RO
€ € [b fmameyourdamain.com/getiremeession phy. =
Your Products
Vous chosen produsts e

- S Serendbives

+ HAZ 2000

| fomers Corcle s Ntk Towlne Pies ocures Gocuty_ducs P x
Covrans e Coren s e s e [
ear e T W

images/00093.jpeg
[Guentost x

€ > & D hupi/wwyourdomain com/b giermhul

My Guest Book

Personal Tnformation:

o [P mt s s

Plesse ceck al that spgly:
ety ke vou Wb i
s e of e best s
Zsune wish s e looked 55 gozd e verms.

e o aste s T prety dese, 50 you st it d sl o e

Please cioose the one thing you love best about my web site
‘Toat acacing picture of sou
Al the eat photos.of course
‘Tac inspiriag recap of your subuccas childiosd
The dersled it o ll vour Elvis memornbiia

How can Timprove y web ite?
Vou cart 1 soudt e bekr -
Mot skt th s

Micto koux e .

Vet skt b -

“Free for All!

Feelfree fo send more praise, git offrs, .

[Chlow Feve 1o Swbrmit] or [Erass and Sta Over|

images/00092.jpeg
D Gort ot

e

3 bt/ v yourdarnsin com o

bl

My Guest Book

[Personal Informati

Wit your name?

Wt vour email add

[-Survey Questions

Pleace check all hat apgly

O ety ke youe Web site
Isones

I

ssh - e ooked 25 zocd e yones
e no taste

o i ety dese. 52 yonw

£ it o e for me
site o seate of 1 (o) fo 10 Gammanns):[£

Please choose the one thing sou lose best about ary web ste
That ansaina picwre of vou

All e cat phoras. of couse
The inspisiue ecap of you s

s cildiond
The deraled ts:of al your Bl meworabilia
How ca

Vot I coit b bt
Hore e cate.

Hore sbout e
More sbout Es.

.

[Free for ATl

Feel free 0 send more prie, if offers,etc

[Ciak Fare 1o Subwnit] or Erase and S

images/00095.jpeg
D forn gy banse %

& = € 15 1tip/mwwyourdomaincompopapform |

Form Display Example
Eucer th following nformation Whenyou prss the Disploy buion the dora you siered il b displiyed i pop .
KAME: Jare Gon O ks Goomecome - 3 x|
ADDRESS: 254 Wa St Sometom US 111
proxE: sssin

[EE

images/00094.jpeg
D Guenoct x
€

5 hitpe//wwyourdomain.combigforrr il

My Guest Book

[~Personal Information

What i vour same?
o ilon

Whatis vour e mail address?
astestes

Survey Ouentioni— B Plesseindude an @ in the email
L address. testestest & missing an
Plcase ekl that apply
Lty ke your Web s
15 one ofthe beststes 52 e socn,

Loure wah my sie ooked a5 00 0 yours.
Is

o tate and T ety s, s0 your ite didit do much for e

Please vate my cits n 2 sale of 1 (prar) fo 1 (svesome):

Please chioose the one thing vou love best about my web sie:
That ssaaing pictus of yoi
Allhe cat phorcs. of zourse

The inspirina recap of vous subueban hildioos.
The detaled e of allvour

5 memorabilia

How can Limprovy s s site?
Yo cant[Lco.ldnt e botar ~
Hore about the ot

Hore ot e fanly

How o Eve,

~Free for All!

Feel free 0 send more praise, gif offers, efc:

[Ciek Fiors o Submt] of [Erase and Svart Over|

images/00097.jpeg
[3 APHP number quessing - X

€ - € [hitp//www.yourdomain.com/numguess.php

Welcome to the guessing machine!

Type your guess here:

Submit

images/00096.jpeg
[0 A simple response x

€« C | [http://www.yourdomain.com/send_simpleform.php

Welcome. Jane Doe!

Your message is: I like cheese!

images/00099.jpeg
[&Ml Form x

€ - € [httpy//www.yourdomain.com/feedback html
Name:

[E-Mail Address:

Message:

Send Message

images/00098.jpeg
[0 APHP number guessing - X

€ > € [http//www.yourdomaincom/numguess.php

41 is too small! Try a larger number.

Type your guess here:

Submit

images/00080.jpeg
[) ec254-156-122-146.com X

€ - € [http//www.yourdomain.com/printbr.php

This is a line.
This is a new line.
This is yet another line

images/00082.jpeg
[ec2-54-158-122-146.com X
€« c

" hitp://wewwyourdomain.com/scopetest2.php

Notice: Undefined variable: life in /var/www/13/scopetest2.php on line 5
The meaning of lifeis

images/00081.jpeg
[ec2-54-158-122-15c0m X

«

€ | [http//www.yourdomain.com/scopetest.php

Notice: Undefined variable: testvariable in /var/wiww/13/scopetest.php on line 6
test variable:

n

images/00084.jpeg
[ec2-54-158-122-146com X
« e DOt

1 Widgets

We build a fine range of widgers,

www yourdomain.com/numbe

2 Doodads

Finest in the world.

n

images/00083.jpeg
[ec2-sicisent
e>cb

dicom X

tp://www.yourdomain.com/

The meaing of lifeis 42

images/00086.jpeg
[ec258-158122-146con

& c

x

[htip://wwnw yourdomain. com/exists php

make me bold
underline and italicize me
"make me italic and quore me"

images/00085.jpeg
[ec2-54-158-122- 146icom X
€« ¢ | D hty

/fvevewyourdomain.comfon

really big text
some body text

smaller body text
even smaller body text

images/00088.jpeg
Hello sgainl You

B E] | senems comote s N

Qe
Fivassot
Fincecsson

oo sesge

- e e

" Bcoie

Bdpetcvion e

Ficaen sarge
o senie e

itpyjvnyourdomain comyscicookiz.php.

Bave chasen: srichole

hos Al Domee

e

images/00087.jpeg
c

[ec2-54-158-122-146.con

3 http://www.yourdomain.com/testnestfor.php

x

(]3]

[7]

s 10

14

I35

430

[

2835

][40

32][%0

56

36][45

[63

10][50

70

14][55

6677

ST

21][24]
[28]52]

images/00089.jpeg
(£ o ke «
& = € (D bpyjwwmwyourdomain.com/setcook e jshurl

Got a Cookie?
Letsseat

W yourdomain.om says:
e—

ox

RO e e e e e e

i e e S et

s o e e

b it [[

b oorvonse | |

§-porsra

o [[

L E e e

B 2psin a0 [|

Sy | |
|
|
|
|

o seric or

images/00396.jpeg
$("fitheElement") .toggle(1000, functiont) {
// 4o something once the spscified element is shown or hidden

Yi;

images/00395.jpeg
3 ("#theElement") .hide("slow", function() {
// do something once the specified element is hidden

V) ;

images/00398.jpeg
$ ("#theElement") .fadeIn (500, function() {
// do something after fadeIn() has finished executing

130

images/00397.jpeg
3 ("#theElement") .fadeOut ("slow", function() {
// do something after fadeout() has finished executing

130

images/00392.jpeg
vasible!;

images/00391.jpeg

images/00394.jpeg
5 ("#theElement") .show("fast", function() {
// do something once the specified element is shown

V) ;

images/00393.jpeg

images/00399.jpeg
3 ("#theElement") .fadeTo (3000, 0.5, function() {
// do something after fadeTo() has finished executing

1303

images/00390.jpeg
S("#theElement") .attxr("t;

TEIaNy:

images/00385.jpeg

images/00384.jpeg
> ("#theElement"} .html ("<p>Here is some new cortent for within
thaElement ID.</D>

images/00387.jpeg
S("ul 11 a") .text("Click Me!"):

images/00386.jpeg
Si'"gthellement) .text ("llere 1= 3ome new content for that element

images/00381.jpeg
S ("#chewlane t having an 1D of "theklement'
;" .theClassname"; // I'IVL elements havirg a class of 'theClasaname’
S (raiverhaRlementt); // Tre <divs =Tament with an Th of ‘rheRlerent’
$("ul 1i a.theClagsname"); // anchors witk c_aes 'theClacenams®

// thet are within list items
“p » span'); // spams trat are dirsct crildren of paragraghs
{ninput [type-pagaword] "} ; // inputs that have the specificd type
pefirst®); // the first paragraph on the page
B RRERY B ST e BB PaEIraEHE

images/00380.jpeg
SATCCTSTE hinil>

il Langamiats
<earip

ErcmnhEgs /e ax.grnglangin. coufajax

Eypmr Lot/ avancrigtes
<fmoripes

Eypesr sext Javasirigets
Lready(functionC {
censole.log(*ves,

L an vesayt

= oHells

Fiquery/s.3.2 /jqaney oo o

La1bsoare you readyi</hls

images/00383.jpeg

images/00382.jpeg
° ("
S (v
s (
S (v
5 (w

checked") :

// all selected check b«

:header"); // all header elements (hl to hé)
:button"); // any button elements (inputs or buttons)
:radio"); // all radio buttons

:checkbox"); // all check boxes

s-cr radio buttons

images/00389.jpeg
ement" tcitle-~"The Title Goes Here"~The Title Goes Here-</ /a:

images/00388.jpeg
S{("gthellement") . appendc ("<px=[lere 28 even mor2 new content.</p:=");

images/00374.jpeg
xRCILPpE.
STe="http://ajax googleapis. com/ajax/1
s S T

Squery/3.2.1/jquery min.js"

images/00373.jpeg
this.style.display='none’;
document . getElementById (thide_e') .style.display='block';
document saetilementBvid(‘elevation?) istyle:displayrstinling

images/00376.jpeg
S("p") .css("background-coloxr", "vellow") ;

images/00375.jpeg
S("p") .append(" powered by jQuery");

images/00370.jpeg
Baward Sreproec/as.«/|

</necrians

casctizes
k2oElavarions/na
e —
JERE

unt—

#ecunant qerSlenertey

#ecunant qetSlenertey
wsarazin; Zhow Bleveriore/divs
<ty ~lass favel ini

13-7nide e

N ok i are . Atep Ay et s

fnniment gerTlemerthyTd {sre_at) syle diarTay= Dladt;
vationt) .stvie. a1szlay-tnone’

= dispiay=tnonet
4 {1hido_o) s7yle Aiapiay= lecc!;
240 alevationt) atvle. dfszlay=tdnline

&ocunent qecTlenerchvid !

tuarazes; Tide Slevetiore/div.

eiv onnss 622 fee

1o (1101 mi . apprexivazely
1,060 £xt 1330 mi sbove the sarrounding ecuntryside. </dive

pr——

<acriors
kaanreraseihae
Face e

<oty oans

VoL ShONER®

images/00372.jpeg
CALy-CiaaEmNEalcal nx"
id="ghow_c*
onclick="this.style.display
document . getElement3yTd 'hide_e'| .style.display='block';
document . getElement3yTd{'elevation') .etyle.dieplay='inline';

none

S W VT T

images/00371.jpeg
o™ A A e uihe Loy

Grcnnt. getELement ByTa (' hde_p1) -nyle.dislage alad<';
AN gLl ment By T {1 rnt) nyle.disg Laga- Lalinet;
guss Sheos hotar, fron Lhe Top of Steptos Rubtac/divs
<aiv <lasset Farelink?

snids g
“his.style display=tnonat s

ementeyid! sacv_p).suyle Block:

ocarant qesZlementByIdi paotos') .style cisplay='none’;

wraguo, Hide Photos froT cas Top of Steptoe Eustesidiv

_sml.fpsr alt"View from Steptos

4y td-"photos

Eucean. Lipa ade
Ducear ipg" alt-'iew from Sreproc
Lutesn.

cemszext from
<a brel b/ fen wikizedia org/viki/stant

photos by the auchor..sem:

images/00378.jpeg
heep://ajax.googleapiz. con/ajax/1ibs /{query/3.2. 1/iquery.min. s’
text/javascript”s

e
B M

images/00377.jpeg
~gcrict sxroc=-"/ds/jgrerv-3.2.1.nin.js" tvpe="text /- avascr:

images/00379.jpeg
5 () .ready (function() {
// jQuery code goes here

V) ;

images/00363.jpeg

images/00362.jpeg
<IDOCTYTE hbul>

clasd Lasgarints
<ticats
<LitiesNouse Click Texte/LiL
“/head>
“body>
“Nistouss Click Teste/his
“patiick tae mouse or. b
will sndicaze which button was clicked.~/ps
B iarteseiimkeivest Linksfans/3e
iy 3-rtestarea e /Giv.
seripe typetzext/javascristr sre-tclick jur
<rpoay.
</nzmde

Cest link below. A ressage

f—

images/00365.jpeg
<1DOCTYPE heril.

homl Lergerents
“heads
UL aying oyprestene/titTes

“oeript tpsantow fanerip s
fanertar sineiayrey o) (
17 which kny wan prosned?
(e keyeean
ir=esmscode

Aeme i

-

Ering. EromciCac (ey

T ———

it eyl aaraph = dovument SSUE et 2T eyt

& rre chavater s the prraarah

evpparazraTA. (THTIE, e ChiracEer;
<hremipts

«/heads

chogy oaeypresssdisplavkey (evens) s
e

.

s

couThis documert irclufes a simple seripe

the keys you tvpe ss a aeu saragraph below. Iype 3 fex Keys

€0 zry e, arp
ate 4

images/00364.jpeg
function displayKey(e) {
// which key was pressed?
if (e.keyCode) {
var keycode=e.keyCode;
)} else {
var keycode=e.which

}

character=String. fromCharCode (keycode) ;

// £ind the object for the destination paragraph
var keysParagraph = document.getElementById('keys');

// add the character to the paragraph
keysParagraph. innerHTML += character;

images/00361.jpeg
function rouseStaus (el |
L) = window.event;
e = s tons
hichons = (5in < 20 7 tLel!

"Right*

st sagams. ype o - whichone + "ebis
Gosununt. gelElensutEyId ' asiarea’ . LuustHIML +- mess,

obj-cosunent et ElenentEyd ! costlink |

ob3 .crncussdonm — mousettatus;
ob3 . onnoussup - mousestatus
ob3.onsizck - mousesterys

obj onskielic: - mousestacus

images/00360.jpeg
<a href="http://www.google.com/"
onclick="return (window.confirm('Are you sure?'));">
PO W

images/00367.jpeg
<l lang="snts
.
<xitlesstepres Buttac/tizles

S
at
R
i {
msrin rigke: 12
R R
border 1pm solid #

Tt et

At ees o

setevsrior {

atrpizy: nowe;

1

#nidep |
e

images/00366.jpeg

images/00369.jpeg
<hl>Stiptoc 2ubtec/hl>

<z
<prcimg aroemateptosiubte.Jpgt Alb=Viey fom SEapras bt
lannetiaiaingt»Septos RubLe in 4 quartsite iland jukbing eut of

Hhe nilty Tosss of the <

/fa wikipedia £ f2alounst B
Whitnan Couty, Mashington. The vock that forwe tha Zubte is over
400 miliicn years old, in coatrass with the 15-7 million vesr o
~a brat-tazcps/ien.wikipedia. org/wiki/Colunbin RiversColumbia
Kivers/a~ basalts that cuderlis the rest of the Falcuse isuch
ads® of ancient xack have come <o be callsd buizes, a butte
defined as a sweis hill #ich a flat top, whose width at
top doss a0t excesd its kel
“pa Etel Buile by Cashup Savis stood atop Stestoe Suste Zrom
L88¢ tz 908, burning fown several years sfter it closed. In 134t
Virsil Nocrostey dorated 123 acres (0.43 kn2i of land to form
Stepros sice State Park, wEich was lat
acres 0.51 ma). Steptos Butte is currently re
Kacional Nazural Lerdmazk because of its umigve gecloa:
ie naned in honex of

e bref-vhcco:/ien wikipedis. crg/viki/Colonel Eduard_
 siiramsit A

sus <fas hills in

beic

wwipn

images/00368.jpeg
#photos |
Qispley. noas;

senowe |

Qispler: Eicck:

1

ssnowp |
isplay

1
Leakelink |

mersie kocter: Sp

atvies
“ncdy

s,

images/00352.jpeg
<4 href=igbotton® cumougeav ">Mcve the mouse over chis

1ink.

images/00351.jpeg
<a href="http://www.google.com/"
onmouseover="alert ('You moved over the link.

This is a link.

images/00354.jpeg

images/00353.jpeg
function mousealert() {
alert ("You clicked the mouse!");

b

document . onmousedown = mousealer

images/00350.jpeg
1/ create the arcay
samess = new Rrvagll s

var i = 6

£/ Toop aré prowpt Ese names
ao |
et = prougt (%
P

ater b Mext Kaust, '3

{

| while (mexe s %oy

Gocument writs (a2t 4 (nemes.lenath) + ¥ names ertersde/hze);

/7 Atsplay 271 Af ha names
dorument wrivsineel) ;
for 11 dr nanas) {

ocument wxite |l lin + nemes(E] ¢ fe/Liot

images/00359.jpeg
<a href="http://www.google.com/"

onclick="alert('You are about to leave this site.');"s

Qo Awave/as

images/00356.jpeg
function updateThenDisplay() {
update () ;
display () ;

images/00355.jpeg
var linkl_obj

document .getElementById("linkl");
linkl obj.onclick = myCustomFunction;

images/00358.jpeg
function getkey(e)
if (1e) e=window.event;
// more code

images/00357.jpeg

images/00341.jpeg
for (

REAle Aeky

docuient writs " Mhies ig Iine ™ & & Wehpst):

images/00340.jpeg
for (i=0; i<10; i++) {

document .write ("This is line " + i + "
");

images/00343.jpeg
total < 10; n++) {
total += values(n];

images/00342.jpeg
<UDOCTYTE htnil>

S
P,
<UiliesTsing o Loz Loswe/Lilles

prrv.

<h1sCsing a Lor Loops/bis
psThe Lollowing is the culpus oo Lhs <stroagsiors/stzongs Loopic/ps
Lont/ javascrionts

“sesrizes
/B0ty
.

images/00349.jpeg
<IDOCTYPE bbnl>

ahtul Lagareats
<heads
titleslocps Sxauples/titles
“fresis
“bods
hlsLcsos sxamples /i
“pakater a series of nanss and va
in a nubered list.«/pn
<serspe cype-
.
<nends

cextjavascripst sre='losza. jar

serize will displey

jeripes

chen

images/00348.jpeg
document .write("");
for (i in names) {
document .write("" + names[i] + "");

document .write ("") ;

images/00345.jpeg
for (i in navigator) {

document .write ("<p>Property: " + i + "<brs");
document .write ("Value: " + navigator(i] + "</p>");

images/00344.jpeg
for (i=1; i<21; i++) {
if (score[il==0) continue;
document .write ("Student number "+ i + ", Score: "

+ scoreli] + "<brs");

images/00347.jpeg
document .write("<h2=" + (nemes.length) + " names entared</h2=."| ;

images/00346.jpeg
do {
next = prompt ("Enter the Next Name",
HES (nexE =R
names [i] = next;
}
i=4d+1;
} while (next > " ");

images/00330.jpeg
if (a 11
alert ("Found a 1!
a 0;

} else {
alert ("Incorrect value: " + a);

images/00332.jpeg

images/00331.jpeg
variable = (conditicn) ? (value i1if true) : (value 1f false) :

images/00338.jpeg
switch (button) {

case "mext":
window.location
break;

case "previous":
window.location
break;

case "home":
window.location
break;

case "back":
window.location
break;

default:

"next.html";

"previous.html"

"home . html" ;

"menu.html";

window.alert ("Wrong button.");

images/00337.jpeg
if (button
window. location
} else if (button ==
window. location

} else if (button =:
window. location
} else if (button =
window. location

= "next") {

"next.html";
previous") {

"previous.html";
home") {

"home.html";
back") {

menu. html;

images/00339.jpeg
for (somevar = 1; somevar < 10; somevar++) {
// more code

images/00334.jpeg
if (hour_of day < 10) {
document .write ("Good morning.");
} else if ((hour of day >= 14) && (hour_of_day <= 17))
document .write ("Good afternoon.");
} else if (hour_of_day >= 17) {
document .write ("Good evening.");
} else {
document .write ("Good day.") ;

{

images/00333.jpeg
document .write("Found " + counter +

((counter 1) 2 " word." : " words.")):

images/00336.jpeg
/7 Gt tre sarzen: date

Lacelns

1/ Delizears acurs, mirvres, sscenda

hoviz_of_tiay = nevs. et onza () ¢
mirite_sf_hoar = now.getvimiesi)
seconds_cf_mimte = nov geEecondaii

£ Mispay o
dovungel s L {7 <tz

dovungel i L iz oL Gay | 13

© secouds vl minulel

| minele ol bos

docuamct . wr-Le (/b

i/ Dispay a gressing

doctaert write i apa) ;

(For_cf_day - 100

doounent. urilel Goud torilng. "1

] elss i ((hour ob day > 34) %& ihous of Gay <= 17 {
docunent writei Good afterace.

} else if thour of day ~= 10 1
docunsnt. urite! Good svaning. ")

| else
docunent urite! Good day.")

1

document urita (v /o |

images/00335.jpeg
<ipocTYeE benl-

el e

<renss
<rirlostire Greet Bxammle</riles
rrenss
<heay.
<hTLCurranT Tare srd Tmmc/als
<soript typesttext/qavascripe! sro-'timagrast.ist
<0
nends

images/00321.jpeg
var average = total / 5000
average = Math.rourd(average * 10001 / 1000;
AR WLt s R BSAVATanE Of 5000 SUNbers S8 P 4 averags ¥ “&imar):

images/00320.jpeg
if (i % 1000 0) {
document .write ("Generated " + i + " numbers...
");

images/00327.jpeg
1L (1phicus

Ty R& (2marl

)) alsslL('"Bolhh Values Are Missing. "

images/00326.jpeg
if

i (phcne

"))

alerc("Somathing Is Miscsing.

images/00329.jpeg
1f (phone != "") alert("phone is OK");

images/00328.jpeg
1f (!phone

images/00323.jpeg
birthday = new Date();

birthday = new Date("April 8, 2017 08:00:00");
birthday = new Date (4,8, 2017);

birthday = new Date(4,8,2017, 8, 0, 0);

images/00322.jpeg
<1MOCTYTR hEils

et Lrgaronns

LiLieaal 1 Rramp s Uit s
<fresas
<oty

<potiow Tadom are GavASSELE 3 random ninbers?ebrs

Let'e gensrata suuc

<acript types sext/javassritts

or (2m0; esennr des
cotal = mm;
ir w100 - @ {

éscunant erite (‘Gereratsd '

}

vz aversge - zotal / 5coo,

Erar 2ad fing out </

everaze - Nath.rouwnd(averags * 1000) / 100,

ocunenc
pam—

<iboays
A

Lea(rupaveraze of 3000 rumbers is:

=

images/00325.jpeg
1t (phone
if (email

") alert("erro:
nn) alert ("erro:

images/00324.jpeg

images/00319.jpeg
function rand(num) {
return Math.floor (Math.random() * num) +

images/00792.jpeg
74: for (Scount=t: Scount « (sx7): Scountes) {
w Sasgarvay = cetdate$stavti

o i€ fiscomnt 3 7 ==) {

v ie aylimeat] - fmsseh) {

1

1 }

50

51)

02

0 it foount - stirstsayar 1 4 smontny
0 echo "etdsunkss, </ td-Ant

05 sise |

o echo "utdee sdsyarray [mdey'] "a/edsin s

3 sevare +- amaY,

00

oo

images/00791.jpeg
<s€lat name= year's
<7t
for i8x=1930; $xe=2000; o) |
acne copriont
1€ (8 == gyeaz) {
ache saleceed
)

sone Cuesoprizest,
S raetens
“PurEan Typo=aUbLES Mama=TouBIEY valus=tmubmLE S </PatEons
<ftarms
P
<2
Sdayn = Array(Suet, TWent, CTuet, VR, TR, Frie, Sgant);
“ohz tetablascrmaan
formaz (Sl s $ay) |

By

< scay. <

images/00310.jpeg
function Card(name,email,address,phone)
this.name = name;
this.email = email;

address;

this.phone = phone;

this.address

this.printCard = printCard;

images/00794.jpeg
canript. Eypoe*toxt/javaacriptts
functicn eventWiodow(uzll {

evert_scpup)
-ac1haT0, 07 ArE 40D, ned ght 400 1)
ever_popupi-

window.open(url, 'event!

cpensr = self:
)

P

resizan

images/00793.jpeg
CREATE TABLE calendar events (
id INT NOT NULL PRIMARY KEY AUTO_ INCREMENT,
event_title VARCHAR (25),
event_shortdesc VARCHAR (255),
event_start DATETIME

images/00790.jpeg
Bacageoimd:. $onc

1
rdar: px solis Blask;
sding: fpac;
vertisaloalien: tos;
wadta: 100gm
¥
AT
<>
wodr>
<hl>Selccs a Honth/¥ear Conbluatione/tas
<50k e Lhode pOBLY acU_cu="<iplp echy § SEXVER['2HE SELE 1; 227>
“sesest aamesmonths
=k
Stonths - Avray("danuaiy” avch, vaAprilt, Hay,
"utger, Wuly', TAUZUSET, "Seprembert. "UStcher’, Noveubsi', "Jecember
Zox (sx=1: dx += count (s7eachsi: Sxesl |

echoreopzion valus:
1€ (8 == gooneh) {
acho salected

T

ashe ot Smorths[x-1] ejoptionst,

images/00316.jpeg

images/00315.jpeg

images/00799.jpeg
<eelect nanesryeart
<7l
for (sx=i990; $remzine

2cha meapzion’
(55 == gyeart |

pp——

Sxefoprionsts

<fsesasts

BULLON Lypensubuil’ naus=TeubI_LY values"subi

<vphp
$daye = Array"Sun, HoE®, "ust, "Med', “Prur,
ecko metablessrsinty

as sy
$asy. <seraine;

= (Sccunt-0; joownt < (6¥7); oountes) |
ScayArray - getdate (3start);
it (Geewns ¥ 7 — O

L isdagrray [uo
poands

- soentan {

Erin,

satt

images/00318.jpeg
function round(num) {
return Math.round (num * 100) / 100;

images/00317.jpeg
<IDOCTYIE hEels

et 1:x

<tiats
L ol Headivg Yethsde/citics

<oy
<seripl Lppesr et/ javarerioln>
Luncticn adddsading (leve.! |
Vai BUAL = "B+ leveo:

Var taxt - chis.testiingil;
var spezag = et 4 benl -t
var ciosetag = "eft - heTL 4 Cn

seturn cpsazag + text - Slosetag;

}

strinz procotype hesding - addisadirg,

Gocunent srite(his is a heading
Gocenent srite(his is 2 heading
Gocenent srite(his is 2 heading
</ecripes

</bodys

</hzms

images/00312.jpeg
var holmes = new Card();

holmes.
holmes.
holmes.
holmes.

name = "Sherlock Holmes";
email = "sherlockaholmes.com"
address = "221B Baker Street"

phone = "555-555-3456";

images/00796.jpeg
} alme |
Sevent_titia -

“Lastop

Sysall - nysall_cornes: ("locallost’, "iesluser®, "scmepass®

SckBvent_sgl - 'SELECT wveal_tiils FRCM calendar_svents WEERE
foRthisvent_ssart) = '*.Swonth.'' AND
Gayoftonch ievens_start) = '*.§day

eyl tmaay 1
2D yearievens_start) = '0.$year.®' ORDER BY evart g
SchkBwent ran = mynqli quary(§mpeali, $ohkBvent ng)

e

fnysli_error(gmyaqli));

18 Gwvaqii_nun_rou

(gokimrens_ves) > 01 |
¢ - mysqld_ferch array (jenknuent esl) |

Slic "atdsca LreL)"JavascrIptsevensRLndon ' svent. shizus . S ionck
"eawp;d-". SdayArray | 'mday' | . "aan;y=gyear’) i\ 1t

Saayhrray| inday | .9</asebrs " Sovert_title, 'e/tds vt

unset (Sevart_title) 1

sacare 1=

images/00311.jpeg
var tom

new Card("Tom Jones", "tom@jones.com",
"123 Elm Street, Sometown ST 77777",
"555-555-9876") ;

images/00795.jpeg
A Ferdasn hrafsltavancol
"gamp;d= . §dayArray ['nday 1."aamp;y=§ysar);\">'.idayArray['mday’]."
chrat itle. "e td>\n" 5

eventWindow{ 'event . php?m="_3nonth.

ent.

images/00314.jpeg
<1DOCTYPE Wtiil>

htal Lsngers:
<heads
titiessavascript Busin
~/heads
“bodys
hlsvavascripe susiness cardse/his

55 cardse/sitles

pakxterasl sCript OUEELE SSming Up...-/Bs
“script type-sest/javascripth sre-'cards.jstu</script:
“poimtaraal script cutpit has ended.-p-

< /poay:

</hzmds

images/00798.jpeg
Pold;

font-weigat;
=

arewna

border: 1o solid black,
satdiag: sp

vertscal-align
widen. 123

top

}
ciarvie
e
<body

hTaSesnr 3 Wenhivess Serkrnatione/hls

Criananerm acho §_SRRVER[! FHE_

<Fem merhoatanr FE s

Zomier mamearmonths
P

Smonthe = Rrray (Uamcaryt cht,
Novembezt

b oseen |

erpile,
o——

"errimry” Ny, ien,

"igusts, 'Septembert,

count 5

gaire

£ oisxel 9 o

B
Swontt
salectec

SwonLis (5

oy,

images/00313.jpeg
/{ define the Eanotions
un

son printcara) |

var nneline = estrongsNne: </atrongs! - thiz.name & f<hr>t
var cmillise = DestronuBuaisc <fsirong>' 1 Lilscuail 1 tebrst;
var aressLins - <sbzousshdrese: <julzon>® s Luis.addzess - Teors’s
var plomeline - "estzongsPluns: </sirougs' + Lils.paons + <>t

Uocumerl . ui_Ls ianeLive, sl L,

function Caxdaats, email,acdress, pacne)
<his.nane - aams;

“his.ensii - smail;
this.edéress - address;
<his.phone - Fhone:

Shis princiard - princcard,

/7 Creale U ubjuels

var sue = new Taxdi®sue Suthers®
Tourtown ST 99395
var Lred = rew Card{"sred Fanbay',

Soustoun ST 9939
var Jinbo = new Cardi"dinbo Sarest,

Anatherville ST sesser,

1/ Now prire then
sue printcaza(
£red princcaral
jirso princcara():

ldoussLin

"suessuthers. cout,
"555-535-9876 11
*LradoLanbo,
Errr——
Jinboojones o
550555144471 1

waeLine) 1

225 Blm Street,

con®, *233 Oak Lats,

"255 walnue circle,

images/00797.jpeg
1: erprp

Clieaet 13 B0RT wenth 1)) || 1 Finset (5 POSTL yeart 1011 (
Snouheray = gatdste i)
Swoata = fnowhezayllaoa']
Syaar = gnowrayl vear']
) szew
Susata = § POSTL'moutt];

Sysar - § 203Tl'year'l:

Setart « whilne (12, G, €, Sroaih, 1, Syear
¢ $ilictDarhrray = geldale (Setart);

echo "Calerdar: '.9EiretDayArrayl nentall .
Uyear' 115 75/
textjaeers

Les

10 sslid bac)
hexdor eallapse: ox

2 hordar: 1o 20114 B ack.
27 peatug: Gpu;

images/00309.jpeg
var
var

var

Gocumert .write iname_line, enail

name_line = "Name: " 1 this.name 1 "
\n";

email_line - "Email: " - this.email + "
\n';
adaress_line = "Address: " + this addrass + "
\n";
phone_line = "Frone: " - this.piome + "<hr/>\n";

e, address_line, phone_:

ine)

images/00308.jpeg
function Card(name,email,address,phone)
this.name = name;
this.email = email;
this.address = address;
this.phone = phone;

images/00781.jpeg
it imyeqli_vum vowe($get_sizes res) » C
"eoestrong fvailable Sizas</strongs<brot;

tazen sizas vest) |
Stcam_size - teizesl'izem size']

sdisplay plock .- sitem size.

Seizes - mye:

wvay(sset.

iitree resulz
myscli_tres_resuls (3et_sizes_ves

77 adsplay Block .
7:)

73: /iclose cammestion to WYL
3% myaq1_cTnmn (Gmyaqi) s

satoar

=1D2CTERE asals
Nt Lang-raans

“hescs
“titlesry Stores/title:
iheacs
boay:

bu: -pkp echc taispley blocks i

v9: </bodyn
20: wihtntn

images/00780.jpeg
//get selsrs
$get_colors_sql = "SELECL iter_color K stor:

iten i1 = ' gsate irea id
ueryismysqii. szec_solors_sell

izem color whke
kb 81 scer_color':

$get_caicrs_res = ays:

o dtaTrysqli_error (smvssil)):

if (mysqli_mm_vous (i3et
#48an1ay_block
while [3eslors

Lera_real - 0
romquavedlakls Calora:</strarmsebret;
_toren_arvey (st _solovs_ves)

Soisem oozt

iram_color

iy Dlock = 5

i

)

v
sali Leve sesull (e o

pre
$uel sizes sql - "SELECT iler sise FRON slors iien size WEERE
iten id = " $safe iten id.” CROSE BY iten size";
$aet_sizes ves - nysqli_query Suysqli. S3et_sizes sqll
551 o aisimysali_exror(snyssii));

images/00783.jpeg
$ger_itema_res = nysgli_query(fmyagli, Sqec_izema_sql
G Ateimyanli_esrar Syl ;

SE iryali_ovn_row (Sges_izems o

. Sdispley keoe

<1

nepscomsSarry, G0 items in this

st R

bt

s Sdiplay boeok = Teses ion Clie\ i e
5 Fam\ T 1 i%er % St id s
36

ane WHETS A itean = Tyaqll Teloh arreyiSgel L vea)}
a8 Silew 6§ ewnlian

Silen (it = soriprlashes ($teral ot iTel

100 Sitemprice = Sioemn U ien price |
11 Sitem s = §itensllitem imsce’
12: $iten cec w1 item dece!
150

Sdiuplay blusk .- <<<END GF TEXT

FislatsSiten_ritTee/nas

@

e-tan_sitle Fcat: Lefs

202 e

images/00782.jpeg
prp

By gl GOt (% e B, Lesinrs, VaimeganaT, SLenITAY)
Si Saiepiay_block = '<hlaby Datagorisac/nls
65 <peScrall tarough the Lbens s each category.</p
o cu catsgories Sivet
o = PSELECT 14, 2ac_tizle, cat_fee: FRON acore categorise

ORDER BY cat_citle:

= oysgi_gsery Sryaqli. $get_cate sql)
o dxalayeq-t_errorSayegial)

it frysqli um vows(sset cats res) < 11 |

15: Ssisplay SLock - 'pr-snsSorry, nO Categories o browse.</ems/pti
16: } elss {

17: while i3cats - mysqli tetoa arcay(jget cats res)) |

160 oaz id - geatslzd],

15 jeaz_tizle - stxtoupperistripsleshes (oats’ican_title'llt
204 eaz_desc - stripslashesizcatsi'cet cessi1);

2 $atsplay block .= "ehzat fcat_title. s/h2siaps’ $cat_dess. me/ont
2. tige: izems

25, jgec_items_ss = "SELECT id, item citls, izem price. item fe

26 iZem imaje FKX store_izems WEEKE car_id = ' 4catic.t

27 ORDER BY item_tic:

images/00305.jpeg
<UDCCTYTE hbul>

SR
<ai>
<ULesPanslion Braple: Averagec/LiLiss
<GoLLpL Lypes'Lent/Javacoripit>
Suction averagels b, {
var rasuls - (a s bec s dl /s
retarn result:

'
=fscaises
<rres:
“body
hisrunction scample: Averager/his
<pithe following is the resul: of the funscien call.cs
“seripe cypesttat/javascrin:
ver aesrs = averase (3,4,5.5):
focunent wrize(The avarags s: ! + seore)
.
<ments

images/00789.jpeg
1 <pnp
2 delice ("ADNTY, (S0%€CA2Al;
3+ 0L ((iuusUi§ POST(Mmontl 1)) || (1icsel(s FOSTI'yuart) 1l

Seowhiiay = geldate
Suoath = Saovaczey [a7
Svear = fuovaczay ['year'l;

}oeles {

Snonth = 3_20ST ‘wsnt 15
5 syear
wi)

Lis $etart = rkzime (12, ¢, U, $romch, 1, Svear

setUavarray = gevdate (Sstars);

<iboerver s

<heats
“hase
“itleniiphy ache ‘Calendar. beissciayarray[monthl.
stirecpayarrar(ivear 1, fojzicles
sstyle typestzentcests
rarle
n Farder: 1pw salis Flack;
» barder-collapse: col1anse;
S
e (
s barders Ape A48 T
0 pasatna: G

5 £onr walghts bola

images/00304.jpeg

images/00788.jpeg
ace T Suonhs (-1

<jopises®

<rphn
For (8xe1990; $xe2020; Sxii) {
e
€ igx - svear] {

o sl

ocae " prejoptionst

1
“butten type submit® nama-submitt valus

o

<ibacys
ihenc

images/00307.jpeg

images/00306.jpeg
var stringtest = "This 1s a test."
document .write(stringtest.length) ;

images/00301.jpeg
function greet(who) {
alert ("Greetings, " + who + "!");

images/00785.jpeg
myeeTi_fren_rnit(saer_osre_ran) s

fielame sommaczion o i

can At

an

<1DOCTYTE bl
o) Langanns
s

ctitleavy Casousricse/titTes

<T4nk ralatiylagheor 1 href

AR e ane /1471 A1 0T one s

<eeinE AraathrTn s cande " Taflare . comi s En Aqueryi 3.1 ey Tin
S ——
<BOLipt Ercetallps://odije cLovdtLare. con/aje
iquesy. sasing.min.is i feripes
script sronattps.//cdnis.cloudflars.com/ajex/1ins/jgier:
e A e M
<aeripr eroaslimias] ides de/dziery TITHA-8116er min fatse/acmipts
</meza.
Bod-

ALibe jquery-easing/1.4.1/

Souchswipe/1.s. 18/

“ipkp schs faisplay_block; 2
</body
<t~

images/00300.jpeg
/¢ inilie les Lus cownler ace Ube atray

4z Lumbcznan0;

tunction Scrtyanss(l |
/7 5st tha nae Lrow L taxt fleld
“henane-docureas , thefom, seunane. valle
/7 R3c the nane to the ariay
nemes [urbernanes] ~theran:
/¢ icrereac the cownter
rumbercaTeses
/¢ soxe tha arvay
nemes sare ()
cument. tre form. sorted. valus-aames_joir (at)

images/00784.jpeg
«ip
puPrize \SHTam_prices/ns

saiobutezn 12 onfa

<prea nref-seestore ppiest_ii-ge:
ez
mm_er_texs;

“Aaplay Mok = ceom
s9: <jsection
50 caoripe type
$1: geureriont {
S(0gman ol tor one_tA1] Tiqatastider((

avman oana: falae

Foversrro: false
55 i

n

<ieariprs
sM0_or_rexr,

extpens

}
Irp -

T _Fres_rosult (et _ v ¢

images/00303.jpeg
cntml Langstocts
ncaa

CLitles Pt /it Tes

Cuenipt gt et /e iph s

Ewction Sat ol ||

ANt (Wreatingn, 1 v whe 1 803
<focripts

<

<oy
hlaPuncticn Bxamiluc/hls
<polho sre yaurefss

wccon' orclic ‘radti vl an Fredsiourtons
Butcon’ orclick *erast!'Ethel'l; -1 an Ecaali/buttons

button tyge
button tyge-
/b0ty

e

images/00787.jpeg
1 <spnp

2: 4F (129203 voSTImonck 1)) || (1ieset (s_bosyiiysar)il
trounrray - metdate()
St = fovarzey [1aoat]
Syear = $aowhrrayllysar']
bi) else
7 fmoath = §_20ST('mentk]:
Be Svear = 3POSTUlvear'l;
s: 1
Catert - mmime (5 O ¢, fmemch, 1, fyemr!
+ $HirorhayhTIay - qerdare (Snrart) ;
I
¢ wserves ammle
nen Tang-ranrs
+ <henas
1o: <titlescrpip echo “Calsadar”.$EiretbsyArray "month "
1 stirscDayAvrav(ivesr 1, Ton/titles
T
195 cbodys
20, <hi-selact a Month/Year Zorbization-/his
2. o mathsd'post! actisn teiphp echa §_SERVIR('TUE_SELE |, a0
b (s
© s
21 ers - Array(gaceary” “varcar, Caprilr, wayr.
250 Mdumor, MLy, st s Wbt Devenburt) -
e
2 cactoption value
28 f (5 - tmonekl {

20 A o

images/00302.jpeg
<IDOCTYIE hEeis

<html Lixgerians

<tats
<titicsFumsiome/titles
<soripl Lpusr anl/ javasciilts
Lunetn restiulol [

aurLiGrou s, T - wo ¢

)
<isoripts
~/heazs
b

PeThis is the body oF the page.</ps
< body:
ihena.

images/00786.jpeg
(s 20870 wentarin ||
Sucudrray = getsats();
Sroata = frowazzay[mea'l

v - snowaziay[year'l;

b osise |
7 oaca = §_posrlimearatl;
B Sysar = 3_20srl year'1;
o

10: gseare - mecime (12, 0

smonch
Li: ¢ziracnayhrzay - getsace (starci
12: 2

tigst (§ POST[yeaz ']}

images/00770.jpeg
CREATE TABLE store_item size {
id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
item id INT NOT NULL,
item size VARCHAR (25)

)i

CREATE TABLE store item color (
id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
item id INT NOT NULL,
item color VARCHAR (25)

images/00772.jpeg
INSERT INTO store_items VALUES (1, 1, "Baseball Hat', 12.00,
*Fancy, low-profile baseball hat.', ‘baseballhat.gif');

INSERT INTO store itews VALUES (2, 1, 'Cowboy Hat', 52.00,
110 gallon varisty', 'cowboyhat.gif');

INSERT INTO stors items VALUES (3, 1, 'Top Hat!, 102.00,
“Good for costumes.’, ‘tophat.glf');

INSERT INTO store items VALUES (4, 2, ‘Short-Sleeved T-shirt',
12.00, '100% cotton, pre-shrunk.', 'sstehirt.gif'l:

INSERT INTO store items VALUES (5, 2, 'Long-Sleeved T-Shirt!,
15.00, 'Just like the short-sleeved shirt, with longer sleeves.',
‘lstshirt.gif']:

INSERT INTO store items VALUES (5, 2, 'Sweatshirt', 22.00,
‘Heavy and wazm.', ‘sweatshirt.gil');

INSERT INTO store items VALUES (7, 3, 'Jame\'s Self-Help Book',
12.00, 'Jane gives advice.', 'selfhelpbook.gif'):

INSERT INTO store items VALUES (8, 3, 'Gemeric Academic Book',
35.00, *some
"boringbook.giZ!);

equired reading for school, will put you to slesp.’,

INSERT INTO store items VALUES (9, 3, 'Chicago Mamual of Style',
.95, ool for cotvwriters.’; ‘ohidsgostyle.ale s

images/00771.jpeg
TNBERT- LNIO Stare. catbgur Les. VAL
(2, 'Hate', 'Funky hate in all shapse and eizesl')y

INSERT INTO store categories VALUES (2, 'Shirts', 'From t-shirts to

sweatshirts to polo shirts and beyond.');

INSBRT INTO store_categories VALUES (3, 'Books', 'Paperback, hardback,
books for school or

images/00778.jpeg
1 <ron

2 iverseel Lo ualabase

3: Gwyl = nysull comel (Tlovalbonl”, MLesluser, "somepars”, "LesiDRY)
5: Sdispiay plosk = “<hlYy Stors - Tiew Detai-c/ils;

ficreats sats values Zox uss

Ui Ssefe iten id - mysqli_real escape st rysali, §_GETIiter id 1)
5

1: sjveisdaes dcem

LL: Sgee_sten_sql - SKLECE ©.id a3 o < cle, siiten title,

2 si.iten trica, siiten dess, si.icem imaze FEON store itens
1 35 si LGPT J0IN stove_catsyories AS ¢ on o.id = si.cac id
1 [

15: fqmt_sten_res - myscli_suery Smysqli, fost_seen_sqll

16 o aie(aysals_srror (fmvsaiil);

-_mam_rows ($gat_ttan_res) < 1
ffimealia tnem

Laz_block = MepsearsInvalid iten

Laction. <fems< /5"

images/00777.jpeg
3l :
55t sdioplay_block = *e/uls

s '
55 7ieras vesults

381 Tysqli_free result (sc:
}

s }

90)

59 |
b1 Fitzes results
mysaii_frae_resul(fger_cire_res)
53: /ielosa sommsczion te MSOL

B,

P

<1D0CTYRE hels

images/00779.jpeg
A
an

//valid item, get irfc
Sitem info - nysqli_fetch array(sge:_izem
. id = $iven iafol cac_ia']

citle = screcusperistripsiastes(jicem i

sezem_itle

stripsiashes(titen tnfo
sizem_price - fiter_tafol'item priza |

en_desc = strizelashes(Giten snfsl izem desc]}
m_image - fiter_tafo[iten_inas

fémaks breadcrumh trasl s Alapley of frem

Sesan ay_nlock - <eeRIT_oP_TEAT

“pesmyou are viewira < jamaches
<arrangica Mrefsisessrors phpicer_iAsSear_tdsgear_titles/an
sar; gitem_ritlec/errongue/p

65w ArylatFlost: Tefr;tcing are.

Verren_tmagat Alroegirer_ricle
"Flost: 1efr; madding lefr 1amxis

sy aryls

<psearrongaInacriprion:</abrongs<hriten_Saanc/ps
R e
_or_Tex=
Zieren rem

i_fras resilt(§get itan rea);

[rear e

erdivs

images/00774.jpeg
IRSERT INTO store_item color (item id, item coloxr) VALUBS (1.'xed'ls
INGERT INTO storo_item color (item id, itom color) VALUES (1,'black'l;
INSERT INTO store item color (item id, item color) VALUES {1, 'blue’):

images/00773.jpeg
NI pUuIn _LNQNIRBARE L AUOMOLE,
INSERT INTO store item siza (item id,
INSERT INO sterc item ciza (item 1d,
INSERT INTO stors_item size (item id,
INSERT (sise (iten id,
INSERT INTO store item sise (item id,
INSERT INTO store item size (item id.

YALEER fL0us Bles-FALR-SALL)
VALUES (2,'0ma Size Fits AlL');
) vALOES (3,'0ma Size Fite AlL')
VAZUES (4,'3%);
VALUES (4,'M');
NALUES (4,'L1);
VALUES (4.'XL');

images/00776.jpeg
5 GATL cat_ial

fract ivens
Suct items gl = TEELETT L4, item Litle, “tmi price

FROM uloze iLoms VEERE

Cal = 1.Seal iC. CRDER BY ilem Lille':

saLr

“his

Sdispley_block = teals;
wile (Sitems = nysqli_fesch evray(szst_items_ves| {
Sizemie = sicems(rid]

e Sizem citls = scripslashes(yiters[izen_:

w5 Sizemprics = ditems|'item prize’]

=3 Sdiepley_Elack - '<lisca hzefo\'shcviten.phptiten i
e sz em_zitla /a

3. s Yerlest

images/00775.jpeg
<ophp

30 reomeet to datan

3 fmsali - oy omneet [lessTNoset, Weaatusest, Veomepazst, VEestDBY
.

S¢ Adiupley Wock = MeHLSHy. Catéuorisue/tls

S0 epSeleet s petemry o s ite ik </pen;

Bi ¢ foow categoricn vl

S: Sger cate eql @ NSELECT 14, csb Litle, cal desc 7RO

Al categories CREER BY cattitls
ver = ryangliquesy(Sepeali, Syt catn gl
a6 dieimpeqli_evvor (Sryeqlidhe

1f (myaqi_nun_rousisger_sets res) < 1 {
Salepiay flosc - opream-Sarry. 2o casegorics o brovas.ojemipst
15: } eloe |
17 Whlle fgmats = myaqli_ferch_arrayisaer_cats_ves)) |
1 foar_id = geatalt1a];
19: fcar_pis1a - srrronpper (srrinslazien sestal car_rirlarl i
200 S S M
2 454 AR ay_Wlorle < fepienrrangun refal T ¢ ORRVER(*HIR_GTI

L TR U 1y o

Sear_neaz.teins

s a1

g oo

images/00761.jpeg
<tptp
Dnliee s Dwlude.plp
oDB (15

1
5

Jécheck Lo pee 11 we'ze showoag the fonu or adding the poet
Gs EoEm {

£/ showlug the fomi; cheok Lor required -lew in query stilug
46 Cissst(s_GETI'post_ia TN {

el

hot

ficraace safe velves for use

L safe_posc_id = myszi:_veal escape_stringimysqli, % _: sann
15
15 f/8e211 nave to varity tople and past
I sey_sql = "SELECT fe topic i forum posts
1 B2 fo LEFT JOIN . €5 AS £t OK £p.tonic_id =
18 4o e _ta.
20
n versty_ras - mvesli_uery(gmysali _san)

o 12 rysqli_erron(snysyl 1))

% {myaaTe_mum_rown (suar- £y_vont < 1)
£67n17 pont. o £
ocariar. bamtelioTphpt) s

headare

images/00760.jpeg
20 < ipCTeRT homls
200 chrml lamaeren s
800 cheads

R1. eribimsdonsn in Topseltitles
RE. ertyle Gypeebaxt foacts

R Lante

Sardars 1px ealid slacks
v Sorder-coiZapss: sollapeer
s61 }

s e {

e ovdex: ipx eslid Blacks
sa adairg: epx.

a0 fonzoweigte: pola:

a T —

az

03 ea

2 Zovder: lpx saiid dlack
25 addirg: epx:

versical < imn

s posse col [Lext-align
a9t </styles

1005« /heads

115 sbacys

Lz eEiswests dn Topice/bis

Wi: vpbp scho Saispley biosk, ¢
La </body

105« /hend:

center; ¥

images/00767.jpeg
<weript bys

v et/ Jevanripk e

1.
2: fusetisn aurlTable(tubiz, sol, zeverue! |
3 var L = Lable. tRosics (0]

var br = Beray.prolityssslice.call (b sos

everss = -iszavezse || -1

L= Lesoroilunotice e, 51 {

8 ratura reverse 7/ 'L #' L wanl upposiis order

+ ia.colls v, LavcContent it ()
+localevonpare ib.colls [501] - Cexstontent , tin)
v

woo g
15: for(x - 0; i < tr.lengeh, ++il th.eppendinildizr i
weo}

Lv: 7 ssrevable(zablencds, columnid, Zalse)

16: cjserspe

images/00766.jpeg
60:

$display_block
</tables

"</tbody>

images/00769.jpeg
CREATE TABLE store_items (
id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
cat_id INT NOT NULL,
item title VARCHAR (75),
item price FLOAT (8,2),
item desc TEXT,
item image VARCHAR (50)

images/00768.jpeg
CREATE TABLE store categories (
id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
cat_title VARCHAR (50) UNIQUE,
cat_desc TEXT

images/00763.jpeg
53

=fhenla
apkp
1/eree resule

aysqti_free resuit(sverify ves!

ffe10se connecticn to MySi
ayeali_close dmyezii),

e ie 5 zsT)
J7eheck for zecuirsd items fzom forn
tf {1istosTlecpta_ta]) || (15
{4 res [rpost_awnarr 1)) {

neador(‘Tocarion: toplelist .phoe) s
oxirs

neat_sext il

Jirmate nate walus for nee
Seafa_copie_ia « Tyaqli_real_ercaps_Ering $mynli, S_FCST('-opie i
Srafa_nons_rext = myaqli_real_ecoine_nbringgmyndls, S_EGST('post_texr 1)
[

$uafe part_cimer - mye. o resl_escaps atrire($m

images/00762.jpeg
< |
7fgut the topic i and title

whileiscopic_info - nysqli_fetch arvayisveri R
$topic_ic - stopic_infol*tapic_ia'l;
$topic_titls - stripsleshes (Stopic_infol*topic_title'1);

ucreee asls
cneas
cneze-

ceitiasicst vous keply in <7php echo seo
v,

o title; Faefeities

v in c7phy echo tropic_tirle; 2se/his
<2arn 7atac aceionsterphp coha _SERUIR [17HE_SELF 1; 7
b2l fars'post _curartsvour Bui) Address:</labels<bs
Arpur ryposrematle 14 _ounor cie
maxlengthe IS0 rayaired=reoyiradns<ins
p><7abal forerpont_roxtstoss Towt:</lakalsehrs

etextaraa 1d-rpont_fextt mama

it i s ABoa

a0

PosT_rexrt rounatal colratans

o R EAY s < /E R aTeR s s
lngut Lype-'hidden® nans-" topic ic' valu
BuLLon LypenTsUbILLY Aare-TsubWIL® valus-"subuis
rees
TH

ians

images/00765.jpeg
SGaupiay block <<<END CF TEXT
ldbls LdemmpTablens
<thuad>

P

“tkaca bre

Javascrip
ToLEe/ane s
“tisca aretstjavascrip
FosTSG/ane ths
st

<fensas.
“epsay.

OrLTablo (myTable, 9,00 5TOPIC

orLTable (myTable, 1.0) ;5 o

images/00764.jpeg
//add the post
44 _poss_sql -

£add_pos_zes -

"INSERT TNTO foxum_ssscs (sopic_id,psst_text,
Fost_craate_time most_ovner) YALUES

(= Fsate_roptc_ta.m, ¢ < _posc_texe.
noxl) .t sate_post_sumer. ')
mys3li_query(fmyszi:. Sadd_post_s:
cx dieimpsqli_ezrer ryaalil) ;

Jizloss cornecticn te Nyoon
rysali_close nyezii),

Jivedtrecs user

keader | ‘Tocation: sheueoplc.pROTESSLC

exte,

€= vepde
52057 [tapic_tar]);

images/00759.jpeg
Spos: -_create_tima'

spos

create_time - $posts_iufo!'fmc_pos
ownex = stripslashes (3posts_iafol'post_cunsr'1):

//ada to cispiay
Saisplay block .- ecDND OI_Tex:

zdecpsfpast_seaer- o
peereated cn-rrsipost_czests_tina:

wepegpast_taxz</p
<pr<a hretstraslyopost ppTpost_
<strongsREPLY “C DOAT</atzongs ¢/ as</pr< /o>

=t

Flrss resuite
ysqli tres vesulti3gst posts Tesi;

ysqli_tres _result (3verity_topic_ree):

Jielese connectizn te MysaL
rysali_close (snysali);

Jiclese up the table
f9:aplay_block - </tanlest

images/00750.jpeg
<o
lngouds b nclude.ghy' 5
GonB) 5

fisbeck for requizes fislds from the fon

i2 (03 posTI topic_cwaer'1) || (1$_B0sTI'topic_sitle'T)
i f3_pes Dpost_text 1) {

Ui neader(*Locaticn: addropic.herit):

v: exic

w0}

1:

L2, /icreats sats valuss Zcr input into the catasase
15: Selear_topic_owner - mysgli_real_sscape_strangiimysqli
14 £_pUsIT topic_omer 11
15: telear_topic title - mysgii_real escape st
15: 4_posT! topic_titis 1
17: telear_post_tews - mysai:_xeal_sscape st

10: Y
1

2. ficrears and ismue tre firar merr

21: $ad_topso_atl = (TRSERT THTO Farum_fopice

2 (ropin_ritie, rople_creata_rima, ropic_cumer)

2 VALOES (1% selean_ropic_Fifle 00, mow()
212 10§80 san_topic_owner.”

images/00756.jpeg
I
a{
boréer: ipx solid black.
paceine. oo,
)
rum poses_cel { text-slizn: center;
isyte:
fhead:.
inod.
<hi-Toplcs iz ¥y Ferums/hi.
<opnp ecko ¢sisplay Block: ©
<piMoWl you like o <a href-taistspic homl

by
P

eepiosianieinn

images/00755.jpeg
ax
o gzees e

3 maai_fres_resultiget_topice_res)s
3. msai_tres_xemulc(iges_tun_sosts_ves)
S irclose somsction o wEoL

S -

o

i sseteme w he zabie

S: saimplay bledk = "e/teble

53: <ivocTeRs hents

S¢: chuml Lacg=rants

5. heed

55 seitlentopics dn My Forum/tities

G0 <atyle typettent/asse

3 table |

o Voréar: Spx solid blacks

»: boréer zellapae: colley

" }

s ol

e bovéor. <px salta bizoks

" procire oo,

5 Zarr-watghr: hold;

images/00758.jpeg
26 Sropic_info = nysqli_ fesch _srrav(Sverify topic :

2 stepic_title = stricslashes($topic_iato[zopic_titis 1):

20 }

20

30: s/macker tho peste

31: soor_tears sl = 'SELECT most_id, paat_boxs, DATE_PORVAT{pasc_oveate_tine

3 '4h ke Veobrshrr) B re_pos_ereste_tine, most_owrar
FROV forum_pocta

341 WEPRE roplo_td - 't Smafo_toplo_id.n

351 SRDFR B poc_crrate e 20

3 L _into_ren = wveali_nssry (Smvaal |, Sae_ponbi_nl}
or G sinynqls erar (§ipanl 1)

2. evanza che dirglay string

e SAiszlay block = cecPND 07 THOT

a1. <E-Showing poste £3r Eha <atrorgsSLopic fitlec/stiongs Lopis:<ips

? s

: <ChsauLAORe /ths

: <thstusi</hs

2 <exs

s6

ss while (3posts_infs = mysqli_fetch_array(iges_posts_ras)) {

50 44 7 fpoers_info['past_i4'1

51 (#:+ipaleabed Suoate_LETSP BNk BTG

images/00757.jpeg
<ipte
Snelue b dnelude.phe
awos ()

#feheck Lor requized Llo Lion the quesy stilug
if (iissaiis GET[topic sa'lh) (
Lsadar i"Location: Leplolist.php’t

5 sxit;
s

w

1L jicreate safe values for use

12: fsefe_topic_id - myscli_veal escape_string(rysqli. §_Gkrl tspic_id'l)

165 ijree

v zhs zopic exists
15 grersgy_coplcsal -

BLECT topic_title rROV forum topice

16 WEERE topie Id -+ faafe_topie id."t;
7: ferify_topic_res = mysali_querr{fmyssi:, fverify topic_s3l)
1 “r dtainyeqli_srroriSyaqli));

10

20: if (nysali_sum_rows(§ver:fy_topic_resl < 1 {

f/enis opic does mob mxan
Sciuplap block = MepseoTon have seicoled wn Livalie Lopis.eors
r.

) e

e a HEeTe\ TLepi i ist b\ Loy agasac/as. << /o>

Z/gul L uopla Litle

images/00752.jpeg
&8: htmls
i: chezcn

s0: ctitlesiew Topic ASSei:/titles
S —

-

S3: chies Topic Addedefbin

sa: wprp ssho dtspley Block: i

55: </badys
S6: </nenc

images/00751.jpeg
Jiust tus 1 or

oz chalapgll error(Sayeaiil);

e Lat quary

SLopic id = nysqLi lescl id{SayeqLi) s

Jicreats and issue U wscond que

Sadd post sal -

$ada_pest_ves

INSERT 2310 Lozun posts

g

(Lopic id, post Lexl. post crsate Lime, post saasr)
VALUES (7.Stopic id.', '*.5clean post
ow(l. *.$clean_topic_owusr. ")

i _guery smysqli, $ad_post_sql)
ox dielaysyls_error (Saysqiill

/iclose seansczion to MysOL

p——

/icreats aice message o1 user

saisy

w Loz

psThe sstromas ¢ 05T ["Eeric_ticler

topiz nas been coeatsd.</os

CIDICTVER azmls

* fseroags

images/00754.jpeg
25: while (gropic_info = mvsqli_farch arvay(fget _topice ves)) {

> gropin_ta = gmopletrtal roris_tatl;

2 §topin_rikle = atripmlaskes (Stopic_infol*tapic_tirlatl);
2 $ropin_craate_rime = Sropic_infol'far_topic_craara_time!]
0 §topin_eunar = atripslaskes (Sropic_infol*rapic_msaer'l);
.

2. e ——

fmt_nur_posts_sql

TEELECT COINTipost_ic; B€ pesc_count ZROM

Forum yost s TRERE topie it = 0 Stemie i 10
i B 6 TS e BT, BGEE i BoEL)
G5 T turferls bevor (pmmiel ity
WhiTe (S o = mpi Felds ey (Sget e g e) {

Soun poren = gpowte fnfal gl coun

0y

22 /ada te display
2 $atepiay block .= <<<BKD_OF_TEXT

<taea ars

shovtopic
<btrsngsSlopie Litlus/etrong></ar<ors>

eheresaic i

topic iats

Creatss un S-opic creats Lois by Stopic omuere/Lis
<L Classmaun posls Col®>Suu postee/Lds
s

D OF TEX:

images/00753.jpeg
1 <rphp

Dy iclusé U SHOLIdS IR
30 oo
5. pigatter th

5o Sget_topice

Sgat_tapaca_vea

e

16:] size

Scisp.ay slock - “<ps<ewlic bopics exist.s/ems

LRCT topia d, tepic title
DATE PORMAT(Log it creace Line, Eh b B Al 3210 A8
Ful._topis_crsate time, opic cecer PROM Corum topics
ORDER BY topic_crasce sims DESCH

myeqli_grery (Smyaqli, Sget_topics_egl)

o dietugeqls_srror Suyeqliil

if (myez.: mun rows(§get topics res) < D [
ars no sopice. so say =0

L7, srcrests tas display strinz

<tabiles

<t

$AiepTay Kook cecBND_OP_TRXT

<ERSTOPIC TITEEC/chs
<thot of BOSTS</zh

images/00749.jpeg
<l Tangamiians
Chitieandd a Tapice/rities
<Irsss

Bhpes

<po<labal foretopic_sums 225 /labelsckrs
<irpur type-'emailt 13-+t rane-ttepic_omert si

axlengtho"150% regatred-'requireds s /ps

priabsl £or- post_textrsFoss Textis/
testarss Ld-'post_rext® name.'post_text® rows-'

images/00748.jpeg
e
2 Swrorion domo |
gional gmysali

ot o server and aclect data

Stysali = mysali conest (locallostt, TLestus
Taomapasst, "LesLTEN)

FIL comneclion Lals, s.op scripl wxsu_ion

LU ngeali comseel sizawi)) |

n rinct(“Comnest failed: %e\n', rysgli connect errer()),
12 izt

15

i}

images/00624.jpeg
| id | fruitname | id |

colorname |

apple
orange
grape
banana
apple

grape
banana

apple
orange

|
|
|
|
|
| orange
|
|
|
|

grape
banana

|
|
| apple
|
|
|

orange
grape
banana

orange
orange
orange
orange
purple
purple
purple
purple
yellow
yellow
yellow
yellow

18 Sy A8 ek 1000 sanl

images/00623.jpeg
| iten price | curr gty |

| 1| Applas | Reauri<ul, rige apples. | 0.5 | 1000 |

(2.0 sec)

images/00626.jpeg
SELECT id, fruitname, colorname FROM fruit, color
WHERE fruit.id = color.id;

images/00625.jpeg

images/00620.jpeg
SELECT * FROM grocery_ inventory WHERE
item price BETWEEN 1.50 AND 3.00;

images/00622.jpeg
SELECT * FROM grocery inventory WHERE i1tem name LIKE 'A%

images/00621.jpeg
izer_desc

2 | Bunches of Grapes Sesdloss g:apes

2| Rortisd Water (6-pack) | 510 sprirg water

rows. i met (.05 sas)

images/00617.jpeg
SELECT expressions_and columns FROM table_name
[WHERE some condition is true]

images/00616.jpeg
curr_aty |

| id | item_name

| 3 | Bottled Water (6-pack)
| 2 | Bunches of Grapes

Y
B e ite pel 1000 Beed

images/00619.jpeg
i | iteu_pere Lten price

2 | iwncnes of Grapes Sesdiman grapes
Bottled Water [12-pack! 500l cpring water.

S e sl P (e

images/00618.jpeg
SELECT * FROM grocery i1nventory WHERE curr gty = 500

images/00613.jpeg
SELECT id, item name, curr_qty FROM grocery_inventory

ORDER BY item name DESC;

images/00612.jpeg
-
5
-
P
g

i
g
:

curr_gty |

| 1 | Apples

| 4 | Bottled Water (12-pack)

| 3 | Bottled Water (6-pack)
2 | Bunches of Grapes

b mbee

4 rows in set (0.03 sec)

images/00615.jpeg
SELECT id, item name, curr_qty FROM grocery_inventory

ORDER BY curr gty LIMIT 2;

images/00614.jpeg
| id | item name

| 2 | Bunches of Grapes

| 3 | Bottled Water (6-pack)
| 4 | Bottled Water (12-pack)
| 1 | Apples

bk

4 rows in set (0.00 sec)

images/00611.jpeg
SELECT 1d, item name, curr qty FROM grocery inventory
ORDER BY item name;

images/00610.jpeg
id | item_name curr_qty |
| 1 | Apples | 1000 |
| 2 | Bunches of Grapes | s00 |
| 3 | Bottled Water (6-pack) | 250 |

4 | Bottled Water (12-pack) | 500 |
o +

4 rows in set (0.00 sec)

images/00609.jpeg

images/00606.jpeg
SELECT

expressions and «

images/00605.jpeg
SELECT expressions_and_columns FROM table_name
[WHERE some_condition_is_true]

[ORDER BY some_column [ASC | DESC]]

[LIMIT offset, rows]

images/00608.jpeg
Bpp-s

| Beautirul, rige apples. |
| saetiass arspas. I
| so0u epring water. |
l l

S0m1 spring water

N oo ey o s

images/00607.jpeg
SELECT * FROM grocery inventory;

images/00602.jpeg
Caliimn ocount doesn't matrcech value couunt atr r»roow 1

images/00601.jpeg
INSERT INTO grocery inventory VALUES

(*Bottled Water (6-pack)', '500ml spring water.', 2.29, 250);

images/00604.jpeg
NIRRT 1WI0- grecery Lavknbosy TALUNS. (AOGLG: 'Doptled Waker 14
R N

pack) ',

images/00603.jpeg
ENEBRY ITHTO grocury 1nventory (ifas wame, iten deas, LCEM Erics, SUrRE ey
CAEINE (O RabETad MAGAE 15 Rl VAR Sheine Saas v ke Ba%

images/00600.jpeg
INSERT INTO grocery inventory VALUES (2, 'Bunches of Grapes',
'goudloss grapas.®; 3:99; 500}

images/00198.jpeg
<p class="sublieadez"»MANIL'S Histozys/p>
e concept of EARSI vas inspived by sas of The most
cazalar achisvements in women's

of ons ix

cxes aistory sné bora our

bicgest disssrointments... /g~

“psua hret- secondpaze
~iseceions

10 foontince

e—
Copyriga icopy: 20092317 BAWST (. bawsi.oxg).
A1l rigte reserved. Taed with pesmizsica

images/00197.jpeg
Al largatents
<esds
<titlesrout REIELC/zitles
<Ligk roemabylosieett Lypesttert fcuut brstatsoyles.caots

“bodys
section.

<asagers
<aloAbous BANSI<L
</hsaders

<Eoeimg sre-'logo.zif® alt-"IWNSI loge',The Eay Araa Vamen's
Spovts Initiative (EMSI) is a public beretit, momprctit
Corporalion will & mission L Crea.s prosiam aid parustships
Larough which woner alilsbes oring health, Lops and wholsiess Lo
Sur comnunity. Fousdea iu 2095 by Olywpic scg #oild Cup socosr
stars Brandi Chastain aud Julis Foudy end Mailess Bjornsrud
farmer genersl mavager of tas san coss Cybsrkay wansn's

Srofassional cocosy tean, BMST provides = wean:agfal pach for

iaible and valusd sar of the

sanza ataletss to becone a mare

Bay Mrea sporte euturs.</e>

images/00199.jpeg
font-family: Arial, sans-serif;
font-size: 36pt;

font-style: italic;
Eonbsweldhts normsls

images/00194.jpeg
body |
onk wize: opLy
onk fenily: Verduna, Gonsva, hrial, Kelvebius, s sezils
cotozs b

Lie-teght: 1%0.;
pecding-Lells o
pecditz-sigtls SpLs
pacding-top: sbs

m {
Zont: 14pt verdana, Gersva, Arial, Helvetica, sans-seriZ:
Zont-weight: Lold;
Lire-height: 209z,

S—
font-weignt: bola;
color: 45920877

g
pacting
Sloat

images/00193.jpeg
<div style="colo:

:green'>
This text is green.
<p style="color:blue">This text is blue.</p>
<p>This text is still green.</p>

</divs

images/00196.jpeg

images/00195.jpeg
aslink, arvisiced (
colox: #8vsde;

arhover, aractive (
color: fEFssiss

sont-tize. spt;
font-seyle. inalic,
1ine-edght: 1zpr.

images/00190.jpeg
lexr>

<hl>The finest widgets are made here!</hl>

<nav>

About Us

"#">Products</1i>

<a hre
Support
Press

</nav>
</header>

images/00192.jpeg
<focter>
<p>icopy; 2017 Acme Widgets, LLC.
<p>Copyright Issues? Contact:</p>
cacdress>
our Lawyer<brs
123 Main Street<prs
Somewhere, CA Y5128

<a hrez="mailto:lawyerdexamo.e
</address>
T ECatary

BLL Rigats Reserved.</p>

.com’ >lawyeraexample come &>

images/00191.jpeg
<footer>
<p>© 2017 Acme Widgets, LLC. All Rights Reserved.</p>
< /footer>

images/00297.jpeg
names (0] = "Public, John Q.";

names (1] = "Doe, Jane"
names (2] = "Duck, Daisy";
names [3] = "Mouse, Mickey";

sortednames = names.sort () :

images/00296.jpeg
name

"John Q. Public";
parts = name.split (" ");

images/00299.jpeg
<\DOCTYPE htmls

<btnil lang-ren’>

<bead>
“titlesArray Sorting Bxamples/titls
~scrips cyoes"rext/javascript! sro-tsort.is'a/

< heads

“body=
“histiorsing toring Aerayae/nis
<plinter tuo or mova names ir rhe field helom,
anA the mnrted 11AT of names will sppear r the

remane? gizeet30"s
addnams" value="ndd"

rsortedts
Zne soried mames will acpear here
</torm
<fhadgs
</Femis

images/00298.jpeg
function numbercompare(a,b) {
return a-b

b
numbers = new Array(30, 10, 200, 4);
sortednumbers = numbers.sort (numbercompare) ;

images/00293.jpeg
scoredisplay = "Scores: " + scores[0] + ", " + scores|l] +
", " + scores[2];

document .write (scoredisplay) ;

images/00292.jpeg
scores = new Array(30);
document .write (scores.length) ;

images/00295.jpeg
document . .write (names

(0] .substring(0,4))

images/00294.jpeg
names

new Array("John H. Watson", "Sherlock Holmes");
names = ["John H. Watsen". "Sherlock Holmes"] :

images/00291.jpeg
Array(39,40,100,49) ;

images/00290.jpeg

images/00286.jpeg
document .write(stringtest.substringi(3,6

images/00285.jpeg
stringtest

stringtest.toLowerCasel() ;

images/00288.jpeg

images/00287.jpeg

images/00282.jpeg
<IDOCTYTE hbul>

clilul Lergarians
<ticats
<LiLie>SLeiug Texle/UiLiss

.

“body>
“hlaString Teste/hls
“ECUIpL types Lext/javassr.
Ver stilngtestl - 'Ihis is a test. '
var stringtestz - “1tis is only a test
var korastrings - stringeestl + strirstest

slert (zohszrings|
<rpoay.
</nzme

images/00281.jpeg
var stringtes

images/00284.jpeg

images/00283.jpeg
var stringtest = "This 1s a test."
document . write (stringtest.length) ;

images/00289.jpeg

images/00280.jpeg
var stringtest = "This 1s a test"
stringtest = new String("This is a test");

images/00275.jpeg
document . images ['large_photo'] .src =
‘mariposa_large_1.jpg' ">

<img
style="border: 1lpx solid black; margin-right: 3px;"
src="mariposa_small_1.jpg"
Wy

photo #1"s

images/00274.jpeg
<img
id="large_photo"

style="border: 1px solid blac!

margin-right: 13px;"
src="mariposa_large_1.jpg"
alt="large photo"s

images/00277.jpeg

images/00276.jpeg
document . write('Tkais

xt atring

'that I have cr=ated.

images/00271.jpeg

images/00270.jpeg
ynamic Test in Javasaripte/tities
<Baript bypesr sent/Javassriptts
funaticn Saangeritlel)

if {13ccumant.getklensacayLd) recus

£la - documest. shangsZorm,
+ baadingl = docurest

weieis value;
“Lemerciy L& (b
heading.. Firecchile.modevalue-newricie;

“hl ié-*headingl sDymanic Text in Javas
P-Using tae WSC DN, you can dynamically
heasing at che

hazge the
zop of this page.-/ps
prBrter a new ticle an:

Zorm nane-change:

“tnpre €

<button type-'button’ seslisk-tchangeTitie(!
</body
fhem.

A —

images/00273.jpeg
<1MOCTYTR Kbl s

<hiticandiing Test to a Pagac/oitles
<anript Lyper et/ Javansriptns

funstaan andTaxt () |
if (duoument.getELensatRyLd) erus,

P

. pectensa. valiss
- nads-document . createlxziods (

aaildtnods!

eate Your ovn Content:/k
Usizg the W3C DOM, you can dynamically add

saragraphl
s to his pe:
peType 8 senzence and
«2o7m nane-* changefozm®s
wdrput type rzent ram

[

“sencencer siz:
adaTest (1 veaddr/burtor.

images/00272.jpeg

images/00279.jpeg

images/00278.jpeg
var stringvar = "30 angry polar bears”;
var numvar = parselnt (stringvar);

images/00264.jpeg
<IDOCTYTE hbul>

clilul Lergarians
<ticats
“titlesFos tioning Blewsils wolh Javascriptz/tizles
25CHIPL Lypun" Lot/ JavaseL gLt Sro-"OSILion. 157 </50rpts
“style Lypantions s s
Abuttons +
test-align: center

'

4squere
position: absolute:
[
seses oo
widen. 2005
besgne: 200
bordar: 2o solid bl
pacding: 1o
backgreund colos: §e02020;

}

air |
pociing: 10px;

}

P

<seats

“body>

*hlaBoettioning ELamSrEe LS

images/00263.jpeg
document .getElementById("layerl") .stvle.top = 200;

images/00266.jpeg
ye1sc

Vet o g e {
B Qasounent gerElement BT eetueny
¥ = a0vay;
ax obj = dozment getslsnantEyidltequiret
obj.etyla tensy + s
G .etyle lattox o gt

funcrion

12 (1gcounent .gerklensnciy) recurn;
var k3 - document .Cerhlsmentiyid('squizet ;

ob3.ctyia. disolar-"rore’;

orent . gecEl ementEyId) retur.
docment .cetElerentayId "square®! |
- displar-"blocks

images/00265.jpeg
i]
“buttor tyzestmutont ranzatlafs
T I e

<huttor byzestoustont nan
kerg
<button Lysestouttont paustugt

11 Tpe futtons

"ega

11,00+ tsRistE</passons

[ESE—

uttont et

onl Lkmtg (2, 11 £ 5D/l o>
buLlo Lyse=t oullon® naus="hide!
"aidesquare (1T ELdesbulLons
S —
onclLokoTshonsquae (11 >Shsas /but cons

wfdivs
ks
“aiv ic-rsguare”
This squars is an absolutsly sositicred comcainer
“rat you can move using the batzons above

saive

<rboay.

e

images/00260.jpeg
<div id=flayerl' style="position:absolute; left:100px; top:100px; ">
This is the cortent of the laver.
sl ad s

images/00262.jpeg
var obj = document.getElementBylId("layerl");
obj.style.top = 200;

images/00261.jpeg
<div id="layerl! styls='poeition:aseolute; left:100px; top
This is the content of the laysr.

s s

images/00268.jpeg
<!DOCTYTE htul>

clilul Lergarsun>
<ticass

“UitlesBiding or Showing Objacise/titles

“SCript Lypu-r sext/Javascilotts

Luncticn sacuideti [
if {idocument. getlensatByid) verusn:
var besdingl emertyic ("headingl |
ver headings - docurest.get lemertuy.c *heading |
var sbounsadingl - Socumen.checkboxfoxt. chaciaowl chacked,
vax shouheadings - docurent.checkboxfor. checkonu checked
beadingl scyle visikilicy- (shovheadirz_] ? 'visibler : skidden:

beading? scyle visibilicy- [shovheadirs2l 7 'visibler : skidden:
'
<jocripen
s
“bodr
<1 SdstReadingl SThi <3 bhe First heminge/als
<L Sd-theadingd SThin o3 bne sccord heading</hls
<p>Using tha WSC DM, you maa choose whethar so show of Lis

i isndzaiyas ol e payeruislog Ry dlickbexea BoLEWIeus
nckboRsEzats

CULPUL Lypent SheckbORT Larsntuliecklbosl®

ShOWELLS)17 cliecked=TuLecked? />

nLic
<SpaL SLyLu=T LONL-e LU EGLUT>Son _Lesl lsadLige/Sparsebns
<LEpUL Lype=Toheckbox” Lata-"checkbox ™

cnclickshovkids 15" checked=" checkad® />
<épan style-tont-veisht Eold’-Show second heading</spar-brs
e

b0ty

<z

images/00267.jpeg
object.style.visibility="hidden"; // hides an object
SbAREE EET e N ATRPTIE e R TR ey 7 abows WS cliBaE

images/00269.jpeg
var headingl

document .getElementById("headingl®);
headingl.firstChild.nodeValue = "New Text Here';

images/00253.jpeg
" osnclick="historyv.back() ; "=Go Back</button:

images/00252.jpeg
<IDOCTYTE hbul>

clasd Lasgarints
<ticats

<UitiesDicplaying the Lact Nodilied Date</!
“/head>

images/00255.jpeg
et anganias
<titlesTaing Gunton Ga Back And G Poreard Bustonne/titles

<rrasis

<beays

I —

o Bask and Go Forward Buttonee/hls
<psbuttons on chis paga allow you to 3o kask ox forward in
your histery list.</es

“psites:

e ot

utcons should Ze the squivi = back

anz forsard arvow butcoas i yous browssr's Toolbar.s/ps

aive

“button type-'button”
onclick-"history.sackil; s00 Back</miztons

“butten type-'button”
onclick-"history. forvardl

+30 Feruard</buttons

/b0ty
.

images/00254.jpeg
historv,. forwarli() : "sGu Furwarde«/buttons

images/00251.jpeg

images/00250.jpeg
quotesi2]

VThe mogt difficult thing 18 the decimion to act, ¥

"Lhe resl .s merely Lenacily. "

images/00257.jpeg

images/00256.jpeg

images/00259.jpeg
<!DOCTYTE bt

cliasd Lasgariats
<ticats

“Uitiesa Slupls KT Docunente/titles
“/heads
“body>

ANSTELS S5 3 Level-l Heading</his
poTkis is a simple parecrash.

< podys.

Py

images/00258.jpeg

images/00242.jpeg
<IDOCTYTE hbul>

bl Lirgerians

<ticats
<LiLiesSune PHP Bubecusd Tus_de HTMG</LiLLas
</head>
“body>
<hlaTphy echo “Hello #orld."; ¥
«/bodys
<z

/R

images/00241.jpeg
RGP DLty
<html>
<head>
<title>There's PHP in Here</title>
</head>
<body>
Howdy !
</body>
< /htals

images/00244.jpeg
SATECTYTE hiul>

cital tang

Cotye bypee’ tadfonens

Heaaes dpee

Ecrdar-collapse.
[———

feneoveighc: bo:

<t
ssame_condition - trus,

f350me_condition! |
stasies

seructa colspan-t3niZoday's Pricese/chns/
EETALEL OO 02 90 Rt AL 00

<fealen
<2

i
hend;

images/00243.jpeg
JrE—
ckex: langeren's
~keat-

Lestore P Drbedded Traid
=style e icss
easle, cx, th, ta |

serder: 1px solia #occ
serder-collapse: colleps
aading: px

gent -wedgat: bold.

}

</szyies

fresds

“bodys

s
sacrs_condizion -

“€ itscme_conditior)

o tozables
ctrecth colaperatnayns
Today'a Peiccs

TPt 00 AT A12 D0 /E AT dT]

</rables

rpody-
fherL

HLfeitlen

onesrdeers

images/00240.jpeg
<!DOCTYPE html>
<html>
<head>
<title>There's PHP in Here</titles
</head>
<body>
<2php echo "Howdy!"; 2>
</body>
</html>

images/00249.jpeg
quctes[2] = "The most difficult thing is the dscision to act,
the rest is merely t=nacity.";

images/00246.jpeg
Gules T3] THhalts anslber word Loz

ouries(3] = TSLever WelghLT;

77 BeU % randow inden iute Lie arrays

Uhssewzunrt

1 = Malh, Llovr iHath.zacson() * quoles. length

74 #iits cus the quote ae HIML

CosunsIt. WELLe T <p ety
rext

ocensne write quotes (3] + *\

ocunent ricel </psl

}

/4 seop bading the script -
~sseripts
~</hesd:

“body
hsgustssle Cuotes: /Nl

P:Tollowing i3 a random quotable quote. To see a naw guote

zeloac this vage.</p:
sexipe type nzext/iavascriprs

<10 Eide the seript from c1d Erowsers
getousca i}
47 Seap hading the scxipt -
pras—
< rbody

-

sn:zenter >t

v

ot write! <ems- * - scarsesfil

‘backgrownd-color: NEE6si;

ust

images/00245.jpeg
190CTVPE Feals

cheml Langstocts
“neads

critlesguatabe Qusoue/titTos

cscripe typaotzes/iaveseripens
©1o- Eife the seript f2om old Zrowsers
furceisn qarcuace(l |
£4 crests the avreve
var qustas - new Arzay(d)
vax sources - mew Azray (4]

/4 mmicialize che e
f0] = ropcimism is the faiza
soursas(o] - titeler xe

eve wica qu
te azaievement

1 - fIE you don ot like the rosd vow'rs walsing, '+
start paving ansther ooe.
sourssali] = 'Delly Partens
cueesalz] = PThe mect 4iffisle thing is the facisien To act

*the rest is merely reraciry *;
sourceal2] - ramelia Barharer;

images/00248.jpeg
quotes|[0] = "Cptimism 1s the faith that leads to achievenent.";
sources [0] = "Helen Keller" :

images/00247.jpeg

images/00231.jpeg
if (count 1) 1

alert ("The countdown has reached 1.");

images/00230.jpeg

images/00233.jpeg

images/00232.jpeg
for (i=1; i<=10; i++) {
alert ("Yes, it's yet another alert!");

images/00239.jpeg

images/00238.jpeg
8

value2",

"param3"

"value3"

images/00235.jpeg

images/00234.jpeg
<IDOCTVOR Tl

“ntml lang-ens
<heads

<titlessinple Event Kardler Examp:
«/heads

<body>
alsSimple Event Hondler Brample</lls
R e
onelickralert (‘A-hat An BVerrl:] "uio ro Soostec/as
i
prs

<nem

images/00237.jpeg
/* This script includes a variety
of features, including this comment. */

images/00236.jpeg

images/00220.jpeg
fees_side |
Sosition: relative;
Floac: left
widzh: zeep,
Sackgrourd-celer: KsEiil
rignt: zocpx;
mavgin-lest: -103s;
mavgin-botton: -2300p:;
adding-bottan: 23005;

brign:_sise {
Sosition:
Eloac: lezt
widzh: Lzip,
Sackgrouna-selsr:
margin-vight: -izsgx
margin-botton; -20up;
‘padding-bottem: 2300p;

acives

™y

images/00222.jpeg
Plaft_mids 13 ashover, Fasv 1 o
Loat-pize: 12pt
Loat weight s Lols,

wding: Spr Cpx 2% o
Sors KITTT7
Frxs-deraration: nons
atapiav: Block

images/00221.jpeg
position: r:
Floar: Tesr;
Dackarourd-color, BEEEEE:,
wtazh. 1004
margin-bottan: 2200w
Dadaing botter: 2000me;

a1 {
mavain: o

Flofs_side ul
List style: nons
wargin: 12pe Cpx opx L2p
adding: opx;

Flafr_side 14 a:link, faaw 1 asvisiesd
font atse: 17pe
Fonmwetaht s hels;
Radding: i Opx ipx
solors Sr000co:

Eaxc decnration: nana;
Aiaplay: block

images/00228.jpeg
hours = now . gstHours () wins = now.cetMine . es (] sevs = now.gelSeconds (

images/00227.jpeg
hours

now e tHours L) s mins

now. . agetM_nutes (1 r secs

now . gelseconds)) ;

images/00229.jpeg
function alertMe() {
alert ("I am alerting you!");

images/00224.jpeg
<IDOCTYTE hbul>

<htwl Legarsans
<t

<LiLLesA Speetacular Timet</Uilles
<a>

ASIU L6 a Spectacular Tore.</hls

“panat time is i€, you askis/ps

“pawell, irdess it fss -brs
“sCript Lype-' cext/Javascristts
 currentiime - new Lats()
Gocenent srite(curzertring) ;
pa—

fox
<fpear
</nzmle

images/00223.jpeg
link rel="stylesheet" type="text/css"

media="screen and (max-device-widt]

480px) *

Rt

Sy

images/00226.jpeg
<IDOCTYTE hbul>

clilal Lergarsans
<ticats

“LitlesEvans Teste/titles
“/heads

“body>
h1sEvent Teste /Bl
button type-*bucton
onclic-alext(tou clicked the buctsa,
“iick Mets/bureon:

< podys

images/00225.jpeg

images/00693.jpeg

images/00692.jpeg
SELECT DATHAME (date_ordered) FRON orders
ORDER BY DAYOFWEEK (date ordered);

images/00211.jpeg
divi#a
butkgrsund olor: 4660011

¥

aivict
[ierem

}
<roLy
</head>
<woy>
<div 1E=A1BIv f1e/dive
<aiv dg=rdztonIv fue/dive
<aiv iderdsTsULe S5esdivs
<aiv ie=nALTSLLY Sasdivs
s
</eals

olors #L103;

images/00695.jpeg
SELECT DISTINCT MONTHNAME (date ordered) FROM orders;

images/00210.jpeg
<IDOCTYTE hbul>

clilal Lergarians
et
o1 Blockee/Litles

<Citlespouitioning the
<oyle Lypearenticos >
div |
posi
widtk: 259pm;
heieke: _o0pxs
border: spx s0lid 140
olox: Blacks
re-weish: bold

: relaciver

md-zolor: #220000;

atviez
beck
}

#cotton;

images/00694.jpeg
.
1 row in set (0.00 sec)

images/00691.jpeg
SELECT DAYNAME (date ordered) FROM orders;

images/00690.jpeg
SELECT COUNT L1d) FRON oroars WHERE DAICESMTLGate oarverec) = 10
SELECT COUNT (id) FROM orders WHZRE DAYCFMONTH (date ordered) > 15

images/00217.jpeg
<{DCCTYPE nLul>

htul augere

“heacs
“L-Ulessample Layouts/Litles
“Siok Bref-'layout.csst rel’styleshestt Lypes'iext/cssts
e

“poay
“headeraiing sve
RSy

catv

“dgets.ipg" ale-"AME widgers

TLAlGome to AOVE idgetaleb1s

<psLorem ipaum Golar ait amet., consscEatar adipiacing #1it
Kar Eencimine posters Talamads. Seepend: e ae felis
Fanssdunt Wllamcosper. Nalla virae ligua
Gipsaning. Brism congus £alin id Srre aemper ar imperdier
maens enpor. Mullan hndrsrit fermsntur ligils, it st
pelisatesque purie fausibae in. Sed nolsstie lacus nauris,
ks

citan mi Thorzin

& accunear sen. Phagellue sscilisiz malesusda ee

ipsun dictun sons:

cur<ips

<poaila live:
vitas enim vitae ruila fsugiac dignissi o sit amet odic
Kuns 2cm enim id sen fausibus congue. integer ac mi in justo
cutsrod sofales. Aerean impevdiet vestibulum auctor. Se:
wilacerser congue ipeum. eqet vulpitace sem scelerisgu
Dons= crnave vestibiiur congue. Etian sasien nulla, sutrum

rien, ssassen o1, icterdm

images/00216.jpeg
TE——

chtml lexzovsats
“nead-
titiesdarple Sayovts/titles

<lick bree-'layout.css® rel-
/hends

ylachest® tyze-cext/ces

“body
hesceruLALL: Mhesdess
iy 23-reraper
content_arearsiowiant dive.
Sy d-tlefr_side'Liul SLbb/div

iy d='right_sifetskIdar SIDS./divs
“raiv.
< fostersCeTER: /foot

rbodys

<ihtal>

images/00219.jpeg
miryivic 0
paddings €
min-width: 528k,
}

header |

Float: 1eft;
widtn: 10tk

reoter |

oosition: relative;
Eloat: le

nideh: 608 ¢
Sackground-selon: fecceces
text-alizn; center;

Eonc-style: itaiic;

H

fovappes
Eloat: L
Sadding-lett. 203p%;
padding-zight: 123px;
i EToN R

images/00218.jpeg
mattis mattis ut. pe.lentssque eget augus. Proin misl masuris,
suscipic quis elemertur ac, vestibulun guis lacus. Ut scet
Juseo vitse wme varius sodales. </p
.
sdzv 14 vlefs_side
linea nrer
P
“T4sea BrafognuTxeruriva Teams aue /11

eroryeianelis

“lisea href=ghsCortace Tacjase/1is

<futs
<cmv sastrigne_sicens

TBGET DERLL<jtrengs </p>

ourt fox free. Aot nou.</:

<E>canrong>SPRCIAL
<EsBup Ehree wicgete and get

<idivs

ootersOopyright irfcruabiza usually sase hers i the

footer.«/tcoters
<spoays
<ineals

images/00213.jpeg
3

aivias

backzround-color: #LCOLEE:
Test: Loupx;

[—
)

atvies

backsround-color: #222£00;

lee. zzix;
top: hmx,
}

</heat

Aty AmaLnTY H1eAiv
A TAnanTY geate
Aty ANty greate
Y AT gas/aTe

<oy

& /euty

images/00697.jpeg
SELECT HOUR('2016-01-05 07:27:49') AS hour,
MINUTE ('2016-01-09 07:27:49') AS minute,
SECOND('2016-01-09 07:2 9') AS second;

images/00212.jpeg
<UDOCTYPE heril>

ntml angerens

e

<titlssEssitioning the Calcr Blockec/titiss
<btyle Lypest cextjcret>
posztion: assolute
wiskn: 230p
heszhe: 1oog;
border: px solid #000;
cotor: slac
zont-usight: bold
text-align: center.
}
evpar |
backaraumd-colon: #2£0133;
Terr: o
eore o
}
atviez
cekrround solor: #C0££00;
Last: 75me;
Lot St

images/00696.jpeg
SELECT DISTINCT YEAR (date ordered) FROM orders;

images/00215.jpeg
greuad-color: #LUEEUY;

)

atvaes

beckeround zoler: Heooct:
lefe 1s0p;

rop: somx:
= drdex: 2
}

aioaa {

buskernd solors 4176000,
Trte ansgn

ALV igenALTBIY H1e/diva
<aiv idsrarsLLe 4efdivs
<aiv id=rAsTLLY 45sdivs
<aiv ie=rANTSLLY *asdivs

images/00699.jpeg
SELECT DATE FORMAT('201€-01-09 07:27:49, '$h:%1'] ASf pamplec time;

images/00214.jpeg
<IDOCTYTE hbul>

clilal Lergarians
et
<CitlesPositioning the Color Blockse/Litles
<oyle Lypearenticos >
div |
positicn: asolute;
widtk: 2s9pm;
heieke: _o0pxs
border: spx s0lid 140
olox: Blacks
Zont-weigaz: bold

)
atvier
backeround-color: #e
presapee

top: apx,

2-drdex o

)

atviaz

images/00698.jpeg
SELECT CONCAT WS(':',HOUR('2016-01-09 07:27:43'),
MINUTE ('2016-01-09 0 9')) AS sample time;

images/00209.jpeg
neigat + pacding top + pecding SOELOmM ¥ Dordex Lop' ¥ bosdez hottom
R e I T O Ry

images/00682.jpeg

images/00681.jpeg
| LOCATE ('needle’, 'haystackneedlehaystack') |

g
1 row in set (0.00 sec)

images/00200.jpeg
hl.silly { font: 36pt 'Comic Sans'; }

hl.serious { font: 36pt Arial; }

images/00684.jpeg

images/00683.jpeg
SELECT UCASE(lastname) FROM master name;

images/00680.jpeg

images/00206.jpeg
1900TYPR e~

il Tangmter s
cads

ritTessome Ragne/Tirles

seyls
pr—

size: opes

1iae helaht: 1zpt

Eaxsoalion: centex

ctocear.
Cosyrigh 2017 Acme Pr>fuces, Inc

images/00205.jpeg

images/00689.jpeg
SELECT COUNT(id) FROM orders WHERE DAYOFWEEK(date ordered) <
SELECT COUNT(id) FROM orders WHERE DAYOFWZEK(date ordered) > 3;

images/00208.jpeg
width + padding-lcft + padding-right + bordox-left + korder-right +
margin-loft + margin-right

images/00207.jpeg
<p Style="cclor:gresn®>
This text is green, but <span style-"color:red’sthis text is
red.
Back tc greer again, but...

</p>

<p>
...mOW the gresn is over, and we're back to the default color
for this page.

< /D>

images/00202.jpeg
<hl class="serious">MMI Investor Information</hl>
«p>Text for business investors goes here.

images/00686.jpeg

images/00201.jpeg
<hl class="silly">Marvin's Munchies Inc. </hl>

T gy -5

images/00685.jpeg
N
1 row in set (0.00 sec)

images/00204.jpeg
24pt Verdana, Geneva, Arial, sans-serif}

images/00688.jpeg
SELECT DAYOFYEAR('2016-07-04"')

images/00203.jpeg
p.specialtext { font-weight: bol:

images/00687.jpeg

images/00671.jpeg

images/00670.jpeg
SELECT CONCAT W3 (' ', firstname, lastnams) AS fullname FROM master name;

images/00673.jpeg

images/00672.jpeg
SELECT LTRIM(' stringstring');

images/00679.jpeg

images/00678.jpeg
X

FROM

' XXXneedleXXX ')

images/00675.jpeg

images/00674.jpeg
| TRIM(LEADING 'X' FROM 'XXXneedleXXX')

| PR

| needlexxx

:

1 row in set (0.00 sec)

images/00677.jpeg

images/00676.jpeg
| TRIM(TRAILING 'X' FROM 'XXXneedleXXX') |

| XXXneedle |

v
1 ‘T At Bk (000 Bec)

images/00660.jpeg
DELETE FROM access log ORDER BY date accessed DESC LIMIT 1

images/00662.jpeg

images/00661.jpeg
| id | date_accessed | username |

| 2| 2016-01-06 06:09:22 | janedoe

| 3| 2016-01-06 06:09:39 | jsmith |

| 4 | 2016-01-06 06:09:44 | mikew |
+

bomm oo -
3 rows in set (0.00 sec)

images/00668.jpeg
SELECT CONCAT WS('

firstname, lastname) FROM mester name;

images/00667.jpeg
-t

| CONCAT('firstname', 'lastname') |

firstnamelastname |
firstnamelastname

firstnamelastname
firstnamelastname

firstnamelastname

.
|

|

| firstnamelastname
|

|

|

|

| firstnamelastname
|

|
|
|
firstnamelastname |
|
[
|
|

firstnamelastname

.
9 rows in set (0.00 sec)

images/00669.jpeg
firstname, lastname) |

CONCAT_WS (' *

| John smith |
| Jane Smith |
| Jimbo Jones |
2ndy Smith
Chris Jones
Anna Bell
Jimmy Carr
Albert Smith
John Doe

§ Sowa 3n sEE To08 weas

images/00664.jpeg
SELECT CONCAT (firstname, lastname) FROM master name;

images/00663.jpeg
SELECT C(

images/00666.jpeg
SELECT CONCAT('firstname', 'lastname') FROM master name;

images/00665.jpeg
CONCAT (£irstname, lastname) |

| Johnsmith
| Janesmith
| JimboJones
| AndySmith
| ChrisJones
| AnnaBell
|
|
|

JimmyCarr
AlbertSmith
JohnDoe

§ ESes W SOk THCHE BEaY

images/00651.jpeg
REPLACE INTO table name (column list) VALUES (column values) ;

images/00650.jpeg
ic | item name | item cosc | item price | curr gty
1| Apples | Bewucitul, rips apples. | 0.25 | 59
2 | susches of Grapes | sesdless zrapes [P | =00
5| morolea warar (s-pss | Sooml mpring water | 220 | 2%
4| Botiied Vater (2-pack) | 00ML spriag water e | 505
ER— | Tunches, sreen 115 [BE3
§ | pears | anjou, nice and ovest. | 0.5 | 505
7 | Avecea: | Larqe Bass vaie | o 1 752

R e B RS R

images/00657.jpeg

images/00656.jpeg

images/00659.jpeg
| id | date_accessed
bomot

| 1| 2016-01-06 06:09:13
| 2| 2016-01-06 06:09:22
| 3| 2016-01-06 06:09:39
| 4| 2016-01-06 06:09:44
o -

4 rows in set (0.00 sec)

username

johndoe
janedoe
jsmith

mikew

images/00658.jpeg
DRI S R baRLE Ha
[WHERE some_condition_is_true]
[ORDER BY some_column [ASC | DESC]]
[LIMIT rows]

images/00653.jpeg
2 rows af.

fected

{0.00 sec)

images/00652.jpeg
REPLACE INTO grocery_ inventory VALUES
(1, 'Granny Smith Apples', ‘Sweet!', '0.50', 1000);

images/00655.jpeg
DELETE FROM table_name
[WHERE some_condition_is_truel
ILIMIT rowsl

images/00654.jpeg
swrz_aty

I | | 0.5¢ | 2occ
|z | | 2.5 | soc
I | | 228 | >

| © | 3ottled Zater f12-pask) | 530xi sprins water. | 4.5 | soc
[e — | mmches, green | 2.0 | 150
I's | Majeu, wice axd sacet. | 0.5 | s0c
I | Large kaas variecy | oz | 7sc

images/00649.jpeg
SELECT * FROM grocery inventory,

images/00640.jpeg
MELALE LRLI0 DS
SET columnl='new value',
column2='new value2'

[WHERE some condition is true]

images/00646.jpeg
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings

images/00645.jpeg
UPDATE fruit SET fruit name = 'grape' WEERE fruit name = 'grappe';

images/00648.jpeg
UPLCATE grocery inventory SET curx cty = curr gty - 1 WHERE i1d = 1;

images/00647.jpeg
ia | item name | item csse | iten gric

1| Aeples | Buaulilul, ripw spples. | 0.25
2 | bunches of urapss | seediess crapes | 2.2
4| Borsled Wster (s-psmk | 500ml npring water | 2.2
4 | Botsled Water (13-packl | 50UML soviag wazer | 4.3
ER e — | Bunches, craen 110
& | pears | Anjou, nics and svess. | 0.3
7| Avecea | e mase v | o3e

A A R

images/00642.jpeg
Query OK, 2 rows affected (0.00 sec)
Rows matched: 4 Changed: 2 Warning:

images/00641.jpeg

images/00644.jpeg
Query OK, 4 rows affected (0.00 sec)
Rows matched: 4 Changed: 4 Warning:

images/00643.jpeg
UPDATE fruit SET fruit name

images/00639.jpeg
SELECT firstname, lastname FROM master_ name
WHERE name id IN (SELECT name id FROM email);

images/00638.jpeg
UZDATE table name SET somscolur

WHERE sonecclanm

images/00635.jpeg
o

1
@
&
5
B
H
3

lastname | email

S

Jane | smith | jsmith@jsmith.com
Anna | Bell | annabell@aol.com
John | Doe | jdoeayahoo.com

§ S N

rows in set (0.00 sec)

images/00634.jpeg
SELECT firstname, lastname, email FROM master name
RIGHT JOIN email ON master name.name id = email.name id;

images/00637.jpeg
DELETE FROM table name WHERE somecolumn

images/00636.jpeg
ons and zolurms FAOM takle nname WHZERE comzcolunll =

images/00631.jpeg
name_id | firstname | lastname

-

|

+
| 1 | John | smith |
| 2 | Jane | smith |
| 3 | Jimbo | Jones |
| 4 | andy | smith |
| s | chris | Jones |
| & | Anna | Bell |
|7 | Jimmy | carr |
| 8 | Albert | smith |
|9 | John | Doe |

B
3
|

s
B
°
g
H
2
=

| 2 | jsmith@jsmith.com
| 6 | annabelleaol.com
| 9 | jdoe@yahoo.com

images/00630.jpeg
SELECT fruitname, colorname FROM fruit
INNER JOIN color ON fruit.id = color.id:

images/00633.jpeg
firstname

lastname |

email

John
Jane
Jimbo
Andy

Anna
Jimmy
Albert
John

|
|
|
|
| chris
|
|
|
|

9 rows in set

(0.00 sec)

images/00632.jpeg
SELECT firstname, lastname, email FROM master name
LEFT JOIN email ON master name.name id = email.name id;

images/00628.jpeg
SELECT fruit.id, fruitname, colorname FROM fruit,
color WHERE fruit.id = color.id:

images/00627.jpeg

images/00629.jpeg
lia |

fruitname

colorname |

| 1 | apple | rea

| 2| orange | orange

| 3 | grape | purple

| 4| banana | yellow
+

4 rows in set (0.00 sec)

