

Two Scoops of Django
1.11
Best Practices for Django

Daniel Roy Greenfeld
Audrey Roy Greenfeld

Two Scoops of Django 1.11: Best Practices for Django
Fourth Edition, 2017-06-03

by Daniel Roy Greenfeld and Audrey Roy Greenfeld

Copyright © 2013-2017 Daniel Roy Greenfeld, Audrey Roy Greenfeld, and Two Scoops Press.

All rights reserved. This book may not be reproduced in any form, in whole or in part, without written permission from the
authors, except in the case of brief quotations embodied in articles or reviews.

Limit of Liability and Disclaimer of Warranty: The authors have used their best efforts in preparing this book, and the
information provided herein “as is.” The information provided is sold without warranty, either express or implied. Neither the
authors nor Cartwheel Web will be held liable for any damages to be caused either directly or indirectly by the contents of
this book.

Trademarks: Rather than indicating every occurrence of a trademarked name as such, this book uses the names only in an
editorial fashion and to the benefit of the trademark owner with no intention of infringement of the trademark.

First Printing, April 2017, Version 20170603

For more information, visit https://twoscoopspress.com.

https://twoscoopspress.com

iii

iv

Dedication

For Malcolm Tredinnick
1971-2013

We miss you.

twoscoopspress.com/pages/malcolm-tredinnick-memorial

v

https://www.twoscoopspress.com/pages/malcolm-tredinnick-memorial

About the Dedication
Malcolm Tredinnick wasn’t just a Django core developer and reviewer of “Two Scoops of Django:
Best Practices for Django 1.5.” To us, he was much, much more.

Daniel had worked with Malcolm Tredinnick in the summer of 2010, but we first met him in person
at DjangoCon 2010. He was funny and charming, sharply opinionated but always a gentleman; we
instantly became close friends.

In 2012, when we co-organized the first PyCon Philippines, as soon as we told him about it, Mal-
colm instantly declared he was coming. He gave two memorable talks and ran an impromptu all-day
Django tutorial. He also pushed and encouraged the local community to work on Filipino language
translations for Django, including Tagalog, Tausug, Cebuano, and more.

After the conference, we started working on a book about Django best practices. We gathered friends
and colleagues to help us as technical reviewers. Malcolm Tredinnick became the most active of them.
He was our mentor and forced us to dig deeper and work harder. He did this while working a day
job as the leader of a combined Rails and Haskell team; Malcolm was a true programming language
polyglot.

For our book, he provided so much assistance and guidance we tried to figure out a way to include
him in the author credits. When we told him about our dilemma, he laughed it off saying, “For a
book called ‘Two Scoops’, you can’t have three authors.” We suggested he share credit with us on
a second book, and he refused, saying he preferred to just comment on our work. He said that he
wanted people to have proper references, and for him, simply reviewing our work was contributing
to the greater good. Eventually the two of us quietly planned to somehow coerce him into being a
co-author on a future work.

After months of effort, we released the first iteration on January 17th, 2013. Malcolm stepped back
from Two Scoops of Django, but we stayed in touch. Since Malcolm was unable to attend PyCon
US 2013 we weren’t sure when we would meet him again.

Two months later, on March 17th, 2013, Malcolm passed away.

We knew Malcolm for less than three years and yet he made an incredible difference in our lives.
We’ve heard many similar stories in the community about Malcolm; He was a friend and mentor to
countless others around the world. His last lesson to us went beyond code or writing, he taught us
to never take for granted friends, family, mentors, and teachers.

Contents

Dedication v
About the Dedication . vi

Authors’ Notes xxvii
A Few Words From Daniel Roy Greenfeld . xxvii
A Few Words From Audrey Roy Greenfeld . xxviii

Introduction xxix
A Word About Our Recommendations . xxix
Why Two Scoops of Django? . xxx
Before You Begin . xxxi

This book is intended for Django 1.11 and Python 3.6.x/2.7.12 xxxi
Each Chapter Stands On Its Own . xxxi

Conventions Used in This Book . xxxii
Core Concepts . xxxiii

Keep It Simple, Stupid . xxxiii
Fat Models, Utility Modules, Thin Views, Stupid Templates xxxiv
Start With Django By Default . xxxiv
Be Familiar with Django’s Design Philosophies xxxiv
The Twelve-Factor App . xxxv

Our Writing Concepts . xxxv
Provide the Best Material . xxxv
Stand on the Shoulders of Giants . xxxvi
Listen to Our Readers and Reviewers . xxxvi
Publish Errata . xxxvi

1 Coding Style 1
1.1 The Importance of Making Your Code Readable 1

vii

Contents

1.2 PEP 8 . 2
1.2.1 The 79-Character Limit . 3

1.3 The Word on Imports . 3
1.4 Use Explicit Relative Imports . 4
1.5 Avoid Using Import * . 7

1.5.1 Other Python Naming Collisions . 8
1.6 Django Coding Style . 8

1.6.1 Consider the Django Coding Style Guidelines 9
1.6.2 Use Underscores in URL Pattern Names Rather Than Dashes 9
1.6.3 Use Underscores in Template Block Names Rather Than Dashes 10

1.7 Choose JS, HTML, and CSS Style Guides . 10
1.7.1 JavaScript Style Guides . 10
1.7.2 HTML and CSS Style Guides . 11

1.8 Never Code to the IDE (Or Text Editor) . 11
1.9 Summary . 12

2 The Optimal Django Environment Setup 13
2.1 Use the Same Database Engine Everywhere . 13

2.1.1 You Can’t Examine an Exact Copy of Production Data Locally 13
2.1.2 Different Databases Have Different Field Types/Constraints 14
2.1.3 Fixtures Are Not a Magic Solution . 15

2.2 Use Pip and Virtualenv . 16
2.2.1 virtualenvwrapper . 16

2.3 Install Django and Other Dependencies via Pip 18
2.4 Use a Version Control System . 18
2.5 Optional: Identical Environments . 19

2.5.1 Docker . 19
2.6 Summary . 20

3 How to Lay Out Django Projects 21
3.1 Django 1.11’s Default Project Layout . 21
3.2 Our Preferred Project Layout . 22

3.2.1 Top Level: Repository Root . 23
3.2.2 Second Level: Django Project Root . 23
3.2.3 Second Level: Configuration Root . 23

3.3 Sample Project Layout . 24

viii

Contents

3.4 What About the Virtualenv? . 27
3.4.1 Listing Current Dependencies . 28

3.5 Going Beyond startproject . 29
3.5.1 Generating Project Boilerplate With Cookiecutter 29
3.5.2 Generating a Starting Project With Cookiecutter Django 30
3.5.3 Other Alternatives . 31

3.6 Summary . 32

4 Fundamentals of Django App Design 33
4.1 The Golden Rule of Django App Design . 34

4.1.1 A Practical Example of Apps in a Project 35
4.2 What to Name Your Django Apps . 36
4.3 When in Doubt, Keep Apps Small . 37
4.4 What Modules Belong in an App? . 37

4.4.1 Common App Modules . 37
4.4.2 Uncommon App Modules . 38

4.5 Summary . 40

5 Settings and Requirements Files 41
5.1 Avoid Non-Versioned Local Settings . 42
5.2 Using Multiple Settings Files . 43

5.2.1 A Development Settings Example . 46
5.2.2 Multiple Development Settings . 47

5.3 Separate Configuration From Code . 48
5.3.1 A Caution Before Using Environment Variables for Secrets 49
5.3.2 How to Set Environment Variables Locally 49
5.3.3 How to Unset Environment Variables Locally 50
5.3.4 How to Set Environment Variables in Production 51
5.3.5 Handling Missing Secret Key Exceptions 52

5.4 When You Can’t Use Environment Variables . 54
5.4.1 Using JSON Files . 55
5.4.2 Using .env, Config, YAML, and XML File Formats 56

5.5 Using Multiple Requirements Files . 56
5.5.1 Installing From Multiple Requirements Files 57

5.6 Handling File Paths in Settings . 58
5.7 Summary . 61

ix

Contents

6 Model Best Practices 63
6.1 Basics . 64

6.1.1 Break Up Apps With Too Many Models 64
6.1.2 Be Careful With Model Inheritance . 64
6.1.3 Model Inheritance in Practice: The TimeStampedModel 66

6.2 Database Migrations . 67
6.2.1 Tips for Creating Migrations . 68
6.2.2 Adding Python Functions and Custom SQL to Migrations 68

6.3 Overcoming Common Obstacles of RunPython 68
6.3.1 Getting Access to a Custom Model Manager’s Methods 68
6.3.2 Getting Access to a Custom Model Method 69
6.3.3 Use RunPython.noop to Do Nothing 69
6.3.4 Deployment and Management of Migrations 71

6.4 Django Model Design . 72
6.4.1 Start Normalized . 72
6.4.2 Cache Before Denormalizing . 72
6.4.3 Denormalize Only if Absolutely Needed 72
6.4.4 When to Use Null and Blank . 73
6.4.5 When to Use BinaryField . 75
6.4.6 Try to Avoid Using Generic Relations 76
6.4.7 Make Choices and Sub-Choices Model Constants 77
6.4.8 Better Model Choice Constants Using Enum 78
6.4.9 PostgreSQL-Specific Fields: When to Use Null and Blank 79

6.5 The Model _meta API . 80
6.6 Model Managers . 81
6.7 Understanding Fat Models . 83

6.7.1 Model Behaviors a.k.a Mixins . 84
6.7.2 Stateless Helper Functions . 84
6.7.3 Model Behaviors vs Helper Functions 84

6.8 Summary . 84

7 Queries and the Database Layer 87
7.1 Use get_object_or_404() for Single Objects . 87
7.2 Be Careful With Queries That Might Throw Exceptions 88

7.2.1 ObjectDoesNotExist vs. DoesNotExist 88
7.2.2 When You Just Want One Object but Get Three Back 89

x

Contents

7.3 Use Lazy Evaluation to Make Queries Legible 89
7.3.1 Chaining Queries for Legibility . 91

7.4 Lean on Advanced Query Tools . 92
7.4.1 Query Expressions . 92
7.4.2 Database Functions . 94

7.5 Don’t Drop Down to Raw SQL Until It’s Necessary 94
7.6 Add Indexes as Needed . 96
7.7 Transactions . 97

7.7.1 Wrapping Each HTTP Request in a Transaction 98
7.7.2 Explicit Transaction Declaration . 100
7.7.3 django.http.StreamingHttpResponse and Transactions 101
7.7.4 Transactions in MySQL . 102
7.7.5 Django ORM Transaction Resources . 102

7.8 Summary . 102

8 Function- And Class-Based Views 103
8.1 When to Use FBVs or CBVs . 103
8.2 Keep View Logic Out of URLConfs . 105
8.3 Stick to Loose Coupling in URLConfs . 106

8.3.1 What if We Aren’t Using CBVs? . 109
8.4 Use URL Namespaces . 109

8.4.1 Makes for Shorter, More Obvious and Don’t Repeat Yourself URL Names 110
8.4.2 Increases Interoperability With Third-Party Libraries 111
8.4.3 Easier Searches, Upgrades, and Refactors 112
8.4.4 Allows for More App and Template Reverse Tricks 112

8.5 Try to Keep Business Logic Out of Views . 112
8.6 Django Views Are Functions . 113

8.6.1 The Simplest Views . 113
8.7 Don’t Use locals() as Views Context . 114
8.8 Summary . 115

9 Best Practices for Function-Based Views 117
9.1 Advantages of FBVs . 117
9.2 Passing the HttpRequest Object . 117
9.3 Decorators Are Sweet . 121

9.3.1 Be Conservative With Decorators . 123

xi

Contents

9.3.2 Additional Resources on Decorators . 123
9.4 Passing the HttpResponse Object . 124
9.5 Summary . 124

10 Best Practices for Class-Based Views 125
10.1 Guidelines When Working With CBVs . 125
10.2 Using Mixins With CBVs . 126
10.3 Which Django GCBV Should Be Used for What Task? 128
10.4 General Tips for Django CBVs . 129

10.4.1 Constraining Django CBV/GCBV Access to Authenticated Users 130
10.4.2 Performing Custom Actions on Views With Valid Forms 131
10.4.3 Performing Custom Actions on Views With Invalid Forms 131
10.4.4 Using the View Object . 132

10.5 How GCBVs and Forms Fit Together . 134
10.5.1 Views + ModelForm Example . 135
10.5.2 Views + Form Example . 139

10.6 Using Just django.views.generic.View . 141
10.7 Additional Resources . 143
10.8 Summary . 144

11 Common Patterns for Forms 145
11.1 Pattern 1: Simple ModelForm With Default Validators 146
11.2 Pattern 2: Custom Form Field Validators in ModelForms 147
11.3 Pattern 3: Overriding the Clean Stage of Validation 152
11.4 Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model) 155
11.5 Pattern 5: Reusable Search Mixin View . 159
11.6 Summary . 161

12 Form Fundamentals 163
12.1 Validate All Incoming Data With Django Forms 163
12.2 Use the POST Method in HTML Forms . 166
12.3 Always Use CSRF Protection With HTTP Forms That Modify Data 166

12.3.1 Posting Data via AJAX . 167
12.4 Understand How to Add Django Form Instance Attributes 168
12.5 Know How Form Validation Works . 169

12.5.1 ModelForm Data Is Saved to the Form, Then the Model Instance 170

xii

Contents

12.6 Add Errors to Forms With Form.add_error() 172
12.6.1 Other Useful Form Methods . 173

12.7 Fields Without Pre-Made Widgets . 173
12.8 Customizing Widgets . 173

12.8.1 Overriding the HTML of Built-In Widgets 174
12.8.2 Creating New Custom Widgets . 175

12.9 Additional Resources . 176
12.10 Summary . 176

13 Templates: Best Practices 177
13.1 Keep Templates Mostly in templates/ . 177
13.2 Template Architecture Patterns . 178

13.2.1 2-Tier Template Architecture Example 178
13.2.2 3-Tier Template Architecture Example 179
13.2.3 Flat Is Better Than Nested . 180

13.3 Limit Processing in Templates . 181
13.3.1 Gotcha 1: Aggregation in Templates . 183
13.3.2 Gotcha 2: Filtering With Conditionals in Templates 185
13.3.3 Gotcha 3: Complex Implied Queries in Templates 187
13.3.4 Gotcha 4: Hidden CPU Load in Templates 188
13.3.5 Gotcha 5: Hidden REST API Calls in Templates 189

13.4 Don’t Bother Making Your Generated HTML Pretty 189
13.5 Exploring Template Inheritance . 191
13.6 block.super Gives the Power of Control . 194
13.7 Useful Things to Consider . 196

13.7.1 Avoid Coupling Styles Too Tightly to Python Code 196
13.7.2 Common Conventions . 196
13.7.3 Use Implicit and Named Explicit Context Objects Properly 197
13.7.4 Use URL Names Instead of Hardcoded Paths 197
13.7.5 Debugging Complex Templates . 198

13.8 Error Page Templates . 198
13.9 Follow a Minimalist Approach . 199
13.10 Summary . 200

14 Template Tags and Filters 201
14.1 Filters Are Functions . 201

xiii

Contents

14.1.1 Filters Are Easy to Test . 202
14.1.2 Filters and Code Reuse . 202
14.1.3 When to Write Filters . 203

14.2 Custom Template Tags . 203
14.2.1 Template Tags Are Harder to Debug . 203
14.2.2 Template Tags Make Code Reuse Harder 203
14.2.3 The Performance Cost of Template Tags 204
14.2.4 When to Write Template Tags . 204

14.3 Naming Your Template Tag Libraries . 205
14.4 Loading Your Template Tag Modules . 205

14.4.1 Watch Out for This Anti-Pattern . 206
14.5 Summary . 207

15 Django Templates and Jinja2 209
15.1 What’s the Syntactical Difference? . 209
15.2 Should I Switch? . 210

15.2.1 Advantages of DTL . 210
15.2.2 Advantages of Jinja2 . 210
15.2.3 Which One Wins? . 211

15.3 Considerations When Using Jinja2 With Django 211
15.3.1 CSRF and Jinja2 . 211
15.3.2 Using Template Tags in Jinja2 Templates 212
15.3.3 Using Django-Style Template Filters in Jinja2 Templates 212
15.3.4 The Jinja2 Environment Object Should Be Considered Static 214

15.4 Resources . 215
15.5 Summary . 215

16 Building REST APIs With Django REST Framework 217
16.1 Fundamentals of Basic REST API Design . 218
16.2 Illustrating Design Concepts With a Simple API 220
16.3 REST API Architecture . 225

16.3.1 Use Consistent API Module Naming 225
16.3.2 Code for a Project Should Be Neatly Organized 226
16.3.3 Code for an App Should Remain in the App 226
16.3.4 Try to Keep Business Logic Out of API Views 227
16.3.5 Grouping API URLs . 228

xiv

Contents

16.3.6 Test Your API . 230
16.3.7 Version Your API . 230
16.3.8 Be Careful With Customized Authentication Schemes 230

16.4 When DRF Gets in the Way . 231
16.4.1 Remote Procedure Calls vs REST APIs 231
16.4.2 Problems With Complex Data . 233
16.4.3 Simplify! Go Atomic! . 234

16.5 Shutting Down an External API . 235
16.5.1 Step #1: Notify Users of Pending Shut Down 235
16.5.2 Step #2: Replace API With 410 Error View 235

16.6 Rate-Limiting Your API . 236
16.6.1 Unfettered API Access Is Dangerous . 236
16.6.2 REST Frameworks Must Come With Rate Limiting 237
16.6.3 Rate Limit Can Be a Business Plan . 237

16.7 Advertising Your REST API . 238
16.7.1 Documentation . 238
16.7.2 Provide Client SDKs . 238

16.8 Additional Reading . 239
16.9 Summary . 240

17 Consuming REST APIs 241
17.1 Learn How to Debug the Client . 242
17.2 Consider Using JavaScript-Powered Static Asset Preprocessors 243
17.3 Real-Time Woes a.k.a. Latency . 243

17.3.1 Solution: Mask the Latency With Animations 244
17.3.2 Solution: Fake Successful Transactions 244
17.3.3 Solution: Geographically Based Servers 244
17.3.4 Solution: Restrict Users Geographically 244

17.4 Avoid the Anti-Patterns . 245
17.4.1 Building Single Page Apps When Multi-Page Apps Suffice 245
17.4.2 Upgrading Legacy Sites . 245
17.4.3 Not Writing Tests . 246
17.4.4 Not Understanding JavaScript Memory Management 246
17.4.5 Storing Data in the DOM When It’s Not jQuery 246

17.5 AJAX and the CSRF Token . 246
17.5.1 Set settings.CSRF_COOKIE_HTTPONLY Appropriately 248

xv

Contents

17.6 Improving JavaScript Skills . 248
17.6.1 Assessing Skill Levels . 249
17.6.2 Learn More JavaScript! . 249

17.7 Follow JavaScript Coding Standards . 249
17.8 Summary . 249

18 Tradeoffs of Replacing Core Components 251
18.1 The Temptation to Build FrankenDjango . 252
18.2 Non-Relational Databases vs. Relational

Databases . 253
18.2.1 Not All Non-Relational Databases Are ACID Compliant 253
18.2.2 Don’t Use Non-Relational Databases for Relational Tasks 254
18.2.3 Ignore the Hype and Do Your Own Research 254
18.2.4 How We Use Non-Relational Databases With Django 255

18.3 What About Replacing the Django Template Language? 255
18.4 Summary . 255

19 Working With the Django Admin 257
19.1 It’s Not for End Users . 258
19.2 Admin Customization vs. New Views . 258
19.3 Viewing String Representations of Objects . 258

19.3.1 Using __str__() . 259
19.3.2 Using list_display . 260

19.4 Adding Callables to ModelAdmin Classes . 261
19.5 Be Aware of the Complications of Multiuser Environments 263
19.6 Django’s Admin Documentation Generator . 264
19.7 Using Custom Skins With the Django Admin 264

19.7.1 Evaluation Point: Documentation is Everything 265
19.7.2 Write Tests for Any Admin Extensions You Create 266

19.8 Secure the Django Admin . 266
19.8.1 Change the Default Admin URL . 266
19.8.2 Use django-admin-honeypot . 267
19.8.3 Only Allow Admin Access via HTTPS 267
19.8.4 Limit Admin Access Based on IP . 267

19.9 Securing the Admin Docs . 268
19.10 Summary . 268

xvi

Contents

20 Dealing With the User Model 269
20.1 Use Django’s Tools for Finding the User Model 269

20.1.1 Use settings.AUTH_USER_MODEL for Foreign Keys to User 270
20.1.2 Don’t Use get_user_model() for Foreign Keys to User 270

20.2 Custom User Fields for Django 1.11 Projects . 271
20.2.1 Option 1: Subclass AbstractUser . 271
20.2.2 Option 2: Subclass AbstractBaseUser . 272
20.2.3 Option 3: Linking Back From a Related Model 273

20.3 Summary . 274

21 Django’s Secret Sauce: Third-Party Packages 277
21.1 Examples of Third-Party Packages . 278
21.2 Know About the Python Package Index . 278
21.3 Know About DjangoPackages.org . 279
21.4 Know Your Resources . 279
21.5 Tools for Installing and Managing Packages . 279
21.6 Package Requirements . 280
21.7 Wiring Up Django Packages: The Basics . 280

21.7.1 Step 1: Read the Documentation for the Package 280
21.7.2 Step 2: Add Package and Version Number to Your Requirements 280
21.7.3 Step 3: Install the Requirements Into Your Virtualenv 281
21.7.4 Step 4: Follow the Package’s Installation Instructions Exactly 282

21.8 Troubleshooting Third-Party Packages . 282
21.9 Releasing Your Own Django Packages . 282
21.10 What Makes a Good Django Package? . 283

21.10.1 Purpose . 283
21.10.2 Scope . 283
21.10.3 Documentation . 284
21.10.4 Tests . 284
21.10.5 Templates . 284
21.10.6 Activity . 284
21.10.7 Community . 285
21.10.8 Modularity . 285
21.10.9 Availability on PyPI . 285
21.10.10 Uses the Broadest Requirements Specifiers Possible 285
21.10.11 Proper Version Numbers . 287

xvii

Contents

21.10.12 Name . 288
21.10.13 License . 288
21.10.14 Clarity of Code . 289
21.10.15 Use URL Namespaces . 289

21.11 Creating Your Own Packages the Easy Way . 289
21.12 Maintaining Your Open Source Package . 290

21.12.1 Give Credit for Pull Requests . 291
21.12.2 Handling Bad Pull Requests . 291
21.12.3 Do Formal PyPI Releases . 291
21.12.4 Create and Deploy Wheels to PyPI . 292
21.12.5 Upgrade the Package to New Versions of Django 293
21.12.6 Follow Good Security Practices . 294
21.12.7 Provide Sample Base Templates . 294
21.12.8 Give the Package Away . 294

21.13 Additional Reading . 295
21.14 Summary . 295

22 Testing Stinks and Is a Waste of Money! 297
22.1 Testing Saves Money, Jobs, and Lives . 297
22.2 How to Structure Tests . 298
22.3 How to Write Unit Tests . 299

22.3.1 Each Test Method Tests One Thing . 300
22.3.2 For Views, When Possible Use the Request Factory 302
22.3.3 Don’t Write Tests That Have to Be Tested 303
22.3.4 Don’t Repeat Yourself Doesn’t Apply to Writing Tests 304
22.3.5 Don’t Rely on Fixtures . 304
22.3.6 Things That Should Be Tested . 305
22.3.7 Test for Failure . 306
22.3.8 Use Mock to Keep Unit Tests From Touching the World 307
22.3.9 Use Fancier Assertion Methods . 309
22.3.10 Document the Purpose of Each Test . 310

22.4 What About Integration Tests? . 310
22.5 Continuous Integration . 311
22.6 Who Cares? We Don’t Have Time for Tests! . 311
22.7 The Game of Test Coverage . 312
22.8 Setting Up the Test Coverage Game . 312

xviii

Contents

22.8.1 Step 1: Start Writing Tests . 312
22.8.2 Step 2: Run Tests and Generate Coverage Report 312
22.8.3 Step 3: Generate the Report! . 313

22.9 Playing the Game of Test Coverage . 314
22.10 Alternatives to unittest . 314
22.11 Summary . 315

23 Documentation: Be Obsessed 317
23.1 Use reStructuredText for Python Docs . 317
23.2 Use Sphinx to Generate Documentation From reStructuredText 319
23.3 What Docs Should Django Projects Contain? 319
23.4 Additional Documentation Resources . 321
23.5 The Markdown Alternative . 321

23.5.1 README.md to README.rst: Using Pandoc for Packages Uploaded to
PyPI . 322

23.5.2 Markdown Resources . 322
23.6 Wikis and Other Documentation Methods . 323
23.7 Summary . 323

24 Finding and Reducing Bottlenecks 325
24.1 Should You Even Care? . 325
24.2 Speed Up Query-Heavy Pages . 325

24.2.1 Find Excessive Queries With Django Debug Toolbar 325
24.2.2 Reduce the Number of Queries . 326
24.2.3 Speed Up Common Queries . 327
24.2.4 Switch ATOMIC_REQUESTS to False 328

24.3 Get the Most Out of Your Database . 328
24.3.1 Know What Doesn’t Belong in the Database 328
24.3.2 Getting the Most Out of PostgreSQL 329
24.3.3 Getting the Most Out of MySQL . 329

24.4 Cache Queries With Memcached or Redis . 330
24.5 Identify Specific Places to Cache . 330
24.6 Consider Third-Party Caching Packages . 330
24.7 Compression and Minification of HTML, CSS, and JavaScript 331
24.8 Use Upstream Caching or a Content Delivery Network 332
24.9 Other Resources . 332

xix

Contents

24.10 Summary . 334

25 Asynchronous Task Queues 335
25.1 Do We Need a Task Queue? . 336
25.2 Choosing Task Queue Software . 337
25.3 Best Practices for Task Queues . 339

25.3.1 Treat Tasks Like Views . 339
25.3.2 Tasks Aren’t Free . 339
25.3.3 Only Pass JSON-Serializable Values to Task Functions 340
25.3.4 Write Tasks as Idempotent Whenever Possible 340
25.3.5 Don’t Keep Important Data in Your Queue 341
25.3.6 Learn How to Monitor Tasks and Workers 341
25.3.7 Logging! . 341
25.3.8 Monitor the Backlog . 342
25.3.9 Periodically Clear Out Dead Tasks . 342
25.3.10 Ignore Results We Don’t Need . 342
25.3.11 Use the Queue’s Error Handling . 342
25.3.12 Learn the Features of Your Task Queue Software 343

25.4 Resources for Task Queues . 343
25.5 Summary . 344

26 Security Best Practices 345
26.1 Reference Security Sections in Other Chapters 345
26.2 Harden Your Servers . 346
26.3 Know Django’s Security Features . 346
26.4 Turn Off DEBUG Mode in Production . 346
26.5 Keep Your Secret Keys Secret . 347
26.6 HTTPS Everywhere . 347

26.6.1 Use Secure Cookies . 349
26.6.2 Use HTTP Strict Transport Security (HSTS) 349
26.6.3 HTTPS Configuration Tools . 351

26.7 Use Allowed Hosts Validation . 351
26.8 Always Use CSRF Protection With HTTP Forms That Modify Data 351
26.9 Prevent Against Cross-Site Scripting (XSS) Attacks 351

26.9.1 Use format_html Over mark_safe . 352
26.9.2 Don’t Allow Users to Set Individual HTML Tag Attributes 352

xx

Contents

26.9.3 Use JSON Encoding for Data Consumed by JavaScript 352
26.9.4 Beware Unusual JavaScript . 352
26.9.5 Add Content Security Policy Headers 353
26.9.6 Additional Reading . 353

26.10 Defend Against Python Code Injection Attacks 353
26.10.1 Python Built-Ins That Execute Code . 353
26.10.2 Python Standard Library Modules That Can Execute Code 354
26.10.3 Third-Party Libraries That Can Execute Code 354
26.10.4 Be Careful With Cookie-Based Sessions 354

26.11 Validate All Incoming Data With Django Forms 356
26.12 Disable the Autocomplete on Payment Fields 356
26.13 Handle User-Uploaded Files Carefully . 357

26.13.1 When a CDN Is Not an Option . 357
26.13.2 Django and User-Uploaded Files . 358

26.14 Don’t Use ModelForms.Meta.exclude . 358
26.14.1 Mass Assignment Vulnerabilities . 361

26.15 Don’t Use ModelForms.Meta.fields = ”__all__” 361
26.16 Beware of SQL Injection Attacks . 361
26.17 Never Store Credit Card Data . 362
26.18 Monitor Your Sites . 362
26.19 Keep Your Dependencies Up-to-Date . 363
26.20 Prevent Clickjacking . 363
26.21 Guard Against XML Bombing With defusedxml 363
26.22 Explore Two-Factor Authentication . 364
26.23 Embrace SecurityMiddleware . 365
26.24 Force the Use of Strong Passwords . 365
26.25 Give Your Site a Security Checkup . 366
26.26 Put Up a Vulnerability Reporting Page . 366
26.27 Never Display Sequential Primary Keys . 367

26.27.1 Lookup by Slug . 367
26.27.2 UUIDs . 367

26.28 Reference Our Security Settings Appendix . 368
26.29 Review the List of Security Packages . 369
26.30 Keep Up-to-Date on General Security Practices 369
26.31 Summary . 370

xxi

Contents

27 Logging: What’s It For, Anyway? 371
27.1 Application Logs vs. Other Logs . 371
27.2 Why Bother With Logging? . 372
27.3 When to Use Each Log Level . 372

27.3.1 Log Catastrophes With CRITICAL . 373
27.3.2 Log Production Errors With ERROR 373
27.3.3 Log Lower-Priority Problems With WARNING 374
27.3.4 Log Useful State Information With INFO 375
27.3.5 Log Debug-Related Messages to DEBUG 375

27.4 Log Tracebacks When Catching Exceptions . 377
27.5 One Logger Per Module That Uses Logging . 378
27.6 Log Locally to Rotating Files . 378
27.7 Other Logging Tips . 379
27.8 Necessary Reading Material . 379
27.9 Useful Third-Party Tools . 380
27.10 Summary . 380

28 Signals: Use Cases and Avoidance Techniques 381
28.1 When to Use and Avoid Signals . 381
28.2 Signal Avoidance Techniques . 382

28.2.1 Using Custom Model Manager Methods Instead of Signals 382
28.2.2 Validate Your Model Elsewhere . 385
28.2.3 Override Your Model’s Save or Delete Method Instead 385
28.2.4 Use a Helper Function Instead of Signals 386

28.3 Summary . 386

29 What About Those Random Utilities? 387
29.1 Create a Core App for Your Utilities . 387
29.2 Optimize Apps With Utility Modules . 388

29.2.1 Storing Code Used in Many Places . 388
29.2.2 Trimming Models . 388
29.2.3 Easier Testing . 389

29.3 Django’s Own Swiss Army Knife . 389
29.3.1 django.contrib.humanize . 390
29.3.2 django.utils.decorators.method_decorator(decorator) 390
29.3.3 django.utils.decorators.decorator_from_middleware(middleware) 390

xxii

Contents

29.3.4 django.utils.encoding.force_text(value) 391
29.3.5 django.utils.functional.cached_property 391
29.3.6 django.utils.html.format_html(format_str, *args, **kwargs) 392
29.3.7 django.utils.html.strip_tags(value) . 392
29.3.8 django.utils.six . 392
29.3.9 django.utils.text.slugify(value) . 393
29.3.10 Slugification and Languages Besides English 394
29.3.11 django.utils.timezone . 395
29.3.12 django.utils.translation . 395

29.4 Exceptions . 395
29.4.1 django.core.exceptions.ImproperlyConfigured 395
29.4.2 django.core.exceptions.ObjectDoesNotExist 395
29.4.3 django.core.exceptions.PermissionDenied 397

29.5 Serializers and Deserializers . 398
29.5.1 django.core.serializers.json.DjangoJSONEncoder 400
29.5.2 django.core.serializers.pyyaml . 400
29.5.3 django.core.serializers.xml_serializer . 401
29.5.4 rest_framework.serializers . 401

29.6 Summary . 402

30 Deployment: Platforms as a Service 403
30.1 Evaluating a PaaS . 404

30.1.1 Compliance . 404
30.1.2 Pricing . 405
30.1.3 Uptime . 405
30.1.4 Staffing . 406
30.1.5 Scaling . 407
30.1.6 HTTP Server . 407
30.1.7 Documentation . 407
30.1.8 Performance Degradation . 408
30.1.9 Geography . 408
30.1.10 Company Stability . 409

30.2 Best Practices for Deploying to PaaS . 409
30.2.1 Aim for Identical Environments . 409
30.2.2 Maintain a Staging Instance . 409
30.2.3 Automate All the Things! . 410

xxiii

Contents

30.2.4 Multiple Requirements Files in Multiple Environments 410
30.2.5 Prepare for Disaster With Backups and Rollbacks 411
30.2.6 Keep External Backups . 411

30.3 Summary . 411

31 Deploying Django Projects 413
31.1 Single-Server for Small Projects . 413

31.1.1 Should You Bother? . 413
31.1.2 Example: Quick Ubuntu + Gunicorn Setup 414

31.2 Multi-Server for Medium to Large Projects . 415
31.2.1 Advanced Multi-Server Setup . 417

31.3 WSGI Application Servers . 419
31.4 Performance and Tuning: uWSGI and Gunicorn 421
31.5 Stability and Ease of Setup: Gunicorn and Apache 421
31.6 Common Apache Gotchas . 421

31.6.1 Apache and Environment Variables . 422
31.6.2 Apache and Virtualenv . 422

31.7 Automated, Repeatable Deployments . 423
31.7.1 A Rapidly Changing World . 424

31.8 Which Automation Tool Should Be Used? . 426
31.8.1 Too Much Corporate Fluff . 426
31.8.2 Do Your Own Research . 426

31.9 Current Infrastructure Automation Tools . 426
31.10 Other Resources . 429
31.11 Summary . 429

32 Continuous Integration 431
32.1 Principles of Continuous Integration . 432

32.1.1 Write Lots of Tests! . 432
32.1.2 Keeping the Build Fast . 432

32.2 Tools for Continuously Integrating Your Project 433
32.2.1 Tox . 433
32.2.2 Jenkins . 434

32.3 Continuous Integration as a Service . 434
32.3.1 Code Coverage as a Service . 435

32.4 Additional Resources . 435

xxiv

Contents

32.5 Summary . 435

33 The Art of Debugging 437
33.1 Debugging in Development . 437

33.1.1 Use django-debug-toolbar . 437
33.1.2 That Annoying CBV Error . 437
33.1.3 Master the Python Debugger . 439
33.1.4 Remember the Essentials for Form File Uploads 439
33.1.5 Lean on the Text Editor or IDE . 442

33.2 Debugging Production Systems . 442
33.2.1 Read the Logs the Easy Way . 443
33.2.2 Mirroring Production . 443
33.2.3 UserBasedExceptionMiddleware . 444
33.2.4 That Troublesome settings.ALLOWED_HOSTS Error 444

33.3 Feature Flags . 445
33.3.1 Feature Flag Packages . 446
33.3.2 Unit Testing Code Affected by Feature Flags 446

33.4 Summary . 447

34 Where and How to Ask Django Questions 449
34.1 What to Do When You’re Stuck . 450
34.2 How to Ask Great Django Questions in IRC 450
34.3 Feed Your Brain . 451
34.4 Insider Tip: Be Active in the Community . 451

34.4.1 9 Easy Ways to Participate . 451
34.5 Summary . 452

35 Closing Thoughts 453

Appendix A: Packages Mentioned In This Book 455

Appendix B: Troubleshooting Installation 463
Identifying the Issue . 463
Our Recommended Solutions . 464

Check Your Virtualenv Installation . 464
Check If Your Virtualenv Has Django 1.11 Installed 465
Check For Other Problems . 465

xxv

Contents

Appendix C: Additional Resources 467
Timeless Python and Django Material . 467
Timeless Beginner Django Material . 468
Timeless Beginner Python Material . 469
Timeless Useful Python Material . 469
JavaScript Resources . 470

Appendix D: Internationalization and Localization 471

Appendix E: Settings Alternatives 479

Appendix F: Advice for Python 2.7 Users 481

Appendix G: Security Settings Reference 487

Appendix H: Handling Security Failures 489
Have a Plan Ready for When Things Go Wrong . 489
Shut Everything Down or Put It in Read-Only Mode 489
Put Up a Static HTML Page . 490
Back Everything Up . 490
Email security@djangoproject.com, Even if It’s Your Fault 491
Start Looking Into the Problem . 491

Appendix I: WebSockets with Channels 493
Each Browser Tab Has Its Own WebSocket Connection 493
Expect WebSocket Connections to Drop All the Time 494
Channels Works Better With Python 3.6+ . 494
Validate Incoming Data! . 495
Watch Out For Spaghetti Code . 495

Acknowledgments 497

List of Figures 503

List of Tables 506

Index 509

xxvi

Authors’ Notes

A Few Words From Daniel Roy Greenfeld
In the spring of 2006, I was working for NASA on a project that implemented a Java-based RESTful
web service that was taking weeks to deliver. One evening, when management had left for the day, I
reimplemented the service in Python in 90 minutes.

I knew then that I wanted to work with Python.

I wanted to use Django for the web front-end of the web service, but management insisted on using
a closed-source stack because “Django is only at version 0.9x, hence not ready for real projects.” I
disagreed, but stayed happy with the realization that at least the core architecture was in Python.
Django used to be edgy during those heady days, and it scared people the same way that Node.js
scares people today.

Over ten years later, Django is considered a mature, powerful, secure, stable framework used by
incredibly successful corporations (Instagram, Pinterest, Mozilla, etc.) and government agencies
(NASA, Library of Congress, et al) all over the world. Convincing management to use Django isn’t
hard anymore, and if it is hard to convince them, finding jobs which let you use Django has become
much easier. In my many years of building Django projects, I’ve learned how to launch new web
applications with incredible speed while keeping technical debt to an absolute minimum.

My goal in this book is to share with you what I’ve learned. My knowledge and experience have been
gathered from advice given by core developers, mistakes I’ve made, successes shared with others, and
an enormous amount of note taking. I’m going to admit that the book is opinionated, but many of
the leaders in the Django community use the same or similar techniques.

This book is for you, the developers. I hope you enjoy it!

Contents

A Few Words From Audrey Roy Greenfeld

I first discovered Python in a graduate class at MIT in 2005. In less than 4 weeks of homework
assignments, each student built a voice-controlled system for navigating between rooms in MIT’s
Stata Center, running on our HP iPaqs running Debian. I was in awe of Python and wondered why
it wasn’t used for everything. I tried building a web application with Zope but struggled with it.

A couple of years passed, and I got drawn into the Silicon Valley tech startup scene. I wrote graphics
libraries in C and desktop applications in C++ for a startup. At some point, I left that job and picked
up painting and sculpture. Soon I was drawing and painting frantically for art shows, co-directing a
140-person art show, and managing a series of real estate renovations. I realized that I was doing a
lot at once and had to optimize. Naturally, I turned to Python and began writing scripts to generate
some of my artwork. That was when I rediscovered the joy of working with Python.

Many friends from the Google App Engine, SuperHappyDevHouse, and hackathon scenes in Silicon
Valley inspired me to get into Django. Through them and through various freelance projects and
partnerships I discovered how powerful Django was.

Before I knew it, I was attending PyCon 2010, where I met my husband Daniel Roy Greenfeld. We
met at the end of James Bennett’s “Django In Depth” tutorial, and now this chapter in our lives has
come full circle with the publication of this book.

Django has brought more joy to my life than I thought was possible with a web framework. My goal
with this book is to give you the thoughtful guidance on common Django development practices that
are normally left unwritten (or implied), so that you can get past common hurdles and experience
the joy of using the Django web framework for your projects.

xxviii

Introduction

Our aim in writing this book is to write down all of the unwritten tips, tricks, and common practices
that we’ve learned over the years while working with Django.

While writing, we’ve thought of ourselves as scribes, taking the various things that people assume
are common knowledge and recording them with simple examples.

A Word About Our Recommendations

Like the official Django documentation, this book covers how to do things in Django, illustrating
various scenarios with code examples.

Unlike the Django documentation, this book recommends particular coding styles, patterns, and
library choices. While core Django developers may agree with some or many of these choices, keep
in mind that many of our recommendations are just that: personal recommendations formed after
years of working with Django.

Throughout this book, we advocate certain practices and techniques that we consider to be the best
approaches. We also express our own personal preferences for particular tools and libraries.

Sometimes we reject common practices that we consider to be anti-patterns. For most things we
reject, we try to be polite and respectful of the hard work of the authors. There are the rare, few
things that we may not be so polite about. This is in the interest of helping you avoid dangerous
pitfalls.

We have made every effort to give thoughtful recommendations and to make sure that our practices
are sound. We’ve subjected ourselves to harsh, nerve-wracking critiques from Django and Python

xxix

Chapter 0: Introduction

core developers whom we greatly respect. We’ve had this book reviewed by more technical reviewers
than the average technical book, and we’ve poured countless hours into revisions. That being said,
there is always the possibility of errors or omissions. There is also the possibility that better practices
may emerge than those described here.

We are fully committed to iterating on and improving this book, and we mean it. If you see any
practices that you disagree with or anything that can be done better, we humbly ask that you send us
your suggestions for improvements. The best way to send us feedback is to file an issue at
github.com/twoscoops/two-scoops-of-django-1.11/issues.

Please don’t hesitate to tell us what can be improved. We will take your feedback constructively. Er-
rata will be published at https://github.com/twoscoops/two-scoops-of-django-1.11/
blob/master/errata.md.

Why Two Scoops of Django?

Like most people, we, the authors of this book, love ice cream. Every Saturday night we throw caution
to the wind and indulge in ice cream. Don’t tell anyone, but sometimes we even have some when it’s
not Saturday night!

Figure 1: Throwing caution to the wind.

We like to try new flavors and discuss their merits against our old favorites. Tracking our progress

xxx

https://github.com/twoscoops/two-scoops-of-django-1.11/issues
https://github.com/twoscoops/two-scoops-of-django-1.11/blob/master/errata.md
https://github.com/twoscoops/two-scoops-of-django-1.11/blob/master/errata.md

through all these flavors, and possibly building a club around it, makes for a great sample Django
project.

When we do find a flavor we really like, the new flavor brings a smile to our face, just like when we
find great tidbits of code or advice in a technical book. One of our goals for this book is to write the
kind of technical book that brings the ice cream smile to readers.

Best of all, using ice cream analogies has allowed us to come up with more vivid code examples.
We’ve had a lot of fun writing this book. You may see us go overboard with ice cream silliness here
and there; please forgive us.

Before You Begin
This book is not a tutorial. If you are new to Django, this book will be helpful but large parts will
be challenging for you. To use this book to its fullest extent, you should have an understanding of
the Python programming language and have at least gone through the entire multi-page Django
tutorial: docs.djangoproject.com/en/1.11/intro/tutorial01/. Experience with object-
oriented programming is also very useful.

This Book Is Intended for Django 1.11 and Python 3.6.x/2.7.12

This book should work well with the Django 1.11 series, less so with Django 1.10, and so on. Even
though we make no promises about functional compatibility, at least the general approaches from
most of this book stand up over every post-1.0 version of Django.

As for the Python version, this book is tested on Python 3.6 and Python 2.7.13.

While the book is tested on Python 3.6, we avoided the use of f-stringliterals. While we enjoy
using f-strings, we wanted to ensure that our code examples worked on earlier versions of Python.
The same goes for the use of Python 3’s simplified syntax for the super() built-in.

Each Chapter Stands on Its Own

Unlike tutorial and walkthrough books where each chapter builds upon the previous chapter’s project,
we’ve written this book in a way that each chapter intentionally stands by itself.

xxxi

https://docs.djangoproject.com/en/1.11/intro/tutorial01/
https://docs.python.org/3/reference/lexical_analysis.html#f-strings

Chapter 0: Introduction

We’ve done this in order to make it easy for you to reference chapters about specific topics when
needed while you’re working on a project.

The examples in each chapter are completely independent. They aren’t intended to be combined into
one project and are not a tutorial. Consider them useful, isolated snippets that illustrate and help
with various coding scenarios.

Conventions Used in This Book

Code examples like the following are used throughout the book:

Example 1: Code Example

class Scoop:
def __init__(self):

self._is_yummy = True

To keep these snippets compact, we sometimes violate the PEP 8 conventions on comments and line
spacing. Code samples are available online at
github.com/twoscoops/two-scoops-of-django-1.11.

Special “Don’t Do This!” code blocks like the following indicate examples of bad code that you should
avoid:

Example 2: “Don’t Do This!” Code Example

class Scoop:
def __init__(self):

self._is_yummy = False

We use the following typographical conventions throughout the book:

ä Constant width or text Shaded constant width for code fragments or commands.
ä Italic for filenames.
ä Bold when introducing a new term or important word.

Boxes containing notes, warnings, tips, and little anecdotes are also used in this book:

xxxii

https://github.com/twoscoops/two-scoops-of-django-1.11

TIP: Something You Should Know

Tip boxes give handy advice.

WARNING: Some Dangerous Pitfall

Warning boxes help you avoid common mistakes and pitfalls.

PACKAGE TIP: Some Useful Package Recommendation

Indicates notes about useful third-party packages related to the current chapter, and general
notes about using various Python, Django, and front-end packages.
We also provide a complete list of packages recommended throughout the book in Appendix
A: Packages Mentioned In This Book.

We also use tables to summarize information in a handy, concise way:

Daniel Roy Greenfeld Audrey Roy Greenfeld

Can be fed coconut ice cream No Yes
Favorite ice cream flavors of the moment Pumpkin Mint Chocolate Chip

Authors’ Ice Cream Preferences

Core Concepts

When we build Django projects, we keep the following concepts in mind.

Keep It Simple, Stupid

Kelly Johnson, one of the most renowned and prolific aircraft design engineers in the history of
aviation, said it this way about 50 years ago. Centuries earlier, Leonardo da Vinci meant the same
thing when he said, “Simplicity is the ultimate sophistication.”

xxxiii

Chapter 0: Introduction

When building software projects, each piece of unnecessary complexity makes it harder to add new
features and maintain old ones. Attempt the simplest solution, but take care not to implement overly
simplistic solutions that make bad assumptions. This concept is sometimes abbreviated as “KISS.”

Fat Models, Utility Modules, Thin Views, Stupid Templates

When deciding where to put a piece of code, we like to follow the “Fat Models, Utility Modules,
Thin Views, Stupid Templates” approach.

We recommend that you err on the side of putting more logic into anything but views and templates.
The results are pleasing. The code becomes clearer, more self-documenting, less duplicated, and a lot
more reusable. As for template tags and filters, they should contain the least amount of logic possible
to function.

We cover this further in:

Fat Models Section 6.7: Understanding Fat Models
Utility Modules Section 29.2: Optimize Apps With Utility Modules
Thin Views Section 8.5: Try to Keep Business Logic Out of Views
Stupid Templates I Section 13.9: Follow a Minimalist Approach
Stupid Templates II Chapter 14: Template Tags and Filters

Start With Django by Default

Before we consider switching out core Django components for things like alternative template en-
gines, different ORMs, or non-relational databases, we first try an implementation using standard
Django components. If we run into obstacles, we explore all possibilities before replacing core Django
components.

See Chapter 18: Tradeoffs of Replacing Core Components.

Be Familiar with Django’s Design Philosophies

It is good to periodically read the documentation on Django’s design philosophy because it helps
us understand why Django provides certain constraints and tools. Like any framework, Django is

xxxiv

more than just a tool for providing views, it’s a way of doing things designed to help us put together
maintainable projects in a reasonable amount of time.

Reference docs.djangoproject.com/en/1.11/misc/design-philosophies/

The Twelve-Factor App

A comprehensive approach to web-based application design, the Twelve-Factor App approach is grow-
ing in popularity amongst many senior and core Django developers. It is a methodology for build-
ing deployable, scalable applications worth reading and understanding. Parts of it closely match the
practices espoused in Two Scoops of Django, and we like to think of it as suggested reading for any
web-based application developer.

See 12factor.net

Our Writing Concepts

When we wrote this book, we wanted to provide to the reader and ourselves the absolute best material
possible. To do that, we adopted the following principles:

Provide the Best Material

We’ve done our absolute best to provide the best material possible, going to the known resources
on every topic covered to vet our material. We weren’t afraid to ask questions! Then we distilled the
articles, responses and advice of experts into the content that exists in the book today. When that
didn’t suffice, we came up with our own solutions and vetted them with various subject matter experts.
It has been a lot of work, and we hope you are pleased with the results.

If you are curious about the differences between this edition (Django 1.11) and the previous edition
(Django 1.8) of the book, you can find the shortlist of changes at
github.com/twoscoops/two-scoops-of-django-1.11/blob/master/changelog.md

xxxv

https://docs.djangoproject.com/en/1.11/misc/design-philosophies/
http://12factor.net
https://github.com/twoscoops/two-scoops-of-django-1.11/blob/master/changelog.md

Chapter 0: Introduction

Stand on the Shoulders of Giants

While we take credit and responsibility for our work, we certainly did not come up with all the
practices described in this book on our own.

Without all of the talented, creative, and generous developers who make up the Django, Python, and
general open source software communities, this book would not exist. We strongly believe in recog-
nizing the people who have served as our teachers and mentors as well as our sources for information,
and we’ve tried our best to give credit whenever credit is due.

Listen to Our Readers and Reviewers

In the previous editions of this book, we received a huge amount of feedback from a veritable legion
of readers and reviewers. This allowed us to greatly improve the quality of the book. It is now at a
level that we hoped for but never expected to achieve.

In return, we’ve shared credit at the back of the book and are continually working on ways to pay it
forward by improving the lives of developers around the world.

If you have any questions, comments, or other feedback about this edition, please share your input
by submitting issues in our issue tracker, at:

ä github.com/twoscoops/two-scoops-of-django-1.11/issues

Also, at the end of the book is a link to leave a review for Two Scoops of Django on Amazon. Doing
this will help others make an informed decision about whether this book is right for them.

Publish Issues and Errata

Nothing is perfect, even after extensive review cycles. We will be publishing issues and errata at the
Two Scoops of Django 1.11 GitHub repo:

ä github.com/twoscoops/two-scoops-of-django-1.11

xxxvi

https://github.com/twoscoops/two-scoops-of-django-1.11/issues
https://github.com/twoscoops/two-scoops-of-django-1.11

1 | Coding Style

A little attention to following standard coding style guidelines will go a long way. We highly recom-
mend that you read this chapter, even though you may be tempted to skip it.

1.1 The Importance of Making Your Code Readable
Code is read more than it is written. An individual block of code takes moments to write, minutes
or hours to debug, and can last forever without being touched again. It’s when you or someone else
visits code written yesterday or ten years ago that having code written in a clear, consistent style
becomes extremely useful. Understandable code frees mental bandwidth from having to puzzle out
inconsistencies, making it easier to maintain and enhance projects of all sizes.

What this means is that you should go the extra mile to make your code as readable as possible:

ä Avoid abbreviating variable names.
ä Write out your function argument names.
ä Document your classes and methods.
ä Comment your code.
ä Refactor repeated lines of code into reusable functions or methods.
ä Keep functions and methods short. A good rule of thumb is that scrolling should not be nec-

essary to read an entire function or method.

When you come back to your code after time away from it, you’ll have an easier time picking up
where you left off.

Take those pesky abbreviated variable names, for example. When you see a variable called
balance_sheet_decrease , it’s much easier to interpret in your mind than an abbreviated variable

1

Chapter 1: Coding Style

like bsd or bal_s_d . These types of shortcuts may save a few seconds of typing, but those savings
comes at the expense of hours or days of technical debt. It’s not worth it.

1.2 PEP 8

PEP 8 is the official style guide for Python. We advise reading it in detail and learn to follow the
PEP 8 coding conventions: python.org/dev/peps/pep-0008/

PEP 8 describes coding conventions such as:

ä “Use 4 spaces per indentation level.”
ä “Separate top-level function and class definitions with two blank lines.”
ä “Method definitions inside a class are separated by a single blank line.”

All the Python files in your Django projects should follow PEP 8. If you have trouble remembering
the PEP 8 guidelines, find a plugin for your code editor that checks your code as you type.

When an experienced Python programmer sees gross violations of PEP 8 in a Django project, even
if they don’t say something mean, they are probably thinking bad things. Trust us on this one.

WARNING: Don’t Change an Existing Project’s Conventions

The style of PEP 8 applies to new Django projects only. If you are brought into an exist-
ing Django project that follows a different convention than PEP 8, then follow the existing
conventions.

Please read the “A Foolish Consistency is the Hobgoblin of Little Minds” section of PEP 8
for details about this and other reasons to break the rules:

ä python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-
hobgoblin-of-little-minds

PACKAGE TIP: Use Flake8 for Checking Code Quality

Created by Tarek Ziadé and now maintained by the PyCQA group, this is a very useful
command-line tool for checking coding style, quality, and logic errors in projects. Use while
developing locally and as a component of Continuous Integration.

2

http://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-hobgoblin-of-little-minds
https://www.python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-hobgoblin-of-little-minds

1.3: The Word on Imports

1.2.1 The 79-Character Limit

No joke, I still deal with consoles that are restricted to 80 characters.

– Barry Morrison, Systems Engineer and tech reviewer of Two Scoops of Django.

According to PEP 8, the limit of text per line is 79 characters. This exists because it’s a safe value that
most text-wrapping editors and developer teams can accommodate without hurting the understand-
ability of code.

However, PEP 8 also has a provision for relaxing this limit to 99 characters for exclusive team projects.
We interpret this to mean projects that are not open source.

Our preference is as follows:

ä On open source projects, there should be a hard 79-character limit. Our experience has shown
that contributors or visitors to these projects will grumble about line length issues; however, it
has not kept contributors away and we feel the value isn’t lost.

ä On private projects, we relax the limit to 99 characters, taking full advantage of modern mon-
itors.

Please read python.org/dev/peps/pep-0008/#maximum-line-length

TIP: Aymeric Augustin on Line Length Issues

Django core developer Aymeric Augustin says, “Fitting the code in 79 columns is never a
good reason to pick worse names for variables, functions, and classes. It’s much more impor-
tant to have readable variable names than to fit in an arbitrary limit of hardware from three
decades ago.”

1.3 The Word on Imports

PEP 8 suggests that imports should be grouped in the following order:

1 Standard library imports
2 Related third-party imports

3

http://www.python.org/dev/peps/pep-0008/#maximum-line-length

Chapter 1: Coding Style

3 Local application or library specific imports

When we’re working on a Django project, our imports look something like the following:

Example 1.1: Good Python Imports

Stdlib imports
from math import sqrt
from os.path import abspath

Core Django imports
from django.db import models
from django.utils.translation import ugettext_lazy as _

Third-party app imports
from django_extensions.db.models import TimeStampedModel

Imports from your apps
from splits.models import BananaSplit

(Note: you don’t actually need to comment your imports like this. The comments are just here to
explain the example.)

The import order in a Django project is:

1 Standard library imports.
2 Imports from core Django.
3 Imports from third-party apps including those unrelated to Django.
4 Imports from the apps that you created as part of your Django project. (You’ll read more about

apps in Chapter 4: Fundamentals of Django App Design.)

1.4 Use Explicit Relative Imports

When writing code, it’s important to do so in such a way that it’s easier to move, rename, and version
your work. In Python, explicit relative imports remove the need for hardcoding a module’s package via
implicit relative imports, separating individual modules from being tightly coupled to the architecture
around them. Since Django apps are simply Python packages, the same rules apply.

4

1.4: Use Explicit Relative Imports

To illustrate the benefits of explicit relative imports, let’s explore an example.

Imagine that the following snippet is from a Django project that you created to track your ice cream
consumption, including all of the waffle/sugar/cake cones that you have ever eaten.

Oh no, your cones app contains implicit relative imports, which are bad!

Example 1.2: Bad Python Imports

cones/views.py
from django.views.generic import CreateView

DON'T DO THIS!
Hardcoding of the 'cones' package
with implicit relative imports
from cones.models import WaffleCone
from cones.forms import WaffleConeForm
from core.views import FoodMixin

class WaffleConeCreateView(FoodMixin, CreateView):
model = WaffleCone
form_class = WaffleConeForm

Sure, your cones app works fine within your ice cream tracker project, but it has those nasty implicit
relative imports that make it less portable and reusable:

ä What if you wanted to reuse your cones app in another project that tracks your general dessert
consumption, but you had to change the name due to a naming conflict (e.g. a conflict with a
Django app for snow cones)?

ä What if you simply wanted to change the name of the app at some point?

With implicit relative imports, you can’t just change the name of the app; you have to dig through
all of the imports and change them as well. It’s not hard to change them manually, but before you
dismiss the need for explicit relative imports, keep in mind that the above example is extremely simple
compared to a real app with various additional utility modules.

Let’s now convert the bad code snippet containing implicit relative imports into a good one contain-
ing explicit relative imports. Here’s the corrected example:

5

Chapter 1: Coding Style

Example 1.3: Relative Python Imports

cones/views.py
from django.views.generic import CreateView

Relative imports of the 'cones' package
from .models import WaffleCone
from .forms import WaffleConeForm
from core.views import FoodMixin

class WaffleConeCreateView(FoodMixin, CreateView):
model = WaffleCone
form_class = WaffleConeForm

Another concrete advantage is that we can immediately tell our local/internal imports from global/ex-
ternal imports, highlighting the Python package as a unit of code.

To summarize, here’s a table of the different Python import types and when to use them in Django
projects:

Code Import Type Usage

from core.views import FoodMixin absolute import Use when importing from outside the
current app

from .models import WaffleCone explicit relative Use when importing from another
module in the current app

from models import WaffleCone implicit relative Often used when importing from
another module in the current app, but
not a good idea

Table 1.1: Imports: Absolute vs. Explicit Relative vs. Implicit Relative

Get into the habit of using explicit relative imports. It’s very easy to do, and using explicit relative
imports is a good habit for any Python programmer to develop.

6

1.5: Avoid Using Import *

TIP: Doesn’t PEP 328 Clash With PEP 8?
See what Guido van Rossum, BDFL of Python says about it:

ä python.org/pipermail/python-dev/2010-October/104476.html

Additional reading: python.org/dev/peps/pep-0328/

1.5 Avoid Using Import *

In 99 percent of all our work, we explicitly import each module:

Example 1.4: Explicit Python Imports

from django import forms
from django.db import models

Never do the following:

Example 1.5: Import *

ANTI-PATTERN: Don't do this!
from django.forms import *
from django.db.models import *

The reason for this is to avoid implicitly loading all of another Python module’s locals into and over
our current module’s namespace, this can produce unpredictable and sometimes catastrophic results.

We do cover a specific exception to this rule in Chapter 5: Settings and Requirements Files.

Let’s look at the bad code example above. Both the Django forms and Django models libraries have a
class called CharField . By implicitly loading both libraries, the models library overwrote the forms
version of the class. This can also happen with Python built-in libraries and other third-party libraries
overwriting critical functionality.

Using import * is like being that greedy customer at an ice cream shop who asks for a free taster
spoon of all thirty-one flavors, but who only purchases one or two scoops. Don’t import everything
if you’re only going to use one or two things.

7

https://mail.python.org/pipermail/python-dev/2010-October/104476.html
https://www.python.org/dev/peps/pep-0328/

Chapter 1: Coding Style

If the customer then walked out with a giant ice cream bowl containing a scoop of every or almost
every flavor, though, it would be a different matter.

Figure 1.1: Using import * in an ice cream shop.

1.5.1 Other Python Naming Collisions

You’ll run into similar problems if you try to import two things with the same name, such as:

Example 1.6: Python Module Collisions

ANTI-PATTERN: Don't do this!
from django.db.models import CharField
from django.forms import CharField

If you need to avoid a naming collision of this nature, you can always use aliases to overcome them:

Example 1.7: Using Aliases to Avoid Python Module Collisions

from django.db.models import CharField as ModelCharField
from django.forms import CharField as FormCharField

1.6 Django Coding Style
This section covers both the official guidelines as well as unofficial but commonly-accepted Django
conventions.

8

1.6: Django Coding Style

1.6.1 Consider the Django Coding Style Guidelines

It goes without saying that it’s a good idea to be aware of common Django style conventions. In fact,
internally Django has its own set of style guidelines that extend PEP 8:

ä docs.djangoproject.com/en/1.11/internals/contributing/writing-code/
coding-style/

Additionally, while the following are not specified in the official standards, they are common enough
in the Django community that you will probably want to follow them in your projects.

TIP: Review the Documentation on Django Internals

The documentation on Django internals hold a lot more than just coding style. They’re chock-
full of useful information, including the history of the Django project, the release process, and
more! We recommend you check them out.

docs.djangoproject.com/en/1.11/internals/

1.6.2 Use Underscores in URL Pattern Names Rather Than Dashes

We always try to use underscores (the “_” character) over dashes. This isn’t just more Pythonic, it’s
friendlier to more IDEs and text editors. Note that we are referring to the name argument of url()
here, not the actual URL typed into the browser.

The wrong way, with dashes in url names:

Example 1.8: Bad URL Pattern Names

patterns = [
url(regex='^add/$',

view=views.add_topping,
name='add-topping'),

]

The right way, with underscores in url names:

9

https://docs.djangoproject.com/en/1.11/internals/contributing/writing-code/coding-style/
https://docs.djangoproject.com/en/1.11/internals/contributing/writing-code/coding-style/
https://docs.djangoproject.com/en/1.11/internals/

Chapter 1: Coding Style

Example 1.9: Good URL Pattern Names

patterns = [
url(regex='^add/$',

view=views.add_topping,
name='add_topping'),

]

Dashes in actual URLs are fine (e.g. regex=’^add-topping/$’).

1.6.3 Use Underscores in Template Block Names Rather Than Dashes

For the same reasons as using underscores in URL pattern names, we recommend using underscores
when defining names of template blocks: in this case they’re more Pythonic and more editor-friendly.

1.7 Choose JS, HTML, and CSS Style Guides

1.7.1 JavaScript Style Guides

Unlike Python which has one official style guide, there is no official JavaScript style guide. Instead,
a number of unofficial JS style guides have been created by various individuals and/or companies:

https://github.com/feross/standard

ä Standard combined JavaScript and Node.js Style Guide github.com/feross/standard
ä idiomatic.js: Principles of Writing Consistent, Idiomatic JavaScript github.com/

rwaldron/idiomatic.js
ä Airbnb JavaScript Style Guide github.com/airbnb/javascript

There is no consensus in the Django or JavaScript communities on any one of these, so just pick your
favorite and stick with it.

However, if you are using a JavaScript framework with a style guide of its own, you should use that
guide. For example, ember.js has its own style guide.

10

https://github.com/feross/standard
https://github.com/rwaldron/idiomatic.js/
https://github.com/rwaldron/idiomatic.js/
https://github.com/airbnb/javascript

1.8: Never Code to the IDE (Or Text Editor)

PACKAGE TIP: ESLint: A Pluggable Linting Utility for JavaScript and
JSX

ESLint (eslint.org) is a tool for checking JavaScript and JSX code styles. It has presets
for the JS style rules of several style guides, including a few of those listed above. There are
also ESLint plugins for various text editors and ESLint tasks for various JavaScript tools like
Webpack, Gulp, and Grunt.

1.7.2 HTML and CSS Style Guides

ä Code Guide by @mdo for HTML and CSS: codeguide.co
ä idomatic-css: Principles of Writing Consistent, Idiomatic CSS:

github.com/necolas/idiomatic-css

PACKAGE TIP: stylelint

Stylelint (stylelint.io) is a coding style formatter for CSS. It checks for consistency
against the rules for which you configure it for, and it checks the sort order of your CSS
properties. Just as for ESLint, there are stylelint text editor and task/build tool plugins.

1.8 Never Code to the IDE (Or Text Editor)

There are developers who make decisions about the layout and implementation of their project based
on the features of IDEs (Integrated Development Environment). This can make discovery of project
code extremely difficult for anyone whose choice of development tool doesn’t match the original
author.

Always assume that the developers around you like to use their own tools and that your code and
project layout should be transparent enough that someone stuck using Notepad or Nano will be able
to navigate your work.

For example, introspecting template tags or discovering their source can be difficult and time
consuming for developers not using a very, very limited pool of IDEs. Therefore, we follow the
commonly-used naming pattern of <app_name>_tags.py.

11

http://eslint.org/
https://twitter.com/mdo
http://codeguide.co
https://github.com/necolas/idiomatic-css
https://stylelint.io/

Chapter 1: Coding Style

1.9 Summary

This chapter covered our preferred coding style and explained why we prefer each technique.

Even if you don’t follow the coding style that we use, please follow a consistent coding style. Projects
with varying styles are much harder to maintain, slowing development and increasing the chances of
developer mistakes.

12

2 | The Optimal Django Environment
Setup

This chapter describes what we consider the best local environment setup for intermediate and ad-
vanced developers working with Django.

2.1 Use the Same Database Engine Everywhere

A common developer pitfall is using SQLite3 for local development and PostgreSQL (or MySQL)
in production. This section applies not only to the SQLite3/PostgreSQL scenario, but to any scenario
where you’re using two different databases and expecting them to behave identically.

Here are some of the issues we’ve encountered with using different database engines for development
and production:

2.1.1 You Can’t Examine an Exact Copy of Production Data Locally

When your production database is different from your local development database, you can’t grab an
exact copy of your production database to examine data locally.

Sure, you can generate a SQL dump from production and import it into your local database, but that
doesn’t mean that you have an exact copy after the export and import.

13

Chapter 2: The Optimal Django Environment Setup

2.1.2 Different Databases Have Different Field Types/Constraints

Keep in mind that different databases handle typing of field data differently. Django’s ORM attempts
to accommodate those differences, but there’s only so much that it can do.

For example, some people use SQLite3 for local development and PostgreSQL in production, think-
ing that the Django ORM gives them the excuse not to think about the differences. Eventually they
run into problems, since SQLite3 has dynamic, weak typing instead of strong typing.

Yes, the Django ORM has features that allow your code to interact with SQLite3 in a more strongly
typed manner, but form and model validation mistakes in development will go uncaught (even in
tests) until the code goes to a production server. You may be saving long strings locally without a
hitch, for example, since SQLite3 won’t care. But then in production, your PostgreSQL or MySQL
database will throw constraint errors that you’ve never seen locally, and you’ll have a hard time repli-
cating the issues until you set up an identical database locally.

Most problems usually can’t be discovered until the project is run on a strongly typed database (e.g.
PostgreSQL or MySQL). When these types of bugs hit, you end up kicking yourself and scrambling
to set up your local development machine with the right database.

TIP: Django+PostgreSQL Rocks

Most Django developers that we know prefer to use PostgreSQL for all environments: de-
velopment, staging, QA, and production systems.

Depending on your operating system, use these instructions:

ä Mac: Download the one-click Mac installer at postgresapp.com
ä Windows: Download the one-click Windows installer at

postgresql.org/download/windows/
ä Linux: Install via your package manager, or follow the instructions at

postgresql.org/download/linux/

PostgreSQL may take some work to get running locally on some operating systems, but we
find that it’s well worth the effort.

14

http://postgresapp.com
http://postgresql.org/download/windows/
http://postgresql.org/download/linux/

2.1: Use the Same Database Engine Everywhere

2.1.3 Fixtures Are Not a Magic Solution

You may be wondering why you can’t simply use fixtures to abstract away the differences between
your local and production databases.

Well, fixtures are great for creating simple hardcoded test data sets. Sometimes you need to pre-
populate your databases with fake test data during development, particularly during the early stages
of a project.

Fixtures are not a reliable tool for migrating large data sets from one database to another in a database-
agnostic way. They are simply not meant to be used that way. Don’t mistake the ability of fixtures
to create basic data (dumpdata/loaddata) with the capability to migrate production data between
database tools.

WARNING: Don’t Use SQLite3 with Django in Production

For any web project with more than one user, or requiring anything but light concurrency,
SQLite3 is a nightmare in the making. In the simplest terms possible, SQLite3 works great
in production until it doesn’t. We’ve experienced it ourselves, and heard horror stories from
others.

This issue compounds itself with the difficulty and complexity involved in migrating data out
of SQLite3 and into something designed for concurrency (e.g., PostgreSQL) when problems
eventually arise.

While we’re aware that there are plenty of articles advocating the use of SQLite3 in produc-
tion, the fact that a tiny group of SQLite3 power users can get away with it for particular
edge cases is not justification for using it in production Django.

15

Chapter 2: The Optimal Django Environment Setup

2.2 Use Pip and Virtualenv

If you are not doing so already, we strongly urge you to familiarize yourself with both pip and vir-
tualenv. They are the de facto standard for Django projects, and most companies that use Django
rely on these tools.

Pip is a tool that fetches Python packages from the Python Package Index and its mirrors. It is used
to manage and install Python packages. It’s like easy_install but has more features, the key feature
being support for virtualenv.

Virtualenv is a tool for creating isolated Python environments for maintaining package dependencies.
It’s great for situations where you’re working on more than one project at a time, and where there are
clashes between the version numbers of different libraries that your projects use.

For example, imagine that you’re working on one project that requires Django 1.10 and another that
requires Django 1.11.

ä Without virtualenv (or an alternative tool to manage dependencies), you have to reinstall
Django every time you switch projects.

ä If that sounds tedious, keep in mind that most real Django projects have at least a dozen
dependencies to maintain.

Pip is already included in Python 3.4 and higher. Further reading and installation instructions can
be found at:

ä pip: pip.pypa.io
ä virtualenv: virtualenv.pypa.io

2.2.1 virtualenvwrapper

We also highly recommend virtualenvwrapper for Mac OS X and Linux or
virtualenvwrapper-win for Windows. The project was started by Doug Hellman.

Personally, we think virtualenv without virtualenvwrapper can be a pain to use, because every time
you want to activate a virtual environment, you have to type something long like:

16

https://pip.pypa.io/en/stable/
https://virtualenv.pypa.io/en/stable/
http://virtualenvwrapper.rtfd.org
https://pypi.python.org/pypi/virtualenvwrapper-win

2.2: Use Pip and Virtualenv

Example 2.1: Activating virtualenv

$ source ~/.virtualenvs/twoscoops/bin/activate

With virtualenvwrapper, you’d only have to type:

Example 2.2: Activating virtualenv

$ workon twoscoops

Virtualenvwrapper is a popular companion tool to pip and virtualenv and makes our lives easier, but
it’s not an absolute necessity.

Figure 2.1: Pip, virtualenv, and virtualenvwrapper in ice cream bar form.

17

Chapter 2: The Optimal Django Environment Setup

2.3 Install Django and Other Dependencies via Pip
The official Django documentation describes several ways of installing Django. Our recommended
installation method is with pip and requirements files.

To summarize how this works: a requirements file is like a grocery list of Python packages that you
want to install. It contains the name and optionally suitable version range of each package. You use
pip to install packages from this list into your virtual environment.

We cover the setup of and installation from requirements files in Chapter 5: Settings and Require-
ments Files.

TIP: Setting PYTHONPATH

If you have a firm grasp of the command line and environment variables, you can set your
virtualenv PYTHONPATH so that the django-admin.py command can be used to serve your site
and perform other tasks.

You can also set your virtualenv’s PYTHONPATH to include the current directory with the latest
version of pip. Running “pip install -e .” from your project’s root directory will do the
trick, installing the current directory as a package that can be edited in place.

If you don’t know how to set this or it seems complicated, don’t worry about it and stick
with manage.py.

Additional reading:
ä hope.simons-rock.edu/~pshields/cs/python/pythonpath.html
ä docs.djangoproject.com/en/1.11/ref/django-admin/

2.4 Use a Version Control System
Version control systems are also known as revision control or source control. Whenever you work on
any Django project, you should use a version control system to keep track of your code changes.

Wikipedia has a detailed comparison of different version control systems:

ä en.wikipedia.org/wiki/Comparison_of_revision_control_software

18

http://hope.simons-rock.edu/~pshields/cs/python/pythonpath.html
https://docs.djangoproject.com/en/1.11/ref/django-admin/
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

2.5: Optional: Identical Environments

Of all the options, Git is the most popular among Django, Python, and JavaScript developers. Git
makes it easy to create branches and merge changes.

When using a version control system, it’s important to not only have a local copy of your code reposi-
tory, but also to use a code hosting service for backups. For this, we recommend that you use GitHub
(github.com) or GitLab (gitlab.com).

2.5 Optional: Identical Environments

What works on a programmer’s laptop might not work in production. But what if your local devel-
opment environment was identical to your project’s staging, test, and production environments?

Of course, if the production infrastructure consists of 10,000 servers, it’s completely unrealistic to
have another 10,000 local servers for development purposes. So when we say identical, we mean “as
identical as realistically possible.”

These are the environment differences that you can eliminate:

Operating system differences. If we’re developing on a Mac or on Windows, and if our site is de-
ployed on Ubuntu Linux, then there are huge differences between how our Django project
works locally and how it works in production.

Python setup differences. Let’s face it, many developers and sysadmins don’t even know which ver-
sion of Python they have running locally, although no one will admit it. Why? Because setting
up Python properly and understanding your setup completely is hard.

Developer-to-developer differences. On large development teams, a lot of time can be wasted try-
ing to debug differences between one developer’s setup and another’s.

The most common way to set up identical development environments is with Docker.

2.5.1 Docker

At the time of this writing, Docker is the industry standard for containerization of environments.
It has excellent support across all operating systems, including Microsoft Windows. Working with
Docker is sort of like developing inside of a VM, except more lightweight. Docker containers share
the host OS but have their own isolated process and memory space. Furthermore, since Docker uses

19

https://github.com/
https://gitlab.com/

Chapter 2: The Optimal Django Environment Setup

a union-capablefilesystem, containers can be built quickly off of a snapshot plus deltas rather
than building from scratch.

For the purposes of local development, its main benefit is that it makes setting up environments that
closely match development and production much easier.

For example, if our development laptops run OS X (or Windows, or Centos, etc) but a project’s
configuration is Ubuntu-specific, we can use Docker via Docker Compose to quickly get a virtual
Ubuntu development environment set up locally, complete with all the packages and setup configu-
rations needed for the project. We can:

ä Set up identical local development environments for everyone on our project’s dev team.
ä Configure these local development environments in a way similar to our staging, test, and

production servers.

The potential downsides are:

ä Extra complexity that is not needed in many situations. For simpler projects where we’re not
too worried about OS-level differences, it’s easier to skip this.

ä On older development machines, running even lightweight containers can slow performance
to a crawl. Even on newer machines, small but noticeable overhead is added.

References for developing with Docker:

ä cookiecutter-django.readthedocs.io/en/latest/
developing-locally-docker.html

ä http://bit.ly/1dWnzVW Real Python article on Django and Docker Compose
ä dockerbook.com

2.6 Summary

This chapter covered using the same database in development as in production, pip, virtualenv, and
version control systems. These are good to have in your tool chest, since they are commonly used not
just in Django, but in the majority of Python software development.

20

https://en.wikipedia.org/wiki/Union_mount
http://cookiecutter-django.readthedocs.io/en/latest/developing-locally-docker.html
http://cookiecutter-django.readthedocs.io/en/latest/developing-locally-docker.html
https://realpython.com/blog/python/django-development-with-docker-compose-and-machine/
https://www.dockerbook.com/

3 | How to Lay Out Django Projects

Project layout is one of those areas where core Django developers have differing opinions about
what they consider best practice. In this chapter, we present our approach, which is one of the most
commonly-used ones.

PACKAGE TIP: Django Project Templates

There are a number of project templates that really kickstart a Django project and follow the
patterns described in this chapter. Here are two links that may be of use when we bootstrap
a project:

ä github.com/pydanny/cookiecutter-django
Featured in this chapter.

ä djangopackages.org/grids/g/cookiecutters/
A list of alternate cookiecutter templates.

3.1 Django 1.11’s Default Project Layout
Let’s examine the default project layout that gets created when you run startproject and startapp:

Example 3.1: Default startproject and startapp

django-admin.py startproject mysite
cd mysite
django-admin.py startapp my_app

Here’s the resulting project layout:

21

https://github.com/pydanny/cookiecutter-django
https://www.djangopackages.org/grids/g/cookiecutters/

Chapter 3: How to Lay Out Django Projects

Example 3.2: Default Project Layout

mysite/
├── manage.py
├── my_app
│ ├── __init__.py
│ ├── admin.py
│ ├── apps.py
│ ├── migrations
│ │ └── __init__.py
│ ├── models.py
│ ├── tests.py
│ └── views.py
└── mysite

├── __init__.py
├── settings.py
├── urls.py
└── wsgi.py

There are a number of problems with Django’s default project layout. While useful for the tutorial,
it’s not quite as useful once you are trying to put together a real project. The rest of this chapter will
explain why.

3.2 Our Preferred Project Layout

We rely on a modified two-tier approach that builds on what is generated by the
django-admin.py startproject management command. Our layouts at the highest level are:

Example 3.3: Project Root Levels

<repository_root>/
├── <configuration_root>/
├── <django_project_root>/

Let’s go over each level in detail:

22

3.2: Our Preferred Project Layout

3.2.1 Top Level: Repository Root

The <repository_root> directory is the absolute root directory of the project. In addition to the
<django_project_root> and <configuration_root>, we also include other critical components like the
README.rst, docs/ directory, manage.py, .gitignore, requirements.txt files, and other high-level files
that are required for deployment and running the project.

Figure 3.1: Yet another reason why repositories are important.

TIP: Common Practice Varies Here
Some developers like to combine the <django_project_root> into the <repository_root> of the
project.

3.2.2 Second Level: Django Project Root

The <django_project_root>/ directory is the root of the actual Django project. Non-configuration
Python code files are inside this directory, its subdirectories, or below.

If using django-admin.py startproject, you would run the command from within the repos-
itory root. The Django project that it generates would then be the project root.

3.2.3 Second Level: Configuration Root

The <configuration_root> directory is where the settings module and base URLConf (urls.py) are
placed. This must be a valid Python package (containing an __init__.py module).

23

Chapter 3: How to Lay Out Django Projects

If using django-admin.py startproject, the configuration root is initially inside of the Django
project root. It should be moved to the repository root.

The files in the configuration root are part of what is generated by the
django-admin.py startproject command.

Figure 3.2: Three-tiered scoop layout.

3.3 Sample Project Layout

Let’s take a common example: a simple rating site. Imagine that we are creating Ice Cream Ratings,
a web application for rating different brands and flavors of ice cream.

This is how we would lay out such a project:

Example 3.4: Layout for icecreamratings

icecreamratings_project
├── config/
│ ├── settings/
│ ├── __init__.py
│ ├── urls.py

24

3.3: Sample Project Layout

│ └── wsgi.py
├── docs/
├── icecreamratings/
│ ├── media/ # Development only!
│ ├── products/
│ ├── profiles/
│ ├── ratings/
│ ├── static/
│ └── templates/
├── .gitignore
├── Makefile
├── README.rst
├── manage.py
└── requirements.txt

Let’s do an in-depth review of this layout. As you can see, in the icecreamratings_project/ directory,
which is the <repository_root> , we have the following files and directories. We describe them in the
table below:

File or Directory Purpose

.gitignore
Lists the files and directories that Git should ignore. (This file is
different for other version control systems. For example, if you are
using Mercurial instead, you’d have an .hgignore file.)

config/
The <configuration_root> of the project, where project-wide settings,
urls.py, and wsgi.py modules are placed (We’ll cover settings layout
later in Chapter 5: Settings and Requirements Files).

Makefile
Contains simple deployment tasks and macros. For more complex
deployments you may want to rely on tools like Invoke, Paver, or
Fabric.

manage.py If you leave this in, don’t modify its contents. Refer to Chapter 5:
Settings and Requirements Files for more details.

README.rst and docs/
Developer-facing project documentation. We cover this in
Chapter 23: Documentation: Be Obsessed.

25

https://pypi.python.org/pypi/invoke
https://pypi.python.org/pypi/Paver/
http://fabfile.org

Chapter 3: How to Lay Out Django Projects

File or Directory Purpose

requirements.txt
A list of Python packages required by your project, including the
Django 1.11 package. You’ll read more about this in Chapter 21:
Django’s Secret Sauce: Third-Party Packages.

icecreamratings/ The <django_project_root> of the project.

Table 3.1: Repository Root Files and Directories

When anyone visits this project, they are provided with a high-level view of the project. We’ve found
that this allows us to work easily with other developers and even non-developers. For example, it’s
not uncommon for designer-focused directories to be created in the root directory.

Inside the icecreamratings_project/icecreamratings directory, at the <django_project_root>, we place
the following files/directories:

File or Directory Purpose

media/
For use in development only: user-generated static media assets such as
photos uploaded by users. For larger projects, this will be hosted on separate
static media server(s).

products/ App for managing and displaying ice cream brands.

profiles/ App for managing and displaying user profiles.

ratings/ App for managing user ratings.

static/
Non-user-generated static media assets including CSS, JavaScript, and
images. For larger projects, this will be hosted on separate static media
server(s).

templates/ Where you put your site-wide Django templates.

Table 3.2: Django Project Files and Directories

26

3.4: What About the Virtualenv?

TIP: Conventions for Static Media Directory Names

In the example above, we follow the official Django documentation’s convention of using
static/ for the (non-user-generated) static media directory.

If you find this confusing, there’s no harm in calling it assets/ or site_assets/ instead. Just
remember to update your STATICFILES_DIRS setting appropriately.

3.4 What About the Virtualenv?

Notice how there is no virtualenv directory anywhere in the project directory or its subdirectories?
That is completely intentional.

A good place to create the virtualenv for this project would be a separate directory where you keep
all of your virtualenvs for all of your Python projects. We like to put all our environments in one
directory and all our projects in another.

Figure 3.3: An isolated environment, allowing your ice cream to swim freely.

For example, on Mac OS X or Linux:

Example 3.5: On Mac OS X or Linux

~/projects/icecreamratings_project/
~/.envs/icecreamratings/

27

Chapter 3: How to Lay Out Django Projects

On Windows:

Example 3.6: On Windows

c:\projects\icecreamratings_project\
c:\envs\icecreamratings\

If you’re using virtualenvwrapper (Mac OS X or Linux) or virtualenvwrapper-win (Windows), that
directory defaults to ~/.virtualenvs/ and the virtualenv would be located at:

Example 3.7: virtualenvwrapper

~/.virtualenvs/icecreamratings/

Also, remember, there’s no need to keep the contents of your virtualenv in version control since it
already has all the dependencies captured in requirements.txt, and since you won’t be editing any of
the source code files in your virtualenv directly. Just remember that requirements.txt does need to
remain in version control!

3.4.1 Listing Current Dependencies

If you have trouble determining which versions of dependencies you are using in your virtualenv, at
the command line you can list your dependencies by typing:

Example 3.8: Listing Current Dependencies

$ pip freeze

With Mac or Linux, you can pipe this into a requirements.txt file:

Example 3.9: Saving Current Dependencies to a File

$ pip freeze > requirements.txt

28

3.5: Going Beyond startproject

3.5 Going Beyond startproject

Django’s startproject command allows you to create and use simple Django project templates.
However, over time the controls (deployment, front end tooling, etc) around a project grow more and
more complex. Most of us hit the limitations of startproject quickly and need a more powerful
project templating tool. Hence the use of Cookiecutter, an advanced project templating tool that
can be used for generating Django project boilerplate.

TIP: Audrey on Cookiecutter

I originally created Cookiecutter in 2013 to meet my own Python package boilerplate creation
needs. It was the first project to template file paths and file contents identically, an idea I
thought was silly but decided to implement anyway.

There are now Cookiecutter templates for Python, C, C++, Common Lisp, JS, LaTeX/Xe-
TeX, Berkshelf-Vagrant, HTML, Scala, 6502 Assembly, and more.

Cookiecutter isn’t just a command-line tool, it’s a library used by a host of organizations. You
can also find it integrated into IDEs such as PyCharm and Visual Studio.

In this section, we present our version of the ultimate Django project template, rendered by Cook-
iecutter.

3.5.1 Generating Project Boilerplate With Cookiecutter

Here’s how Cookiecutter works:

1 First, it asks you to enter a series of values (e.g. the value for project_name).
2 Then it generates all your boilerplate project files based on the values you entered.

On Python 2.7+ or 3.6+, you’ll first need to install Cookiecutter as per the instructions in the official
Cookiecutter documentation.

29

Chapter 3: How to Lay Out Django Projects

3.5.2 Generating a Starting Project With Cookiecutter Django

Here’s how you would use Cookiecutter to generate your Django 1.11 boilerplate from Cookiecut-
ter Django:

Example 3.10: Using Cookiecutter and Cookiecutter Django

$ cookiecutter https://github.com/pydanny/cookiecutter-django

Cloning into 'cookiecutter-django'...
remote: Counting objects: 2358, done.
remote: Compressing objects: 100% (12/12), done.
remote: Total 2358 (delta 4), reused 0 (delta 0), pack-reused 2346
Receiving objects: 100% (2358/2358), 461.95 KiB, done.
Resolving deltas: 100% (1346/1346), done.

project_name ('project_name')? icecreamratings
repo_name ('icecreamratings')? icecreamratings_project
author_name ('Your Name')? Daniel and Audrey Roy Greenfeld
email ('audreyr@gmail.com')? hello@twoscoopspress.com
description ('A short description of the project.')? A website
for rating ice cream flavors and brands.

domain_name ('example.com')? icecreamratings.audreyr.com
version ('0.1.0')? 0.1.0
timezone ('UTC')? America/Los_Angeles
now ('2017/04/02')? 2017/04/02
year ('2017')?
use_whitenoise ('n')?
github_username ('audreyr')? twoscoops
full_name ('Audrey Roy')? Daniel and Audrey Roy Greenfeld

After filling out all the values, in the directory where you ran Cookiecutter, it will create a direc-
tory for your project. In this case with the values entered above, the name of this directory will be
icecreamratings_project.

The resulting project files will be roughly similar to the layout example we provided. The project will
include settings, requirements, starter documentation, a starter test suite, and more.

30

3.5: Going Beyond startproject

TIP: What Are All the Other Files?
Keep in mind that Cookiecutter Django goes much further than the basic project layout
components that we outlined earlier in this chapter. It’s our ultimate Django project template
that we use for our projects, so it has a lot of other bells and whistles.

It’s a lot fancier than the default startproject template provided by Django. We’d rather
have you see our actual, real-life template that we use for our projects than a stripped-down,
beginner-oriented template that we don’t use.

You are welcome to fork Cookiecutter Django and customize it to fit your own Django project
needs.

3.5.3 Other Alternatives

People can get very opinionated about their project layout being the “right” way, but as we mentioned,
there’s no one right way.

It’s okay if a project differs from our layout, just so long as things are either done in a hierarchical fash-
ion or the locations of elements of the project (docs, templates, apps, settings, etc) are documented
in the root README.rst.

We encourage you to explore the forks of Cookiecutter Django, and to search for other Cookiecutter-
powered Django project templates online. You’ll learn all kinds of interesting tricks by studying other
people’s project templates.

Figure 3.4: Project layout differences of opinion can cause ice cream fights.

31

Chapter 3: How to Lay Out Django Projects

3.6 Summary

In this chapter, we covered our approach to basic Django project layout. We provided a detailed
example to give you as much insight as possible into our practices.

Project layout is one of those areas of Django where practices differ widely from developer to devel-
oper and group to group. What works for a small team may not work for a large team with distributed
resources. Whatever layout is chosen should be documented clearly.

32

4 | Fundamentals of Django App
Design

It’s not uncommon for new Django developers to become understandably confused by Django’s usage
of the word “app”. So before we get into Django app design, it’s very important that we go over some
definitions.

A Django project is a web application powered by the Django web framework.
Django apps are small libraries designed to represent a single aspect of a project. A Django project

is made up of many Django apps. Some of those apps are internal to the project and will never
be reused; others are third-party Django packages.

INSTALLED_APPS is the list of Django apps used by a given project available in its IN-
STALLED_APPS setting.

Third-party Django packages are simply pluggable, reusable Django apps that have been packaged
with the Python packaging tools. We’ll begin coverage of them in Chapter 21: Django’s Secret
Sauce: Third-Party Packages.

Figure 4.1: It’ll make more sense when you see the next figure.

33

Chapter 4: Fundamentals of Django App Design

Figure 4.2: Did that make sense? If not, read it again.

4.1 The Golden Rule of Django App Design

James Bennett is a Django core developer. He taught us everything that we know about good Django
app design. We quote him:

“The art of creating and maintaining a good Django app is that it should follow the
truncated Unix philosophy according to Douglas McIlroy: ‘Write programs that do one
thing and do it well.”’

In essence, each app should be tightly focused on its task. If an app can’t be explained in a single
sentence of moderate length, or you need to say ‘and’ more than once, it probably means the app is
too big and should be broken up.

34

4.1: The Golden Rule of Django App Design

4.1.1 A Practical Example of Apps in a Project

Imagine that we’re creating a web application for our fictional ice cream shop called “Two Scoops”.
Picture us getting ready to open the shop: polishing the countertops, making the first batches of ice
cream, and building the website for our shop.

We’d call the Django project for our shop’s website twoscoops_project. The apps within our Django
project might be something like:

ä A flavors app to track all of our ice cream flavors and list them on our website.
ä A blog app for the official Two Scoops blog.
ä An events app to display listings of our shop’s events on our website: events such as Strawberry

Sundae Sundays and Fudgy First Fridays.

Each one of these apps does one particular thing. Yes, the apps relate to each other, and you could
imagine events or blog posts that are centered around certain ice cream flavors, but it’s much better
to have three specialized apps than one app that does everything.

In the future, we might extend the site with apps like:

ä A shop app to allow us to sell pints by mail order.
ä A tickets app, which would handle ticket sales for premium all-you-can-eat ice cream fests.

Notice how events are kept separate from ticket sales. Rather than expanding the events app to sell
tickets, we create a separate tickets app because most events don’t require tickets, and because event
calendars and ticket sales have the potential to contain complex logic as the site grows.

Eventually, we hope to use the tickets app to sell tickets to Icecreamlandia, the ice cream theme park
filled with thrill rides that we’ve always wanted to open.

Did we say that this was a fictional example? Ahem...well, here’s an early concept map of what we
envision for Icecreamlandia:

35

Chapter 4: Fundamentals of Django App Design

Figure 4.3: Our vision for Icecreamlandia.

4.2 What to Name Your Django Apps

Everyone has their own conventions, and some people like to use really colorful names. We like to
use naming systems that are dull, boring, and obvious. In fact, we advocate doing the following:

When possible keep to single word names like flavors, animals, blog, polls, dreams, estimates, and
finances. A good, obvious app name makes the project easier to maintain.

As a general rule, the app’s name should be a plural version of the app’s main model, but there are
many good exceptions to this rule, blog being one of the most common ones.

Don’t just consider the app’s main model, though. You should also consider how you want
your URLs to appear when choosing a name. If you want your site’s blog to appear at
http://www.example.com/weblog/, then consider naming your app weblog rather than blog, posts,
or blogposts, even if the main model is Post, to make it easier for you to see which app corresponds
with which part of the site.

Use valid, PEP 8-compliant, importable Python package names: short, all-lowercase names with-
out numbers, dashes, periods, spaces, or special characters. If needed for readability, you can use
underscores to separate words, although the use of underscores is discouraged.

36

4.3: When in Doubt, Keep Apps Small

4.3 When in Doubt, Keep Apps Small
Don’t worry too hard about getting app design perfect. It’s an art, not a science. Sometimes you have
to rewrite them or break them up. That’s okay.

Try and keep your apps small. Remember, it’s better to have many small apps than to have a few giant
apps.

Figure 4.4: Two small, single-flavor pints are better than a giant, 100-flavor container.

4.4 What Modules Belong in an App?
In this section we cover both the common and uncommon Python modules that belong in an app.
For those with even a modicum of experience with Django, skipping to Section 4.4.2: Uncommon
App Modules may be in order.

4.4.1 Common App Modules

Here are common modules seen in 99% of Django apps. These will prove very familiar to most readers,
but we’re placing this here for those just coming into the world of Django. For reference, any module
ending with a slash (‘/’) represents a Python package, which can contain one or more modules.

37

Chapter 4: Fundamentals of Django App Design

Example 4.1: Common App Modules

Common modules
scoops/
├── __init__.py
├── admin.py
├── forms.py
├── management/
├── migrations/
├── models.py
├── templatetags/
├── tests/
├── urls.py
├── views.py

Over time a convention of module names has emerged for building Django apps. By following this
convention across building of apps we set behaviors for ourselves and others, making examining each
others code easier. While Python and Django are flexible enough that most of these don’t need to be
named according to this convention, doing so will cause problems. Probably not from an immediate
technical perspective, but when you or others look at nonstandard module names later, it will prove
to be a frustrating experience.

4.4.2 Uncommon App Modules

Here are less common modules, which may or may not be familiar to many readers:

Example 4.2: Uncommon Django Modules

uncommon modules
scoops/
├── api/
├── behaviors.py
├── constants.py
├── context_processors.py
├── decorators.py
├── db/

38

4.4: What Modules Belong in an App?

├── exceptions.py
├── fields.py
├── factories.py
├── helpers.py
├── managers.py
├── middleware.py
├── signals.py
├── utils.py
├── viewmixins.py

What is the purpose of each module? Most of these should be obviously named, but we’ll go over a
few that might not be so clear.

api/ : This is the package we create for isolating the various modules needed when creating an api.
See Section 16.3.1: Use Consistent API Module Naming.

behaviors.py : An option for locating model mixins per Section 6.7.1: Model Behaviors a.k.a Mix-
ins.

constants.py : A good name for placement of app-level settings. If there are enough of them involved
in an app, breaking them out into their own module can add clarity to a project.

decorators.py Where we like to locate our decorators. For more information on decorators, see
Section 9.3: Decorators Are Sweet.

db/ A package used in many projects for any custom model fields or components.
fields.py is commonly used for form fields, but is sometimes used for model fields when there isn’t

enough field code to justify creating a db/ package.
factories.py Where we like to place our test data factories. Described in brief in Section 22.3.5:

Don’t Rely on Fixtures
helpers.py What we call helper functions. These are where we put code extracted from views (Sec-

tion 8.5: Try to Keep Business Logic Out of Views) and models (Section 6.7: Understanding
Fat Models) to make them lighter. Synonymous with utils.py

managers.py When models.py grows too large, a common remedy is to move any custom model
managers to this module.

signals.py While we argue against providing custom signals (see Chapter 28: Signals: Use Cases
and Avoidance Techniques), this can be a useful place to put them.

utils.py Synonymous with helpers.py
viewmixins.py View modules and packages can be thinned by moving any view mixins to this mod-

ule. See Section 10.2: Using Mixins With CBVs.

39

Chapter 4: Fundamentals of Django App Design

For all of the modules listed in this section, their focus should be at the ‘app-level’, not global tools.
Global-level modules are described in Section 29.1: Create a Core App for Your Utilities.

4.5 Summary

This chapter covered the art of Django app design. Specifically, each Django app should be tightly-
focused on its own task, possess a simple, easy-to-remember name. If an app seems too complex, it
should be broken up into smaller apps. Getting app design right takes practice and effort, but it’s
well worth the effort.

40

5 | Settings and Requirements Files

Django 1.11 has over 150 settings that can be controlled in the settings module, most of which
come with default values. Settings are loaded when your server starts up, and experienced Django
developers stay away from trying to change settings in production since they require a server restart.

Figure 5.1: As your project grows, your Django settings can get pretty complex.

Some best practices we like to follow:

ä All settings files need to be version-controlled. This is especially true in production environ-
ments, where dates, times, and explanations for settings changes absolutely must be tracked.

ä Don’t Repeat Yourself. You should inherit from a base settings file rather than cutting-and-
pasting from one file to another.

ä Keep secret keys safe. They should be kept out of version control.

41

Chapter 5: Settings and Requirements Files

5.1 Avoid Non-Versioned Local Settings
We used to advocate the non-versioned local_settings anti-pattern. Now we know better.

As developers, we have our own necessary settings for development, such as settings for debug tools
which should be disabled (and often not installed to) staging or production servers.

Furthermore, there are often good reasons to keep specific settings out of public or private code
repositories. The SECRET_KEY setting is the first thing that comes to mind, but API key settings to
services like Amazon, Stripe, and other password-type variables need to be protected.

WARNING: Protect Your Secrets!
The SECRET_KEY setting is used in Django’s cryptographic signing functionality, and needs
to be set to a unique, unpredictable setting best kept out of version control. Running Django
with a known SECRET_KEY defeats many of Django’s security protections, which can lead
to serious security vulnerabilities. For more details, read docs.djangoproject.com/en/
1.11/topics/signing/.

The same warning for SECRET_KEY also applies to production database passwords, AWS
keys, OAuth tokens, or any other sensitive data that your project needs in order to operate.

Later in this chapter we’ll show how to handle the SECRET_KEY issue in the “Keep Secret
Keys Out With Environment Settings” section.

A common solution is to create local_settings.py modules that are created locally per server or develop-
ment machine, and are purposefully kept out of version control. Developers now make development-
specific settings changes, including the incorporation of business logic without the code being tracked
in version control. Staging and deployment servers can have location specific settings and logic with-
out them being tracked in version control.

What could possibly go wrong?!?

Ahem...

ä Every machine has untracked code.
ä How much hair will you pull out, when after hours of failing to duplicate a production bug

locally, you discover that the problem was custom logic in a production-only setting?

42

https://docs.djangoproject.com/en/1.11/topics/signing/
https://docs.djangoproject.com/en/1.11/topics/signing/

5.2: Using Multiple Settings Files

ä How fast will you run from everyone when the ‘bug’ you discovered locally, fixed and pushed
to production was actually caused by customizations you made in your own local_settings.py
module and is now crashing the site?

ä Everyone copy/pastes the same local_settings.py module everywhere. Isn’t this a violation of
Don’t Repeat Yourself but on a larger scale?

Let’s take a different approach. Let’s break up development, staging, test, and production settings
into separate components that inherit from a common base object in a settings file tracked by version
control. Plus, we’ll make sure we do it in such a way that server secrets will remain secret.

Read on and see how it’s done!

5.2 Using Multiple Settings Files

TIP: History of This Setup Pattern

The setup described here is based on the so-called “The One True Way”, from Jacob Kaplan-
Moss’ The Best (and Worst) of Django talk at OSCON 2011. See slideshare.net/
jacobian/the-best-and-worst-of-django.

Instead of having one settings.py file, with this setup you have a settings/ directory containing your
settings files. This directory will typically contain something like the following:

Example 5.1: Settings Directory

settings/
├── __init__.py
├── base.py
├── local.py
├── staging.py
├── test.py
├── production.py

43

https://www.slideshare.net/jacobian/the-best-and-worst-of-django
https://www.slideshare.net/jacobian/the-best-and-worst-of-django

Chapter 5: Settings and Requirements Files

WARNING: Requirements + Settings

Each settings module should have its own corresponding requirements file. We’ll cover this
at the end of this chapter in Section 5.5: Using Multiple Requirements Files.

Settings file Purpose

base.py Settings common to all instances of the project.

local.py
This is the settings file that you use when you’re working on the project locally.
Local development-specific settings include DEBUG mode, log level, and
activation of developer tools like django-debug-toolbar.

staging.py
Staging version for running a semi-private version of the site on a production
server. This is where managers and clients should be looking before your work is
moved to production.

test.py Settings for running tests including test runners, in-memory database
definitions, and log settings.

production.py
This is the settings file used by your live production server(s). That is, the
server(s) that host the real live website. This file contains production-level
settings only. It is sometimes called prod.py.

Table 5.1: Settings files and their purpose

TIP: Multiple Files With Continuous Integration Servers

You’ll also want to have a ci.py module containing that server’s settings. Similarly, if it’s a large
project and you have other special-purpose servers, you might have custom settings files for
each of them.

Let’s take a look at how to use the shell and runserver management commands with this setup.
You’ll have to use the --settings command line option, so you’ll be entering the following at the
command-line.

To start the Python interactive interpreter with Django, using your settings/local.py settings file:

44

5.2: Using Multiple Settings Files

Example 5.2: Local Settings Shell

python manage.py shell --settings=twoscoops.settings.local

To run the local development server with your settings/local.py settings file:

Example 5.3: Local Settings Runserver

python manage.py runserver --settings=twoscoops.settings.local

TIP: DJANGO_SETTINGS_MODULE and PYTHONPATH

A great alternative to using the --settings command line option everywhere is to set
the DJANGO_SETTINGS_MODULE and PYTHONPATH environment variable to your desired
settings module path. You’d have to set DJANGO_SETTINGS_MODULE to the corresponding
settings module for each environment, of course.

For those with a more comprehensive understanding of virtualenvwrapper, another alterna-
tive is to set DJANGO_SETTINGS_MODULE and PYTHONPATH in the postactivate script
and unset them in the postdeactivate script. Then, once the virtualenv is activated,
you can just type python from anywhere and import those values into your project. This
also means that typing django-admin.py at the command-line works without the --
settings option.

For the settings setup that we just described, here are the values to use with the --settings com-
mand line option or the DJANGO_SETTINGS_MODULE environment variable:

Environment
Option To Use With --settings (or
DJANGO_SETTINGS_MODULE value)

Your local development
server

twoscoops.settings.local

Your staging server twoscoops.settings.staging

Your test server twoscoops.settings.test

Your production server twoscoops.settings.production

Table 5.2: Setting DJANGO_SETTINGS_MODULE per location

45

Chapter 5: Settings and Requirements Files

5.2.1 A Development Settings Example

As mentioned earlier, we need settings configured for development, such as selecting the console
email backend, setting the project to run in DEBUG mode, and setting other configuration options
that are used solely for development purposes. We place development settings like the following into
settings/local.py:

Example 5.4: settings/local.py

from .base import *

DEBUG = True

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'twoscoops',
'HOST': 'localhost',

}
}

INSTALLED_APPS += ['debug_toolbar',]

Now try it out at the command line with:

Example 5.5: runserver with local settings

python manage.py runserver --settings=twoscoops.settings.local

Open http://127.0.0.1:8000 and enjoy your development settings, ready to go into version
control! You and other developers will be sharing the same development settings files, which for
shared projects, is awesome.

Yet there’s another advantage: No more ‘if DEBUG’ or ‘if not DEBUG’ logic to copy/paste around
between projects. Settings just got a whole lot simpler!

46

http://127.0.0.1:8000

5.2: Using Multiple Settings Files

At this point we want to take a moment to note that Django settings files are the single, solitary
place we advocate using import *. The reason is that for the singular case of Django setting modules
we want to override all the namespace.

5.2.2 Multiple Development Settings

Sometimes we’re working on a large project where different developers need different settings, and
sharing the same local.py settings module with teammates won’t do.

Well, it’s still better tracking these settings in version control than relying on everyone customizing
the same local.py module to their own tastes. A nice way to do this is with multiple dev settings files,
e.g. local_audrey.py and local_pydanny.py:

Example 5.6: settings/local_pydanny.py

settings/local_pydanny.py
from .local import *

Set short cache timeout
CACHE_TIMEOUT = 30

Why? It’s not only good to keep all your own settings files in version control, but it’s also good to be
able to see your teammates’ dev settings files. That way, you can tell if someone’s missing a vital or
helpful setting in their local development setup, and you can make sure that everyone’s local settings
files are synchronized. Here is what our projects frequently use for settings layout:

Example 5.7: Custom Settings

settings/
__init__.py
base.py
local_audreyr.py
local_pydanny.py
local.py
staging.py
test.py
production.py

47

Chapter 5: Settings and Requirements Files

5.3 Separate Configuration From Code
One of the causes of the local_settings anti-pattern is that putting SECRET_KEY, AWS keys, API
keys, or server-specific values into settings files has problems:

ä Config varies substantially across deploys, code does not.
ä Secret keys are configuration values, not code.
ä Secrets often should be just that: secret! Keeping them in version control means that everyone

with repository access has access to them.
ä Platforms-as-a-service usually don’t give you the ability to edit code on individual servers. Even

if they allow it, it’s a terribly dangerous practice.

To resolve this, our answer is to use environment variables in a pattern we like to call, well, The
Environment Variables Pattern.

Every operating system supported by Django (and Python) provides the easy capability to create
environment variables.

Here are the benefits of using environment variables for secret keys:

ä Keeping secrets out of settings allows you to store every settings file in version control without
hesitation. All of your Python code really should be stored in version control, including your
settings.

ä Instead of each developer maintaining an easily-outdated, copy-and-pasted version of the
local_settings.py.example file for their own development purposes, everyone shares the same
version-controlled settings/local.py .

ä System administrators can rapidly deploy the project without having to modify files containing
Python code.

ä Most platforms-as-a-service recommend the use of environment variables for configuration
and have built-in features for setting and managing them.

TIP: 12 Factor App: Store Config in the Environment

If you’ve read the 12 Factor App’s article on configuration you’ll recognize this pattern. For
reference, see 12factor.net/config. Some developers even advocate combining the use
of environment variables with a single settings modules. We cover this practice in Appendix
E: Settings Alternatives.

48

http://12factor.net/config

5.3: Separate Configuration From Code

5.3.1 A Caution Before Using Environment Variables for Secrets

Before you begin setting environment variables, you should have the following:

ä A way to manage the secret information you are going to store.
ä A good understanding of how bash works with environment variables on servers, or a willing-

ness to have your project hosted by a platform-as-a-service.

For more information, see en.wikipedia.org/wiki/Environment_variable.

WARNING: Environment Variables Do Not Work With Apache

If your target production environment uses Apache (outside of Elastic Beanstalk), then you
will discover that setting operating system environment variables as described below doesn’t
work. Confusing the issue is that Apache has its own environment variable system, which is
almost but not quite what you’ll need.
If you are using Apache and want to avoid the local_settings anti-pattern, we recommend
reading Section 5.4: When You Can’t Use Environment Variables later in this chapter.

5.3.2 How to Set Environment Variables Locally

On Mac and many Linux distributions that use bash for the shell, one can add lines like the following
to the end of a .bashrc, .bash_profile, or .profile. When dealing with multiple projects using the same
API but with different keys, you can also place these at the end of your virtualenv’s bin/postactivate
script:

Example 5.8: Setting Environment Variables on Linux/OSX

export SOME_SECRET_KEY=1c3-cr3am-15-yummy
export AUDREY_FREEZER_KEY=y34h-r1ght-d0nt-t0uch-my-1c3-cr34m

On Windows systems, it’s a bit trickier. You can set them one-by-one at the command line (cmd.exe)
in a persistent way with the setx command, but you’ll have to close and reopen your command
prompt for them to go into effect. A better way is to place these commands at the end of the vir-
tualenv’s bin/postactivate.bat script so they are available upon activation:

49

https://en.wikipedia.org/wiki/Environment_variable

Chapter 5: Settings and Requirements Files

Example 5.9: Setting Environment Variables on Windows

> setx SOME_SECRET_KEY 1c3-cr3am-15-yummy

PowerShell is much more powerful than the default Windows shell and comes with Windows Vista
and above. Setting environment variables while using PowerShell:

For the current Windows user only:

Example 5.10: Setting Environment Variables on Powershell

[Environment]::SetEnvironmentVariable('SOME_SECRET_KEY',
'1c3-cr3am-15-yummy', 'User')

[Environment]::SetEnvironmentVariable('AUDREY_FREEZER_KEY',
'y34h-r1ght-d0nt-t0uch-my-1c3-cr34m', 'User')

Machine-wide:

Example 5.11: Globally Setting Environment Variables on Powershell

[Environment]::SetEnvironmentVariable('SOME_SECRET_KEY',
'1c3-cr3am-15-yummy', 'Machine')

[Environment]::SetEnvironmentVariable('AUDREY_FREEZER_KEY',
'y34h-r1ght-d0nt-t0uch-my-1c3-cr34m', 'Machine')

For more information on Powershell, see en.wikipedia.org/wiki/PowerShell

TIP: virtualenvwrapper Makes This Easier

Mentioned earlier in this book, virtualenvwrapper, simplifies per-virtualenv environment
variables. It’s a great tool. Of course, setting it up requires a more-than-basic understanding
of the shell and Mac OS X, Linux, or Windows.

5.3.3 How to Unset Environment Variables Locally

When you set an environment variable via the commands listed above it will remain in existence
within that terminal shell until it is unset or the shell is ended. This means that even if you deactivate a

50

https://en.wikipedia.org/wiki/PowerShell

5.3: Separate Configuration From Code

virtualenv, the environment variable remains. In our experience, this is fine 99% of the time. However,
there are occasions when we want to tightly control environment variables. To do this, we execute
the appropriate command for the operating system or shell variant:

Example 5.12: Unsetting Environment Variables on Linux/OSX/Windows

unset SOME_SECRET_KEY
unset AUDREY_FREEZER_KEY

Example 5.13: Unsetting Environment Variables on Powershell

[Environment]::UnsetEnvironmentVariable('SOME_SECRET_KEY', 'User')
[Environment]::UnsetEnvironmentVariable('AUDREY_FREEZER_KEY', 'User')

If you are using virtualenvwrapper and want to unset environment variables whenever a virtualenv is
deactivated, place these commands in the postdeactivate script.

5.3.4 How to Set Environment Variables in Production

If you’re using your own servers, your exact practices will differ depending on the tools you’re us-
ing and the complexity of your setup. For the simplest 1-server setup for test projects, you can set
the environment variables manually. But if you’re using scripts or tools for automated server provi-
sioning and deployment, your approach may be more complex. Check the documentation for your
deployment tools for more information.

If your Django project is deployed via a platform-as-a-service (PaaS), check the documentation for
specific instructions. We’ve included instructions here for Elastic Beanstalk and Heroku so that you
can see that it’s similar for platform-as-a-service options.

Example 5.14: Environment Variables on Elastic Beanstalk and Heroku

eb setenv SOME_SECRET_KEY=1c3-cr3am-15-yummy # Elastic Beanstalk
heroku config:set SOME_SECRET_KEY=1c3-cr3am-15-yummy # Heroku

To see how you access environment variables from the Python side, open up a new Python prompt
and type:

51

Chapter 5: Settings and Requirements Files

Example 5.15: Accessing Environment Variables in Python’s REPL

>>> import os
>>> os.environ['SOME_SECRET_KEY']
'1c3-cr3am-15-yummy'

To access environment variables from one of your settings files, you can do something like this:

Example 5.16: Accessing Environment Variables in Python

Top of settings/production.py
import os
SOME_SECRET_KEY = os.environ['SOME_SECRET_KEY']

This snippet simply gets the value of the SOME_SECRET_KEY environment variable from the operat-
ing system and saves it to a Python variable called SOME_SECRET_KEY.

Following this pattern means all code can remain in version control, and all secrets remain safe.

5.3.5 Handling Missing Secret Key Exceptions

In the above implementation, if the SECRET_KEY isn’t available, it will throw a KeyError , making
it impossible to start the project. That’s great, but a KeyError doesn’t tell you that much about
what’s actually wrong. Without a more helpful error message, this can be hard to debug, especially
under the pressure of deploying to servers while users are waiting and your ice cream is melting.

Here’s a useful code snippet that makes it easier to troubleshoot those missing environment variables.
If you’re using our recommended environment variable secrets approach, you’ll want to add this to
your settings/base.py file:

Example 5.17: The get_env_variable() Function

settings/base.py
import os

Normally you should not import ANYTHING from Django directly

52

5.3: Separate Configuration From Code

into your settings, but ImproperlyConfigured is an exception.
from django.core.exceptions import ImproperlyConfigured

def get_env_variable(var_name):
"""Get the environment variable or return exception."""
try:

return os.environ[var_name]
except KeyError:

error_msg = 'Set the {} environment variable'.format(var_name)
raise ImproperlyConfigured(error_msg)

Then, in any of your settings files, you can load secret keys from environment variables as follows:

Example 5.18: Using get_env_variable()

SOME_SECRET_KEY = get_env_variable('SOME_SECRET_KEY')

Now, if you don’t have SOME_SECRET_KEY set as an environment variable, you get a traceback
that ends with a useful error message like this:

Example 5.19: Error Generated by get_env_variable()

django.core.exceptions.ImproperlyConfigured: Set the SOME_SECRET_KEY
environment variable.

WARNING: Don’t Import Django Components Into Settings
Modules
This can have many unpredictable side effects, so avoid any sort of import of Django com-
ponents into your settings. ImproperlyConfigured is the exception because it’s the official
Django exception for...well...improperly configured projects. And just to be helpful we add
the name of the problem setting to the error message.

53

Chapter 5: Settings and Requirements Files

PACKAGE TIP: Packages for Settings Management

A number of third-party packages take the idea of our get_env_variable() function
and expand on it, including features like defaults and types and supporting .env files. The
downside is the same you get with any complex packages: sometimes the edge cases cause
problems. Nevertheless, most of them are quite useful and we’ve listed some of our favorites:

ä github.com/joke2k/django-environ (Used in Cookiecutter Django)
ä github.com/jazzband/django-configurations

TIP: Using django-admin.py Instead of manage.py

The official Django documentation says that you should use django-admin.py rather than
manage.py when working with multiple settings files:
docs.djangoproject.com/en/1.11/ref/django-admin/

That being said, if you’re struggling with getting django-admin.py to work, it’s perfectly okay
to develop and launch your site running it with manage.py.

5.4 When You Can’t Use Environment Variables

The problem with using environment variables to store secrets is that it doesn’t always work. The
most common scenario for this is when using Apache for serving HTTP, but this also happens even
in Nginx-based environments where operations wants to do things in a particular way. When this
occurs, rather than going back to the local_settings anti-pattern, we advocate using non-executable
files kept out of version control in a method we like to call the secrets file pattern.

To implement the secrets file pattern, follow these three steps:

1 Create a secrets file using the configuration format of choice, be it JSON, .env, Config, YAML,
or even XML.

2 Add a secrets loader (JSON-powered example below) to manage the secrets in a cohesive,
explicit manner.

3 Add the secrets file name to the project’s .gitignore file.

54

https://github.com/joke2k/django-environ
https://github.com/jazzband/django-configurations
https://docs.djangoproject.com/en/1.11/ref/django-admin/

5.4: When You Can’t Use Environment Variables

5.4.1 Using JSON Files

Our preference is to use shallow JSON files. The JSON format has the advantage of being the format
of choice for various Python and non-Python tools. To use the JSON format, first create a secrets.json
file:

Example 5.20: secrets.json

{
"FILENAME": "secrets.json",
"SECRET_KEY": "I've got a secret!",
"DATABASES_HOST": "127.0.0.1",
"PORT": "5432"

}

To use the secrets.json file, add the following code to your base settings module.

Example 5.21: The get_settings() Function

settings/base.py
import json

Normally you should not import ANYTHING from Django directly
into your settings, but ImproperlyConfigured is an exception.
from django.core.exceptions import ImproperlyConfigured

JSON-based secrets module
with open('secrets.json') as f:

secrets = json.loads(f.read())

def get_secret(setting, secrets=secrets):
'''Get the secret variable or return explicit exception.'''
try:

return secrets[setting]
except KeyError:

error_msg = 'Set the {0} environment variable'.format(setting)
raise ImproperlyConfigured(error_msg)

55

Chapter 5: Settings and Requirements Files

SECRET_KEY = get_secret('SECRET_KEY')

Now we are loading secrets from non-executable JSON files instead of from unversioned executable
code. Hooray!

5.4.2 Using .env, Config, YAML, and XML File Formats

While we prefer the forced simplicity of shallow JSON, others might prefer other file formats. We’ll
leave it up to the reader to create additional get_secret() alternatives that work with these for-
mats. Just remember to be familiar with things like yaml.safe_load() and XML bombs. See
Section 26.10: Defend Against Python Code Injection Attacks.

5.5 Using Multiple Requirements Files

Finally, there’s one more thing you need to know about multiple settings files setup. It’s good practice
for each settings file to have its own corresponding requirements file. This means we’re only installing
what is required on each server.

To follow this pattern, recommended to us by Jeff Triplett, first create a requirements/ directory in
the <repository_root>. Then create ‘.txt’ files that match the contents of your settings directory. The
results should look something like:

Example 5.22: Segmented Requirements

requirements/
├── base.txt
├── local.txt
├── staging.txt
├── production.txt

In the base.txt file, place the dependencies used in all environments. For example, you might have
something like the following in there:

56

5.5: Using Multiple Requirements Files

Example 5.23: requirements/base.txt

Django==1.11.0
psycopg2==2.6.2
djangorestframework==3.4.0

Your local.txt file should have dependencies used for local development, such as:

Example 5.24: requirements/local.txt

-r base.txt # includes the base.txt requirements file

coverage==4.2
django-debug-toolbar==1.5

The needs of a continuous integration server might prompt the following for a ci.txt file:

Example 5.25: requirements/ci.txt

-r base.txt # includes the base.txt requirements file

coverage==4.2
django-jenkins==0.19.0

Production installations should be close to what is used in other locations, so production.txt com-
monly just calls base.txt:

Example 5.26: requirements/production.txt

-r base.txt # includes the base.txt requirements file

5.5.1 Installing From Multiple Requirements Files

For local development:

57

Chapter 5: Settings and Requirements Files

Example 5.27: Installing Local Requirements

pip install -r requirements/local.txt

For production:

Example 5.28: Installing Production Requirements

pip install -r requirements/production.txt

TIP: Pin Requirements Exactly

All the pip requirements.txt examples in this chapter are explicitly set to a package version.
This ensures a more stable project. We cover this at length in Section 21.7.2: Step 2: Add
Package and Version Number to Your Requirements.

TIP: Using Multiple Requirements Files With PaaS

We cover this in Section 30.2.4: Multiple Requirements Files in Multiple Environments

5.6 Handling File Paths in Settings
If you switch to the multiple settings setup and get new file path errors to things like templates and
media, don’t be alarmed. This section will help you resolve these errors.

We humbly beseech the reader to never hardcode file paths in Django settings files. This is really bad:

Example 5.29: Never Hardcode File Pythons

settings/base.py

Configuring MEDIA_ROOT
DON’T DO THIS! Hardcoded to just one user's preferences
MEDIA_ROOT = '/Users/pydanny/twoscoops_project/media'

Configuring STATIC_ROOT
DON’T DO THIS! Hardcoded to just one user's preferences

58

5.6: Handling File Paths in Settings

STATIC_ROOT = '/Users/pydanny/twoscoops_project/collected_static'

Configuring STATICFILES_DIRS
DON’T DO THIS! Hardcoded to just one user's preferences
STATICFILES_DIRS = ['/Users/pydanny/twoscoops_project/static']

Configuring TEMPLATES
DON’T DO THIS! Hardcoded to just one user's preferences
TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
DIRS: ['/Users/pydanny/twoscoops_project/templates',]

},
]

The above code represents a common pitfall called hardcoding. The above code, called a fixed path,
is bad because as far as you know, pydanny (Daniel Roy Greenfeld) is the only person who has set
up their computer to match this path structure. Anyone else trying to use this example will see their
project break, forcing them to either change their directory structure (unlikely) or change the settings
module to match their preference (causing problems for everyone else including pydanny).

Don’t hardcode your paths!

To fix the path issue, we dynamically set a project root variable intuitively named BASE_DIR at the
top of the base settings module. Since BASE_DIR is determined in relation to the location of base.py,
your project can be run from any location on any development computer or server.

Figure 5.2: While we’re at it, let’s go down this path.

We find the cleanest way to set a BASE_DIR-like setting is with Pathlib, part of Python since 3.4

59

Chapter 5: Settings and Requirements Files

that does elegant, clean path calculations:

Example 5.30: Using Pathlib to discover project root

At the top of settings/base.py
from pathlib import Path

BASE_DIR = Path(__file__).resolve().parent.parent
MEDIA_ROOT = BASE_DIR / 'media'
STATIC_ROOT = BASE_DIR / 'static_root'
STATICFILES_DIRS = [BASE_DIR / 'static']
TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [BASE_DIR / 'templates']

},
]

If you really want to set your BASE_DIR with the Python standard library’s os.path library, though,
this is one way to do it in a way that will account for paths:

Example 5.31: Using os.path to discover project root

At the top of settings/base.py

from os.path import abspath, dirname, join

def root(*dirs):
base_dir = join(dirname(__file__), '..', '..')
return abspath(join(base_dir, *dirs))

BASE_DIR = root()
MEDIA_ROOT = root('media')
STATIC_ROOT = root('static_root')
STATICFILES_DIRS = [root('static')]
TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [root('templates')],

60

5.7: Summary

},
]

With your various path settings dependent on BASE_DIR, your file path settings should work, which
means your templates and media should be loading without error.

TIP: How Different Are Your Settings From the Django
Defaults?
If you want to know how things in your project differ from Django’s defaults, use the
diffsettings management command.

5.7 Summary

Remember, everything except for passwords and API keys ought to be tracked in version control.

Any project that’s destined for a real live production server is bound to need multiple settings and
requirements files. Even beginners to Django need this kind of settings/requirements file setup once
their projects are ready to leave the original development machine. We provide our solution, as well
as an Apache-friendly solution since it works well for both beginning and advanced developers.

Also, if you prefer a different shell than the ones provided, environment variables still work. You’ll
just need to know the syntax for defining them.

The same thing applies to requirements files. Working with untracked dependency differences in-
creases risk as much as untracked settings.

61

Chapter 5: Settings and Requirements Files

62

6 | Model Best Practices

Models are the foundation of most Django projects. Racing to write Django models without thinking
things through can lead to problems down the road.

All too frequently we developers rush into adding or modifying models without considering the
ramifications of what we are doing. The quick fix or sloppy “temporary” design decision that we toss
into our code base now can hurt us in the months or years to come, forcing crazy workarounds or
corrupting existing data.

So keep this in mind when adding new models in Django or modifying existing ones. Take your time
to think things through, and design your foundation to be as strong and sound as possible.

PACKAGE TIP: Our Picks for Working With Models

Here’s a quick list of the model-related Django packages that we use in practically every
project.

ä django-model-utils to handle common patterns like TimeStampedModel.
ä django-extensions has a powerful management command called shell_plus which

autoloads the model classes for all installed apps. The downside of this library is that it
includes a lot of other functionality which breaks from our preference for small, focused
apps.

63

Chapter 6: Model Best Practices

6.1 Basics

6.1.1 Break Up Apps With Too Many Models

If there are 20+ models in a single app, think about ways to break it down into smaller apps, as it
probably means your app is doing too much. In practice, we like to lower this number to no more
than five models per app.

6.1.2 Be Careful With Model Inheritance

Model inheritance in Django is a tricky subject. Django provides three ways to do model inheritance:
abstract base classes, multi-table inheritance, and proxy models.

WARNING: Django Abstract Base Classes <> Python Abstract Base
Classes
Don’t confuse Django abstract base classes with the abstract base classes in the Python stan-
dard library’s abc module, as they have very different purposes and behaviors.

Here are the pros and cons of the three model inheritance styles. To give a complete comparison, we
also include the option of using no model inheritance to begin with:

Model Inheritance Style Pros Cons

No model inheritance: if
models have a common
field, give both models that
field.

Makes it easiest to understand at
a glance how Django models map
to database tables.

If there are a lot of fields
duplicated across models,
this can be hard to
maintain.

Abstract base classes: tables
are only created for derived
models.

Having the common fields in an
abstract parent class saves us from
typing them more than once.
We don’t get the overhead of extra
tables and joins that are incurred
from multi-table inheritance.

We cannot use the parent
class in isolation.

64

6.1: Basics

Multi-table inheritance:
tables are created for both
parent and child. An
implied OneToOneField
links parent and child.

Gives each model its own table,
so that we can query either parent
or child model.
Also gives us the ability to get to
a child object from a parent
object: parent.child

Adds substantial overhead
since each query on a child
table requires joins with all
parent tables.
We strongly recommend
against using multi-table
inheritance. See the
warning below.

Proxy models: a table is only
created for the original
model.

Allows us to have an alias of a
model with different Python
behavior.

We cannot change the
model’s fields.

Table 6.1: Pros and Cons of the Model Inheritance Styles

WARNING: Avoid Multi-Table Inheritance
Multi-table inheritance, sometimes called “concrete inheritance,” is considered by the authors
and many other developers to be a bad thing. We strongly recommend against using it. We’ll
go into more detail about this shortly.

Here are some simple rules of thumb for knowing which type of inheritance to use and when:

ä If the overlap between models is minimal (e.g. you only have a couple of models that share one
or two obvious fields), there might not be a need for model inheritance. Just add the fields to
both models.

ä If there is enough overlap between models that maintenance of models’ repeated fields causes
confusion and inadvertent mistakes, then in most cases the code should be refactored so that
the common fields are in an abstract base model.

ä Proxy models are an occasionally-useful convenience feature, but they’re very different from
the other two model inheritance styles.

ä At all costs, everyone should avoid multi-table inheritance (see warning above) since it adds
both confusion and substantial overhead. Instead of multi-table inheritance, use explicit One-
ToOneFields and ForeignKeys between models so you can control when joins are traversed.

65

Chapter 6: Model Best Practices

6.1.3 Model Inheritance in Practice: The TimeStampedModel

It’s very common in Django projects to include a created and modified timestamp field on all
your models. We could manually add those fields to each and every model, but that’s a lot of work
and adds the risk of human error. A better solution is to write a TimeStampedModel to do the work
for us:

Example 6.1: core/models.py

from django.db import models

class TimeStampedModel(models.Model):
"""
An abstract base class model that provides self-
updating ``created`` and ``modified`` fields.
"""
created = models.DateTimeField(auto_now_add=True)
modified = models.DateTimeField(auto_now=True)

class Meta:
abstract = True

Take careful note of the very last two lines in the example, which turn our example into an abstract
base class:

Example 6.2: Defining an abstract base class

class Meta:
abstract = True

By defining TimeStampedModel as an abstract base class when we define a new class that inherits
from it, Django doesn’t create a core_timestampedmodel table when migrate is run.

Let’s put it to the test:

66

6.2: Database Migrations

Example 6.3: flavors/models.py

flavors/models.py
from django.db import models

from core.models import TimeStampedModel

class Flavor(TimeStampedModel):
title = models.CharField(max_length=200)

This only creates one table: the flavors_flavor database table. That’s exactly the behavior we
wanted.

On the other hand, if TimeStampedModel was not an abstract base class (i.e. a concrete base class
via multi-table inheritance), it would also create a core_timestampedmodel table. Not only that,
but all of its subclasses including Flavor would lack the fields and have implicit foreign keys back to
TimeStampedModel just to handle created/modified timestamps. Any reference to Flavor that
reads or writes to the TimeStampedModel would impact two tables. (Thank goodness it’s abstract!)

Remember, concrete inheritance has the potential to become a nasty performance bottleneck. This
is even more true when you subclass a concrete model class multiple times.

Further reading:

ä docs.djangoproject.com/en/1.11/topics/db/models/#model-inheritance

6.2 Database Migrations

Django comes with a powerful database change propagation library aptly called “migrations”,
or as we prefer to refer in the book, django.db.migrations. As of Django 1.7
django.db.migrations replaced the use of the third-party South library, but as both libraries
share the same author (Andrew Godwin), usage and practices are quite similar.

67

https://docs.djangoproject.com/en/1.11/topics/db/models/#model-inheritance

Chapter 6: Model Best Practices

6.2.1 Tips for Creating Migrations

ä As soon as a new app or model is created, take that extra minute to create the initial
django.db.migrations for that new model. All we do is type python manage.py
makemigrations.

ä Examine the generated migration code before you run it, especially when complex changes are
involved. Also review the SQL that will be used with the sqlmigrate command.

ä Use the MIGRATION_MODULES setting to manage writing migrations for third-party apps that
don’t have their own django.db.migrations-style migrations.

ä Don’t worry about how many migrations are created. If the number of migrations becomes
unwieldy, use squashmigrations to bring them to heel.

ä Always back up your data before running a migration.

6.2.2 Adding Python Functions and Custom SQL to Migrations

django.db.migrations can’t anticipate complex changes to your data, or to external components
that interact with your data. That’s when it’s useful to delve into writing python or custom SQL to
aid in running migrations. At some point in any project that hits production, you’ll find a reason to
use either the RunPython or RunSQL classes:

ä docs.djangoproject.com/en/1.11/ref/migration-operations/#runpython
ä docs.djangoproject.com/en/1.11/ref/migration-operations/#runsql

For what it’s worth, our preference is to use RunPython before RunSQL, but we advise sticking to
where your strengths are.

6.3 Overcoming Common Obstacles of RunPython
When we write RunPython-called functions, there encounter a few pain points. Most, but not all of
these can be resolved.

6.3.1 Getting Access to a Custom Model Manager’s Methods

Sometimes you want to be able to filter, exclude, create, or modify records by using custom model
manager methods. However, by default django.db.migrations excludes these components. For-

68

https://docs.djangoproject.com/en/1.11/ref/migration-operations/#runpython
https://docs.djangoproject.com/en/1.11/ref/migration-operations/#runsql

6.3: Overcoming Common Obstacles of RunPython

tunately, we can override this behavior by adding a use_in_migrations = True flag to our custom
managers.

See: docs.djangoproject.com/en/1.11/topics/migrations/#model-managers

6.3.2 Getting Access to a Custom Model Method

Due to how django.db.migrations serializes models, there’s no way around this limitation. You
simply cannot call any custom methods during a migration. See the reference link below:

docs.djangoproject.com/en/1.11/topics/migrations/#historical-models

WARNING: Watch Out for Custom Save and Delete Methods
If you overwrite a model’s save and delete methods, they won’t be called when called by
RunPython. Consider yourself warned, this can be a devastating gotcha.

6.3.3 Use RunPython.noop to Do Nothing

In order for reverse migrations to work, RunPython must be given a reverse_code callable to undo
the effects of the code callable. However, some of the code callables that we write are idempotent.
For example, they combine existing data into a newly added field. Writing a reverse_code callable
for these functions is either impossible or pointless. When this happens, use RunPython.noop as
the reverse_code .

For example, let’s say we create a new model called “Cone”. All existing scoops need
their own cone, so we write an add_cones function to add the cones to the database.
However, when reversing the migration, writing code to remove the cones is pointless;
migrations.CreateModel.database_backwards will delete the cone.cone table and all its records
for us. Therefore, we should use RunPython.noop for the reverse_code :

69

https://docs.djangoproject.com/en/1.11/topics/migrations/#model-managers
https://docs.djangoproject.com/en/1.11/topics/migrations/#historical-models

Chapter 6: Model Best Practices

Example 6.4: RunPython Reversal with RunPython.noop

from django.db import migrations, models

def add_cones(apps, schema_editor):
Scoop = apps.get_model('scoop', 'Scoop')
Cone = apps.get_model('cone', 'Cone')

for scoop in Scoop.objects.all():
Cone.objects.create(

scoop=scoop,
style='sugar'

)

class Migration(migrations.Migration):

initial = True

dependencies = [
('scoop', '0051_auto_20670724'),

]

operations = [
migrations.CreateModel(

name='Cone',
fields=[

('id', models.AutoField(auto_created=True, primary_key=True,
serialize=False, verbose_name='ID')),

('style', models.CharField(max_length=10),
choices=[('sugar', 'Sugar'), ('waffle', 'Waffle')]),

('scoop', models.OneToOneField(null=True, to='scoop.Scoop'
on_delete=django.db.models.deletion.SET_NULL,)),

],
),
RunPython.noop does nothing but allows reverse migrations to occur
migrations.RunPython(add_cones, migrations.RunPython.noop)

]

70

6.3: Overcoming Common Obstacles of RunPython

6.3.4 Deployment and Management of Migrations

ä It goes without saying, but we’ll say it anyway: Always back up your data before running a
migration.

ä Before deployment, check that you can rollback migrations! We can’t always have perfect round-
trips, but not being able to roll back to an earlier state really hurts bug tracking and sometimes
deployment in larger projects.

ä If a project has tables with millions of rows in them, do extensive tests against data of that size
on staging servers before running a migration on a production server. Migrations on real data
can take much, much, much more time than anticipated.

ä If you are using MySQL:
ä You absolutely positively must back up the database before any schema change. MySQL

lacks transaction support around schema changes, hence rollbacks are impossible.
ä If you can, put the project in read-only mode before executing the change.
ä If not careful, schema changes on heavily populated tables can take a long time. Not

seconds or minutes, but hours.

Figure 6.1: Cones migrating south for the winter. Django’s built-in migration system started out as
an external project called South.

TIP: Always Put Data Migration Code Into Source Control

Including migration code in VCS is an absolute necessity. Not including migration code in
version control is just like not including settings files in VCS: You might be able to develop,
but should you switch machines or bring someone else into the project, then everything will
break.

71

Chapter 6: Model Best Practices

6.4 Django Model Design
One of the most difficult topics that receives the least amount of attention is how to design good
Django models.

How do you design for performance without optimizing prematurely? Let’s explore some strategies
here.

6.4.1 Start Normalized

We suggest that readers of this book need to be familiar with database normalization. If you are
unfamiliar with database normalization, make it your responsibility to gain an understanding, as
working with models in Django effectively requires a working knowledge of this. Since a detailed
explanation of the subject is outside the scope of this book, we recommend the following resources:

ä en.wikipedia.org/wiki/Database_normalization
ä en.wikibooks.org/wiki/Relational_Database_Design/Normalization

When you’re designing your Django models, always start off normalized. Take the time to make sure
that no model should contain data already stored in another model.

At this stage, use relationship fields liberally. Don’t denormalize prematurely. You want to have a
good sense of the shape of your data.

6.4.2 Cache Before Denormalizing

Often, setting up caching in the right places can save you the trouble of denormalizing your models.
We’ll cover caching in much more detail in Chapter 24: Finding and Reducing Bottlenecks, so don’t
worry too much about this right now.

6.4.3 Denormalize Only if Absolutely Needed

It can be tempting, especially for those new to the concepts of data normalization, to denormalize
prematurely. Don’t do it! Denormalization may seem like a panacea for what causes problems in a

72

http://en.wikipedia.org/wiki/Database_normalization
http://en.wikibooks.org/wiki/Relational_Database_Design/Normalization

6.4: Django Model Design

project. However it’s a tricky process that risks adding complexity to your project and dramatically
raises the risk of losing data.

Please, please, please explore caching before denormalization.

When a project has reached the limits of what the techniques described in Chapter 24: Finding and
Reducing Bottlenecks can address, that’s when research into the concepts and patterns of database
denormalization should begin.

6.4.4 When to Use Null and Blank

When defining a model field, you have the ability to set the null=True and the blank=True op-
tions. By default, they are False.

Knowing when to use these options is a common source of confusion for developers.

We’ve put this guide together to serve as a guide for standard usage of these model field arguments.

Field Type Setting null=True Setting blank=True

CharField, TextField,
SlugField,
EmailField,
CommaSeparatedInteger-
Field,
UUIDField

Okay if you also have set both
unique=True and blank=True.
In this situation, null=True is
required to avoid unique
constraint violations when saving
multiple objects with blank
values.

Okay if you want the
corresponding form widget
to accept empty values. If
you set this, empty values
are stored as NULL in the
database if null=True and
unique=True are also set.
Otherwise, they get stored
as empty strings.

FileField,
ImageField

Don’t do this.
Django stores the path from
MEDIA_ROOT to the file or to the
image in a CharField, so the same
pattern applies to FileFields.

Okay.
The same pattern for
CharField applies here.

73

Chapter 6: Model Best Practices

Field Type Setting null=True Setting blank=True

BooleanField Don’t do this. Use
NullBooleanField instead.

Don’t do this.

IntegerField,
FloatField,
DecimalField,
DurationField, etc

Okay if you want to be able to set
the value to NULL in the database.

Okay if you want the
corresponding form widget
to accept empty values. If
so, you will also want to set
null=True.

DateTimeField,
DateField, TimeField,
etc.

Okay if you want to be able to set
the value to NULL in the database.

Okay if you want the
corresponding form widget
to accept empty values, or if
you are using auto_now or
auto_now_add. If it’s the
former, you will also want
to set null=True.

ForeignKey,
ManyToManyField,
OneToOneField

Okay if you want to be able to set
the value to NULL in the database.

Okay if you want the
corresponding form widget
(e.g. the select box) to
accept empty values. If so,
you will also want to set
null=True.

GenericIPAddressField Okay if you want to be able to set
the value to NULL in the database.

Okay if you want to make
the corresponding field
widget accept empty values.
If so, you will also want to
set null=True.

Table 6.2: When to Use Null and Blank by Field

74

6.4: Django Model Design

Figure 6.2: A common source of confusion.

6.4.5 When to Use BinaryField

This field allows for the storage of raw binary data, or bytes. We can’t perform filters, excludes, or
other SQL actions on the field, but there are use cases for it. For example we could store:

ä MessagePack-formatted content.
ä Raw sensor data.
ä Compressed data e.g. the type of data Sentry stores as a BLOB, but is required to base64-

encode due to legacy issues.

The possibilities are endless, but remember that binary data can come in huge chunks, which can slow
down databases. If this occurs and becomes a bottleneck, the solution might be to save the binary
data in a file and reference it with a FileField.

WARNING: Don’t Serve Files From BinaryField!

Storing files in a database field should never happen. If it’s being considered as a solution to
a problem, find a certified database expert and ask for a second opinion.

To summarize PostgreSQL expert Frank Wiles on the problems with using a database as a
file store:

ä ‘read/write to a DB is always slower than a filesystem’
ä ‘your DB backups grow to be huge and more time consuming’

75

Chapter 6: Model Best Practices

ä ‘access to the files now requires going through your app (Django) and DB layers’
See revsys.com/blog/2012/may/01/three-things-you-should-never-put-
your-database/

When someone thinks there is a good use case for serving files from a database, and quotes a
success like npmjs.org (stored files in CouchDB), it’s time to do your research. The truth is
that npmjs.org, migrated its database-as-file-store system to a more traditional file serving
method years ago.

6.4.6 Try to Avoid Using Generic Relations

In general we advocate against generic relations and use of models.field.GenericForeignKey.
They are usually more trouble than they are worth. Using them is often a sign that troublesome
shortcuts are being taken, that the wrong solution is being explored.

The idea of a generic relations is that we are binding one table to another by way of an unconstrained
foreign key (GenericForeignKey). Using it is akin to using a NoSQL datastore that lacks foreign
key constraints as the basis for projects that could really use foreign key constraints. This causes the
following:

ä Reduction in speed of queries due to lack of indexing between models.
ä Danger of data corruption as a table can refer to another against a non-existent record.

The upside of this lack of constraints is that generic relations makes it easier to build apps for things
that need to interact with numerous model types we might have created. Specifically things like
favorites, ratings, voting, messages, and tagging apps. Indeed, there are a number of existing apps
that are built this way. While we hesitate to use them, we are comforted by the fact that the good
ones are focused on a single task (for example, tagging).

Over time, we’ve found that we can build favorites, ratings, voting, messages, and tagging apps built
off ForeignKey and ManyToMany field. For a little more development work, by avoiding the use of
GenericForeignKey we get the benefit of speed and integrity.

Where the GenericForeignKey becomes really troublesome is when its unconstrained feature be-
comes the method by which a project’s primary data is defined. For example, if we built an Ice Cream

76

http://www.revsys.com/blog/2012/may/01/three-things-you-should-never-put-your-database/
http://www.revsys.com/blog/2012/may/01/three-things-you-should-never-put-your-database/
https://npmjs.org
https://npmjs.org

6.4: Django Model Design

themed project where the relationships between toppings, flavors, containers, orders, and sales were
all tracked via GenericForeignKey, we would have the problems described in the bullets above. In
short:

ä Try to avoid generic relations and GenericForeignKey.
ä If you think you need generic relations, see if the problem can be solved through better model

design or the new PostgreSQL fields.
ä If usage can’t be avoided, try to use an existing third-party app. The isolation a third-party app

provides will help keep data cleaner.

For another view that shares our opinion, please read lukeplant.me.uk/blog/posts/
avoid-django-genericforeignkey

6.4.7 Make Choices and Sub-Choices Model Constants

A nice pattern is to add choices as properties to a model. As these are constants tied to your model
(and the represented data) being able to easily access them everywhere makes development easier.

This technique is described in https://docs.djangoproject.com/en/1.11/ref/models/
fields/#choices. If we translate that to an ice cream-based example, we get:

Example 6.5: Setting Choice Model Attributes

orders/models.py
from django import models

class IceCreamOrder(models.Model):
FLAVOR_CHOCOLATE = 'ch'
FLAVOR_VANILLA = 'vn'
FLAVOR_STRAWBERRY = 'st'
FLAVOR_CHUNKY_MUNKY = 'cm'

FLAVOR_CHOICES = (
(FLAVOR_CHOCOLATE, 'Chocolate'),
(FLAVOR_VANILLA, 'Vanilla'),
(FLAVOR_STRAWBERRY, 'Strawberry'),
(FLAVOR_CHUNKY_MUNKY, 'Chunky Munky')

77

https://lukeplant.me.uk/blog/posts/avoid-django-genericforeignkey/
https://lukeplant.me.uk/blog/posts/avoid-django-genericforeignkey/
https://docs.djangoproject.com/en/1.11/ref/models/fields/#choices
https://docs.djangoproject.com/en/1.11/ref/models/fields/#choices

Chapter 6: Model Best Practices

)

flavor = models.CharField(
max_length=2,
choices=FLAVOR_CHOICES

)

Using this model, we can do the following:

Example 6.6: Accessing Choice Model Attributes

>>> from orders.models import IceCreamOrder
>>> IceCreamOrder.objects.filter(flavor=IceCreamOrder.FLAVOR_CHOCOLATE)
[<icecreamorder: 35>, <icecreamorder: 42>, <icecreamorder: 49>]

This works in both Python code and templates, and the attribute can be accessed on either the class
or the instantiated model object.

6.4.8 Better Model Choice Constants Using Enum

Our friend Nate Cox recommends using the Enum library to enhance model attributes for choices.
This works if you are on Python 3.4+ or on Python 2.7 with the pypi.python.org/pypi/enum34
package installed.

Example 6.7: Setting Choice Model Attributes

from django import models
from enum import Enum

class IceCreamOrder(models.Model):
class FLAVORS(Enum):

chocolate = ('ch', 'Chocolate')
vanilla = ('vn', 'Vanilla')
strawberry = ('st', 'Strawberry')
chunky_munky = ('cm', 'Chunky Munky')

78

https://pypi.python.org/pypi/enum34

6.4: Django Model Design

@classmethod
def get_value(cls, member):

return cls[member].value[0]

flavor = models.CharField(
max_length=2,
choices=[x.value for x in FLAVORS]

)

In this situation we’re be able to do:

Example 6.8: Accessing Enum-Based Choice Model Attributes

>>> from orders.models import IceCreamOrder
>>> chocolate = IceCreamOrder.FLAVORS.get_value('chocolate')
>>> IceCreamOrder.objects.filter(flavor=chocolate)
[<icecreamorder: 35>, <icecreamorder: 42>, <icecreamorder: 49>]

There are a couple of drawbacks to this, particularly that the filtering itself is a bit more verbose,
but we gain the benefit of being able to iterate through the possible choices at any given time. Also,
adding new values is a bit easier.

6.4.9 PostgreSQL-Specific Fields: When to Use Null and Blank

Field Type Setting null=True Setting blank=True

ArrayField Okay. Okay.

HStoreField Okay. Okay.

IntegerRangeField,
BigIntegerRangeField,
and FloatRangeField

Okay if you want to be able to set
the value to NULL in the database.

Okay if you want the
corresponding form widget
to accept empty values. If
so, you will also want to set
null=True.

79

Chapter 6: Model Best Practices

Field Type Setting null=True Setting blank=True

DatetimeRangeField
and DateRangeField

Okay if you want to be able to set
the value to NULL in the database.

Okay if you want the
corresponding form widget
to accept empty values, or if
you are using auto_now or
auto_now_add. If so, you
will also want to set
null=True.

JSONField Okay. Okay.

Table 6.3: When to Use Null and Blank for Postgres Fields

6.5 The Model _metaAPI

This _meta API is unusual in the following respects:

ä It is prefixed with “_” yet is a public, documented API.
ä Unlike other _-prefixed components of Django _meta follows the same deprecation patterns

as the rest of the framework.

The reason for this is that before Django 1.8, the model _meta API was unofficial and purposely
undocumented, as is normal with any API subject to change without notice. The original purpose of
_meta was simply for Django to store extra info about models for its own use. However, it proved
so useful that it is now a documented API.

For most projects you shouldn’t need _meta. The main uses for it are when you need to:

ä Get a list of a model’s fields.
ä Get the class of a particular field for a model (or its inheritance chain or other info derived

from such).
ä Ensure that how you get this information remains constant across future Django versions.

Examples of these sorts of situations:

ä Building a Django model introspection tool.
ä Building your own custom specialized Django form library.

80

6.6: Model Managers

ä Creating admin-like tools to edit or interact with Django model data.
ä Writing visualization or analysis libraries, e.g. analyzing info only about fields that start with

“foo”.

Further reading:

ä Model _meta docs: docs.djangoproject.com/en/1.11/ref/models/meta/

6.6 Model Managers
Every time we use the Django ORM to query a model, we are using an interface called a model
manager to interact with the database. Model managers are said to act on the full set of all possible
instances of this model class (all the data in the table) to restrict the ones you want to work with.
Django provides a default model manager for each model class, but we can define our own.

Here’s a simple example of a custom model manager:

Example 6.9: Custom Model Manager: published

from django.db import models
from django.utils import timezone

class PublishedManager(models.Manager):

use_for_related_fields = True

def published(self, **kwargs):
return self.filter(pub_date__lte=timezone.now(), **kwargs)

class FlavorReview(models.Model):
review = models.CharField(max_length=255)
pub_date = models.DateTimeField()

add our custom model manager
objects = PublishedManager()

Now, if we first want to display a count of all of the ice cream flavor reviews, and then a count of just
the published ones, we can do the following:

81

https://docs.djangoproject.com/en/1.11/ref/models/meta/

Chapter 6: Model Best Practices

Example 6.10: Custom Model Manager: published

>>> from reviews.models import FlavorReview
>>> FlavorReview.objects.count()
35
>>> FlavorReview.objects.published().count()
31

Easy, right? Yet wouldn’t it make more sense if you just added a second model manager? That way
you could have something like:

Example 6.11: Illusory Benefits of Using Two Model Managers

>>> from reviews.models import FlavorReview
>>> FlavorReview.objects.filter().count()
35
>>> FlavorReview.published.filter().count()
31

On the surface, replacing the default model manager seems like the obvious thing to do. Unfortu-
nately, our experiences in real project development makes us very careful when we use this method.
Why?

First, when using model inheritance, children of abstract base classes receive their parent’s model
manager, and children of concrete base classes do not.

Second, the first manager applied to a model class is the one that Django treats as the default. This
breaks significantly with the normal Python pattern, causing what can appear to be unpre-
dictable results from QuerySets.

With this knowledge in mind, in your model class, objects = models.Manager() should be
defined manually above any custom model manager.

WARNING: Know the Model Manager Order of Operations

Always set objects = models.Manager() above any custom model manager that has a
new name.

Additional reading: docs.djangoproject.com/en/1.11/topics/db/managers/

82

https://docs.djangoproject.com/en/1.11/topics/db/managers/

6.7: Understanding Fat Models

6.7 Understanding Fat Models

The concept of fat models is that rather than putting data-related code in views and templates,
instead we encapsulate the logic in model methods, classmethods, properties, even manager methods.
That way, any view or task can use the same logic. For example, if we have a model that represents
Ice Cream reviews we might attach to it the following methods:

ä Review.create_review(cls, user, rating, title, description) A class-
method for creating reviews. Called on the model class itself from HTML and REST views,
as well as an import tool that accepts spreadsheets.

ä review.product_average A review instance property that returns the reviewed project’s
average rating. Used on review detail views so the reader can get a feel for the overall opinion
without leaving the page.

ä review.found_useful(self, user, yes) A method that sets whether or not readers
found the review useful or not. Used in detail and list views, for both HTML and REST
implementations.

As can be inferred from this list, fat models are a great way to improve reuse of code across a project.
In fact, the practice of moving logic from views and templates to models has been growing across
projects, frameworks and languages for years. This is a good thing, right?

Not necessarily.

The problem with putting all logic into models is it can cause models to explode in size of code,
becoming what is called a ‘god object’. This anti-pattern results in model classes that are hundreds,
thousands, even tens of thousands of lines of code. Because of their size and complexity, god objects
are hard to understand, hence hard to test and maintain.

When moving logic into models, we try to remember one of the basic ideas of object-oriented pro-
gramming, that big problems are easier to resolve when broken up into smaller problems. If a model
starts to become unwieldy in size, we begin isolating code that is prime for reuse across other mod-
els, or whose complexity requires better management. The methods, classmethods, and properties
are kept, but the logic they contain is moved into Model Behaviors or Stateless Helper Functions. Let’s
cover both techniques in the following subsections:

83

Chapter 6: Model Best Practices

6.7.1 Model Behaviors a.k.a Mixins

Model behaviors embrace the idea of composition and encapsulation via the use of mixins. Models
inherit logic from abstract models. For more information, see the following resources:

ä blog.kevinastone.com/django-model-behaviors.html Kevin Stone’s article on us-
ing composition to reduce replication of code.

ä medium.com/eshares-blog/supercharging-django-productivity-8dbf9042825e
Includes a really good section on using DateTimeField for logical deletes.

ä Section 10.2: Using Mixins With CBVs.

6.7.2 Stateless Helper Functions

By moving logic out of models and into utility functions, it becomes more isolated. This isolation
makes it easier to write tests for the logic. The downside is that the functions are stateless, hence all
arguments have to be passed.

We cover this in Chapter 29: What About Those Random Utilities?.

6.7.3 Model Behaviors vs Helper Functions

In our opinion, alone neither of these techniques are perfect. However, when both are used judiciously,
they can make projects shine. Understanding when to use either isn’t a static science, it is an evolving
process. This kind of evolution is tricky, prompting our suggestion to have tests for the components
of fat models.

6.8 Summary

Models are the foundation for most Django projects, so take the time to design them thoughtfully.

Start normalized, and only denormalize if you’ve already explored other options thoroughly. You
may be able to simplify slow, complex queries by dropping down to raw SQL, or you may be able to
address your performance issues with caching in the right places.

84

http://blog.kevinastone.com/django-model-behaviors.html
https://medium.com/eshares-blog/supercharging-django-productivity-at-eshares-8dbf9042825e

6.8: Summary

Don’t forget to use indexes. Add indexes when you have a better feel for how you’re using data
throughout your project.

If you decide to use model inheritance, inherit from abstract base classes rather than concrete models.
You’ll save yourself from the confusion of dealing with implicit, unneeded joins.

Watch out for the “gotchas” when using the null=True and blank=Truemodel field options. Refer
to our handy table for guidance.

You may find django-model-utils and django-extensions pretty handy.

Finally, fat models are a way to encapsulate logic in models, but can all too readily turn into god
objects.

Our next chapter is where we begin talking about queries and the database layer.

85

Chapter 6: Model Best Practices

86

7 | Queries and the Database Layer

Most of the queries we write are simple. Django’s Object-Relational Model or ORM provides
a great productivity shortcut: not only generating decent SQL queries for common use cases, but
providing model access/update functionality that comes complete with validation and security. It
allows us to trivially write code that works with different database engines. This feature of ORMs
powers much of the Django third-party package ecosystem. If you can write your query easily with
the ORM, then take advantage of it!

The Django ORM, like any ORM, converts data from different types into objects that we can use
pretty consistently across supported databases. Then it provides a set of methods for interacting with
those objects. For the most part, Django’s does a pretty good job at what it’s designed to do. However,
it does have quirks, and understanding those quirks is part of learning how to use Django. Let’s go
over some of them, shall we?

7.1 Use get_object_or_404() for Single Objects
In views such as detail pages where you want to retrieve a single object and do something with it, use
get_object_or_404() instead of get().

WARNING: get_object_or_404() Is for Views Only

ä Only use it in views.
ä Don’t use it in helper functions, forms, model methods or anything that is not a view

or directly view related.
Many years ago a certain Python coder who we won’t list by name, but likes to do
cartwheels, was deploying his first Django project. So entranced was he by Django’s

87

Chapter 7: Queries and the Database Layer

get_object_or_404() function that he used it everywhere, in views, in models, in forms,
everywhere. In development this worked great and passed tests. Unfortunately, this uncon-
strained use meant that when certain records were deleted by the admin staff, the entire site
broke.

Keep get_object_or_404() in your views!

7.2 Be Careful With Queries That Might Throw
Exceptions

When you’re getting a single Django model instance with the get_object_or_404() shortcut,
you don’t need to wrap it in a try-except block. That’s because get_object_or_404() already does
that for you.

However, in most other situations you need to use a try-except block. Some tips:

7.2.1 ObjectDoesNotExist vs. DoesNotExist

ObjectDoesNotExist can be applied to any model object, whereas DoesNotExist is for a specific
model.

Example 7.1: Example Use for ObjectDoesNotExist

from django.core.exceptions import ObjectDoesNotExist

from flavors.models import Flavor
from store.exceptions import OutOfStock

def list_flavor_line_item(sku):
try:

return Flavor.objects.get(sku=sku, quantity__gt=0)
except Flavor.DoesNotExist:

msg = 'We are out of {0}'.format(sku)
raise OutOfStock(msg)

88

7.3: Use Lazy Evaluation to Make Queries Legible

def list_any_line_item(model, sku):
try:

return model.objects.get(sku=sku, quantity__gt=0)
except ObjectDoesNotExist:

msg = 'We are out of {0}'.format(sku)
raise OutOfStock(msg)

7.2.2 When You Just Want One Object but Get Three Back

If it’s possible that your query may return more than one object, check for a MultipleObjectsRe-
turned exception. Then in the except clause, you can do whatever makes sense, e.g. raise a special
exception or log the error.

Example 7.2: Example Use of MultipleObjectsReturned

from flavors.models import Flavor
from store.exceptions import OutOfStock, CorruptedDatabase

def list_flavor_line_item(sku):
try:

return Flavor.objects.get(sku=sku, quantity__gt=0)
except Flavor.DoesNotExist:

msg = 'We are out of {}'.format(sku)
raise OutOfStock(msg)

except Flavor.MultipleObjectsReturned:
msg = 'Multiple items have SKU {}. Please fix!'.format(sku)
raise CorruptedDatabase(msg)

7.3 Use Lazy Evaluation to Make Queries Legible

Django’s ORM is very powerful. And with such power comes the responsibility to make code legible,
hence maintainable. With complex queries, attempt to avoid chaining too much functionality on a
small set of lines:

89

Chapter 7: Queries and the Database Layer

Example 7.3: Illegible Queries

Don't do this!
from django.models import Q

from promos.models import Promo

def fun_function(name=None):
"""Find working ice cream promo"""
Too much query chaining makes code go off the screen or page. Not good.
return Promo.objects.active().filter(Q(name__startswith=name)|Q(description__icontains=name)).exclude(status='melted')

This is unpleasant, right? Yet if we add in advanced Django ORM tools, then it will go from unpleas-
ant to as terrible as a sriracha-based ice cream topping. To mitigate this unpleasantness, we can use
the lazy evaluation feature of Django queries to keep our ORM code clean.

By lazy evaluation, we mean that the Django ORM doesn’t make the SQL calls until the data is
actually needed. We can chain ORM methods and functions as much as we want, and until we try
to loop through the result, Django doesn’t touch the database. Instead of being forced to chain many
methods and advanced database features on a single line, we can break them up over as many lines
as needed. This increases readability, which improves the ease of maintenance, which increases time
for getting ice cream.

Here we take the code from bad example 7.3 and break it up into more legible code:

Example 7.4: Legible Queries

Do this!
from django.models import Q

from promos.models import Promo

def fun_function(name=None):
"""Find working ice cream promo"""
results = Promo.objects.active()
results = results.filter(

Q(name__startswith=name) |
Q(description__icontains=name)

90

7.3: Use Lazy Evaluation to Make Queries Legible

)
results = results.exclude(status='melted')
results = results.select_related('flavors')
return results

As can be seen in the corrected code, we can more easily tell what the end result will be. Even better,
by breaking up the query statement we can comment on specific lines of code.

7.3.1 Chaining Queries for Legibility

This technique borrows from the Pandas and JavaScript communities. Instead of using lazy evalua-
tion, it’s possible to chain queries thus:

Example 7.5: Chaining Queries

Do this!
from django.models import Q

from promos.models import Promo

def fun_function(name=None):
"""Find working ice cream promo"""
qs = (Promo

.objects

.active()

.filter(
Q(name__startswith=name) |
Q(description__icontains=name)

)
.exclude(status='melted')
.select_related('flavors')

)
return qs

The downside to this approach is that debugging isn’t as easy as using the lazy evaluation method of
writing a query. We simply can’t stick a PDB or IPDB call in the middle of a query defined this way.

91

Chapter 7: Queries and the Database Layer

To get around this, we have to do a bit of commenting out:

Example 7.6: Debugging with Chained Queries

def fun_function(name=None):
"""Find working ice cream promo"""
qs = (

Promo
.objects
.active()
.filter(
Q(name__startswith=name) |
Q(description__icontains=name)
)
.exclude(status='melted')
.select_related('flavors')

)
import pdb; pdb.set_trace()
return qs

7.4 Lean on Advanced Query Tools

Django’s ORM is easy to learn, intuitive, and covers many use cases. Yet there are a number of things
it does not do well. What happens then is after the queryset is returned we begin processing more
and more data in Python. This is a shame, because every database manages and transforms data faster
than Python (or Ruby, JavaScript, Go, Java, et al).

Instead of managing data with Python, we always try to use Django’s advanced query tools to do the
lifting. In doing so we not only benefit from increased performance, we also enjoy using code that is
more proven (Django and most databases are constantly tested) than any Python-based workarounds
we create.

7.4.1 Query Expressions

When performing reads on a database, query expressions can be used to create values or computations
during that read. If that sounds confusing, don’t feel alone, we’re confused too. Since a code example

92

7.4: Lean on Advanced Query Tools

is worth a thousand words, let’s provide an example of how they can benefit us. In our case, we’re
trying to list all the customers who have on average ordered more than one scoop per visit to an ice
cream store.

First, how this might be done, albeit dangerously, without query expressions:

Example 7.7: No Query Expressions

Don't do this!
from models.customers import Customer

customers = []
for customer in Customer.objects.iterator():

if customer.scoops_ordered > customer.store_visits:
customers.append(customer)

This example makes us shudder with fear. Why?

ä It uses Python to loop through all the Customer records in the database, one by one. This is
slow and memory consuming.

ä Under any volume of use, it will generate race conditions. This is where while we’re running
the script, customers are interacting with the data. While probably not an issue in this simple
‘READ’ example, in real-world code combining that with an ‘UPDATE’ it can lead to loss of
data.

Fortunately, through query expressions Django provides a way to make this more efficient and race-
condition free:

Example 7.8: Yes Query Expressions

from django.db.models import F

from models.customers import Customer

customers = Customer.objects.filter(scoops_ordered__gt=F('store_visits'))

What this does is use the database itself to perform the comparison. Under the hood, Django is
running something that probably looks like:

93

Chapter 7: Queries and the Database Layer

Example 7.9: Query Expression Rendered as SQL

SELECT * from customers_customer where scoops_ordered > store_visits

Query Expressions should be in your toolkit. They increase the performance and stability of projects.

ä docs.djangoproject.com/en/1.11/ref/models/expressions/

7.4.2 Database Functions

Since Django 1.8 we’ve been able to easily use common database functions such as UPPER(),
LOWER(), COALESCE(), CONCAT(), LENGTH(), and SUBSTR(). Of all the advanced query
tools provided by Django, these are our favorites. Why?

1 Very easy to use, either on new projects or existing projects.
2 Database functions allow us to move some of the logic from Python to the database. This can

be a performance booster, as processing data in Python is not as fast as processing data in a
database.

3 Database functions are implemented differently per database, but Django’s ORM abstracts
this away. Code we write using them on PostgreSQL will work on MySQL or SQLite3.

4 They are also query expressions, which means they follow a common pattern already established
by another nice part of the Django ORM.

Reference:

ä docs.djangoproject.com/en/1.11/ref/models/database-functions/

7.5 Don’t Drop Down to Raw SQL Until It’s Necessary

Whenever we write raw SQL we lose elements of security and reusability. This does’t just apply to
internal project code, but also to the rest of the Django world. Specifically, if you ever release one
of your Django apps as a third-party package, using raw SQL will decrease the portability of the
work. Also, in the rare event that the data has to be migrated from one database to another, any
database-specific features that you use in your SQL queries will complicate the migration.

94

https://docs.djangoproject.com/en/1.11/ref/models/expressions/
https://docs.djangoproject.com/en/1.11/ref/models/database-functions/

7.5: Don’t Drop Down to Raw SQL Until It’s Necessary

So when should you actually write raw SQL? If expressing your query as raw SQL would drastically
simplify your Python code or the SQL generated by the ORM, then go ahead and do it. For example,
if you’re chaining a number of QuerySet operations that each operate on a large data set, there may
be a more efficient way to write it as raw SQL.

TIP: Malcolm Tredinnick’s Advice on Writing SQL in Django

Django core developer Malcolm Tredinnick said (paraphrased):
“The ORM can do many wonderful things, but sometimes SQL is the right
answer. The rough policy for the Django ORM is that it’s a storage layer that
happens to use SQL to implement functionality. If you need to write advanced
SQL you should write it. I would balance that by cautioning against overuse of
the raw() and extra() methods.”

TIP: Jacob Kaplan-Moss’ Advice on Writing SQL in Django

Django project co-leader Jacob Kaplan-Moss says (paraphrased):
“If it’s easier to write a query using SQL than Django, then do it. extra() is
nasty and should be avoided; raw() is great and should be used where appropri-
ate.”

95

Chapter 7: Queries and the Database Layer

Figure 7.1: This flavor of ice cream contains raw SQL. It’s a bit chewy.

7.6 Add Indexes as Needed

While adding db_index=True to any model field is easy, understanding when it should be done
takes a bit of judgment. Our preference is to start without indexes and add them as needed.

When to consider adding indexes:

ä The index would be used frequently, as in 10–25% of all queries.
ä There is real data, or something that approximates real data, so we can analyze the results of

indexing.
ä We can run tests to determine if indexing generates an improvement in results.

When using PostgreSQL, pg_stat_activity tells us what indexes are actually being used.

Once a project goes live, Chapter 24: Finding and Reducing Bottlenecks, has information on index
analysis.

96

7.7: Transactions

TIP: Class-Based Model Indexes
Django 1.11 introduces the django.db.models.indexes module, the Index
class, and the Meta.indexes option. These make it easy to create all sorts of
database indexes: just subclass Index, add it to Meta.indexes, and you’re done!
django.contrib.postgres.indexes currently includes BrinIndex and GinIndex,
but you can imagine HashIndex, GistIndex, SpGistIndex, and more.

ä docs.djangoproject.com/en/1.11/ref/models/indexes/
ä docs.djangoproject.com/en/1.11/ref/models/options/#indexes

7.7 Transactions

The default behavior of the ORM is to autocommit every query when it is called. In the case of
data modification, this means that every time a .create() or .update() is called, it immediately
modifies data in the SQL database. The advantage of this is that it makes it easier for beginning
developers to understand the ORM. The disadvantage is that if a view (or some other operation)
requires two or more database modifications to occur, if one modification succeeds and the other
fails, the database is at risk of corruption.

The way to resolve the risk of database corruption is through the use of database transactions. A
database transaction is where two or more database updates are contained in a single unit of work. If
a single update fails, all the updates in the transaction are rolled back. To make this work, a database
transaction, by definition, must be atomic, consistent, isolated and durable. Database practitioners
often refer to these properties of database transactions using the acronym ACID.

Django has a powerful and relatively easy-to-use transaction mechanism. This makes it much easier to
lock down database integrity on a project, using decorators and context managers in a rather intuitive
pattern.

97

https://docs.djangoproject.com/en/1.11/ref/models/indexes/
https://docs.djangoproject.com/en/1.11/ref/models/options/#indexes

Chapter 7: Queries and the Database Layer

7.7.1 Wrapping Each HTTP Request in a Transaction

Example 7.10: Wrapping Each HTTP Request in a Transaction

settings/base.py

DATABASES = {
'default': {

...
'ATOMIC_REQUESTS': True,

},
}

Django makes it easy to handle all web requests inside of a transaction with the ATOMIC_REQUESTS
setting. By setting it to True as shown above, all requests are wrapped in transactions, including
those that only read data. The advantage of this approach is safety: all database queries in views are
protected, the disadvantage is performance can suffer. We can’t tell you just how much this will affect
performance, as it depends on individual database design and how well various database engines
handle locking.

We’ve found that this is a great way to ensure at the start that a write-heavy project’s database main-
tains integrity. With lots of traffic, however, we’ve had to go back and change things to a more
focused approach. Depending on the size this can be a small or monumental task.

Another thing to remember when using ATOMIC_REQUESTS, is that only the database state is rolled
back on errors. It’s quite embarrassing to send out a confirmation email and then have the transaction
that wraps a request rolled back. This problem may crop up with any “write” to anything other than
the database: sending email or SMS, calling a third-party API, writing to the filesystem, etc. There-
fore, when writing views that create/update/delete records but interact with non-database items, you
may choose to decorate the view with transaction.non_atomic_requests().

WARNING: Aymeric Augustin on non_atomic_requests()

Core Django developer and main implementer of the new transaction system, Aymeric Au-
gustin says, “This decorator requires tight coupling between views and models, which will
make a code base harder to maintain. We might have come up with a better design if we
hadn’t had to provide for backwards-compatibility.”

98

7.7: Transactions

Then you can use the more explicit declaration as described below in this super-simple API-style
function-based view:

Example 7.11: Simple Non-Atomic View

flavors/views.py

from django.db import transaction
from django.http import HttpResponse
from django.shortcuts import get_object_or_404
from django.utils import timezone

from .models import Flavor

@transaction.non_atomic_requests
def posting_flavor_status(request, pk, status):

flavor = get_object_or_404(Flavor, pk=pk)

This will execute in autocommit mode (Django's default).
flavor.latest_status_change_attempt = timezone.now()
flavor.save()

with transaction.atomic():
This code executes inside a transaction.
flavor.status = status
flavor.latest_status_change_success = timezone.now()
flavor.save()
return HttpResponse('Hooray')

If the transaction fails, return the appropriate status
return HttpResponse('Sadness', status_code=400)

If you are using ATOMIC_REQUESTS=True and want to switch to a more focused approach described
in the following section, we recommend an understanding of Chapter 24: Finding and Reducing
Bottlenecks, Chapter 22: Testing Stinks and Is a Waste of Money!, and Chapter 32: Continuous
Integration before you undertake this effort.

99

Chapter 7: Queries and the Database Layer

TIP: Projects Touching Medical or Financial Data

For these kinds of projects, engineer systems for eventual consistency rather than for trans-
actional integrity. In other words, be prepared for transactions to fail and rollbacks to occur.
Fortunately, because of transactions, even with a rollback, the data will remain accurate and
clean.

7.7.2 Explicit Transaction Declaration

Explicit transaction declaration is one way to increase site performance. In other words, specifying
which views and business logic are wrapped in transactions and which are not. The downside to this
approach is that it increases development time.

TIP: Aymeric Augustin on ATOMIC_REQUESTS vs. Explicit
Transaction Declaration
Aymeric Augustin says, ‘Use ATOMIC_REQUESTS as long as the performance overhead
is bearable. That means “forever” on most sites.’

When it comes to transactions, here are some good guidelines to live by:

ä Database operations that do not modify the database should not be wrapped in transactions.
ä Database operations that modify the database should be wrapped in a transaction.
ä Special cases including database modifications that require database reads and performance

considerations can affect the previous two guidelines.

If that’s not clear enough, here is a table explaining when different Django ORM calls should be
wrapped in transactions.

Purpose ORM method Generally Use Transactions?

Create Data .create(), .bulk_create(), .get_or_create(), 3

Retrieve Data .get(), .filter(), .count(), .iterate(), .exists(),
.exclude(), .in_bulk, etc.

Modify Data .update() 3

100

7.7: Transactions

Delete Data .delete() 3

Table 7.1: When to Use Transactions

Figure 7.2: Because no one loves ice cream quite like a database.

We also cover this in Chapter 24: Finding and Reducing Bottlenecks, specifically subsection Sec-
tion 24.2.4: Switch ATOMIC_REQUESTS to False.

TIP: Never Wrap Individual ORM Method Calls

Django’s ORM actually relies on transactions internally to ensure consistency of data. For
instance, if an update affects multiple tables because of concrete inheritance, Django has that
wrapped up in transactions.

Therefore, it is never useful to wrap an individual ORM method [.create(), .update(),
.delete()] call in a transaction. Instead, use explicit transactions when you are calling
several ORM methods in a view, function, or method.

7.7.3 django.http.StreamingHttpResponse and Transactions

If a view is returning django.http.StreamingHttpResponse, it’s impossible to handle trans-
action errors once the response has begun. If your project uses this response method then
ATOMIC_REQUESTS should do one of the following:

101

Chapter 7: Queries and the Database Layer

1 Set ATOMIC_REQUESTS to Django’s default, which is False. Then you can use the techniques
explored in Section 7.7.2: Explicit Transaction Declaration. Or...

2 Wrap the view in the django.db.transaction.non_atomic_requests decorator.

Keep in mind that you can use ATOMIC_REQUESTS with a streaming response, but the transaction
will only apply to the view itself. If the generation of the response stream triggers additional SQL
queries, they will be made in autocommit mode. Hopefully generating a response doesn’t trigger
database writes...

7.7.4 Transactions in MySQL

If the database being used is MySQL, transactions may not be supported depending on your choice
of table type such as InnoDB or MyISAM. If transactions are not supported, Django will always
function in autocommit mode, regardless of ATOMIC_REQUESTS or code written to support transac-
tions. For more information, we recommend reading the following articles:

ä docs.djangoproject.com/en/1.11/topics/db/transactions/
#transactions-in-mysql

ä dev.mysql.com/doc/refman/5.0/en/sql-syntax-transactions.html

7.7.5 Django ORM Transaction Resources

ä docs.djangoproject.com/en/1.11/topics/db/transactions/ Django’s documen-
tation on transactions.

ä Real Python has a great tutorial on the subject of transactions. While written for Django
1.6, much of the material remains pertinent to this day. realpython.com/blog/python/
transaction-management-with-django-1-6

7.8 Summary

In this chapter we went over different ways to query a project’s persistent data. Now that we know
how to store data, let’s begin to display it. Starting with the next chapter we’re diving into views!

102

https://docs.djangoproject.com/en/1.11/topics/db/transactions/#transactions-in-mysql
https://docs.djangoproject.com/en/1.11/topics/db/transactions/#transactions-in-mysql
http://dev.mysql.com/doc/refman/5.0/en/sql-syntax-transactions.html
https://docs.djangoproject.com/en/1.11/topics/db/transactions/
https://realpython.com/blog/python/transaction-management-with-django-1-6/
https://realpython.com/blog/python/transaction-management-with-django-1-6/

8 | Function- And Class-Based Views

Both function-based views (FBVs) and class-based views (CBVs) are in Django 1.11. We recom-
mend that you understand how to use both types of views.

TIP: Historical Note
During the release of Django 1.5, there was a bit of confusion about FBVs due to the wording
of the release notes and incorrect information on some blog posts. However, no plans ever
existed for removing function-based views from Django and function-based views remain in
Django.

8.1 When to Use FBVs or CBVs

Whenever you implement a view, think about whether it would make more sense to implement as a
FBV or as a CBV. Some views are best implemented as CBVs, and others are best implemented as
FBVs.

If you aren’t sure which method to choose, on the next page we’ve included a flow chart that might
be of assistance.

103

Chapter 8: Function- And Class-Based Views

Figure 8.1: Should you use a FBV or a CBV? flow chart.

This flowchart follows our preference for using CBVs over FBVs. We prefer to use CBVs for most
views, using FBVs to implement only the custom error views or complicated ones that would be a
pain to implement with CBVs.

TIP: Alternative Approach - Staying With FBVs

Some developers prefer to err on the side of using FBVs for most views and CBVs only for
views that need to be subclassed. That strategy is fine as well.

104

8.2: Keep View Logic Out of URLConfs

8.2 Keep View Logic Out of URLConfs
Requests are routed to views via URLConfs, in a module that is normally named urls.py.
Per Django’s URL design philosophy (docs.djangoproject.com/en/1.11/misc/
design-philosophies/#url-design), the coupling of views with urls is loose, allows for
infinite flexibility, and encourages best practices.

And yet, this is what Daniel feels like yelling every time he sees complex urls.py files:

“I didn’t write J2EE XML and Zope ZCML configuration files back in the day just so you
darn kids could stick logic into Django url modules!”

Remember that Django has a wonderfully simple way of defining URL routes. Like everything else
we bring up in this book, that simplicity is to be honored and respected. The rules of thumb are
obvious:

1 The views modules should contain view logic.
2 The URL modules should contain URL logic.

Ever see code like this? Perhaps in the official documentation for Class-Based Views?

Example 8.1: Django CBV-Style URLconf Modules

Don't do this!
from django.conf.urls import url
from django.views.generic import DetailView

from tastings.models import Tasting

urlpatterns = [
url(r'^(?P<pk>\d+)/$',

DetailView.as_view(
model=Tasting,
template_name='tastings/detail.html'),

name='detail'),
url(r'^(?P<pk>\d+)/results/$',

DetailView.as_view(
model=Tasting,
template_name='tastings/results.html'),

105

https://docs.djangoproject.com/en/1.11/misc/design-philosophies/#url-design
https://docs.djangoproject.com/en/1.11/misc/design-philosophies/#url-design

Chapter 8: Function- And Class-Based Views

name='results'),
]

At a glance this code might seem okay, but we argue that it violates the Django design philosophies:

ä Loose coupling between views, urls, and models has been replaced with tight coupling, mean-
ing you can never reuse the view definitions.

ä Don’t Repeat Yourself is violated by using the same/similar arguments repeatedly between
CBVs.

ä Infinite flexibility (for URLs) is destroyed. Class inheritance, the primary advantage of Class
Based Views, is impossible using this anti-pattern.

ä Lots of other issues: What happens when you have to add in authentication? And what about
authorization? Are you going to wrap each URLConf view with two or more decorators?
Putting your view code into your URLConfs quickly turns your URLConfs into an unmain-
tainable mess.

In fact, we’ve heard from developers that seeing CBVs defined in URLConfs this way was part of
why they steered clear of using them.

Alright, enough griping. We’ll show our preferences in the next section.

8.3 Stick to Loose Coupling in URLConfs

Figure 8.2: Loose coupling of chocolate chip cookie dough ice cream.

Here is how to create URLconfs that avoid the problems we mentioned on the previous page. First,
we write the views:

106

8.3: Stick to Loose Coupling in URLConfs

Example 8.2: tastings/views.py

from django.urls import reverse
from django.views.generic import ListView, DetailView, UpdateView

from .models import Tasting

class TasteListView(ListView):
model = Tasting

class TasteDetailView(DetailView):
model = Tasting

class TasteResultsView(TasteDetailView):
template_name = 'tastings/results.html'

class TasteUpdateView(UpdateView):
model = Tasting

def get_success_url(self):
return reverse('tastings:detail',

kwargs={'pk': self.object.pk})

Then we define the urls:

Example 8.3: tastings/urls.py

from django.conf.urls import url

from . import views

urlpatterns = [
url(

regex=r'^$',
view=views.TasteListView.as_view(),
name='list'

),
url(

107

Chapter 8: Function- And Class-Based Views

regex=r'^(?P<pk>\d+)/$',
view=views.TasteDetailView.as_view(),
name='detail'

),
url(

regex=r'^(?P<pk>\d+)/results/$',
view=views.TasteResultsView.as_view(),
name='results'

),
url(

regex=r'^(?P<pk>\d+)/update/$',
view=views.TasteUpdateView.as_view(),
name='update'

)
]

Your first response to our version of this should go something like, “Are you sure this is a good idea?
You changed things to use two files AND more lines of code! How is this better?”

Well, this is the way we do it. Here are some of the reasons we find it so useful:

ä Don’t Repeat Yourself : No argument or attribute is repeated between views.
ä Loose coupling: We’ve removed the model and template names from the URLConf because

views should be views and URLConfs should be URLConfs. We should be able to call our
views from one or more URLConfs, and our approach lets us do just that.

ä URLConfs should do one thing and do it well: Related to our previous bullet, our URLConf
is now focused primarily on just one thing: URL routing. We aren’t tracking down view logic
across both views and URLConfs, we just look in our views.

ä Our views benefit from being class-based: Our views, by having a formal definition in the
views module, can inherit from other classes. This means adding authentication, authoriza-
tion, new content formats, or any other business requirement tossed our way is much easier to
handle.

ä Infinite flexibility: Our views, by having a formal definition in the views module, can imple-
ment their own custom logic.

108

8.4: Use URL Namespaces

8.3.1 What if We Aren’t Using CBVs?

The same rules apply.

We’ve encountered debugging nightmares of projects using FBVs with extensive URLConf hack-
ery, such as elaborate tricks with the __file__ attribute of Python modules combined with directory
walking and regular expressions to automagically create URLConfs. If that sounds painful, it was.

Keep logic out of URLConfs!

8.4 Use URL Namespaces

What URL namespaces do is provide an identifier for app-level and instance level namespaces. URL
namespaces are one of those things where on the surface they seem like they might not help much,
but once a developer begins using them they wonder why they didn’t use them already. We’ll sum up
using URL namespaces as follows:

Instead of writing URL names like tastings_detail write them like tastings:detail.

Before we explain why this is so useful, we’ll provide an example of usage based on the app-level
URLConf code from example 8.2. In the root URLConf we would add:

Example 8.4: Snippet of urls.py At Root of Project

urlpatterns += [
url(r'^tastings/', include('tastings.urls', namespace='tastings')),

]

To see this in action in a view, let’s take a look at a snippet of code from example 8.1:

Example 8.5: Snippet of tastings/views.py

tastings/views.py snippet
class TasteUpdateView(UpdateView):

model = Tasting

def get_success_url(self):

109

Chapter 8: Function- And Class-Based Views

return reverse('tastings:detail',
kwargs={'pk': self.object.pk})

See this in action in an HTML template:

Example 8.6: taste_list.html

{% extends 'base.html' %}

{% block title %}Tastings{% endblock title %}

{% block content %}

{% for taste in tastings %}

{{ taste.title }}
<small>
(update)

</small>

{% endfor %}

{% endblock content %}

Now that we understand how to implement URL namespaces, let’s cover why they are useful.

8.4.1 Makes for Shorter, More Obvious and Don’t Repeat Yourself URL
Names

In example 8.2 what we don’t see are URL names like “tastings_detail” and
“tastings_results” that copy the model or app name. Instead there are simple, obvious
names like “detail” and “results”. This greatly increases the legibility of apps, especially to newer
Django developers.

Also, who wants to type “tastings” or whatever an app is called so many extra times?

110

8.4: Use URL Namespaces

8.4.2 Increases Interoperability With Third-Party Libraries

One of the problems of writing URL names things like <myapp>_detail is when app names col-
lide. While this might not be a problem with things like our tastings app, it’s certainly happened to
the authors with blog and contact applications. Fortunately, URL namespaces makes this easy to
resolve. Assuming that we have an existing contact app, but needed to add a second one, using URL
namespaces we could integrate them to our root URLConf like so:

Example 8.7: Root URLConf Interoptability

urls.py at root of project
urlpatterns += [

url(r'^contact/', include('contactmonger.urls',
namespace='contactmonger')),

url(r'^report-problem/', include('contactapp.urls',
namespace='contactapp')),

]

Then work them into our templates doing the following:

Example 8.8: contact.html

{% extends "base.html" %}
{% block title %}Contact{% endblock title %}
{% block content %}
<p>
Contact Us

</p>
<p>
Report a Problem

</p>
{% endblock content %}

111

Chapter 8: Function- And Class-Based Views

8.4.3 Easier Searches, Upgrades, and Refactors

Considering the prevalence of underscores in names for PEP 8-friendly frameworks like Django,
searching code or names like “tastings_detail” can be challenging. When a result comes up, is
that for a view name, a URL name, or something else?

On the other hand, searching for “tastings:detail” makes for obvious search result responses.
This can and has made upgrades and refactoring of apps and projects easier, including when interact-
ing with new third-party libraries.

8.4.4 Allows for More App and Template Reverse Tricks

We’re not going to cover any tricks here, because we feel such things are almost never justified. In fact,
they usually just add to the complexity of a project without adding any tangible benefit. However,
there are a couple use cases worth mentioning:

ä Development tools like django-debug-toolbar that perform debug-level introspection.
ä Projects that allow end-users to add “modules” to change or alter the behavior of their account.

While developers can use either of these to justify the use of creative URL namespaces tricks, as
always, we recommend trying the simplest approach first.

8.5 Try to Keep Business Logic Out of Views

In the past, we’ve placed an amazing amount of sophisticated business logic into our views. Unfortu-
nately, when it became time to generate PDFs, add a REST API, or serve out other formats, placing
so much logic in our views made it much harder to deliver new formats.

This is where our preferred approach of model methods, manager methods, or general utility helper
functions come into play. When business logic is placed into easily reusable components, and called
from within views, it makes extending components of the project to do more things much easier.

Since it’s not always possible to do this at the beginning of a project, our rule of thumb has become
whenever we find ourselves duplicating business logic instead of Django boilerplate between views,
it’s time to move code out of the view.

112

8.6: Django Views Are Functions

8.6 Django Views Are Functions
When it comes down to it, every Django view is a function. This function takes an HTTP request
object and turns it into a HTTP response object. If you know anything about basic mathematical
functions, this process of change should look very familiar.

Example 8.9: Django Views as Mathematical Funtions

Django FBV as a function
HttpResponse = view(HttpRequest)

Deciphered into basic math (remember functions from algebra?)
y = f(x)

... and then translated into a CBV example
HttpResponse = View.as_view()(HttpRequest)

This concept of change serves as a foundation for all sorts of things you can do with Django views,
be they function- or class-based.

TIP: Class-Based Views Are Actually Called as Functions

Django’s CBVs appear to be very different than FBVs. However, the View.as_view()
classmethod called in URLConfs is actually returning a callable instance of the view. In
other words, a callback function that handles the request/response cycle in exactly the same
manner as a function-based view!

8.6.1 The Simplest Views

With this in mind, it’s good to remember the simplest possible views that can be created with Django:

Example 8.10: simplest_views.py

from django.http import HttpResponse
from django.views.generic import View

113

Chapter 8: Function- And Class-Based Views

The simplest FBV
def simplest_view(request):

Business logic goes here
return HttpResponse('FBV')

The simplest CBV
class SimplestView(View):

def get(self, request, *args, **kwargs):
Business logic goes here
return HttpResponse('CBV')

Why is this useful to know?

ä Sometimes we need one-off views that do tiny things.
ä Understanding the simplest Django views means we better understand what they are really

doing.
ä Illustrates how Django FBVs are HTTP method neutral, but Django CBVs require specific

HTTP method declaration.

8.7 Don’t Use locals() as Views Context
Returning locals() from any callable is an anti-pattern. While it seems like a handy shortcut, in
fact it is a time consuming nightmare. Let’s use an example to explore why. Here is a view following
this anti-pattern:

Example 8.11: Innappropriate Use of locals()

Don't do this!
def ice_cream_store_display(request, store_id):

store = get_object_or_404(Store, id=store_id)
date = timezone.now()
return render(request, 'melted_ice_cream_report.html', locals())

On the surface everything seems fine.

However, as we’ve gone from an explicit design to implicit anti-pattern has made this simple view
annoying to maintain. Specifically that we don’t know what the view is supposed to return. This

114

8.8: Summary

becomes an issue because changing any of the variables returned by the view is not immediately
apparent:

Example 8.12: Altered Version of Previous Code Example

Don't do this!
def ice_cream_store_display(request, store_id):

store = get_object_or_404(Store, id=store_id)
now = timezone.now()
return render(request, 'melted_ice_cream_report.html', locals())

How long did it take you to spot the difference between Bad Example 8.11 and Bad Example 8.12?
This was a simple example, imagine a more complicated one with a large template. This is why we
strongly advocate use of explicit context in views:

Example 8.13: Explicit View Context

def ice_cream_store_display(request, store_id):
return render(

request,
'melted_ice_cream_report.html',
{

'store': get_object_or_404(Store, id=store_id),
'now': timezone.now()

}
)

ä Alex Martelli’s Reasoning: stackoverflow.com/a/1901720

8.8 Summary

This chapter started with discussing when to use either FBVs or CBVs, and matched our own pref-
erence for the latter. In fact, in the next chapter we’ll start to dig deep into the functionality that can
be exploited when using FBVs, followed up by a chapter on CBVs.

We also discussed keeping view logic out of the URLConfs. We feel view code belongs in the apps’
views.py modules, and URLConf code belongs in the apps’ urls.py modules. Adhering to this prac-

115

http://stackoverflow.com/a/1901720

Chapter 8: Function- And Class-Based Views

tice allows for object inheritance when used with class-based views, easier code reuse, and greater
flexibility of design.

116

9 | BestPractices forFunction-BasedViews

Since the beginning of the Django project, function-based views have been in frequent use by de-
velopers around the world. While class-based views have risen in usage, the simplicity of using a
function is appealing to both new and experienced developers alike. While the authors are in the
camp of preferring CBVs, we work on projects that use FBVs and here are some patterns we’ve
grown to enjoy.

9.1 Advantages of FBVs
The simplicity of FBVs comes at the expense of code reuse: FBVs don’t have the same ability to
inherit from superclasses the way that CBVs do. They do have the advantage of being more obviously
functional in nature, which lends itself to a number of interesting strategies.

We follow these guidelines when writing FBVs:

ä Less view code is better.
ä Never repeat code in views.
ä Views should handle presentation logic. Try to keep business logic in models when possible,

or in forms if you must.
ä Keep your views simple.
ä Use them to write custom 403, 404, and 500 error handlers.
ä Complex nested-if blocks are to be avoided.

9.2 Passing the HttpRequest Object
There are times where we want to reuse code in views, but not tie it into global actions such as
middleware or context processors. Starting in the introduction of this book, we advised creating

117

Chapter 9: Best Practices for Function-Based Views

utility functions that can be used across the project.

For many utility functions, we are taking an attribute or attributes from the
django.http.HttpRequest (or HttpRequest for short) object and gathering data or per-
forming operations. What we’ve found is by having the request object itself as a primary argument,
we have simpler arguments on more methods. This means less cognitive overload of managing
function/method arguments: just pass in the HttpRequest object!

Example 9.1: sprinkles/utils.py

from django.core.exceptions import PermissionDenied

def check_sprinkle_rights(request):
if request.user.can_sprinkle or request.user.is_staff:

return request

Return a HTTP 403 back to the user
raise PermissionDenied

The check_sprinkle_rights() function does a quick check against the rights of the user, raising
a django.core.exceptions.PermissionDenied exception, which triggers a custom HTTP
403 view as we describe in Section 29.4.3: django.core.exceptions.PermissionDenied.

You’ll note that we return back a HttpRequest object rather than an arbitrary value or even a None
object. We do this because as Python is a dynamically typed language, we can attach additional
attributes to the HttpRequest. For example:

Example 9.2: Enhanced sprinkles/utils.py

from django.core.exceptions import PermissionDenied

def check_sprinkles(request):
if request.user.can_sprinkle or request.user.is_staff:

By adding this value here it means our display templates
can be more generic. We don't need to have
{% if request.user.can_sprinkle or request.user.is_staff %}
instead just using
{% if request.can_sprinkle %}

118

9.2: Passing the HttpRequest Object

request.can_sprinkle = True
return request

Return a HTTP 403 back to the user
raise PermissionDenied

There’s another reason, which we’ll cover shortly. In the meantime, let’s demonstrate this code in
action:

Example 9.3: Passing the Request Object in FBVs

sprinkles/views.py
from django.shortcuts import get_object_or_404
from django.shortcuts import render

from .models import Sprinkle
from .utils import check_sprinkles

def sprinkle_list(request):
"""Standard list view"""

request = check_sprinkles(request)

return render(request,
"sprinkles/sprinkle_list.html",
{"sprinkles": Sprinkle.objects.all()})

def sprinkle_detail(request, pk):
"""Standard detail view"""

request = check_sprinkles(request)

sprinkle = get_object_or_404(Sprinkle, pk=pk)

return render(request, "sprinkles/sprinkle_detail.html",
{"sprinkle": sprinkle})

def sprinkle_preview(request):

119

Chapter 9: Best Practices for Function-Based Views

"""Preview of new sprinkle, but without the
check_sprinkles function being used.

"""
sprinkle = Sprinkle.objects.all()
return render(request,

"sprinkles/sprinkle_preview.html",
{"sprinkle": sprinkle})

Another good feature about this approach is that it’s trivial to integrate into class-based views:

Example 9.4: Passing the Request Object in a CBV

from django.views.generic import DetailView

from .models import Sprinkle
from .utils import check_sprinkles

class SprinkleDetail(DetailView):
"""Standard detail view"""

model = Sprinkle

def dispatch(self, request, *args, **kwargs):
request = check_sprinkles(request)
return super(SprinkleDetail, self).dispatch(

request, *args, **kwargs)

TIP: Specific Function Arguments Have Their Place

The downside to single argument functions is that specific function arguments like ‘pk’, ‘flavor’
or ‘text’ make it easier to understand the purpose of a function at a glance. In other words,
try to use this technique for actions that are as generic as possible.

Since we’re repeatedly reusing functions inside functions, wouldn’t it be nice to easily recognize when
this is being done? This is when we bring decorators into play.

120

9.3: Decorators Are Sweet

9.3 Decorators Are Sweet
For once, this isn’t about ice cream, it’s about code! In computer science parlance, syntactic sugar is
a syntax added to a programming language in order to make things easier to read or to express. In
Python, decorators are a feature added not out of necessity, but in order to make code cleaner and
sweeter for humans to read. So yes, Decorators Are Sweet.

When we combine the power of simple functions with the syntactic sugar of decorators, we get handy,
reusable tools like the extremely useful to the point of being ubiquitous
django.contrib.auth.decorators.login_required decorator.

Here’s a sample decorator template for use in function-based views:

Example 9.5: Simple Decorator Template

import functools

def decorator(view_func):
@functools.wraps(view_func)
def new_view_func(request, *args, **kwargs):

You can modify the request (HttpRequest) object here.
response = view_func(request, *args, **kwargs)
You can modify the response (HttpResponse) object here.
return response

return new_view_func

That might not make too much sense, so we’ll go through it step-by-step, using in-line code com-
ments to clarify what we are doing. First, let’s modify the decorator template from the previous
example to match our needs:

Example 9.6: Decorator Example

sprinkles/decorators.py
from functools import wraps

from . import utils

based off the decorator template from the previous chapter

121

Chapter 9: Best Practices for Function-Based Views

def check_sprinkles(view_func):
"""Check if a user can add sprinkles"""
@wraps(view_func)
def new_view_func(request, *args, **kwargs):

Act on the request object with utils.can_sprinkle()
request = utils.can_sprinkle(request)

Call the view function
response = view_func(request, *args, **kwargs)

Return the HttpResponse object
return response

return new_view_func

Then we attach it to the function thus:

Example 9.7: Example of Using a Decorator

sprinkles/views.py
from django.shortcuts import get_object_or_404, render

from .decorators import check_sprinkles
from .models import Sprinkle

Attach the decorator to the view
@check_sprinkles
def sprinkle_detail(request, pk):

"""Standard detail view"""

sprinkle = get_object_or_404(Sprinkle, pk=pk)

return render(request, "sprinkles/sprinkle_detail.html",
{"sprinkle": sprinkle})

122

9.3: Decorators Are Sweet

Figure 9.1: If you look at sprinkles closely, you’ll see that they’re Python decorators.

TIP: What About functools.wraps()?

Astute readers may have noticed that our decorator examples used the functools.wraps()
decorator function from the Python standard library. This is a convenience tool that copies
over metadata including critical data like docstrings to the newly decorated function. It’s not
necessary, but it makes project maintenance much easier.

9.3.1 Be Conservative With Decorators

As with any powerful tool, decorators can be used the wrong way. Too many decorators can
create their own form of obfuscation, making even complex class-based view hierarchies seem
simple in comparison. When using decorators, establish a limit of how many decorators can
be set on a view and stick with it. Video on the subject: pyvideo.org/pycon-us-2011/
pycon-2011--how-to-write-obfuscated-python.html

9.3.2 Additional Resources on Decorators

ä Decorators Explained:
jeffknupp.com/blog/2013/11/29/improve-your-python-decorators-explained/

ä Decorators and Functional Python:
brianholdefehr.com/decorators-and-functional-python

123

http://pyvideo.org/pycon-us-2011/pycon-2011--how-to-write-obfuscated-python.html
http://pyvideo.org/pycon-us-2011/pycon-2011--how-to-write-obfuscated-python.html
https://www.jeffknupp.com/blog/2013/11/29/improve-your-python-decorators-explained/
http://www.brianholdefehr.com/decorators-and-functional-python

Chapter 9: Best Practices for Function-Based Views

ä Decorator Cheat Sheet by author Daniel Roy Greenfeld
pydanny.com/python-decorator-cheatsheet.html

9.4 Passing the HttpResponse Object

Just as with the HttpRequest object, we can also pass around the HttpResponse object from
function to function. Think of this as a selective Middleware.process_template_response()
method. See docs.djangoproject.com/en/1.11/topics/http/middleware/
#process-template-response.

Yes, this technique can be leveraged with decorators. See Example 8.5 which gives a hint as to how
this can be accomplished.

9.5 Summary

Function-based views are still alive and well in the Django world. If we remember that every func-
tion accepts a HttpRequest object and returns an HttpResponse object, we can use that to our
advantage. We can leverage in generic HttpRequest and HttpResponse altering functions, which
can also be used to construct decorator functions.

We’ll close this chapter by acknowledging that every lesson we’ve learned about function-based views
can be applied to what we begin to discuss next chapter, class-based views.

124

https://www.pydanny.com/python-decorator-cheatsheet.html
https://docs.djangoproject.com/en/1.11/topics/http/middleware/#process-template-response
https://docs.djangoproject.com/en/1.11/topics/http/middleware/#process-template-response

10 | Best Practices for Class-Based Views

Django provides a standard way to write class-based views (CBVs). In fact, as we mentioned in
previous chapters, a Django view is just a callable that accepts a request object and returns a re-
sponse. For function-based views (FBVs), the view function is that callable. For CBVs, the view class
provides an as_view() class method that returns the callable. This mechanism is implemented in
django.views.generic.View. All CBVs should inherit from that class, directly or indirectly.

Django also provides a series of generic class-based views (GCBVs) that implement common patterns
found in most web projects and illustrate the power of CBVs.

PACKAGE TIP: Filling the Missing Parts of Django GCBVs

Out of the box, Django does not provide some very useful mixins for GCBVs. The django-
braces library addresses most of these issues. It provides a set of clearly coded mixins that
make Django GCBVs much easier and faster to implement. The library is so useful that many
of its mixins have been copied into core Django.

10.1 Guidelines When Working With CBVs

ä Less view code is better.
ä Never repeat code in views.
ä Views should handle presentation logic. Try to keep business logic in models when possible,

or in forms if you must.
ä Keep your views simple.
ä Keep your mixins simpler.

125

Chapter 10: Best Practices for Class-Based Views

TIP: Familarize Yourself With ccbv.co.uk
Arguably this should be placed as the sixth guideline, ccbv.co.uk is so useful that we felt
it deserved its own tipbox. This site takes all the attributes and methods that every CBV
defines or inherits and flattens it into one comprehensive page per view. Most Django devel-
opers, once they get past the tutorials on CBVs, rely on ccbv.co.uk more than the official
documentation.

10.2 Using Mixins With CBVs
Think of mixins in programming along the lines of mixins in ice cream: you can enhance any ice
cream flavor by mixing in crunchy candy bits, sliced fruit, or even bacon.

Figure 10.1: Popular and unpopular mixins used in ice cream.

Soft serve ice cream greatly benefits from mixins: ordinary vanilla soft serve turns into birthday cake
ice cream when sprinkles, blue buttercream icing, and chunks of yellow cake are mixed in.

In programming, a mixin is a class that provides functionality to be inherited, but isn’t meant for
instantiation on its own. In programming languages with multiple inheritance, mixins can be used
to add enhanced functionality and behavior to classes.

126

http://ccbv.co.uk/
http://ccbv.co.uk/

10.2: Using Mixins With CBVs

We can use the power of mixins to compose our own view classes for our Django apps.

When using mixins to compose our own view classes, we recommend these rules of inheritance
provided by Kenneth Love. The rules follow Python’s method resolution order, which in the most
simplistic definition possible, proceeds from left to right:

1 The base view classes provided by Django always go to the right.
2 Mixins go to the left of the base view.
3 Mixins should inherit from Python’s built-in object type. Keep your inheritance chain simple!

Example of the rules in action:

Example 10.1: Using Mixins in a View

from django.views.generic import TemplateView

class FreshFruitMixin:

def get_context_data(self, **kwargs):
context = super(FreshFruitMixin,

self).get_context_data(**kwargs)
context["has_fresh_fruit"] = True
return context

class FruityFlavorView(FreshFruitMixin, TemplateView):
template_name = "fruity_flavor.html"

In our rather silly example, the FruityFlavorView class inherits from both FreshFruitMixin
and TemplateView.

Since TemplateView is the base view class provided by Django, it goes on the far right (rule 1),
and to its left we place the FreshFruitMixin (rule 2). This way we know that our methods and
properties will execute correctly.

Finally, FreshFruitMixin inherits from object (rule 3).

127

Chapter 10: Best Practices for Class-Based Views

10.3 Which Django GCBV Should Be Used for What Task?

The power of generic class-based views comes at the expense of simplicity: GCBVs come with a
complex inheritance chain that can have up to eight superclasses on import. Trying to work out
exactly which view to use or which method to customize can be very challenging at times.

To mitigate this challenge, here’s a handy chart listing the name and purpose of each Django CBV.
All views listed here are assumed to be prefixed with django.views.generic.

Name Purpose Two Scoops Example

View Base view or handy view that can be
used for anything.

See Section 10.6: Using Just
django.views.generic.View.

RedirectView Redirect user to another URL Send users who visit ‘/log-in/’ to
‘/login/’.

TemplateView Display a Django HTML template. The ‘/about/’ page of our site.

ListView List objects List of ice cream flavors.

DetailView Display an object Details on an ice cream flavor.

FormView Submit a form The site’s contact or email form.
CreateView Create an object Create a new ice cream flavor.

UpdateView Update an object Update an existing ice cream
flavor.

DeleteView Delete an object Delete an unpleasant ice cream
flavor like Vanilla Steak.

Generic date views For display of objects that occur over a
range of time.

Blogs are a common reason to
use them. For Two Scoops, we
could create a public history of
when flavors have been added to
the database.

Table 10.1: Django CBV Usage Table

128

10.4: General Tips for Django CBVs

TIP: The Three Schools of Django CBV/GCBV Usage

We’ve found that there are three major schools of thought around CBV and GCBV usage.
They are:

The School of “Use all the generic views!”
This school of thought is based on the idea that since Django provides functionality to reduce
your workload, why not use that functionality? We tend to belong to this school of thought,
and have used it to great success, rapidly building and then maintaining a number of projects.

The School of “Just use django.views.generic.View”
This school of thought is based on the idea that the base Django CBV does just enough and
is ‘the True CBV, everything else is a Generic CBV’. In the past year, we’ve found this can
be a really useful approach for tricky tasks for which the resource-based approach of “Use all
the views” breaks down. We’ll cover some use cases for it in this chapter.

The School of “Avoid them unless you’re actually subclassing views”
Jacob Kaplan-Moss says, “My general advice is to start with function views since they’re
easier to read and understand, and only use CBVs where you need them. Where do you
need them? Any place where you need a fair chunk of code to be reused among multiple
views.”

We generally belong to the first school, but it’s good for you to know that there’s no real
consensus on best practices here.

10.4 General Tips for Django CBVs

This section covers useful tips for all or many Django CBV and GCBV implementations. We’ve
found they expedite writing of views, templates, and their tests. These techniques will work with
Class-Based Views or Generic Class-Based Views. As always for CBVs in Django, they rely on
object oriented programming techniques.

129

Chapter 10: Best Practices for Class-Based Views

10.4.1 Constraining Django CBV/GCBV Access to Authenticated Users

While the Django CBV documentation gives a helpful working example of using the
django.contrib.auth.decorators.login_required decorator with a CBV, but this ex-
ample violates the rule of keeping logic out of urls.py: docs.djangoproject.com/en/1.11/
topics/class-based-views/intro/#decorating-class-based-views.

Fortunately, Django provides a ready implementation of a LoginRequiredMixin object that you
can attach in moments. For example, we could do the following in all of the Django GCBVs that
we’ve written so far:

Example 10.2: Using LoginRequiredMixin

flavors/views.py
from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import DetailView

from .models import Flavor

class FlavorDetailView(LoginRequiredMixin, DetailView):
model = Flavor

TIP: Don’t Forget the GCBV Mixin Order!

Remember that:
ä LoginRequiredMixin must always go on the far left side.
ä The base view class must always go on the far right side.

If you forget and switch the order, you will get broken or unpredictable results.

WARNING: Overriding dispatch() When Using LoginRequiredMixin

If you use LoginRequiredMixin and override the dispatch method, make sure that the first
thing you do is call super(FlavorDetailview, self).dispatch(request, *args,
**kwargs). Any code before the super() call is executed even if the user is not authenti-
cated.

130

https://docs.djangoproject.com/en/1.11/topics/class-based-views/intro/#decorating-class-based-views
https://docs.djangoproject.com/en/1.11/topics/class-based-views/intro/#decorating-class-based-views

10.4: General Tips for Django CBVs

10.4.2 Performing Custom Actions on Views With Valid Forms

When you need to perform a custom action on a view with a valid form, the form_valid()method
is where the GCBV workflow sends the request.

Example 10.3: Custom Logic with Valid Forms

from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

def form_valid(self, form):
Do custom logic here
return super(FlavorCreateView, self).form_valid(form)

To perform custom logic on form data that has already been validated, simply
add the logic to form_valid(). The return value of form_valid() should be a
django.http.HttpResponseRedirect.

10.4.3 Performing Custom Actions on Views With Invalid Forms

When you need to perform a custom action on a view with an invalid form, the form_invalid()
method is where the Django GCBV workflow sends the request. This method should return a
django.http.HttpResponse.

Example 10.4: Overwriting Behavior of form_invalid

from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView

from .models import Flavor

131

Chapter 10: Best Practices for Class-Based Views

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor

def form_invalid(self, form):
Do custom logic here
return super(FlavorCreateView, self).form_invalid(form)

Just as you can add logic to form_valid(), you can also add logic to form_invalid().

You’ll see an example of overriding both of these methods in Section 12.5.1: ModelForm Data Is
Saved to the Form, Then the Model Instance.

Figure 10.2: The other CBV: class-based vanilla ice cream.

10.4.4 Using the View Object

If you are using class-based views for rendering content, consider using the view object itself to
provide access to properties and methods that can be called by other method and properties. They
can also be called from templates. For example:

132

10.4: General Tips for Django CBVs

Example 10.5: Using the View Object

from django.contrib.auth.mixins import LoginRequiredMixin
from django.utils.functional import cached_property
from django.views.generic import UpdateView, TemplateView

from .models import Flavor
from .tasks import update_user_who_favorited

class FavoriteMixin:

@cached_property
def likes_and_favorites(self):

"""Returns a dictionary of likes and favorites"""
likes = self.object.likes()
favorites = self.object.favorites()
return {

"likes": likes,
"favorites": favorites,
"favorites_count": favorites.count(),

}

class FlavorUpdateView(LoginRequiredMixin, FavoriteMixin, UpdateView):
model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

def form_valid(self, form):
update_user_who_favorited(

instance=self.object,
favorites=self.likes_and_favorites['favorites']

)
return super(FlavorUpdateView, self).form_valid(form)

class FlavorDetailView(LoginRequiredMixin, FavoriteMixin, TemplateView):
model = Flavor

The nice thing about this is the various flavors/ app templates can now access this property:

133

Chapter 10: Best Practices for Class-Based Views

Example 10.6: Using View Methods in flavors/base.html

{# flavors/base.html #}
{% extends "base.html" %}

{% block likes_and_favorites %}

Likes: {{ view.likes_and_favorites.likes }}
Favorites: {{ view.likes_and_favorites.favorites_count }}

{% endblock likes_and_favorites %}

10.5 How GCBVs and Forms Fit Together
A common source of confusion with GCBVs is their usage with Django forms.

Using our favorite example of the ice cream flavor tracking app, let’s chart out a couple of examples
of how form-related views might fit together.

First, let’s define a flavor model to use in this section’s view examples:

Example 10.7: Flavor Model

flavors/models.py
from django.db import models
from django.urls import reverse

class Flavor(models.Model):

STATUS_0 = 0
STATUS_1 = 1
STATUS_CHOICES=(

(STATUS_0, 'zero'),
(STATUS_1 = 'one'),

)

title = models.CharField(max_length=255)
slug = models.SlugField(unique=True)

134

10.5: How GCBVs and Forms Fit Together

scoops_remaining = models.IntegerField(choices=STATUS_CHOICES,
default=STATUS_0)

def get_absolute_url(self):
return reverse("flavors:detail", kwargs={"slug": self.slug})

Now, let’s explore some common Django form scenarios that most Django users run into at one
point or another.

10.5.1 Views + ModelForm Example

This is the simplest and most common Django form scenario. Typically when you create a model,
you want to be able to add new records and update existing records that correspond to the model.

In this example, we’ll show you how to construct a set of views that will create, update and display
Flavor records. We’ll also demonstrate how to provide confirmation of changes.

Here we have the following views:

1 FlavorCreateView corresponds to a form for adding new flavors.
2 FlavorUpdateView corresponds to a form for editing existing flavors.
3 FlavorDetailView corresponds to the confirmation page for both flavor creation and flavor

updates.

To visualize our views:

Figure 10.3: Views + ModelForm Flow

135

Chapter 10: Best Practices for Class-Based Views

Note that we stick as closely as possible to Django naming conventions. FlavorCreateView sub-
classes Django’s CreateView, FlavorUpdateView subclasses Django’s UpdateView, and Fla-
vorDetailView subclasses Django’s DetailView.

Writing these views is easy, since it’s mostly a matter of using what Django gives us:

Example 10.8: Building Views Quickly with CBVs

flavors/views.py
from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView, DetailView, UpdateView

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

class FlavorUpdateView(LoginRequiredMixin, UpdateView):
model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

class FlavorDetailView(DetailView):
model = Flavor

Simple at first glance, right? We accomplish so much with just a little bit of code!

But wait, there’s a catch. If we wire these views into a urls.py module and create the necessary tem-
plates, we’ll uncover a problem:

The FlavorDetailView is not a confirmation page.

For now, that statement is correct. Fortunately, we can fix it quickly with a few modifications to
existing views and templates.

The first step in the fix is to use django.contrib.messages to inform the user visiting the Fla-
vorDetailView that they just added or updated the flavor.

136

10.5: How GCBVs and Forms Fit Together

We’ll need to override the FlavorCreateView.form_valid() and FlavorUpdate-
View.form_valid() methods. We can do this conveniently for both views with a Flavo-
rActionMixin.

For the confirmation page fix, we change flavors/views.py to contain the following:

Example 10.9: Success Message Example

flavors/views.py
from django.contrib import messages
from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView, DetailView, UpdateView

from .models import Flavor

class FlavorActionMixin:

fields = ['title', 'slug', 'scoops_remaining']

@property
def success_msg(self):

return NotImplemented

def form_valid(self, form):
messages.info(self.request, self.success_msg)
return super(FlavorActionMixin, self).form_valid(form)

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

model = Flavor
success_msg = "Flavor created!"

class FlavorUpdateView(LoginRequiredMixin, FlavorActionMixin,
UpdateView):

model = Flavor
success_msg = "Flavor updated!"

class FlavorDetailView(DetailView):
model = Flavor

137

Chapter 10: Best Practices for Class-Based Views

Earlier in this chapter, we covered a simpler example of how to override form_valid() within a
GCBV. Here, we reuse a similar form_valid() override method by creating a mixin to inherit from
in multiple views.

Now we’re using Django’s messages framework to display confirmation messages to the user upon
every successful add or edit. We define a FlavorActionMixin whose job is to queue up a confir-
mation message corresponding to the action performed in a view.

TIP: Mixins Should Inherit From Object

Please take notice that the FlavorActionMixin inherits from Python’s object type rather
than a pre-existing mixin or view. It’s important that mixins have as shallow inheritance chain
as possible. Simplicity is a virtue!

After a flavor is created or updated, a list of messages is passed to the context of the FlavorDetail-
View. We can see these messages if we add the following code to the views’ template and then create
or update a flavor:

Example 10.10: flavor_detail.html

{% if messages %}
<ul class="messages">

{% for message in messages %}
<li id="message_{{ forloop.counter }}"

{% if message.tags %} class="{{ message.tags }}"
{% endif %}>

{{ message }}

{% endfor %}

{% endif %}

TIP: Reuse the Messages Template Code!

It is common practice to put the above code into your project’s base HTML template. Doing
this allows message support for templates in your project.

138

10.5: How GCBVs and Forms Fit Together

To recap, this example demonstrated yet again how to override the form_valid()method, incorpo-
rate this into a mixin, how to incorporate multiple mixins into a view, and gave a quick introduction
to the very useful django.contrib.messages framework.

10.5.2 Views + Form Example

Sometimes you want to use a Django Form rather than a ModelForm. Search forms are a particularly
good use case for this, but you’ll run into other scenarios where this is true as well.

In this example, we’ll create a simple flavor search form. This involves creating a HTML form that
doesn’t modify any flavor data. The form’s action will query the ORM, and the records found will be
listed on a search results page.

Our intention is that when using our flavor search page, if users do a flavor search for “Dough”,
they should be sent to a page listing ice cream flavors like “Chocolate Chip Cookie Dough,” “Fudge
Brownie Dough,” “Peanut Butter Cookie Dough,” and other flavors containing the string “Dough”
in their title. Mmm, we definitely want this feature in our web application.

There are more complex ways to implement this, but for our simple use case, all we need is a single
view. We’ll use a FlavorListView for both the search page and the search results page.

Here’s an overview of our implementation:

Figure 10.4: Views + Form Flow

In this scenario, we want to follow the standard internet convention for search pages, where ‘q’ is
used for the search query parameter. We also want to accept a GET request rather than a POST
request, which is unusual for forms but perfectly fine for this use case. Remember, this form doesn’t
add, edit, or delete objects, so we don’t need a POST request here.

To return matching search results based on the search query, we need to modify the standard queryset
supplied by the ListView. To do this, we override the ListView's get_queryset() method.
We add the following code to flavors/views.py:

139

Chapter 10: Best Practices for Class-Based Views

Example 10.11: List View Combined with Q Search

from django.views.generic import ListView

from .models import Flavor

class FlavorListView(ListView):
model = Flavor

def get_queryset(self):
Fetch the queryset from the parent get_queryset
queryset = super(FlavorListView, self).get_queryset()

Get the q GET parameter
q = self.request.GET.get("q")
if q:

Return a filtered queryset
return queryset.filter(title__icontains=q)

Return the base queryset
return queryset

Now, instead of listing all of the flavors, we list only the flavors whose titles contain the search string.

As we mentioned, search forms are unusual in that unlike nearly every other HTML form they
specify a GET request in the HTML form. This is because search forms are not changing data, but
simply retrieving information from the server. The search form should look something like this:

Example 10.12: Search Snippet of HTML

{# templates/flavors/_flavor_search.html #}
{% comment %}

Usage: {% include "flavors/_flavor_search.html" %}
{% endcomment %}
<form action="{% url "flavor_list" %}" method="GET">

<input type="text" name="q" />
<button type="submit">search</button>

</form>

140

10.6: Using Just django.views.generic.View

TIP: Specify the Form Target in Search Forms

We also take care to specify the URL in the form action, because we’ve found that search
forms are often included in several pages. This is why we prefix them with ‘_’ and create
them in such a way as to be included in other templates.

Once we get past overriding the ListView's get_queryset() method, the rest of this example
is just a simple HTML form. We like this kind of simplicity.

10.6 Using Just django.views.generic.View
It’s entirely possible to build a project just using django.views.generic.View for all the views.
It’s not as extreme as one might think. For example, if we look at the official Django docu-
mentation’s introduction to class-based views (docs.djangoproject.com/en/1.11/topics/
class-based-views/intro/#using-class-based-views), we can see the approach is very
close to how function-based views are written. In fact, we highlighted this two chapters ago in Sec-
tion 8.6.1: The Simplest Views because it’s important.

Imagine instead of writing function-based views with nested-ifs representing different HTTP meth-
ods or class-based views where the HTTP methods are hidden behind get_context_data() and
form_valid() methods, they are readily accessible to developers. Imagine something like:

Example 10.13: Using the Base View Class

from django.contrib.auth.mixins import LoginRequiredMixin
from django.shortcuts import get_object_or_404
from django.shortcuts import render, redirect
from django.views.generic import View

from .forms import FlavorForm
from .models import Flavor

class FlavorView(LoginRequiredMixin, View):

def get(self, request, *args, **kwargs):
Handles display of the Flavor object
flavor = get_object_or_404(Flavor, slug=kwargs['slug'])

141

https://docs.djangoproject.com/en/1.11/topics/class-based-views/intro/#using-class-based-views
https://docs.djangoproject.com/en/1.11/topics/class-based-views/intro/#using-class-based-views

Chapter 10: Best Practices for Class-Based Views

return render(request,
"flavors/flavor_detail.html",

{"flavor": flavor}
)

def post(self, request, *args, **kwargs):
Handles updates of the Flavor object
flavor = get_object_or_404(Flavor, slug=kwargs['slug'])
form = FlavorForm(request.POST)
if form.is_valid():

form.save()
return redirect("flavors:detail", flavor.slug)

While we can do this in a function-based view, it can be argued that the GET/POST method dec-
larations within the FlavorView are easier to read than the traditional “if request.method ==
...” conditions. In addition, since the inheritance chain is so shallow, it means using mixins doesn’t
threaten us with cognitive overload.

What we find really useful, even on projects which use a lot of generic class-based views, is using
the django.views.generic.View class with a GET method for displaying JSON, PDF or other
non-HTML content. All the tricks that we’ve used for rendering CSV, Excel, and PDF files in
function-based views apply when using the GET method. For example:

Example 10.14: Using the View Class to Create PDFs

from django.contrib.auth.mixins import LoginRequiredMixin
from django.http import HttpResponse
from django.shortcuts import get_object_or_404
from django.views.generic import View

from .models import Flavor
from .reports import make_flavor_pdf

class FlavorPDFView(LoginRequiredMixin, View):

def get(self, request, *args, **kwargs):
Get the flavor

142

10.7: Additional Resources

flavor = get_object_or_404(Flavor, slug=kwargs['slug'])

create the response
response = HttpResponse(content_type='application/pdf')

generate the PDF stream and attach to the response
response = make_flavor_pdf(response, flavor)

return response

This is a pretty straight-forward example, but if we have to leverage more mixins and deal with more
custom logic, the simplicity of django.views.generic.Viewmakes it much easier than the more
heavyweight views. In essence, we get all the advantages of function-based views combined with the
object-oriented power that CBVs give us.

10.7 Additional Resources

ä docs.djangoproject.com/en/1.11/topics/class-based-views/
ä docs.djangoproject.com/en/1.11/topics/class-based-views/

generic-display/
ä docs.djangoproject.com/en/1.11/topics/class-based-views/

generic-editing/
ä docs.djangoproject.com/en/1.11/topics/class-based-views/mixins/
ä docs.djangoproject.com/en/1.11/ref/class-based-views/
ä The GCBV inspector at ccbv.co.uk
ä python.org/download/releases/2.3/mro/
ä pydanny.com/tag/class-based-views.html

PACKAGE TIP: Other Useful CBV Libraries
ä django-extra-views Another great CBV library, django-extra-views covers the cases

that django-braces does not.
ä django-vanilla-views A very interesting library that provides all the power of classic

Django GCBVs in a vastly simplified, easier-to-use package. Works great in combina-
tion with django-braces.

143

https://docs.djangoproject.com/en/1.11/topics/class-based-views/
https://docs.djangoproject.com/en/1.11/topics/class-based-views/generic-display/
https://docs.djangoproject.com/en/1.11/topics/class-based-views/generic-display/
https://docs.djangoproject.com/en/1.11/topics/class-based-views/generic-editing/
https://docs.djangoproject.com/en/1.11/topics/class-based-views/generic-editing/
https://docs.djangoproject.com/en/1.11/topics/class-based-views/mixins/
https://docs.djangoproject.com/en/1.11/ref/class-based-views/
http://ccbv.co.uk
https://python.org/download/releases/2.3/mro/
https://pydanny.com/tag/class-based-views.html

Chapter 10: Best Practices for Class-Based Views

10.8 Summary

This chapter covered:

ä Using mixins with CBVs
ä Which Django CBV should be used for which task
ä General tips for CBV usage
ä Connecting CBVs to forms
ä Using the base django.views.generic.View

The next chapter explores common CBV/form patterns. Knowledge of these are helpful to have in
your developer toolbox.

144

11 | Common Patterns for Forms

Django forms are powerful, flexible, extensible, and robust. For this reason, the Django admin and
CBVs use them extensively. In fact, all the major Django API frameworks use ModelForms or a
similar implementation as part of their validation.

Combining forms, models, and views allows us to get a lot of work done for little effort. The learning
curve is worth it: once you learn to work fluently with these components, you’ll find that Django
provides the ability to create an amazing amount of useful, stable functionality at an amazing pace.

PACKAGE TIP: Useful Form-Related Packages

ä django-floppyforms for rendering Django inputs in HTML5.
ä django-crispy-forms for advanced form layout controls. By default, forms are rendered

with Twitter Bootstrap form elements and styles. This package plays well with django-
floppyforms, so they are often used together.

ä django-forms-bootstrap is a simple tool for rendering Django forms using Twitter
Bootstrap styles. This package plays well with django-floppyforms but conflicts with
django-crispy-forms.

This chapter goes explicitly into one of the best parts of Django: forms, models, and CBVs working
in concert. This chapter covers five common form patterns that should be in every Django developer’s
toolbox.

145

Chapter 11: Common Patterns for Forms

11.1 Pattern 1: Simple ModelForm With Default
Validators

The simplest data-changing form that we can make is a ModelForm using several default validators
as-is, without modification. In fact, we already relied on default validators in Section 10.5.1: Views
+ ModelForm Example.

If you recall, using ModelForms with CBVs to implement add/edit forms can be done in just a few
lines of code:

Example 11.1: flavors/views.py

from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView, UpdateView

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

class FlavorUpdateView(LoginRequiredMixin, UpdateView):
model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

To summarize how we use default validation as-is here:

ä FlavorCreateView and FlavorUpdateView are assigned Flavor as their model.
ä Both views auto-generate a ModelForm based on the Flavor model.
ä Those ModelForms rely on the default field validation rules of the Flavor model.

Yes, Django gives us a lot of great defaults for data validation, but in practice, the defaults are never
enough. We recognize this, so as a first step, the next pattern will demonstrate how to create a custom
field validator.

146

11.2: Pattern 2: Custom Form Field Validators in ModelForms

11.2 Pattern 2: Custom Form Field Validators in
ModelForms

What if we wanted to be certain that every use of the title field across our project’s dessert apps
started with the word ‘Tasty’?

Figure 11.1: At Tasty Research, every flavor must begin with “Tasty”.

This is a string validation problem that can be solved with a simple custom field validator.

In this pattern, we cover how to create custom single-field validators and demonstrate how to add
them to both abstract models and forms.

Imagine for the purpose of this example that we have a project with two different dessert-related mod-
els: a Flavor model for ice cream flavors, and a Milkshake model for different types of milkshakes.
Assume that both of our example models have title fields.

To validate all editable model titles, we start by creating a validators.py module:

147

Chapter 11: Common Patterns for Forms

Example 11.2: validators.py

core/validators.py
from django.core.exceptions import ValidationError

def validate_tasty(value):
"""Raise a ValidationError if the value doesn't start with the

word 'Tasty'.
"""
if not value.startswith('Tasty'):

msg = 'Must start with Tasty'
raise ValidationError(msg)

In Django, a custom field validator is simply a callable (usually a function) that raises an error if the
submitted argument doesn’t pass its test.

Of course, while our validate_tasty() validator function just does a simple string check for the
sake of example, it’s good to keep in mind that form field validators can become quite complex in
practice.

TIP: Test Your Validators Carefully

Since validators are critical in keeping corruption out of Django project databases, it’s espe-
cially important to write detailed tests for them.

These tests should include thoughtful edge case tests for every condition related to your val-
idators’ custom logic.

In order to use our validate_tasty() validator function across different dessert models, we’re
going to first add it to an abstract model called TastyTitleAbstractModel, which we plan to use
across our project.

Assuming that our Flavor and Milkshake models are in separate apps, it doesn’t make sense to
put our validator in one app or the other. Instead, we create a core/models.py module and place the
TastyTitleAbstractModel there.

148

11.2: Pattern 2: Custom Form Field Validators in ModelForms

Example 11.3: Adding Custom Validator to a Model

core/models.py
from django.db import models

from .validators import validate_tasty

class TastyTitleAbstractModel(models.Model):

title = models.CharField(max_length=255, validators=[validate_tasty])

class Meta:
abstract = True

The last two lines of the above example code for core/models.py make TastyTitleAbstractModel
an abstract model, which is what we want. See Section 6.1.2: Be Careful With Model Inheritance.

Let’s alter the original flavors/models.py Flavor code to use TastyTitleAbstractModel as the
parent class:

Example 11.4: Inheriting Validators

flavors/models.py
from django.db import models
from django.urls import reverse

from core.models import TastyTitleAbstractModel

class Flavor(TastyTitleAbstractModel):
slug = models.SlugField()
scoops_remaining = models.IntegerField(default=0)

def get_absolute_url(self):
return reverse('flavors:detail', kwargs={'slug': self.slug})

This works with the Flavor model, and it will work with any other tasty food-based model such
as a WaffleCone or Cake model. Any model that inherits from the TastyTitleAbstractModel

149

Chapter 11: Common Patterns for Forms

class will throw a validation error if anyone attempts to save a model with a title that doesn’t start
with ‘Tasty’.

Now, let’s explore a couple of questions that might be forming in your head:

ä What if we wanted to use validate_tasty() in just forms?
ä What if we wanted to assign it to other fields besides the title?

To support these behaviors, we need to create a custom FlavorForm that utilizes our custom field
validator:

Example 11.5: Adding Custom Validators to a Model Form

flavors/forms.py
from django import forms

from .models import Flavor
from core.validators import validate_tasty

class FlavorForm(forms.ModelForm):
def __init__(self, *args, **kwargs):

super(FlavorForm, self).__init__(*args, **kwargs)
self.fields['title'].validators.append(validate_tasty)
self.fields['slug'].validators.append(validate_tasty)

class Meta:
model = Flavor

A nice thing about both examples of validator usage in this pattern is that we haven’t had to change
the validate_tasty() code at all. Instead, we just import and use it in new places.

Attaching the custom form to the views is our next step. The default behavior of Django model-based
edit views is to auto-generate the ModelForm based on the view’s model attribute. We are going to
override that default and pass in our custom FlavorForm. This occurs in the flavors/views.py module,
where we alter the create and update forms as demonstrated below:

150

11.2: Pattern 2: Custom Form Field Validators in ModelForms

Example 11.6: Overriding the CBV form_class Attribute

flavors/views.py
from django.contrib import messages
from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView, DetailView, UpdateView

from .models import Flavor
from .forms import FlavorForm

class FlavorActionMixin:

model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

@property
def success_msg(self):

return NotImplemented

def form_valid(self, form):
messages.info(self.request, self.success_msg)
return super(FlavorActionMixin, self).form_valid(form)

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

success_msg = 'created'
Explicitly attach the FlavorForm class
form_class = FlavorForm

class FlavorUpdateView(LoginRequiredMixin, FlavorActionMixin,
UpdateView):

success_msg = 'updated'
Explicitly attach the FlavorForm class
form_class = FlavorForm

class FlavorDetailView(DetailView):
model = Flavor

The FlavorCreateView and FlavorUpdateView views now use the new FlavorForm to validate

151

Chapter 11: Common Patterns for Forms

incoming data.

Note that with these modifications, the Flavor model can either be identical to the one at the start
of this chapter, or it can be an altered one that inherits from TastyTitleAbstractModel.

11.3 Pattern 3: Overriding the Clean Stage of Validation
Let’s discuss some interesting validation use cases:

ä Multi-field validation
ä Validation involving existing data from the database that has already been validated

Both of these are great scenarios for overriding the clean() and clean_<field_name>() meth-
ods with custom validation logic.

After the default and custom field validators are run, Django provides a second stage and process
for validating incoming data, this time via the clean() method and clean_<field_name>()
methods. You might wonder why Django provides more hooks for validation, so here are our two
favorite arguments:

1 The clean() method is the place to validate two or more fields against each other, since it’s
not specific to any one particular field.

2 The clean validation stage is a better place to attach validation against persistent data. Since the
data already has some validation, you won’t waste as many database cycles on needless queries.

Let’s explore this with another validation example. Perhaps we want to implement an ice cream
ordering form, where users could specify the flavor desired, add toppings, and then come to our store
and pick them up.

Since we want to prevent users from ordering flavors that are out of stock, we’ll put in a
clean_slug() method. With our flavor validation, our form might look like:

Example 11.7: Custom clean_slug() Method

flavors/forms.py
from django import forms

from flavors.models import Flavor

152

11.3: Pattern 3: Overriding the Clean Stage of Validation

class IceCreamOrderForm(forms.Form):
"""Normally done with forms.ModelForm. But we use forms.Form here

to demonstrate that these sorts of techniques work on every
type of form.

"""
slug = forms.ChoiceField(label='Flavor')
toppings = forms.CharField()

def __init__(self, *args, **kwargs):
super(IceCreamOrderForm, self).__init__(*args,

**kwargs)
We dynamically set the choices here rather than
in the flavor field definition. Setting them in
the field definition means status updates won't
be reflected in the form without server restarts.
self.fields['slug'].choices = [

(x.slug, x.title) for x in Flavor.objects.all()
]
NOTE: We could filter by whether or not a flavor
has any scoops, but this is an example of
how to use clean_slug, not filter().

def clean_slug(self):
slug = self.cleaned_data['slug']
if Flavor.objects.get(slug=slug).scoops_remaining <= 0:

msg = 'Sorry, we are out of that flavor.'
raise forms.ValidationError(msg)

return slug

For HTML-powered views, the clean_slug() method in our example, upon throwing an error,
will attach a “Sorry, we are out of that flavor” message to the flavor HTML input field. This is a great
shortcut for writing HTML forms!

Now imagine if we get common customer complaints about orders with too much chocolate. Yes, it’s
silly and quite impossible, but we’re just using ‘too much chocolate’ as a completely mythical example
for the sake of making a point.

153

Chapter 11: Common Patterns for Forms

In any case, let’s use the clean() method to validate the flavor and toppings fields against each
other.

Example 11.8: Custom clean() Form Method

attach this code to the previous example (12.7)
def clean(self):

cleaned_data = super(IceCreamOrderForm, self).clean()
slug = cleaned_data.get('slug', '')
toppings = cleaned_data.get('toppings', '')

Silly "too much chocolate" validation example
in_slug = 'chocolate' in slug.lower()
in_toppings = 'chocolate' in toppings.lower()
if in_slug and in_toppings:

msg = 'Your order has too much chocolate.'
raise forms.ValidationError(msg)

return cleaned_data

There we go, an implementation against the impossible condition of too much chocolate!

TIP: Common Fields Used in Multi-Field Validation
It is common practice for user account forms involved with email and password entry to force
the user to enter the same data twice. Other things to check for against those fields include:

ä Strength of the submitted password.
ä If the email model field isn’t set to unique=True, whether or not the email is unique.

154

11.4: Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)

Figure 11.2: Why would they do this to us?

11.4 Pattern 4: Hacking Form Fields
(2 CBVs, 2 Forms, 1 Model)

This is where we start to get fancy. We’re going to cover a situation where two views/forms correspond
to one model. We’ll hack Django forms to produce a form with custom behavior.

It’s not uncommon to have users create a record that contains a few empty fields which need additional
data later. An example might be a list of stores, where we want each store entered into the system as
fast as possible, but want to add more data such as phone number and description later. Here’s our
IceCreamStore model:

155

Chapter 11: Common Patterns for Forms

Example 11.9: IceCreamStore Model

stores/models.py
from django.db import models
from django.urls import reverse

class IceCreamStore(models.Model):
title = models.CharField(max_length=100)
block_address = models.TextField()
phone = models.CharField(max_length=20, blank=True)
description = models.TextField(blank=True)

def get_absolute_url(self):
return reverse('store_detail', kwargs={'pk': self.pk})

The default ModelForm for this model forces the user to enter the title and block_address field
but allows the user to skip the phone and description fields. That’s great for initial data entry, but
as mentioned earlier, we want to have future updates of the data to require the phone and description
fields.

The way we implemented this in the past before we began to delve into their construction was to
override the phone and description fields in the edit form. This resulted in heavily-duplicated code
that looked like this:

Example 11.10: Repeated HeavilyDuplicated Code

stores/forms.py
from django import forms

from .models import IceCreamStore

class IceCreamStoreUpdateForm(forms.ModelForm):
Don't do this! Duplication of the model field!
phone = forms.CharField(required=True)
Don't do this! Duplication of the model field!
description = forms.TextField(required=True)

class Meta:

156

11.4: Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)

model = IceCreamStore

This form should look very familiar. Why is that?

Well, we’re nearly copying the IceCreamStore model!

This is just a simple example, but when dealing with a lot of fields on a model, the duplication becomes
extremely challenging to manage. In fact, what tends to happen is copy-pasting of code from models
right into forms, which is a gross violation of Don’t Repeat Yourself.

Want to know how gross? Using the above approach, if we add a simple help_text attribute to
the description field in the model, it will not show up in the template until we also modify the
description field definition in the form. If that sounds confusing, that’s because it is.

A better way is to rely on a useful little detail that’s good to remember about Django forms: instanti-
ated form objects store fields in a dict-like attribute called fields.

Instead of copy-pasting field definitions from models to forms, we can simply modify existing at-
tributes on specified fields in the __init__() method of the ModelForm:

Example 11.11: Overriding Init to Modify Existing Field Attributes

stores/forms.py
Call phone and description from the self.fields dict-like object
from django import forms

from .models import IceCreamStore

class IceCreamStoreUpdateForm(forms.ModelForm):

class Meta:
model = IceCreamStore

def __init__(self, *args, **kwargs):
Call the original __init__ method before assigning
field overloads
super(IceCreamStoreUpdateForm, self).__init__(*args,

**kwargs)

157

Chapter 11: Common Patterns for Forms

self.fields['phone'].required = True
self.fields['description'].required = True

This improved approach allows us to stop copy-pasting code and instead focus on just the field-
specific settings.

An important point to remember is that when it comes down to it, Django forms are just Python
classes. They get instantiated as objects, they can inherit from other classes, and they can act as
superclasses.

Therefore, we can rely on inheritance to trim the line count in our ice cream store forms:

Example 11.12: Using Inheritance to Clean Up Forms

stores/forms.py
from django import forms

from .models import IceCreamStore

class IceCreamStoreCreateForm(forms.ModelForm):

class Meta:
model = IceCreamStore
fields = ['title', 'block_address',]

class IceCreamStoreUpdateForm(IceCreamStoreCreateForm):

def __init__(self, *args, **kwargs):
super(IceCreamStoreUpdateForm,

self).__init__(*args, **kwargs)
self.fields['phone'].required = True
self.fields['description'].required = True

class Meta(IceCreamStoreCreateForm.Meta):
show all the fields!
fields = ['title', 'block_address', 'phone',

'description',]

158

11.5: Pattern 5: Reusable Search Mixin View

WARNING: Use Meta.fields and Never Use Meta.exclude
We use Meta.fields instead of Meta.exclude so that we know exactly what fields we
are exposing. See Section 26.14: Don’t Use ModelForms.Meta.exclude.

Finally, now we have what we need to define the corresponding CBVs. We’ve got our form classes,
so let’s use them in the IceCreamStore create and update views:

Example 11.13: Revised Create and Update Views

stores/views
from django.views.generic import CreateView, UpdateView

from .forms import IceCreamStoreCreateForm, IceCreamStoreUpdateForm
from .models import IceCreamStore

class IceCreamCreateView(CreateView):
model = IceCreamStore
form_class = IceCreamStoreCreateForm

class IceCreamUpdateView(UpdateView):
model = IceCreamStore
form_class = IceCreamStoreUpdateForm

We now have two views and two forms that work with one model.

11.5 Pattern 5: Reusable Search Mixin View

In this example, we’re going to cover how to reuse a search form in two views that correspond to two
different models.

Assume that both models have a field called title (this pattern also demonstrates why naming
standards in projects is a good thing). This example will demonstrate how a single CBV can be used
to provide simple search functionality on both the Flavor and IceCreamStore models.

We’ll start by creating a simple search mixin for our view:

159

Chapter 11: Common Patterns for Forms

Example 11.14: TitleSearchMixin a simple search class

core/views.py
class TitleSearchMixin:

def get_queryset(self):
Fetch the queryset from the parent's get_queryset
queryset = super(TitleSearchMixin, self).get_queryset()

Get the q GET parameter
q = self.request.GET.get('q')
if q:

return a filtered queryset
return queryset.filter(title__icontains=q)

No q is specified so we return queryset
return queryset

The above code should look very familiar as we used it almost verbatim in the Forms + View example.
Here’s how you make it work with both the Flavor and IceCreamStore views. First the flavor
view:

Example 11.15: Adding TitleSearchMixin to FlavorListView

add to flavors/views.py
from django.views.generic import ListView

from .models import Flavor
from core.views import TitleSearchMixin

class FlavorListView(TitleSearchMixin, ListView):
model = Flavor

And we’ll add it to the ice cream store views:

Example 11.16: Adding TitleSearchMixin to IceCreamStoreListView

add to stores/views.py
from django.views.generic import ListView

160

11.6: Summary

from .models import Store
from core.views import TitleSearchMixin

class IceCreamStoreListView(TitleSearchMixin, ListView):
model = Store

As for the form? We just define it in HTML for each ListView:

Example 11.17: Snippet from stores/store_list.html

{# form to go into stores/store_list.html template #}
<form action="" method="GET">

<input type="text" name="q" />
<button type="submit">search</button>

</form>

and

Example 11.18: snippet from flavors/flavor_list.html

{# form to go into flavors/flavor_list.html template #}
<form action="" method="GET">

<input type="text" name="q" />
<button type="submit">search</button>

</form>

Now we have the same mixin in both views. Mixins are a good way to reuse code, but using too many
mixins in a single class makes for very hard-to-maintain code. As always, try to keep your code as
simple as possible.

11.6 Summary
We began this chapter with the simplest form pattern, using a ModelForm, CBV, and default val-
idators. We iterated on that with an example of a custom validator.

Next, we explored more complex validation. We covered an example overriding the clean methods.
We also closely examined a scenario involving two views and their corresponding forms that were
tied to a single model.

161

Chapter 11: Common Patterns for Forms

Finally, we covered an example of creating a reusable search mixin to add the same form to two
different apps.

162

12 | Form Fundamentals

100% of Django projects should use Forms.
95% of Django projects should use ModelForms.
91% of all Django projects use ModelForms.
80% of ModelForms require trivial logic.
20% of ModelForms require complicated logic.

– pydanny made-up statistics™

Django’s forms are really powerful, and knowing how to use them anytime data is coming from
outside your application is part of keeping your data clean.

There are edge cases that can cause a bit of anguish. If you understand the structure of how forms are
composed and how to call them, most edge cases can be readily overcome.

The most important thing to remember about Django forms is they should be used to validate all
incoming data.

12.1 Validate All Incoming Data With Django Forms
Django’s forms are a wonderful framework designed to validate Python dictionaries. While most
of the time we use them to validate incoming HTTP requests containing POST, there is nothing
limiting them to be used just in this manner.

For example, let’s say we have a Django app that updates its model via CSV files fetched from another
project. To handle this sort of thing, it’s not uncommon to see code like this (albeit in not as simplistic
an example):

163

Chapter 12: Form Fundamentals

Example 12.1: How Not to Import CSV

import csv

from django.utils.six import StringIO

from .models import Purchase

def add_csv_purchases(rows):

rows = StringIO.StringIO(rows)
records_added = 0

Generate a dict per row, with the first CSV row being the keys
for row in csv.DictReader(rows, delimiter=','):

DON'T DO THIS: Tossing unvalidated data into your model.
Purchase.objects.create(**row)
records_added += 1

return records_added

In fact, what you don’t see is that we’re not checking to see if sellers, stored as a string in the Pur-
chasemodel, are actually valid sellers. We could add validation code to our add_csv_purchases()
function, but let’s face it, keeping complex validation code understandable as requirements and data
changes over time is hard.

A better approach is to validate the incoming data with a Django Form like so:

Example 12.2: How to Safely Import CSV

import csv

from django.utils.six import StringIO

from django import forms

from .models import Purchase, Seller

class PurchaseForm(forms.ModelForm):

164

12.1: Validate All Incoming Data With Django Forms

class Meta:
model = Purchase

def clean_seller(self):
seller = self.cleaned_data['seller']
try:

Seller.objects.get(name=seller)
except Seller.DoesNotExist:

msg = '{0} does not exist in purchase #{1}.'.format(
seller,
self.cleaned_data['purchase_number']

)
raise forms.ValidationError(msg)

return seller

def add_csv_purchases(rows):

rows = StringIO.StringIO(rows)

records_added = 0
errors = []
Generate a dict per row, with the first CSV row being the keys.
for row in csv.DictReader(rows, delimiter=','):

Bind the row data to the PurchaseForm.
form = PurchaseForm(row)
Check to see if the row data is valid.
if form.is_valid():

Row data is valid so save the record.
form.save()
records_added += 1

else:
errors.append(form.errors)

return records_added, errors

What’s really nice about this practice is that rather than cooking up our own validation system for

165

Chapter 12: Form Fundamentals

incoming data, we’re using the well-proven data testing framework built into Django.

TIP: What About the code parameter?

Arnaud Limbourg pointed out that the official Django docs recommend passing a code
parameter to ValidationError as follows:
forms.ValidationError(_(’Invalid value’), code=’invalid’)
In our example we don’t include one, but you can use it in your code if you want.

Django core developer Marc Tamlyn says, “On a personal note, I feel that Django’s docs are
maybe a little heavy handed with recommending the use of code as a best practice everywhere,
although it should be encouraged in third party applications. It is however definitely the best
practice for any situation where you wish to check the nature of the errors - it’s much better
than checking the message of the validation error as this is subject to copy changes.”

Reference:
ä docs.djangoproject.com/en/1.11/ref/forms/validation/

#raising-validationerror

12.2 Use the POST Method in HTML Forms
Every HTML form that alters data must submit its data via the POST method:

Example 12.3: How to Use POST in HTML

<form action="{% url 'flavor_add' %}" method="POST">

The only exception you’ll ever see to using POST in forms is with search forms, which typically
submit queries that don’t result in any alteration of data. Search forms that are idempotent should
use the GET method.

12.3 Always Use CSRF Protection With HTTP Forms That
Modify Data

Django comes with cross-site request forgery protection (CSRF) built in, and usage of it is introduced
in Part 4 of the Django introductory tutorial. It’s easy to use, and Django even throws a friendly

166

https://docs.djangoproject.com/en/1.11/ref/forms/validation/#raising-validationerror
https://docs.djangoproject.com/en/1.11/ref/forms/validation/#raising-validationerror

12.3: Always Use CSRF Protection With HTTP Forms That Modify Data

warning during development when you forget to use it. This is a critical security issue, and here and
in our security chapter we recommend always using Django’s CSRF protection capabilities.

In our experience, the time when CSRF protection isn’t used is when creating machine-accessible
APIs authenticated by proven libraries such as django-rest-framework-jwt. Tools like this,
when combined with Django REST Framework do this for you. Since API requests should be
signed/authenticated on a per-request basis, this means relying in HTTP cookies for authentication
isn’t realistic. Therefore, CSRF isn’t always a problem when using these frameworks.

If you are writing an API from scratch that accepts data changes, it’s a good idea to become familiar
with Django’s CSRF documentation at
docs.djangoproject.com/en/1.11/ref/csrf/.

TIP: HTML Search Forms
Since HTML search forms don’t change data, they use the HTTP GET method and do not
trigger Django’s CSRF protection.

You should use Django’s CsrfViewMiddleware as blanket protection across your site rather than
manually decorating views with csrf_protect. To ensure that CSRF works in Jinja2 templates,
see Section 15.3: Considerations When Using Jinja2 With Django.

12.3.1 Posting Data via AJAX

You should use Django’s CSRF protection even when posting data via AJAX. Do not make your
AJAX views CSRF-exempt.

Instead, when posting via AJAX, you’ll need to set an HTTP header called X-CSRFToken.

The official Django documentation includes a snippet that shows how to set this header for
only POST requests, in conjunction with jQuery 1.5.1 or higher’s cross-domain checking: docs.
djangoproject.com/en/1.11/ref/csrf/#ajax

See discuss this and more at Section 17.5: AJAX and the CSRF Token.

Recommended reading: docs.djangoproject.com/en/1.11/ref/csrf/

167

https://github.com/GetBlimp/django-rest-framework-jwt
https://docs.djangoproject.com/en/1.11/ref/csrf/
https://docs.djangoproject.com/en/1.11/ref/csrf/#ajax
https://docs.djangoproject.com/en/1.11/ref/csrf/#ajax
https://docs.djangoproject.com/en/1.11/ref/csrf/

Chapter 12: Form Fundamentals

12.4 Understand How to Add Django Form Instance
Attributes

Sometimes in the clean(), clean_FOO() or save() methods of a Django form, we need to have
additional form instance attributes available. A sample case for this is having the request.user
object available. Here is a simple taster-driven example.

First, the form:

Example 12.4: Taster Form

from django import forms

from .models import Taster

class TasterForm(forms.ModelForm):

class Meta:
model = Taster

def __init__(self, *args, **kwargs):
set the user as an attribute of the form
self.user = kwargs.pop('user')
super(TasterForm, self).__init__(*args, **kwargs)

See how we set self.user before calling super(), and calls it from kwargs? Pointed out to us
by Christopher Lambacher, this makes our form more robust, especially when using multiple inheri-
tence. Now the view:

Example 12.5: Taster Update View

from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import UpdateView

from .forms import TasterForm
from .models import Taster

class TasterUpdateView(LoginRequiredMixin, UpdateView):

168

12.5: Know How Form Validation Works

model = Taster
form_class = TasterForm
success_url = '/someplace/'

def get_form_kwargs(self):
"""This method is what injects forms with keyword arguments."""
grab the current set of form #kwargs
kwargs = super(TasterUpdateView, self).get_form_kwargs()
Update the kwargs with the user_id
kwargs['user'] = self.request.user
return kwargs

PACKAGE TIP: django-braces’s ModelForm Mixins

Inserting the request.user object into forms is so frequently done that django-braces can
do it for us. Nevertheless, knowing how it works is useful for when what you need to add is
not the request.user object.

ä django-braces.readthedocs.io/en/latest/form.html#
userformkwargsmixin

ä django-braces.readthedocs.io/en/latest/form.html#
userkwargmodelformmixin

12.5 Know How Form Validation Works
Form validation is one of those areas of Django where knowing the inner workings will drastically
improve your code. Let’s take a moment to dig into form validation and cover some of the key points.

When you call form.is_valid(), a lot of things happen behind the scenes. The following things
occur according to this workflow:

1 If the form has bound data, form.is_valid() calls the form.full_clean() method.
2 form.full_clean() iterates through the form fields and each field validates itself:

a Data coming into the field is coerced into Python via the to_python()method or raises
a ValidationError.

b Data is validated against field-specific rules, including custom validators. Failure raises a
ValidationError.

169

https://django-braces.readthedocs.io/en/latest/form.html#userformkwargsmixin
https://django-braces.readthedocs.io/en/latest/form.html#userformkwargsmixin
https://django-braces.readthedocs.io/en/latest/form.html#userkwargmodelformmixin/
https://django-braces.readthedocs.io/en/latest/form.html#userkwargmodelformmixin/

Chapter 12: Form Fundamentals

c If there are any custom clean_<field>() methods in the form, they are called at this
time.

3 form.full_clean() executes the form.clean() method.
4 If it’s a ModelForm instance, form._post_clean() does the following:

a Sets ModelForm data to the Model instance, regardless of whether form.is_valid()
is True or False.

b Calls the model’s clean() method. For reference, saving a model instance through the
ORM does not call the model’s clean() method.

If this seems complicated, just remember that it gets simpler in practice, and that all of this function-
ality lets us really understand what’s going on with incoming data. The example in the next section
should help to explain this further.

Figure 12.1: When ice cream validation fails.

12.5.1 ModelForm Data Is Saved to the Form, Then the Model
Instance

We like to call this the WHAT?!? of form validation. At first glance, form data being set to the form
instance might seem like a bug. But it’s not a bug. It’s intended behavior.

In a ModelForm, form data is saved in two distinct steps:

1 First, form data is saved to the form instance.
2 Later, form data is saved to the model instance.

170

12.5: Know How Form Validation Works

Since ModelForms don’t save to the model instance until they are activated by the form.save()
method, we can take advantage of this separation as a useful feature.

For example, perhaps you need to catch the details of failed submission attempts for a form, saving
both the user-supplied form data as well as the intended model instance changes.

A simple, perhaps simplistic, way of capturing that data is as follows. First, we create a form failure
history model in core/models.py as shown on the next page:

Example 12.6: Form Failure History Model

core/models.py
from django.db import models

class ModelFormFailureHistory(models.Model):
form_data = models.TextField()
model_data = models.TextField()

Second, we add the following to the FlavorActionMixin in flavors/views.py:

Example 12.7: FlavorActionMixin

flavors/views.py
import json

from django.contrib import messages
from django.core import serializers

from core.models import ModelFormFailureHistory

class FlavorActionMixin:

@property
def success_msg(self):

return NotImplemented

def form_valid(self, form):
messages.info(self.request, self.success_msg)
return super(FlavorActionMixin, self).form_valid(form)

171

Chapter 12: Form Fundamentals

def form_invalid(self, form):
"""Save invalid form and model data for later reference."""
form_data = json.dumps(form.cleaned_data)
Serialize the form.instance
model_data = serializers.serialize('json', [form.instance])
Strip away leading and ending bracket leaving only a dict
model_data = model_data[1:-1]
ModelFormFailureHistory.objects.create(

form_data=form_data,
model_data=model_data

)
return super(FlavorActionMixin,

self).form_invalid(form)

If you recall, form_invalid() is called after failed validation of a form with bad data. When it is
called here in this example, both the cleaned form data and the final data saved to the database are
saved as a ModelFormFailureHistory record.

12.6 Add Errors to Forms With Form.add_error()

Shared with us by Michael Barr, we can streamline Form.clean() with the Form.add_error()
method.

Example 12.8: Using Form.add_error

from django import forms

class IceCreamReviewForm(forms.Form):
Rest of tester form goes here
...

def clean(self):
cleaned_data = super(TasterForm, self).clean()
flavor = cleaned_data.get('flavor')
age = cleaned_data.get('age')

if flavor == 'coffee' and age < 3:

172

12.7: Fields Without Pre-Made Widgets

Record errors that will be displayed later.
msg = 'Coffee Ice Cream is not for Babies.'
self.add_error('flavor', msg)
self.add_error('age', msg)

Always return the full collection of cleaned data.
return cleaned_data

12.6.1 Other Useful Form Methods

Here are other form validation methods worth exploring:

ä docs.djangoproject.com/en/1.11/ref/forms/api/#django.forms.Form.
errors.as_data

ä docs.djangoproject.com/en/1.11/ref/forms/api/#django.forms.Form.
errors.as_json

ä docs.djangoproject.com/en/1.11/ref/forms/api/#django.forms.Form.non_
field_errors

12.7 Fields Without Pre-Made Widgets

Two of the new django.contrib.postgres fields, ArrayField and HStoreField, don’t work
well with existing Django HTML fields. They don’t come with corresponding widgets at all. Never-
theless, you should still be using forms with these fields.

As in the previous section this topic is covered in Section 12.1: Validate All Incoming Data With
Django Forms.

12.8 Customizing Widgets

One of our favorite features about Django 1.11 is trivial it is to override the HTML of Django
widgets or even create custom widgets. This is a monumental change, a far cry from the days when
most of us would do everything in our power to avoid these kinds of customizations. Here’s our
general advice:

173

https://docs.djangoproject.com/en/1.11/ref/forms/api/#django.forms.Form.errors.as_data
https://docs.djangoproject.com/en/1.11/ref/forms/api/#django.forms.Form.errors.as_data
https://docs.djangoproject.com/en/1.11/ref/forms/api/#django.forms.Form.errors.as_json
https://docs.djangoproject.com/en/1.11/ref/forms/api/#django.forms.Form.errors.as_json
https://docs.djangoproject.com/en/1.11/ref/forms/api/#django.forms.Form.non_field_errors
https://docs.djangoproject.com/en/1.11/ref/forms/api/#django.forms.Form.non_field_errors

Chapter 12: Form Fundamentals

ä As always, keep it simple! Stay focused on presentation, nothing more.
ä No widgets should ever change data. They are meant purely for display.
ä Follow the Django pattern and put all custom widgets into modules called widgets.py.

12.8.1 Overriding the HTML of Built-In Widgets

This technique is useful for integrating tools like Bootstrap, Zurb, and other responsive front-end
frameworks. On the downside, overriding the default templates in this manner means that every
form element will use these alterations. To override these templates, you need to make the following
changes to settings.py:

Example 12.9: Overriding Django Form Widget HTML

settings.py
FORM_RENDERER = 'django.forms.renderers.TemplatesSetting'

INSTALLED_APPS = [
...
'django.forms',
...

]

Once that’s complete, create in your templates directory a directory at django/forms/templates and
start overriding templates. If you want to know which templates can be overidden, you can look
inside Django’s source code at github.com/django/django/tree/master/django/forms/
templates/django/forms/widgets

More information:

ä docs.djangoproject.com/en/1.11/ref/forms/renderers/
#overriding-built-in-widget-templates

ä docs.djangoproject.com/en/1.11/ref/forms/renderers/#templatessetting

174

https://github.com/django/django/tree/master/django/forms/templates/django/forms/widgets
https://github.com/django/django/tree/master/django/forms/templates/django/forms/widgets
https://docs.djangoproject.com/en/1.11/ref/forms/renderers/#overriding-built-in-widget-templates
https://docs.djangoproject.com/en/1.11/ref/forms/renderers/#overriding-built-in-widget-templates
https://docs.djangoproject.com/en/1.11/ref/forms/renderers/#templatessetting

12.8: Customizing Widgets

12.8.2 Creating New Custom Widgets

If we want finer control of widgets, perhaps limiting the changes to certain data types, then it’s time
to delve into creating custom widgets of our own. To do this:

1 Go to https://github.com/django/django/blob/master/django/forms/
widgets.py and select the widget closest to what you want.

2 Extend the widget to behave as you would like. Keep changes to a minimum!

Here’s an example:

Example 12.10: Creating an Ice Cream Widget

flavors/widgets.py
from django.forms.widgets import TextInput

class IceCreamFlavorInput(TextInput):
"""Ice cream flavors must always end with 'Ice Cream'"""

def get_context(self, name, value, attrs):
context = super(IceCreamInput, self).get_context(name, value, attrs)
value = context['widget']['value']
if not value.strip().lower().endswith('ice cream'):

context['widget']['value'] = '{} Ice Cream'.format(value)
return context

While this example is silly, it illustrates what how to extend an existing widget to serve our purpose.
Please note the following:

ä All the widget does is modify how the value is displayed.
ä The widget does not validate or modify the data coming back from the browser. That’s the job

of forms and models respectively.
ä We extended the absolute bare minimum of django.forms.widgets.TextInput to make it

work.

175

https://github.com/django/django/blob/master/django/forms/widgets.py
https://github.com/django/django/blob/master/django/forms/widgets.py

Chapter 12: Form Fundamentals

12.9 Additional Resources

ä Author Daniel Roy Greenfeld’s blog series on forms expands upon concepts touched in this
book pydanny.com/tag/forms.html

ä Brad Montgomery’s article on how to create a widget for the ArrayField . bradmontgomery.
net/blog/2015/04/25/nice-arrayfield-widgets-choices-and-chosenjs//

ä Rendering custom Django widgets docs.djangoproject.com/en/1.11/ref/forms/
renderers/

12.10 Summary

Once you dig into forms, keep yourself focused on clarity of code and testability. Forms are one of the
primary validation tools in your Django project, an important defense against attacks and accidental
data corruption.

In the next chapter we’ll dig into using templates.

176

https://pydanny.com/tag/forms.html
https://bradmontgomery.net/blog/2015/04/25/nice-arrayfield-widgets-choices-and-chosenjs/
https://bradmontgomery.net/blog/2015/04/25/nice-arrayfield-widgets-choices-and-chosenjs/
https://docs.djangoproject.com/en/1.11/ref/forms/renderers/
https://docs.djangoproject.com/en/1.11/ref/forms/renderers/

13 | Templates: Best Practices

One of Django’s early design decisions was to limit the functionality of the template language. This
heavily constrains what can be done with Django templates, which we often think is a very good
thing since it forces us to keep business logic in the Python side of things.

Think about it: the limitations of Django templates force us to put the most critical, complex and
detailed parts of our project into .py files rather than into template files. Python happens to be one
of the most clear, concise, and elegant programming languages on the planet, so why would we want
things any other way?

TIP: Using Jinja2 With Django

Since the release of 1.8, Django has natively supported Jinja2. It also provides an interface for
including other template languages. We cover this topic in Chapter 15: Django Templates
and Jinja2.

13.1 Keep Templates Mostly in templates/

In our projects, we keep the majority of our templates in the main ‘templates/’ directory. We put
subdirectories in ‘templates/’ to correspond to each of our apps, as shown here:

Example 13.1: How We Structure Our Templates Directories

templates/
├── base.html
├── ... (other sitewide templates in here)

177

Chapter 13: Templates: Best Practices

├── freezers/
│ ├── ("freezers" app templates in here)

However, some tutorials advocate putting templates within a subdirectory of each app. We find that
the extra nesting is a pain to deal with, as shown here:

Example 13.2: Overly Complex Template Directory Structure

freezers/
├── templates/
│ ├── freezers/
│ │ ├── ... ("freezers" app templates in here)
templates/
├── base.html
├── ... (other sitewide templates in here)

That said, some people like to do it the second way, and that’s alright.

The exception to all of this is when we work with Django apps that are installed as pluggable packages.
A Django package usually contains its own in-app ‘templates/’ directory. Then we override those
templates anyway from our project’s main ‘templates/’ directory in order to add design and styling.
We’ll explore this in Section 21.9: Releasing Your Own Django Packages

13.2 Template Architecture Patterns

We’ve found that for our purposes, simple 2-tier or 3-tier template architectures are ideal. The dif-
ference in tiers is how many levels of template extending needs to occur before content in apps is
displayed. See the examples below:

13.2.1 2-Tier Template Architecture Example

With a 2-tier template architecture, all templates inherit from a single root base.html file.

178

13.2: Template Architecture Patterns

Example 13.3: 2-Tier Template Architecture

templates/
├── base.html
├── dashboard.html # extends base.html
├── profiles/
│ ├── profile_detail.html # extends base.html
│ ├── profile_form.html # extends base.html

This is best for sites with a consistent overall layout from app to app.

13.2.2 3-Tier Template Architecture Example

With a 3-tier template architecture:

ä Each app has a base_<app_name>.html template. App-level base templates share a common
parent base.html template.

ä Templates within apps share a common parent base_<app_name>.html template.
ä Any template at the same level as base.html inherits base.html .

Example 13.4: 3-Tier Template Architecture

templates/
base.html
dashboard.html # extends base.html
profiles/

base_profiles.html # extends base.html
profile_detail.html # extends base_profiles.html
profile_form.html # extends base_profiles.html

The 3-tier architecture is best for websites where each section requires a distinctive layout. For exam-
ple, a news site might have a local news section, a classified ads section, and an events section. Each
of these sections requires its own custom layout.

This is extremely useful when we want HTML to look or behave differently for a particular section
of the site that groups functionality.

179

Chapter 13: Templates: Best Practices

13.2.3 Flat Is Better Than Nested

Figure 13.1: An excerpt from the Zen of Ice Cream.

Complex template hierarchies make it exceedingly difficult to debug, modify, and extend HTML
pages and tie in CSS styles. When template block layouts become unnecessarily nested, you end up
digging through file after file just to change, say, the width of a box.

Giving your template blocks as shallow an inheritance structure as possible will make your templates
easier to work with and more maintainable. If you’re working with a designer, your designer will
thank you.

That being said, there’s a difference between excessively-complex template block hierarchies and tem-
plates that use blocks wisely for code reuse. When you have large, multi-line chunks of the same or
very similar code in separate templates, refactoring that code into reusable blocks will make your code
more maintainable.

The Zen of Python includes the aphorism “Flat is better than nested” for good reason. Each level of
nesting adds mental overhead. Keep that in mind when architecting your Django templates.

TIP: The Zen of Python

At the command line, do the following:

python -c `import this'

180

13.3: Limit Processing in Templates

What you’ll see is the Zen of Python, an eloquently-expressed set of guiding principles for the
design of the Python programming language.

13.3 Limit Processing in Templates

The less processing you try to do in your templates, the better. This is particularly a problem when it
comes to queries and iteration performed in the template layer.

Whenever you iterate over a queryset in a template, ask yourself the following questions:

1 How large is the queryset? Looping over gigantic querysets in your templates is almost always
a bad idea.

2 How large are the objects being retrieved? Are all the fields needed in this template?
3 During each iteration of the loop, how much processing occurs?

If any warning bells go off in your head, then there’s probably a better way to rewrite your template
code.

WARNING: Why Not Just Cache?

Sometimes you can just cache away your template inefficiencies. That’s fine, but before you
cache, you should first try to attack the root of the problem.
You can save yourself a lot of work by mentally tracing through your template code, doing
some quick run time analysis, and refactoring.

Let’s now explore some examples of template code that can be rewritten more efficiently.

Suspend your disbelief for a moment and pretend that the nutty duo behind Two Scoops ran a 30-
second commercial during the Super Bowl. “Free pints of ice cream for the first million developers
who request them! All you have to do is fill out a form to get a voucher redeemable in stores!”

181

Chapter 13: Templates: Best Practices

Figure 13.2: Two Scoops, official halftime sponsor of the Super Bowl.

Naturally, we have a “vouchers” app to track the names and email addresses of everyone who requested
a free pint voucher. Here’s what the model for this app looks like:

Example 13.5: Voucher Model Example

vouchers/models.py
from django.db import models
from django.urls import reverse

from .managers import VoucherManager

class Voucher(models.Model):
"""Vouchers for free pints of ice cream."""
name = models.CharField(max_length=100)
email = models.EmailField()
address = models.TextField()
birth_date = models.DateField(blank=True)
sent = models.DateTimeField(null=True, default=None)

182

13.3: Limit Processing in Templates

redeemed = models.DateTimeField(null=True, default=None)

objects = VoucherManager()

This model will be used in the following examples to illustrate a few “gotchas” that you should avoid.

13.3.1 Gotcha 1: Aggregation in Templates

Since we have birth date information, it would be interesting to display a rough breakdown by age
range of voucher requests and redemptions.

A very bad way to implement this would be to do all the processing at the template level. To be more
specific in the context of this example:

ä Don’t iterate over the entire voucher list in your template’s JavaScript section, using JavaScript
variables to hold age range counts.

ä Don’t use the add template filter to sum up the voucher counts.

Those implementations are ways of getting around Django’s limitations of logic in templates, but
they’ll slow down your pages drastically.

The better way is to move this processing out of your template and into your Python code. Sticking
to our minimal approach of using templates only to display data that has already been processed, our
template looks like this:

Example 13.6: Using Templates to Display Pre-Processed Data

{# templates/vouchers/ages.html #}
{% extends "base.html" %}

{% block content %}
<table>

<thead>
<tr>

<th>Age Bracket</th>
<th>Number of Vouchers Issued</th>

183

Chapter 13: Templates: Best Practices

</tr>
</thead>
<tbody>

{% for age_bracket in age_brackets %}
<tr>

<td>{{ age_bracket.title }}</td>
<td>{{ age_bracket.count }}</td>

</tr>
{% endfor %}

</tbody>
</table>
{% endblock content %}

In this example, we can do the processing with a model manager, using the Django ORM’s aggrega-
tion methods and the handy dateutil library described in Appendix A: Packages Mentioned In This
Book:

Example 13.7: Pre-Processing Data Before Template Display

vouchers/managers.py
from django.db import models
from django.utils import timezone

from dateutil.relativedelta import relativedelta

class VoucherManager(models.Manager):
def age_breakdown(self):

"""Returns a dict of age brackets/counts."""
age_brackets = []
now = timezone.now()

delta = now - relativedelta(years=18)
count = self.model.objects.filter(birth_date__gt=delta).count()
age_brackets.append(

{'title': '0-17', 'count': count}
)
count = self.model.objects.filter(birth_date__lte=delta).count()
age_brackets.append(

184

13.3: Limit Processing in Templates

{'title': '18+', 'count': count}
)
return age_brackets

This method would be called from a view, and the results would be passed to the template as a context
variable.

13.3.2 Gotcha 2: Filtering With Conditionals in Templates

Suppose we want to display a list of all the Greenfelds and the Roys who requested free pint vouchers,
so that we could invite them to our family reunion. We want to filter our records on the name field.
A very bad way to implement this would be with giant loops and if statements at the template level.

Example 13.8: Disastrous Method of Filtering Data

<h2>Greenfelds Who Want Ice Cream</h2>

{% for voucher in voucher_list %}

{# Don't do this: conditional filtering in templates #}
{% if 'greenfeld' in voucher.name.lower %}

{{ voucher.name }}
{% endif %}

{% endfor %}

<h2>Roys Who Want Ice Cream</h2>

{% for voucher in voucher_list %}

{# Don't do this: conditional filtering in templates #}
{% if 'roy' in voucher.name.lower %}

{{ voucher.name }}
{% endif %}

{% endfor %}

185

Chapter 13: Templates: Best Practices

In this bad snippet, we’re looping and checking for various “if ” conditions. That’s filtering a poten-
tially gigantic list of records in templates, which is not designed for this kind of work, and will cause
performance bottlenecks. On the other hand, databases like PostgreSQL and MySQL are great at
filtering records, so this should be done at the database layer. The Django ORM can help us with
this as demonstrated in the next example.

Example 13.9: Using the ORM/Database to Filter Data

vouchers/views.py
from django.views.generic import TemplateView

from .models import Voucher

class GreenfeldRoyView(TemplateView):
template_name = 'vouchers/views_conditional.html'

def get_context_data(self, **kwargs):
context = super(GreenfeldRoyView, self).get_context_data(**kwargs)
context['greenfelds'] = \

Voucher.objects.filter(name__icontains='greenfeld')
context['roys'] = Voucher.objects.filter(name__icontains='roy')
return context

Then to call the results, we use the following, simpler template:

Example 13.10: Simplified Fast Template Display

<h2>Greenfelds Who Want Ice Cream</h2>

{% for voucher in greenfelds %}

{{ voucher.name }}
{% endfor %}

<h2>Roys Who Want Ice Cream</h2>

{% for voucher in roys %}

{{ voucher.name }}

186

13.3: Limit Processing in Templates

{% endfor %}

It’s easy to speed up this template by moving the filtering to a view. With this change, we now simply
use the template to display the already-filtered data. The above template now follows our preferred
minimalist approach.

13.3.3 Gotcha 3: Complex Implied Queries in Templates

Despite the limitations on logic allowed in Django templates, it’s all too easy to find ourselves calling
unnecessary queries repeatedly in a view. For example, if we list users of our site and all their flavors
this way:

Example 13.11: Template Code Generating Extra Queries

{# list generated via User.objects.all() #}
<h1>Ice Cream Fans and their favorite flavors.</h1>

{% for user in user_list %}

{{ user.name }}:
{# DON'T DO THIS: Generated implicit query per user #}
{{ user.flavor.title }}
{# DON'T DO THIS: Second implicit query per user!!! #}
{{ user.flavor.scoops_remaining }}

{% endfor %}

Then calling each user generates a second query. While that might not seem like much, we are certain
that if we had enough users and made this mistake frequently enough, our site would have a lot of
trouble.

One quick correction is to use the Django ORM’s select_related() method:

187

Chapter 13: Templates: Best Practices

Example 13.12: Data Queried with select_related

{% comment %}
List generated via User.objects.all().select_related('flavors')
{% endcomment %}
<h1>Ice Cream Fans and their favorite flavors.</h1>

{% for user in user_list %}

{{ user.name }}:
{{ user.flavor.title }}
{{ user.flavor.scoops_remaining }}

{% endfor %}

One more thing: If you’ve embraced using model methods, the same applies. Be cautious putting too
much query logic in the model methods called from templates.

13.3.4 Gotcha 4: Hidden CPU Load in Templates

Watch out for innocent-looking calls in templates that result in intensive CPU processing. Although
a template might look simple and contain very little code, a single line could be invoking an object
method that does a lot of processing.

Figure 13.3: Bubble gum ice cream looks easy to eat but requires a lot of processing.

Common examples are template tags that manipulate images, such as the template tags provided by
libraries like sorl-thumbnail. In many cases tools like this work great, but we’ve had some issues.

188

13.4: Don’t Bother Making Your Generated HTML Pretty

Specifically, the manipulation and the saving of image data to file systems (often across networks)
inside a template means there is a choke point within templates.

This is why projects that handle a lot of image or data processing increase the performance of their
site by taking the image processing out of templates and into views, models, helper methods, or
asynchronous messages queues like Celery or Django Channels.

13.3.5 Gotcha 5: Hidden REST API Calls in Templates

You saw in the previous gotcha how easy it is to introduce template loading delays by accessing object
method calls. This is true not just with high-load methods, but also with methods that contain REST
API calls. A good example is querying an unfortunately slow maps API hosted by a third-party
service that your project absolutely requires. Don’t do this in the template code by calling a method
attached to an object passed into the view’s context.

Where should actual REST API consumption occur? We recommend doing this in:

ä JavaScript code so after your project serves out its content, the client’s browser handles the
work. This way you can entertain or distract the client while they wait for data to load.

ä The view’s Python code where slow processes might be handled in a variety of ways including
message queues, additional threads, multiprocesses, or more.

13.4 Don’t Bother Making Your Generated HTML Pretty

Bluntly put, no one cares if the HTML generated by your Django project is attractive. In fact, if
someone were to look at your rendered HTML, they’d do so through the lens of a browser inspector,
which would realign the HTML spacing anyway. Therefore, if you shuffle up the code in your Django
templates to render pretty HTML, you are wasting time obfuscating your code for an audience of
yourself.

And yet, we’ve seen code like the following. This evil code snippet generates nicely formatted HTML
but itself is an illegible, unmaintainable template mess:

189

Chapter 13: Templates: Best Practices

Example 13.13: Obfuscating Template Code to Produce Pretty HTML Code

{% comment %}Don't do this! This code bunches everything
together to generate pretty HTML.
{% endcomment %}
{% if list_type=='unordered' %}{% else %}{% endif %}{% for
syrup in syrup_list %}<li class="{{ syrup.temperature_type|roomtemp
}}">{% syrup.title %}
{% endfor %}{% if list_type=='unordered' %}{% else %}
{% endif %}

A better way of writing the above snippet is to use indentation and one operation per line to create
a readable, maintainable template:

Example 13.14: Understandable Template Code

{# Use indentation/comments to ensure code quality #}
{# start of list elements #}
{% if list_type=='unordered' %}

{% else %}

{% endif %}

{% for syrup in syrup_list %}
<li class="{{ syrup.temperature_type|roomtemp }}">

{% syrup.title %}

{% endfor %}
{# end of list elements #}
{% if list_type=='unordered' %}

{% else %}

{% endif %}

190

13.5: Exploring Template Inheritance

Are you worried about the volume of whitespace generated? Don’t be. First of all, experienced de-
velopers favor readability of code over obfuscation for the sake of optimization. Second, there are
compression and minification tools that can help more than anything you can do manually here. See
Chapter 24: Finding and Reducing Bottlenecks for more details.

13.5 Exploring Template Inheritance

Let’s begin with a simple base.html file that we’ll inherit from another template:

Example 13.15: A Base HTML File

{# simple base.html #}
{% load staticfiles %}
<html>
<head>

<title>
{% block title %}Two Scoops of Django{% endblock title %}

</title>
{% block stylesheets %}

<link rel="stylesheet" type="text/css"
href="{% static 'css/project.css' %}">

{% endblock stylesheets %}
</head>
<body>

<div class="content">
{% block content %}

<h1>Two Scoops</h1>
{% endblock content %}

</div>
</body>
</html>

The base.html file contains the following features:

ä A title block containing “Two Scoops of Django”.
ä A stylesheets block containing a link to a project.css file used across our site.
ä A content block containing “<h1>Two Scoops</h1>”.

191

Chapter 13: Templates: Best Practices

Our example relies on just three template tags, which are summarized below:

Template Tag Purpose

{% load %} Loads the staticfiles built-in template tag library

{% block %}
Since base.html is a parent template, these define which child blocks can be
filled in by child templates. We place links and scripts inside them so we can
override if necessary.

{% static %} Resolves the named static media argument to the static media server.

Table 13.1: Template Tags in base.html

To demonstrate base.html in use, we’ll have a simple about.html inherit the following from it:

ä A custom title.
ä The original stylesheet and an additional stylesheet.
ä The original header, a sub header, and paragraph content.
ä The use of child blocks.
ä The use of the {{ block.super }} template variable.

Example 13.16: Extending From base.html

{% extends "base.html" %}
{% load staticfiles %}
{% block title %}About Audrey and Daniel{% endblock title %}
{% block stylesheets %}

{{ block.super }}
<link rel="stylesheet" type="text/css"

href="{% static 'css/about.css' %}">
{% endblock stylesheets %}
{% block content %}

{{ block.super }}
<h2>About Audrey and Daniel</h2>
<p>They enjoy eating ice cream</p>

{% endblock content %}

192

13.5: Exploring Template Inheritance

When we render this template in a view, it generates the following HTML:

Example 13.17: Rendered HTML

<html>
<head>

<title>
About Audrey and Daniel

</title>
<link rel="stylesheet" type="text/css"

href="/static/css/project.css">
<link rel="stylesheet" type="text/css"

href="/static/css/about.css">
</head>
<body>

<div class="content">
<h1>Two Scoops</h1>
<h2>About Audrey and Daniel</h2>
<p>They enjoy eating ice cream</p>

</div>
</body>
</html>

Notice how the rendered HTML has our custom title, the additional stylesheet link, and more mate-
rial in the body? We’ll use the table below to review the template tags and variables in the about.html
template.

Template Object Purpose

{% extends %}
Informs Django that about.html is inheriting or extending from
base.html

{% block %}
Since about.html is a child template, block overrides the content
provided by base.html. This means our title will render as
<title>Audrey and Daniel</title>.

{{ block.super }}
When placed in a child template’s block, it ensures that the parent’s
content is also included in the block. In the content block of the
about.html template, this will render <h1>Two Scoops</h1>.

193

Chapter 13: Templates: Best Practices

Template Object Purpose

Table 13.2: Template Objects in about.html

Note that the {% block %} tag is used differently in about.html than in base.html , serving to over-
ride content. In blocks where we want to preserve the base.html content, we use {{ block.super
}} variable to display the content from the parent block. This brings us to the next topic, {{
block.super }}.

13.6 block.super Gives the Power of Control

Let’s imagine that we have a template which inherits everything from the base.html but replaces the
project’s link to the project.css file with a link to dashboard.css. This use case might occur when you
have a project with one design for normal users, and a dashboard with a different design for staff.

If we aren’t using {{ block.super }}, this often involves writing a whole new base file, often
named something like base_dashboard.html . For better or for worse, we now have two template ar-
chitectures to maintain.

If we are using {{ block.super }}, we don’t need a second (or third or fourth) base template.
Assuming all templates extend from base.html we use {{ block.super }} to assume control of
our templates. Here are three examples:

Template using both project.css and a custom link:

Example 13.18: Using Base CSS And Custom CSS Link

{% extends "base.html" %}
{% block stylesheets %}

{{ block.super }} {# this brings in project.css #}
<link rel="stylesheet" type="text/css"

href="{% static 'css/custom.css' %}" />
{% endblock stylesheets %}

Dashboard template that excludes the project.css link:

194

13.6: block.super Gives the Power of Control

Example 13.19: Excluding the Base CSS

{% extends "base.html" %}
{% block stylesheets %}

<link rel="stylesheet" type="text/css"
href="{% static 'css/dashboard.css' %}" />

{% comment %}
By not using {{ block.super }}, this block overrides the
stylesheet block of base.html

{% endcomment %}
{% endblock stylesheets %}

Template just linking the project.css file:

Example 13.20: Using the Base CSS File

{% extends "base.html" %}
{% comment %}

By not using {% block stylesheets %}, this template inherits the
stylesheets block from the base.html parent, in this case the
default project.css link.

{% endcomment %}

These three examples demonstrate the amount of control that {{ block.super }} provides. The
variable serves a good way to reduce template complexity, but can take a little bit of effort to fully
comprehend.

TIP: block.super Is Similar but Not the Same as super()

For those coming from an object oriented programming background, it might help to think
of the behavior of the {{ block.super }} variable to be like a very limited version of the
Python built-in function, super(). In essence, the {{ block.super }} variable and the
super() function both provide access to the parent.
Just remember that they aren’t the same. For example, the {{ block.super }} variable
doesn’t accept arguments. It’s just a nice mnemonic that some developers might find useful.

195

Chapter 13: Templates: Best Practices

13.7 Useful Things to Consider

The following are a series of smaller things we keep in mind during template development.

13.7.1 Avoid Coupling Styles Too Tightly to Python Code

Aim to control the styling of all rendered templates entirely via CSS and JS.

Use CSS for styling whenever possible. Never hardcode things like menu bar widths and color choices
into your Python code. Avoid even putting that type of styling into your Django templates.

Here are some tips:

ä If you have magic constants in your Python code that are entirely related to visual design layout,
you should probably move them to a CSS file.

ä The same applies to JavaScript.

13.7.2 Common Conventions

Here are some naming and style conventions that we recommend:

ä We prefer underscores over dashes in template names, block names, and other names in tem-
plates. Most Django users seem to follow this convention. Why? Well, because underscores
are allowed in names of Python objects but dashes are forbidden.

ä We rely on clear, intuitive names for blocks. {% block javascript %} is good.
ä We include the name of the block tag in the endblock. Never write just {% endblock %},

include the whole {% endblock javascript %}.
ä Templates called by other templates are prefixed with ‘_’. This applies to templates called via
{% include %} or custom template tags. It does not apply to templates inheritance controls
such as {% extends %} or {% block %}.

196

13.7: Useful Things to Consider

13.7.3 Use Implicit and Named Explicit Context Objects Properly

When you use generic display CBVs, you have the option of using the generic {{ object_list
}} and {{ object }} in your template. Another option is to use the ones that are named after your
model.

For example, if you have a Topping model, you can use {{ topping_list }} and {{ topping
}} in your templates, instead of {{ object_list }} and {{ object }}. This means both of the
following template examples will work:

Example 13.21: Implicit and Explicit Context Objects

{# templates/toppings/topping_list.html #}
{# Using implicit names, good for code reuse #}

{% for object in object_list %}

{{ object }}
{% endfor %}

{# Using explicit names, good for object specific code #}

{% for topping in topping_list %}

{{ topping }}
{% endfor %}

13.7.4 Use URL Names Instead of Hardcoded Paths

A common developer mistake is to hardcode URLs in templates like this:

Example 13.22: Hardcoded URL in Template. Sad!

The problem with this is that if the URL patterns of the site need to change, all the URLs across the
site need to be addressed. This impacts HTML, JavaScript, and even RESTful APIs.

197

Chapter 13: Templates: Best Practices

Instead, we use the {% url %} tag and references the names in our URLConf files:

Example 13.23: Using the URL Tag

13.7.5 Debugging Complex Templates

A trick recommended by Lennart Regebro is that when templates are complex and it becomes difficult
to determine where a variable is failing, you can force more verbose errors through the use of the
string_if_invalid option in OPTIONS of your TEMPLATES setting:

Example 13.24: Using the string_if_invalid Option

settings/local.py
TEMPLATES = [

{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'APP_DIRS': True,
'OPTIONS':

'string_if_invalid': 'INVALID EXPRESSION: %s'
},

]

13.8 Error Page Templates
Even the most tested and analyzed site will have a few problems now and then, and that’s okay. The
problem lies in how you handle those errors. The last thing that you want to do is show an ugly
response or a blank web server page back to the end user.

It’s standard practice to create at least 404.html and 500.html templates. See the GitHub HTML
Styleguide link at the end of this section for other types of error pages that you may want to consider.

We suggest serving your error pages from a static file server (e.g. Nginx or Apache) as entirely self-
contained static HTML files. That way, if your entire Django site goes down but your static file server
is still up, then your error pages can still be served.

198

13.9: Follow a Minimalist Approach

If you’re on a PaaS, check the documentation on error pages. For example, Heroku allows users to
upload a custom static HTML page to be used for 500 errors.

WARNING: Resist the Temptation to Overcomplicate Your
Error Pages

Interesting or amusing error pages can be a draw to your site, but don’t get carried away. It’s
embarrassing when your 404 page has a broken layout or your 500 page can’t load the CSS
and JavaScript. Worse yet is dynamic 500 error pages that break in the event of a database
failure.

GitHub’s 404 and 500 error pages are great examples of fancy but entirely static, self-contained error
pages:

ä github.com/404
ä github.com/500

View the source of either of them and you’ll notice that:

ä All CSS styles are inline in the head of the same HTML page, eliminating the need for a
separate stylesheet.

ä All images are entirely contained as data within the HTML page. There are no links
to external URLs.

ä All JavaScript needed for the page is contained within the HTML page. There are no external
links to JavaScript assets.

For more information, see the Github HTML Styleguide:

ä github.com/styleguide

13.9 Follow a Minimalist Approach

We recommend taking a minimalist approach to your template code. Treat the so-called limitations
of Django templates as a blessing in disguise. Use those constraints as inspiration to find simple,
elegant ways to put more of your business logic into Python code rather than into templates.

199

https://github.com/404
https://github.com/500
https://github.com/styleguide

Chapter 13: Templates: Best Practices

Taking a minimalist approach to templates also makes it much easier to adapt your Django apps to
changing format types. When your templates are bulky and full of nested looping, complex condition-
als, and data processing, it becomes harder to reuse business logic code in templates, not to mention
impossible to use the same business logic in template-less views such as API views. Structuring your
Django apps for code reuse is especially important as we move forward into the era of increased API
development, since APIs and web pages often need to expose identical data with different formatting.

To this day, HTML remains a standard expression of content, providing the practices and patterns
for this chapter.

13.10 Summary

In this chapter, we covered the following:

ä Template inheritance, including the use of {{ block.super }}.
ä Writing legible, maintainable templates.
ä Easy methods to optimize template performance.
ä Issues with limitations of template processing.
ä Error page templates.
ä Many other helpful little details about templates.

In the next chapter we’ll examine template tags and filters.

200

14 | Template Tags and Filters

Django provides dozens of default template tags and filters, all of which share the following common
traits:

ä All of the defaults have clear, obvious names.
ä All of the defaults do just one thing.
ä None of the defaults alter any sort of persistent data.

These traits serve as very good best practices when you have to write your own template tags. Let’s
now dive a bit deeper into practices and recommendations when writing custom filters and template
tags.

14.1 Filters Are Functions

Filters are functions that accept just one or two arguments, and that don’t give developers the ability
to add behavior controls in Django templates.

We feel that this simplicity makes filters less prone to abuse, since they are essentially just functions
with decorators that make Python usable inside of Django templates. This means that they can be
called as normal functions (although we prefer to have our filters call functions imported from utility
modules).

In fact, a quick scan of the source code of Django’s default filters at /git.io/vyzxO shows that the
slugify() template filter simply calls the django.utils.text.slugify function.

201

https://git.io/vyzxO

Chapter 14: Template Tags and Filters

Figure 14.1: This filter transforms 1-2 flavors of ice cream into vanilla, outputting to a cone.

14.1.1 Filters Are Easy to Test

Testing a filter is just a matter of testing a function, which we cover in Chapter 22: Testing Stinks
and Is a Waste of Money!.

14.1.2 Filters and Code Reuse

As can be seen in the Django 1.11 source code defaultfilter.py github.com/django/
django/blob/stable/1.11.x/django/template/defaultfilters.py, most
of the filter logic is imported from other libraries. For example, it’s not neces-
sary to import django.template.defaultfilters.slugify. Instead we can use
django.utils.text.slugify. While it might seem to be perfectly acceptable to import
the filter, it adds a level of code abstraction that can make debugging a problem a little more
difficult.

Since filters are just functions, we advocate that anything but the simplest logic for them be moved
to more reusable utility functions, perhaps stored in a utils.py module. Doing this makes it easier to

202

https://github.com/django/django/blob/stable/1.11.x/django/template/defaultfilters.py
https://github.com/django/django/blob/stable/1.11.x/django/template/defaultfilters.py

14.2: Custom Template Tags

introspect code bases and test, and can mean dramatically fewer imports. Over time core Django has
followed this pattern more and more.

14.1.3 When to Write Filters

Filters are good for modifying the presentation of data, and they can be readily reused in REST APIs
and other output formats. Being constrained to two arguments limits the functionality so it’s harder
(but not impossible) to make them unbearably complex.

14.2 Custom Template Tags

“Please stop writing so many template tags. They are a pain to debug.”

– Audrey Roy Greenfeld, while debugging Daniel Roy Greenfeld’s code.

While template tags are great tools when developers have the discipline to keep them in check, in
practice they tend to get abused. This section covers the problems that you run into when you put
too much of your logic into template tags and filters.

14.2.1 Template Tags Are Harder to Debug

Template tags of any complexity can be challenging to debug. When they include opening and closing
elements, they become even harder to handle. We’ve found liberal use of log statements and tests are
very helpful when they become hard to inspect and correct.

14.2.2 Template Tags Make Code Reuse Harder

It can be difficult to consistently apply the same effect as a template tag on alternative output formats
used by REST APIs, RSS feeds, or in PDF/CSV generation. If you do need to generate alternate
formats, it’s worth considering putting all logic for template tags into utils.py, for easy access from
other views.

203

Chapter 14: Template Tags and Filters

14.2.3 The Performance Cost of Template Tags

Template tags can have a significant performance cost, especially when they load other templates.
While templates run much faster than they did in pre-1.8 versions of Django, it’s easy to lose those
performance benefits if you don’t have a deep understanding of how templates are loaded in Django.

If your custom template tags are loading a lot of templates, you might want to consider caching the
loaded templates. See docs.djangoproject.com/en/1.11/ref/templates/api/#django.
template.loaders.cached.Loader for more details.

14.2.4 When to Write Template Tags

These days, we’re very cautious about adding new template tags. We consider two things before
writing them:

ä Anything that causes a read/write of data might be better placed in a model or object method.
ä Since we implement a consistent naming standard across our projects, we can add an abstract

base class model to our core.models module. Can a method or property in our project’s
abstract base class model do the same work as a custom template tag?

When should you write new template tags? We recommend writing them in situations where they are
only responsible for rendering of HTML. For example, projects with very complex HTML layouts
with many different models or data types might use them to create a more flexible, understandable
template architecture.

PACKAGE TIP: We Do Use Custom Template Tags

It sounds like we stay away from custom template tags, but that’s not the case. We’re just cau-
tious. Interestingly enough, Daniel has been involved with at least three prominent libraries
that make extensive use of template tags.

ä django-crispy-forms
ä django-wysiwyg
ä django-uni-form (deprecated, use django-crispy-forms instead)

204

https://docs.djangoproject.com/en/1.11/ref/templates/api/#django.template.loaders.cached.Loader
https://docs.djangoproject.com/en/1.11/ref/templates/api/#django.template.loaders.cached.Loader

14.3: Naming Your Template Tag Libraries

14.3 Naming Your Template Tag Libraries

The convention we follow is <app_name>_tags.py. Using the twoscoops example, we would have files
named thus:

ä flavors_tags.py
ä blog_tags.py
ä events_tags.py
ä tickets_tags.py

This makes determining the source of a template tag library trivial to discover.

TIP: Don’t Name Your Template Tag Libraries With the Same Name as
Your App

For example, naming the events app’s templatetag library events.py is problematic.
It used to be that doing so would cause all sorts of problems because of the way that Django
loaded template tags. While that’s been fixed, the convention of adding a _tags.py suffix to
template tag libraries has remained. This means it’s easy for everyone to find template tag
libraries.

WARNING: Don’t Use Your IDE’s Features as an Excuse to
Obfuscate Your Code
Do not rely on your text editor or IDE’s powers of introspection to determine the name of
your template tag library.

14.4 Loading Your Template Tag Modules

In your template, right after {% extends "base.html" %} (or any other parent template besides
base.html) is where you load your template tags:

205

Chapter 14: Template Tags and Filters

Example 14.1: The Right Way To Load A Template Tag Library

{% extends "base.html" %}

{% load flavors_tags %}

Simplicity itself ! Explicit loading of functionality! Hooray!

14.4.1 Watch Out for This Anti-Pattern

Unfortunately, there is an anti-pattern that will drive you mad with fury each and every time you
encounter it:

Example 14.2: Implicit Loading of Template Tag Libraries

settings/base.py
TEMPLATES = [

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'OPTIONS': {

Don't do this!
It's an evil anti-pattern!
'builtins': ['flavors.templatetags.flavors_tags'],

},
]

The anti-pattern replaces the explicit load method described above with an implicit behavior which
supposedly fixes a “Don’t Repeat Yourself ” (DRY) issue. However, any DRY “improvements” it
creates are destroyed by the following:

ä It will add some overhead due to the fact this literally loads the template tag library into each
and every template loaded by django.template.Template. This means every inherited
template, template {% include %}, inclusion_tag, and more will be impacted. While
we have cautioned against premature optimization, we are also not in favor of adding this
much unneeded extra computational work into our code when better alternatives exist.

ä Because the template tag library is implicitly loaded, it immensely adds to the difficulty in
introspection and debugging. Per the Zen of Python, “Explicit is better than Implicit.”

206

14.5: Summary

Fortunately, this is obscure because beginning Django developers don’t know enough to make this
mistake and experienced Django developers get annoyed when they have to deal with it.

14.5 Summary

It is our contention that template tags and filters should concern themselves only with the manipu-
lation of presentable data. So long as we remember this when we write or use them, our projects run
faster and are easier to maintain.

In the next chapter we explore the use of Django templates and Jinja2.

207

Chapter 14: Template Tags and Filters

208

15 | Django Templates and Jinja2

With Django 1.8 came support for multiple template engines. As of now, the only available built-in
backends for the Django template system are the Django template language (DTL) and Jinja2.

15.1 What’s the Syntactical Difference?

At the syntax level, DTL and Jinja2 are very similar. In fact, Jinja2 was inspired by DTL. Here are
the most significant syntax differences:

Subject DTL Jinja2

Method Calls {{ user.get_favorites }} {{ user.get_favorites()
}}

Filter Arguments {{ toppings|join:', ' }} {{ toppings|join(', ') }}

Loop Empty Argument {% empty %} {% else %}

Loop Variable {{ forloop }} {{ loop }}

Cycle {% cycle 'odd' 'even' %} {{ loop.cycle('odd',
'even') }}

Table 15.1: DTL vs Jinja2 Syntax Differences

209

Chapter 15: Django Templates and Jinja2

15.2 Should I Switch?

First off, when using Django we don’t have to choose between DTL or Jinja2. We can set set-
tings.TEMPLATES to use DTL for some template directories and Jinja2 for others. If we have a lot
of templates in our codebase, we can hold onto our existing templates and leverage the benefits of
Jinja2 where we need it. This allows for the best of both worlds: Access to the vast Django ecosystem
of third-party packages and the features of alternatives to DTL.

In short, we can use multiple template languages together harmoniously.

For example, most of a site can be rendered using DTL, with the larger pages rendered content done
with Jinja2. A good example of this behavior are the djangopackages.org/grids. Because of
their size and complexity, in the near future these pages may be refactored to be powered by Jinja2
rather than DTL.

15.2.1 Advantages of DTL

Here are reasons to use the Django template language:

ä It’s batteries-included with all the functionality clearly documented within the Django docs.
The official Django documentation on DTL is very extensive and easy to follow. The template
code examples in the Django docs use DTL.

ä The DTL+Django combination is much more tried and mature than the Jinja2+Django com-
bination.

ä Most third-party Django packages use DTL. Converting them to Jinja2 is extra work.
ä Converting a large codebase from DTL to Jinja2 is a lot of work.

15.2.2 Advantages of Jinja2

Here are reasons to use Jinja2:

ä Can be used independently of Django.
ä As Jinja2’s syntax is closer to Python’s syntax, many find it more intuitive.
ä Jinja2 is generally more explicit, e.g. function calls in the template use parentheses.

210

https://www.djangopackages.org/grids/

15.3: Considerations When Using Jinja2 With Django

ä Jinja2 has less arbitrary restrictions on logic, e.g. you can pass unlimited arguments to a filter
with Jinja2 vs. only 1 argument with DTL.

ä According to the benchmarks online and our own experiments, Jinja2 is generally faster. That
said, templates are always a much smaller performance bottleneck than database optimization.
See Chapter 24: Finding and Reducing Bottlenecks.

15.2.3 Which One Wins?

It depends on your situation:

ä New users should always stick with DTL.
ä Existing projects with large codebases will want to stick with DTL except for those few pages

that need performance improvements.
ä Experienced Djangonauts should try both, weigh the benefits of DTL and Jinja, and make

their own decision.

TIP: Choose a Primary Template Language

While we can mix multiple template languages across a project, doing so risks adding dra-
matically to the mental overload of a project. To mitigate this risk, choose a single, primary
template language.

15.3 Considerations When Using Jinja2 With Django

Here are some things to keep in mind when using Jinja2 templates with Django:

15.3.1 CSRF and Jinja2

Jinja2 accesses Django’s CSRF mechanism differently than DTL. To incorporate CSRF into Jinja2
templates, when rendering forms make certain to include the necessary HTML:

211

Chapter 15: Django Templates and Jinja2

Example 15.1: Using Django’s CSRF Token with Jinja2 Templates

<div style="display:none">
<input type="hidden" name="csrfmiddlewaretoken" value="{{ csrf_token }}">

</div>

15.3.2 Using Template Tags in Jinja2 Templates

At this time using Django-style Template Tags isn’t possible in Jinja2. If we need the functionality
of a particular template tag, depending on what we’re trying to do we convert it using one of these
techniques:

ä Convert the functionality into a function.
ä Create a Jinja2 Extension. See jinja.pocoo.org/docs/dev/extensions/

#module-jinja2.ext

15.3.3 Using Django-Style Template Filters in Jinja2 Templates

One thing we’ve grown used to having around in DTL is Django’s default template filters. Fortu-
nately, as Django filters are just functions (see Section 14.1: Filters Are Functions), we can easily
specify a custom Jinja2 environment that includes the template filters:

Example 15.2: Injecting Django Filters Into Jinja2 Templates

core/jinja2.py
from django.contrib.staticfiles.storage import staticfiles_storage
from django.template import defaultfilters
from django.urls import reverse

from jinja2 import Environment

def environment(**options):
env = Environment(**options)
env.globals.update({

'static': staticfiles_storage.url,

212

http://jinja.pocoo.org/docs/dev/extensions/#module-jinja2.ext
http://jinja.pocoo.org/docs/dev/extensions/#module-jinja2.ext

15.3: Considerations When Using Jinja2 With Django

'url': reverse,
'dj': defaultfilters

})
return env

Here is a an example of using Django template filters as functions in a Jinja2 template:

Example 15.3: Using Django Filters in a Jinja2 Template

<table><tbody>
{% for purchase in purchase_list %}

<tr>

{{ purchase.title }}

</tr>
<tr>{{ dj.date(purchase.created, 'SHORT_DATE_FORMAT') }}</tr>
<tr>{{ dj.floatformat(purchase.amount, 2) }}</tr>

{% endfor %}
</tbody></table>

If you want a less global approach, we can use a technique explored in Section 10.4.3: Performing
Custom Actions on Views With Invalid Forms. Here we create a mixin for attaching the Django
template filters as an attribute on views:

Example 15.4: Django Filter View Mixin for Jinja2

core/mixins.py
from django.template import defaultfilters

class DjFilterMixin:
dj = defaultfilters

If a view inherits from our core.mixins.DjFilterMixin class, in its Jinja2 template we can do
the following:

213

Chapter 15: Django Templates and Jinja2

Example 15.5: Using View-Injected Django Filters in Jinja2

<table><tbody>
{% for purchase in purchase_list %}

<tr>

{{ purchase.title }}

</tr>
<!-- Call the django.template.defaultfilters functions from the view -->
<tr>{{ view.dj.date(purchase.created, 'SHORT_DATE_FORMAT') }}</tr>
<tr>{{ view.dj.floatformat(purchase.amount, 2) }}</tr>

{% endfor %}
</tbody></table>

TIP: Avoid Using Context Processors With Jinja2

The Django documentation recommends against using context processors with Jinja2. See the
warning box at docs.djangoproject.com/en/1.11/topics/templates/#django.
template.backends.jinja2.Jinja2. What they recommend instead is passing a func-
tion to the template that can be called as needed. This can be done on a per-view basis or by
injecting the callable function as described in this subsection.

15.3.4 The Jinja2 Environment Object Should Be Considered Static

In example 15.1 we demonstrate the use of the core component of Jinja2, the jinja2.Environment
class. This object is where Jinja2 shares configuration, filters, tests, globals, and more. When the first
template in your project is loaded, Jinja2 instantiates this class as what is essentially a static object.

Example:

Example 15.6: Static Nature of Jinja2 Environment

core/jinja2.py
from jinja2 import Environment

214

https://docs.djangoproject.com/en/1.11/topics/templates/#django.template.backends.jinja2.Jinja2
https://docs.djangoproject.com/en/1.11/topics/templates/#django.template.backends.jinja2.Jinja2

15.4: Resources

import random

def environment(**options):
env = Environment(**options)
env.globals.update({

Runs only on the first template load! The three displays below
will all present the same number.
{{ random_once }} {{ random_once }} {{ random_once }}
'random_once': random.randint(1, 5)
Can be called repeated as a function in templates. Each call
returns a random number:
{{ random() }} {{ random() }} {{ random() }}
'random': lambda: random.randint(1, 5),

})
return env

WARNING: Don’t Alter jinja.Environment After Instantiation

While possible, modifying the jinja.Environment object is dangerous. Per the Jinja2 API
documentation, “Modifications on environments after the first template was loaded will lead
to surprising effects and undefined behavior.”

Reference: jinja.pocoo.org/docs/dev/api/#jinja2.Environment

15.4 Resources
ä Django’s documentation on using Jinja2: docs.djangoproject.com/en/1.11/topics/

templates/#django.template.backends.jinja2.Jinja2
ä jinja.pocoo.org

15.5 Summary
In this chapter we covered the similarities and differences between DTL and Jinja2. We also explored
some of the ramifications and workarounds for using Jinja2 in projects.

Starting in the next chapter we leave templates behind and explore the world of REST from both
the server and client sides.

215

http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment
https://docs.djangoproject.com/en/1.11/topics/templates/#django.template.backends.jinja2.Jinja2
https://docs.djangoproject.com/en/1.11/topics/templates/#django.template.backends.jinja2.Jinja2
http://jinja.pocoo.org/

Chapter 15: Django Templates and Jinja2

216

16 | Building REST APIs With Django
REST Framework

Today’s internet is much more than HTML-powered websites. Developers need to support AJAX
and native mobile apps. Having tools that support easy creation of JSON, YAML, XML, and other
formats is important. By design, a Representational State Transfer (REST) ApplicationProgram-
ming Interface (API) exposes application data to other concerns.

The defacto package for building these REST APIs with Django is Django REST Framework
(DRF). In fact, DRF has become so ubiqitious it’s not uncommon to hear questions like, “What’s the
difference between Django and Django REST Framework”? Since approximately 2013, we estimate
90-95% of new Django projects with an API use DRF.

Why the popularity? Well, we feel that the success of Django REST Framework is because:

ä DRF leans heavily on object-oriented design and is designed to be easily extensible.
ä DRF builds directly off of Django CBVs. If you understand CBVs, DRF’s design feels like an

understandable extension of Django.
ä It comes with a host of views for API generation, ranging from the

djano.views.generic.View-like APIView to deep abstractions like generic API
views and viewsets.

ä The serializer system is extremely powerful, but can be trivially ignored or replaced.
ä Authentication and Authorization are covered in a powerful, extendable way.
ä If you really want to use FBVs for your API, DRF has you covered there too.

Because of these reasons, DRF’s community is gigantic. This is important, because it means that many
of the challenges in building REST APIs with it have been solved. Perhaps not in DRF directly, but

217

Chapter 16: Building REST APIs With Django REST Framework

in third-party packages. Also, finding people who know it and can answer questions isn’t hard.

We’ll go over the other side of REST APIs in Chapter 17: Consuming REST APIs.

If you don’t know how to use DRF yet, we recommend its official tutorials:

ä django-rest-framework.org/tutorial/quickstart/
ä django-rest-framework.org/tutorial/1-serialization/

TIP: Django REST Framework Needs Your Support!

DRF is a collaboratively funded project. If you use it commercially we strongly encourage you
to invest in its continued development by signing up for a paid plan. Thanks to this funding,
we’ve seen the project leap forward in terms of functionality.
Financial contributions start at US$15 and go up. At the higher levels, the DRF project even
provides priority support: fund.django-rest-framework.org/topics/funding/

16.1 Fundamentals of Basic REST API Design

Let’s take a step back and look at HTTP and how it interacts with Django REST Framework.

The Hypertext Transfer Protocol (HTTP) is a protocol for distributing content that provides a set of
methods to declare actions. By convention, REST APIs rely on these methods, so use the appropriate
HTTP method for each type of action:

Purpose of Request HTTP Method Rough SQL equivalent

Create a new resource POST INSERT
Read an existing resource GET SELECT

Update an existing resource PUT UPDATE

Update part of an existing resource PATCH UPDATE

Delete an existing resource DELETE DELETE

Returns same HTTP headers as GET, but no
body content

HEAD

Return the supported HTTP methods for the
given URL

OPTIONS

218

http://www.django-rest-framework.org/tutorial/quickstart/
http://www.django-rest-framework.org/tutorial/1-serialization/
https://fund.django-rest-framework.org/topics/funding/

16.1: Fundamentals of Basic REST API Design

Echo back the request TRACE

Table 16.1: HTTP Methods

A few notes on the above:

ä If you’re implementing a read-only API, you might only need to implement GET methods.
ä If you’re implementing a read-write API, you should use the GET, POST, PUT, and

DELETE methods.
ä Relying on just GET and POST for all actions can be frustrating pattern for API users.
ä By definition, GET, PUT, and DELETE are idempotent. POST and PATCH are not.
ä PATCH is often not implemented, but it’s a good idea to implement it if your API supports

PUT requests.
ä Django Rest Framework is designed around these methods, understand them and DRF itself

becomes easier to understand.

Here are some common HTTP status codes that should be considered when implementing a REST
API. DRF’s generic views and viewsets return these values as appropriate for the method called. Note
that this is a partial list; a much longer list of status codes can be found at en.wikipedia.org/
wiki/List_of_HTTP_status_codes.

HTTP Status Code Success/Failure Meaning

200 OK Success GET - Return resource

PUT - Provide status message or return
resource

201 Created Success POST - Provide status message or return
newly created resource

204 No Content Success PUT or DELETE - Response to successful
update or delete request

304 Not Modified Redirect ALL - Indicates no changes since the last
request. Used for checking Last-Modified and
ETag headers to improve performance.

219

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 16: Building REST APIs With Django REST Framework

HTTP Status Code Success/Failure Meaning

400 Bad Request Failure ALL - Return error messages, including form
validation errors.

401 Unauthorized Failure ALL - Authentication required but user did not
provide credentials or provided invalid ones.

403 Forbidden Failure ALL - User attempted to access restricted
content

404 Not Found Failure ALL - Resource is not found
405 Method Not Allowed Failure ALL - An unallowed HTTP method was

attempted.

410 Gone Failure ALL - A requested resource is no longer
available and won’t be available in the future.
Used when an API is shut down in favor of a
newer version of an API. Mobile applications
can test for this condition, and if it occurs, tell
the user to upgrade.

429 Too Many Requests Failure ALL - The user has sent too many requests in a
given amount of time. Intended for use with
rate limiting.

Table 16.2: HTTP Status Codes

16.2 Illustrating Design Concepts With a Simple API

In order to illustrate how DRF ties together HTTP methods, HTTP status codes, serialization, and
views, let’s create a simple JSON API. We’ll use the flavors app example from previous chapters as
our base, providing the capability to create, read, update, and delete flavors via HTTP requests using
AJAX, python-requests, or some other library.

We’ll begin by checking that we have a tightly secured API. In our settings file we set our default
permission classes to allow just admins:

220

16.2: Illustrating Design Concepts With a Simple API

Example 16.1: Our Standard Default DRF Permission Classes

REST_FRAMEWORK = {
'DEFAULT_PERMISSION_CLASSES': (

'rest_framework.permissions.IsAdminUser',
),

}

TIP: IsAdminUser as the Constant Default Permission Class
We like to lock down our projects, especially our REST APIs. There’s no better way to this
then to have rest_framework.permissions.IsAdminUser as the default permission
class. This we can override on a per-view basis. This makes our API views very secure by
default, something worth more than having to add a few extra lines of code in our API
views.

With that out of the way, here’s our Flavor model again, but enhanced with a UUID for API
lookups:

Example 16.2: Flavor Model Used in Our API

flavors/models.py
import uuid as uuid_lib

from django.db import models
from django.urls import reverse

class Flavor(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField(unique=True) # Used to find the web URL
uuid = models.UUIDField(# Used by the API to look up the record

db_index=True,
default=uuid_lib.uuid4,
editable=False)

scoops_remaining = models.IntegerField(default=0)

def get_absolute_url(self):
return reverse('flavors:detail', kwargs={'slug': self.slug})

221

Chapter 16: Building REST APIs With Django REST Framework

WARNING: Don’t Use Sequential Keys as Public Identifiers

Sequential keys, such as what Django provides as a default as model primary keys, can be
a security concern if used publicly. We cover this in-depth at Section 26.27: Never Display
Sequential Primary Keys.
In our example, we’re going to use the model’s UUID rather than the model’s primary key to
look up our records. We always try to avoid using sequential numbers for lookups.

Define the serializer class:

Example 16.3: Flavor model serializer

flavors/api/serializers.py
from rest_framework import serializers

from ..models import Flavor

class FlavorSerializer(serializers.ModelSerializer):
class Meta:

model = Flavor
fields = ['title', 'slug', 'uuid', 'scoops_remaining']

Now let’s add in our API views:

Example 16.4: Flavor API views

flavors/api/views.py
from rest_framework.generics import (
ListCreateAPIView,
RetrieveUpdateDestroyAPIView

)
from rest_framework.permissions import IsAuthenticated

from ..models import Flavor
from .serializers import FlavorSerializer

class FlavorListCreateAPIView(ListCreateAPIView):
queryset = Flavor.objects.all()

222

16.2: Illustrating Design Concepts With a Simple API

permission_classes = (IsAuthenticated,)
serializer_class = FlavorSerializer
lookup_field = 'uuid' # Don't use Flavor.id!

class FlavorRetrieveUpdateDestroyAPIView(RetrieveUpdateDestroyAPIView):
queryset = Flavor.objects.all()
permission_classes = (IsAuthenticated,)
serializer_class = FlavorSerializer
lookup_field = 'uuid' # Don't use Flavor.id!

We’re done! Wow, that was fast!

TIP: Classy Django REST Framework Is a Useful Reference

For working with the Django Rest Framework, we’ve found that http://cdrf.co is a
great cheat sheet. It is patterned after the famous ccbv.co.uk reference site, but tailored
for Django Rest Framework.

Now we’ll wire this into our flavors/urls.py module:

Example 16.5: Wiring in API Views

flavors/urls.py
from django.conf.urls import url

from flavors.api import views

urlpatterns = [
/flavors/api/
url(

regex=r'^api/$',
view=views.FlavorListCreateAPIView.as_view(),
name='flavor_rest_api'

),
/flavors/api/:slug/
url(

regex=r'^api/(?P<uuid>[-\w]+)/$',

223

cdrf.co
http://ccbv.co.uk

Chapter 16: Building REST APIs With Django REST Framework

view=views.FlavorRetrieveUpdateDestroyAPIView.as_view(),
name='flavor_rest_api'

)
]

What we are doing is reusing the URLConf name, making it easier to manage when you have a need
for a JavaScript-heavy front-end. All you need to do is access the Flavor resource via the {% url %}
template tag.

In case it’s not clear exactly what our URLConf is doing, let’s review it with a table:

Url View Url Name (same)
/flavors/api/ FlavorListCreateAPIView flavor_rest_api

/flavors/api/:slug/ FlavorRetrieveUpdateDestroyAPIView flavor_rest_api

Table 16.3: URLConf for the Flavor REST APIs

WARNING: Our Simple API Does Not Use Permissions

We overrode the default IsAdmin permission with IsAuthenticated. If you implement
an API using our example, don’t forget to assign user permissions appropriately!

ä django-rest-framework.org/api-guide/authentication
ä django-rest-framework.org/api-guide/permissions

The end result is the traditional REST-style API definition:

Example 16.6: Taditional REST-style API definition

flavors/api/
flavors/api/:uuid/

224

http://www.django-rest-framework.org/api-guide/authentication/
http://www.django-rest-framework.org/api-guide/permissions/

16.3: REST API Architecture

TIP: Common Syntax for Describing REST APIs

It’s not uncommon to see syntax like what is described in the Example 16.5: Wiring in API
Views code example. In this particular case, /flavors/api/:uuid/ includes a :uuid value.
This represents a variable, but in a manner suited for documentation across frameworks and
languages, and you’ll see it used in many third-party REST API descriptions.

We’ve shown you (if you didn’t know already) how it’s very easy to build REST APIs in Django. Now
let’s go over some advice on maintaining and extending them.

16.3 REST API Architecture
Building simple, quick APIs is easy with Django REST Framework, but extending and maintaining
it to match your project’s needs takes a bit more thought. This is usually where people get hung up
on API design. Here are some tips for improving your design:

16.3.1 Use Consistent API Module Naming

Just like anything else, how things are named needs to be consistent across a project. Our preferences
for naming module related to API design is as follows:

Example 16.7: Our Preferences for Naming API-Related Modules

flavors/
├── api/
│ ├── __init__.py
│ ├── authentication.py
│ ├── parsers.py
│ ├── permissions.py
│ ├── renderers.py
│ ├── serializers.py
│ ├── validators.py
│ ├── views.py
│ ├── viewsets.py

Please observe the following:

225

Chapter 16: Building REST APIs With Django REST Framework

ä We like to place all our API components into a package within an app called api/ . That’s allows
us to isolate our API components in a consistent location. If we were to put it in the root of
our app, then we would end up with a huge list of API-specific modules in the general area of
the app.

ä Viewsets belong in their own module.
ä We always place routers in urls.py.

16.3.2 Code for a Project Should Be Neatly Organized

For projects with a lot of small, interconnecting apps, it can be hard to hunt down where a particular
API view lives. In contrast to placing all API code within the each relevant app, sometimes it makes
more sense to build an app specifically for the API. This is where all the serializers, renderers, and
views are placed.

Of course, the name of the app should reflect its API version (see Section 16.3.7: Version Your API).

For example, we might place all our views, serializers, and other API components in an app titled
apiv4.

The downside is the possibility for the API app to become too large and disconnected from the apps
that power it. Hence why we consider an alternative in the next subsection.

16.3.3 Code for an App Should Remain in the App

When it comes down to it, REST APIs are just views. For simpler, smaller projects, REST API
views should go into views.py or viewsets.py modules and follow the same guidelines we endorse
when it comes to any other view. The same goes for app- or model-specific serializers and renderers.
If we do have app-specific serializers or renderers, the same applies.

For apps with so many REST API view classes that it makes it hard to navigate a single api/views.py
or api/viewsets.py module, we can break them up. Specifically, we move our view (or viewset) classes
into a api/views/ (or api/viewsets/) package containing Python modules typically named after our
models. So you might see:

226

16.3: REST API Architecture

flavors/
├── api/
│ ├── __init__.py
│ ├── ... other modules here
│ ├── views
│ │ ├── __init__.py
│ │ ├── flavor.py
│ │ ├── ingredient.py

The downside with this approach is that if there are too many small, interconnecting apps, it can be
hard to keep track of the myriad of places API components are placed. Hence why we considered
another approach in the previous subsection.

16.3.4 Try to Keep Business Logic Out of API Views

Regardless of which architectural approach you take, it’s a good idea to try to keep as much logic as
possible out of API views. If this sounds familiar, it should. We covered this in Section 8.5: Try to
Keep Business Logic Out of Views. Remember, at the end of the day, API views are just another
type of view.

227

Chapter 16: Building REST APIs With Django REST Framework

Figure 16.1: An Ice Cream as a Service API.

16.3.5 Grouping API URLs

If you have REST API views in multiple Django apps, how do you build a project-wide API that
looks like this?

Example 16.9: Project-Wide API Design

api/flavors/ # GET, POST
api/flavors/:uuid/ # GET, PUT, DELETE
api/users/ # GET, POST
api/users/:uuid/ # GET, PUT, DELETE

In the past, we placed all API view code into a dedicated Django app called api or apiv1, with custom
logic in some of the REST views, serializers, and more. In theory it’s a pretty good approach, but in

228

16.3: REST API Architecture

practice it means we have logic for a particular app in more than just one location.

Our current approach is to lean on URL configuration. When building a project-wide API we write
the REST views in the api/views.py or api/viewsets.py modules, wire them into a URLConf called
something like core/api_urls.py or core/apiv1_urls.py, and include that from the project root’s urls.py
module. This means that we might have something like the following code:

Example 16.10: Combining Multiple App API Views Into One

core/api_urls.py
"""Called from the project root's urls.py URLConf thus:

url(r'^api/', include('core.api_urls', namespace='api')),
"""
from django.conf.urls import url

from flavors.api import views as flavor_views
from users.api import views as user_views

urlpatterns = [
{% url 'api:flavors' %}
url(

regex=r'^flavors/$',
view=flavor_views.FlavorCreateReadView.as_view(),
name='flavors'

),
{% url 'api:flavors' flavor.uuid %}
url(

regex=r'^flavors/(?P<uuid>[-\w]+)/$',
view=flavor_views.FlavorReadUpdateDeleteView.as_view(),
name='flavors'

),
{% url 'api:users' %}
url(

regex=r'^users/$',
view=user_views.UserCreateReadView.as_view(),
name='users'

),
{% url 'api:users' user.uuid %}

229

Chapter 16: Building REST APIs With Django REST Framework

url(
regex=r'^users/(?P<uuid>[-\w]+)/$',
view=user_views.UserReadUpdateDeleteView.as_view(),
name='users'

),
]

16.3.6 Test Your API

We find that Django’s test suite makes it really easy to test API implementations. It’s certainly much
easier than staring at curl results! Testing is covered at length in Chapter 22: Testing Stinks and Is
a Waste of Money!. We even include in that chapter the tests we wrote for our simple JSON API
(see Section 22.3.1: Each Test Method Tests One Thing).

16.3.7 Version Your API

It’s a good practice to abbreviate the urls of your API with the version number e.g.
/api/v1/flavors or /api/v1/users and then as the API changes, /api/v2/flavors or
/api/v2/users. When the version number changes, existing customers can continue to use the
previous version without unknowingly breaking their calls to the API.

Also, in order to avoid angering API consumers, it’s critical to maintain both the existing API and
the predecessor API during and after upgrades. It’s not uncommon for the deprecated API to remain
in use for several months.

When we implement a new version of the API, we provide customers/users with a deprecation warn-
ing along with ample time so they can perform necessary upgrades and not break their own applica-
tions. From personal experience, the ability to send a deprecation warning to end users is an excellent
reason to request email addresses from users of even free and open source API services.

16.3.8 Be Careful With Customized Authentication Schemes

If you’re building an API and need a customized authentication scheme, be extra careful. Security
is hard, and there are always unpredictable edge cases, which is how people penetrate sites. We’ve

230

16.4: When DRF Gets in the Way

only had to implement customized authentication scheme a few times, but we kept the following in
mind:

ä If we’re creating a new authentication scheme, we keep it simple and well tested.
ä Outside of the code, we document why existing standard authentication schemes are insuffi-

cient. See the tipbox below.
ä Also outside of the code, we document in depth how our authentication scheme is designed

to work. See the tipbox below.
ä Unless we are writing a non-cookie based scheme, we don’t disable CSRF.

TIP: Documentation Is Critical for Customized Authentication
Writing out the why and how of a customized authentication scheme is a critical part of the
process. Don’t skip it! Here’s why:

ä Helps us validate our reasoning for coming up with something new. If we can’t describe
the problem in writing, then we don’t fully understand it.

ä Documentation forces us to architect the solution before we code it.
ä After the system is in place, later the documentation allows us (or others) to understand

why we made particular design decisions.

16.4 When DRF Gets in the Way
Django Rest Framework is a powerful tool that comes with a lot of abstractions. Trying to work
through these abstractions can prove to be extremely frustrating. Let’s take a look on overcoming
them.

16.4.1 Remote Procedure Calls vs REST APIs

The resource model used by REST frameworks to expose data is very powerful, but it doesn’t cover
every case. Specifically, resources don’t always match the reality of application design. For example, it
is easy to represent syrup and a sundae as two resources, but what about the action of pouring syrup?
Using this analogy, we change the state of the sundae and decrease the syrup inventory by one. While
we could have the API user change things individually, that can generate issues with database integrity.
Therefore in some cases it can be good idea to present a method like sundae.pour_syrup(syrup) to
the client as part of the RESTful API.

231

Chapter 16: Building REST APIs With Django REST Framework

In computer science terms, sundae.pour_syrup(syrup) could be classified as a Remote Proce-
dure Call or RPC.

References:

ä en.wikipedia.org/wiki/Remote_Procedure_Call
ä en.wikipedia.org/wiki/Resource-oriented_architecture

Fortunately, RPC calls are easy to implement with Django Rest Framework. All we have to do is
ignore the abstraction tools of DRF and rely instead on its base APIView:

Example 16.11: Implementing pour_syrup() RPC with DRF

sundaes/api/views.py
from django.shortcuts import get_object_or_404

from rest_framework.response import Response
from rest_framework.views import APIView

from ..models import Sundae, Syrup
from .serializers import SundaeSerializer, SyrupSerializer

class PourSyrupOnSundaeView(APIView):
"""View dedicated to adding syrup to sundaes"""

def post(self, request, *args, **kwargs):
Process pouring of syrup here,
Limit each type of syrup to just one pour
Max pours is 3 per sundae
sundae = get_object_or_404(Sundae, uuid=request.data['uuid'])
try:

sundae.add_syrup(request.data['syrup'])
except Sundae.TooManySyrups:

msg = "Sundae already maxed out for syrups"
return Response({'message': msg}, status_code=400)

except Syrup.DoesNotExist
msg = "{} does not exist".format(request.data['syrup'])
return Response({'message': msg}, status_code=404)

return Response(SundaeSerializer(sundae).data)

232

https://en.wikipedia.org/wiki/Remote_Procedure_Call
https://en.wikipedia.org/wiki/Resource-oriented_architecture

16.4: When DRF Gets in the Way

def get(self, request, *args, **kwargs)
Get list of syrups already poured onto the sundae
sundae = get_object_or_404(Sundae, uuid=request.data['uuid'])
syrups = [SyrupSerializer(x).data for x in sundae.syrup_set.all()]
return Response(syrups)

And our API design would look like this now:

Example 16.12: Sundae and Syrup API Design

/sundae/ # GET, POST
/sundae/:uuid/ # PUT, DELETE
/sundae/:uuid/syrup/ # GET, POST
/syrup/ # GET, POST
/syrup/:uuid/ # PUT, DELETE

16.4.2 Problems With Complex Data

Okay, we’ll admit it, we make this mistake with DRF about once a month. Let’s sum up what happens
in very simple terms with the following API design:

Example 16.13: A Cone and Scoop API

/api/cones/ # GET, POST
/api/cones/:uuid/ # PUT, DELETE
/api/scoops/ # GET, POST
/api/scoops/:uuid/ # PUT, DELETE

1 We have a model (Scoop) that we want represented within another (Cone)
2 We can easily write a GET of the Cone that includes a list of its Scoops
3 On the other hand, writing a POST or PUT of Cones that also adds or updates its Scoops

at the same time can be challenging, especially if it requires any kind of validation or post
processing

4 Frustration sets in and we leave to get some real-world ice cream

233

Chapter 16: Building REST APIs With Django REST Framework

While there are nicely complex solutions for nested data, we’ve found a better solution. And that is
to simplify things just a bit. Example:

ä Keep the GET representation of the Cone that includes its Scoops
ä Remove any capability of the POST or PUT for the Cone model to modify Scoops for that

cone.
ä Create GET/POST/PUT API views for Scoops that belong to a Cone.

Our end API will now look like this:

Example 16.14: A Cone and Scoop API

/api/cones/ # GET, POST
/api/cones/:uuid/ # PUT, DELETE
/api/cones/:uuid/scoops/ # GET, POST
/api/cones/:uuid/scoops/:uuid/ # PUT, DELETE
/api/scoops/ # GET, POST
/api/scoops/:uuid/ # PUT, DELETE

Yes, this approach does add extra views and additional API calls. On the other hand, this kind of
data modeling can result in simplification of your API. That simplification will result in easier testing,
hence a more robust API.

For what it’s worth, if you take a close look at the Stripe API reference (stripe.com/docs/api)
you’ll see they follow our pattern. You can view complex data, but you have to create it bit-by-bit.

16.4.3 Simplify! Go Atomic!

In the previous two subsections (RPC Calls and Problems With Complex Data), we’ve established a
pattern of simplification. In essence, when we run into problems with DRF we ask these questions:

ä Can we simplify our views? Does switching to APIView resolve the problem?
ä Can we simplify our REST data model as described by views? Does adding more views (of a

straightforward nature) resolve the problem?
ä If a serializer is troublesome and is outrageously complex, why not break it up into two different

serializers for the same model?

234

https://stripe.com/docs/api

16.5: Shutting Down an External API

As you can see, to overcome problems with DRF, we break our API down into smaller, more atomic
components. We’ve found that it’s better to have more views designed to be as atomic as possible
than a few views with many options. As any experienced programmer knows, more options means
more edge cases.

Atomic-style components help in these regards:

ä Documentation is easier/faster because each component does less
ä Easier testing since there are less code branches
ä Bottlenecks are easier to resolve because chokepoints are more isolated
ä Security is better since we can easily change access per view rather than within the code of a

view

16.5 Shutting Down an External API

When it’s time to shut down an older version of an external API in favor of a new one, here are useful
steps to follow:

16.5.1 Step #1: Notify Users of Pending Shut Down

Provide as much advanced notice as possible. Preferably six months, but as short as one month.
Inform API users via email, blogs, and social media. We like to report the shutdown notification to
the point that we worry people are getting tired of the message.

16.5.2 Step #2: Replace API With 410 Error View

When the API is finally shut down, we provide a simple 410 Error View. We include a very simple
message that includes the following information:

ä A link to the new API’s endpoint.
ä A link to the new API’s documentation.
ä A link to an article describing the details of the shut down.

Below is a sample shutdown view that works against any HTTP method:

235

Chapter 16: Building REST APIs With Django REST Framework

Example 16.15: Code for a Shutdown

core/apiv1_shutdown.py
from django.http import HttpResponseGone

apiv1_gone_msg = """APIv1 was removed on April 2, 2017. Please switch to APIv2:

APIv3 Endpoint

APIv3 Documentation

APIv1 shut down notice

"""

def apiv1_gone(request):
return HttpResponseGone(apiv1_gone_msg)

16.6 Rate-Limiting Your API

Rate limiting is when an API restricts how many requests can be made by a user of the API within
a period of time. This is done for a number of reasons, which we’ll explain below.

16.6.1 Unfettered API Access Is Dangerous

In the ancient times (2010) we launched the djangopackages.org website. The project, started
during the Django Dash contest, was an instant hit for the Django community. We sprinted on it
constantly, and its feature set grew rapidly. Unfortunately, we quickly hit the rate limit of GitHub’s
first API. This meant that after a certain amount of API requests per hour, we weren’t allowed to
make any more until a new hour passed.

Fortunately at DjangoCon 2010 we had the opportunity to ask one of the founders of GitHub if we

236

https://www.djangopackages.org/

16.6: Rate-Limiting Your API

could have unlimited access to their API. He graciously said ‘yes’ and within a day we could get data
from GitHub as much as we wanted.

We were delighted. Our users were delighted. Usage of the site increased, people were thirsty for data
as to what were the most active projects. So desirous of data were we that every hour we requested
the latest data from GitHub. And that caused a problem for GitHub.

You see, this was 2010 and GitHub was not the giant, powerful company it is today. At 17 minutes
past each hour, Django Packages would send thousands of requests to the GitHub API in a very
short period. With unfettered access we were causing them problems.

Eventually, GitHub contacted us and requested that we scale back how much we were using their
API. We would still have unlimited access, just needed to give them breathing room. We complied,
checking data once per day instead of by the hour, and at a more reasonable rate. We continue to do
so to this day.

While modern GitHub can certainly handle much, much larger volumes of API access then it could
in late 2010, we like to think we learned a shared lesson about unfettered access to an API: Grant
such access cautiously.

16.6.2 REST Frameworks Must Come With Rate Limiting

Controlling the volume of REST API access can mean the difference between joyful triumph or
utter disaster in a project.

TIP: HTTP Server Rate Limiting

It’s possible to use nginx or apache for rate limiting. The upside is faster performance. The
downside is that it removes this functionality from the Python code.

16.6.3 Rate Limit Can Be a Business Plan

Imagine we launch an API-based startup that lets users add images of toppings to images of ice
cream. We know that everyone will want to use this API, and come up with several tiers of access
that we tie into pricing:

237

Chapter 16: Building REST APIs With Django REST Framework

Developer tier is free, but only allows 10 API requests per hour.
One Scoop is $24/month, allows 25 requests per minute.
Two Scoops is $79/month, allows 50 requests per minute.
Corporate is $5000/month, allows for 200 requests per minute.

Now all we have to do is get people to use our API.

16.7 Advertising Your REST API

Let’s assume we’ve built our REST API and want outside coders and companies to use it. How do
we go about doing that?

16.7.1 Documentation

The most important thing to do is to provide comprehensive documentation. The easier to read
and understand the better. Providing easy-to-use code examples is a must. You can write it
from scratch or use auto-documentation tools provided by django-rest-framework itself and vari-
ous third-party packages (django-rest-framework.org/topics/documenting-your-api/
#third-party-packages. You can even embrace a commercial documentation generation services
like readthedocs.com and swagger.io.

Some of the material in Chapter 23: Documentation: Be Obsessed might prove useful for forward-
facing REST API documentation.

16.7.2 Provide Client SDKs

Something that may help spread use of your API is to provide a software development kits (SDK)
for various programming languages. The more programming languages covered the better. For us,
we’ve found the must-have languages include Python, JavaScript, Ruby, PHP, Go, and Java.

In our experience, it’s a good idea to write at least one of these libraries ourselves and create a demo
project. The reason is that it not only advertises our API, it forces us to experience our API from the
same vantage point as our consumers.

238

http://www.django-rest-framework.org/topics/documenting-your-api/#third-party-packages
http://www.django-rest-framework.org/topics/documenting-your-api/#third-party-packages
https://readthedocs.com/
https://swagger.io

16.8: Additional Reading

Fortunately for us, thanks to the underlying Core API document object model (coreapi.org),
DRF provides several JSON Hyperschema-compatible libraries. When used client-side, Core API
allows for dynamically driven client libraries that can interact with any API that exposes a supported
schema or hypermedia format.

These tools should work immediately with most DRF-powered APIs:

ä Command line client
django-rest-framework.org/topics/api-clients/#command-line-client

ä Python client library
django-rest-framework.org/topics/api-clients/#python-client-library

ä JavaScript client library
django-rest-framework.org/topics/api-clients/
#javascript-client-library

For building Python-powered client SDKs, reading Section 21.9: Releasing Your Own Django Pack-
ages might prove useful.

16.8 Additional Reading

We highly recommend reading the following:

ä en.wikipedia.org/wiki/REST
ä coreapi.org
ä en.wikipedia.org/wiki/List_of_HTTP_status_codes
ä jacobian.org/writing/rest-worst-practices/

PACKAGE TIP: Other Packages for Crafting APIs

For the reasons explained at the beginning of this chapter, we recommend Django Rest Frame-
work. However, should you for some unfathomable reason choose not to use DRF, consider
the following packages:

ä django-tastypie is a mature API framework that implements its own class-based view
system. Predating Django REST Framework, it’s a feature-rich, mature, powerful, sta-
ble tool for creating APIs from Django models.

239

http://www.coreapi.org/
http://www.django-rest-framework.org/topics/api-clients/#command-line-client
http://www.django-rest-framework.org/topics/api-clients/#python-client-library
http://www.django-rest-framework.org/topics/api-clients/#javascript-client-library
http://www.django-rest-framework.org/topics/api-clients/#javascript-client-library
http://en.wikipedia.org/wiki/REST
http://www.coreapi.org/
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://jacobian.org/writing/rest-worst-practices/

Chapter 16: Building REST APIs With Django REST Framework

Figure 16.2: A tasty pie is one filled with ice cream.

ä For super-quick, super-simple one-off REST API views django-braces (CBVs) and
django-jsonview (FBVs) can prove really useful. The downside is that when you get
into the full range of HTTP methods and more complex designs, they rapidly become
a hindrance due to their lack of focus on building APIs.

16.9 Summary

In this chapter we covered:

ä Why you should use Django Rest Framework
ä Basic REST API concepts and how they relate to Django Rest Framework
ä Security considerations
ä Grouping strategies
ä Simplification strategies
ä Fundamentals of basic REST API design

Coming up next, we’ll go over the other side of REST APIs in Chapter 17: Consuming REST APIs.

240

17 | Consuming REST APIs

Now that we’ve covered both creating REST APIs and template best practices, let’s combine them.
In other words, these are best practices for using Django-powered tools to display content to the
end user in the browser using content managed by REST APIs and presented by modern JavaScript
frameworks.

WARNING: This Chapter Will Be Brief

Our challenge in writing this chapter is twofold:
ä Django is a backend framework.
ä The modern JavaScript/HTML5 landscape is evolving too fast to document. The tech-

nical term for trying to keep up with it is called JavaScript Fatigue.
Therefore, we’re going to cover best practices at a very high level.

With the advent of faster JavaScript engines and a maturation of the associated community, there
has been a rise in new JavaScript frameworks that are designed for integration with REST APIs. The
popular ones at the start of 2017 seem to be:

React.js facebook.github.io/react/
A JavaScript framework and ecosystem created and, for the moment, maintained by Facebook.
Designed for creation of HTML, iOS, and Android applications.

Vue.js vuejs.org
Rapidly rising in popularity, Vue.js promises to be simpler to execute than React. The youngster
of this list, its ecosystem isn’t as large as the others.

jQuery jquery.com
While it hasn’t been on the JavaScript hipster list for years, 75 percent of the web can’t be
wrong. jQuery’s ecosystem is gigantic.

241

https://facebook.github.io/react/
https://vuejs.org/
http://jquery.com/

Chapter 17: Consuming REST APIs

These libraries can really improve what we like to call the ‘immediate user experience’. However, with
every good thing there are always things to consider and things to do.

17.1 Learn How to Debug the Client

Debugging client-side JavaScript is a lot more than simply writing console.log() and con-
sole.dir() statements. There are a number of tools for debugging and finding errors, and some
of them are specifically written for particular JavaScript frameworks. Once a tool is chosen, it’s an
excellent idea to take a day to learn how to write client-side tests.

Reference material:

ä developers.google.com/web/tools/chrome-devtools
ä developer.mozilla.org/en-US/docs/Mozilla/Debugging/Debugging_

JavaScript

Figure 17.1: Server-side vs. client-side ice cream.

242

https://developers.google.com/web/tools/chrome-devtools
https://developer.mozilla.org/en-US/docs/Mozilla/Debugging/Debugging_JavaScript
https://developer.mozilla.org/en-US/docs/Mozilla/Debugging/Debugging_JavaScript

17.2: Consider Using JavaScript-Powered Static Asset Preprocessors

17.2 Consider Using JavaScript-Powered Static Asset Preproces-
sors

In the past, we used Python everywhere, including JavaScript and CSS minification. However, these
days it’s clear that the JavaScript community is maintaining their versions of these tools better than
the Python community. That’s perfectly okay, because since they’ve done the work on this part of the
toolchain, we can focus on other things.

As we write this, the most commonly used tool for this kind of work is...debatable. We’re not even
going to list the options because by the time you read this, we are 100% certain some of those options
will be out of date. We submit that you pick the one that appears to have the most traction at the time
you read this paragraph. Fortunately, as node.js works everywhere Python does (including Windows),
you won’t have a problem running whatever you choose.

17.3 Real-Time Woes a.k.a. Latency

Let’s say we’ve put together a well-designed, well-indexed, well-cached real-time project with the
widest bandwidth piping content to the world. We can handle any load, and our test users applaud
the speed and functionality of the project. Things look great, and we look forward to bonuses and
raises.

Then the complaints from the other side of the planet start coming in about the slow speed of the
application. Our effort isn’t ‘real-time’ to any of a potentially large block of users and our client/boss
is really unhappy.

Congratulations, we’ve just hit the speed of light!

This isn’t a joke, it’s a very real problem. Here, Django isn’t the problem. Instead, it’s physics. The time
it takes for HTTP requests to transmit back and forth across half the circumference of the planet
is noticeable to human beings. Add in server-side and client-side processing, and we risk alienating
potential or existing users.

Also, keep in mind that even the fastest local connections have hiccups and slow-downs. So it’s not
uncommon for ‘real-time’ applications to have ways to handle this sort of behavior.

243

Chapter 17: Consuming REST APIs

17.3.1 Solution: Mask the Latency With Animations

One of the more common fixes is to have JavaScript-powered animation distract the user from latency
issues. We encounter this every time we use a single page app with an attractive interface, including
all modern web-based email clients.

17.3.2 Solution: Fake Successful Transactions

Another solution involves processing the request on the client-side as if the request successfully made
it to the server. We’ll need to include client-side logic to handle failures, but JavaScript frameworks
handling HTTP requests are asynchronous, making this feasible, albeit possibly complicated.

If you’ve ever suddenly discovered that your cloud-based spreadsheet hadn’t save the data entered for
the past 30 seconds, you’ve uncovered this kind of JavaScript powered trickery in action. As this can
be very frustrating, some online tools upon detecting a connection failure, disallow further data entry.

17.3.3 Solution: Geographically Based Servers

Geographically-based servers across all seven continents is an option. However, for Django this is
not trivial to implement, not at the programming or database level. It requires a significant volume
of skills and expertise that’s outside the scope of this book.

If you have the time and budget, this can be an exciting avenue to explore and we encourage it.
However, unless you’ve done this before there is a good chance you are going to underestimate the
effort involved.

17.3.4 Solution: Restrict Users Geographically

Sometimes we just don’t have a choice. Perhaps our application is too reliant on ‘real-time’ perfor-
mance and geolocating servers might be outside the budget. We might make some people unhappy,
but that can be mitigated to some degree by saying things like, ‘Support in your country is coming
soon!’

244

17.4: Avoid the Anti-Patterns

17.4 Avoid the Anti-Patterns

Here are a number of anti-patterns that we’ve discovered when it comes to projects consuming REST
APIs for content.

17.4.1 Building Single Page Apps When Multi-Page Apps Suffice

Single-page apps are challenging and fun to build, but does a traditional CMS-site need to be one?
Certainly the content pages can include API-powered editing controls, but when building this kind
of site, there is something to be said for traditional HTML pages.

For example, our health provider has a SPA-style site. It’s absolutely lovely. The way everything
moves together is a marvel. And it’s completely useless when you have to do any kind of comparative
research.

The worst example of the site is that when the search system returns a list of doctors you can’t easily
compare them. When you click on one for more information, their data is in a sliding modal. You
can’t right-click and open several on independant tabs as doing so just takes you to the root search
page. You can print or email yourself the information on individual doctors, but PDFs and email are
awful comparison tools compared to hopping between tabs.

What the site should provide is individual domain references (i.e. URLs) for each doctor. Either
parsed by the server on the back end or even by JavaScript URL management on the front end. This
isn’t hard to do, yet it remains a painfully common issue.

17.4.2 Upgrading Legacy Sites

Unless the entire site is being scrapped for a new version, don’t upgrade the whole front-end at once.

When working with legacy projects, it’s often easier to add new features as single-page apps. This
allows for the maintainers of the project to deliver improved experiences with new features, while
preserving the stability of the existing code base. A good example of this might be adding a calendar
application to an existing project.

245

Chapter 17: Consuming REST APIs

17.4.3 Not Writing Tests

When you first begin working in a new language or framework, including client-side JavaScript, it’s
tempting to skip the tests. In a word, don’t. Working in the client is getting more complicated and
sophisticated every year. Between evolving client-side standards, things are simply not as readable
there as on the server side.

We cover Django/Python testing in Chapter 22: Testing Stinks and Is a Waste of Money!.
A good reference for JavaScript testing is stackoverflow.com/questions/300855/
javascript-unit-test-tools-for-tdd

17.4.4 Not Understanding JavaScript Memory Management

Single-page apps are great, but the complex implementations where users keep them open constantly
will hold objects in the browser for a very long time. Eventually, if not managed, this can cause browser
slowdowns and crashes. Each JavaScript framework comes with tools or advice on how to handle this
potential problem, and it’s a good idea to know the recommended approach.

17.4.5 Storing Data in the DOM When It’s Not jQuery

After years of using jQuery, some of us have grown used to using DOM elements to store data
(especially Daniel). However, when using other JavaScript frameworks this isn’t ideal. They have
their own mechanisms for handling client data, and by not following them we risk losing out on
some of the features promised by these frameworks.

We recommend looking up the data management methods for your chosen JavaScript framework
and embracing them as deeply as possible.

17.5 AJAX and the CSRF Token
Django’s CSRF protection appears to be an inconvenience when writing AJAX. If you use AJAX with
Django, you may discover that triggering the CSRF token validation blocks your ability to POST,
PATCH, or DELETE data to your API. However, it’s part of what makes Django secure, don’t
disable it!

246

http://stackoverflow.com/questions/300855/javascript-unit-test-tools-for-tdd
http://stackoverflow.com/questions/300855/javascript-unit-test-tools-for-tdd

17.5: AJAX and the CSRF Token

Our answer to overcoming the CSRF hurdle is as follows:

1 For the backend, always use Django REST Framework whenever we have an API that handles
POST, PATCH, or DELETE requests.

2 On the front-end, we recommend using Django REST Framework’s built-in
JavaScript client library (django-rest-framework.org/topics/api-clients/
#javascript-client-library) to interface with the backend. It’s framework agnostic
and trivially handles the CSRF token for you.

3 Sometimes we want a tighter integration than what the DRF client framework provides. In
these cases it’s paramount for us to continue relying on the CSRF framework.

References:

ä django-rest-framework.org/topics/api-clients/
#javascript-client-library

ä docs.djangoproject.com/en/1.11/ref/csrf/
ä github.com/GetBlimp/django-rest-framework-jwt This is a proven authentication

library for DRF that is safe to use without CSRF.
ä Section 17.5.1: Set settings.CSRF_COOKIE_HTTPONLY Appropriately

TIP: What if You Aren’t Using Django REST Framework

Then you’re going to have to figure out how to handle CSRF on your own. A good reference is
the official Django documentation on handling CSRF with AJAX: docs.djangoproject.
com/en/1.11/ref/csrf/#ajax

WARNING: Don’t Use AJAX as an Excuse to Turn Off CSRF

Django core developer Aymeric Augustin says, “...CSRF protection is almost always disabled
because the developers couldn’t quite figure out how to make it work. It’s fine to disable CSRF
if the API only accepts JWT authentication; it’s wrong it if accepts cookie authentication.”
Unless you are using django-rest-framework-jwt (django-rest-framework-JWT), don’t
build a site with disabled CSRF. If you can’t figure out how to make it work, ask for help. No
one’s going to make fun of someone trying to make their site more secure.

247

http://www.django-rest-framework.org/topics/api-clients/#javascript-client-library
http://www.django-rest-framework.org/topics/api-clients/#javascript-client-library
http://www.django-rest-framework.org/topics/api-clients/#javascript-client-library
http://www.django-rest-framework.org/topics/api-clients/#javascript-client-library
https://docs.djangoproject.com/en/1.11/ref/csrf/
https://github.com/GetBlimp/django-rest-framework-jwt
https://docs.djangoproject.com/en/1.11/ref/csrf/#ajax
https://docs.djangoproject.com/en/1.11/ref/csrf/#ajax
https://github.com/GetBlimp/django-rest-framework-jwt

Chapter 17: Consuming REST APIs

17.5.1 Set settings.CSRF_COOKIE_HTTPONLY Appropriately

By setting the CSRF_COOKIE_HTTPONLY token to True we make it harder for malicious
JavaScript to bypass CSRF protection. On the downside, you can’t use JavaScript to pull the CSRF
token from the cookie. Therefore, per Django’s instructions, you have to pull the hidden CSRF token
form input from the page. Here’s a jQuery-based example:

Example 17.1: Placing a Hidden CSRF Form Element

<html>
<!-- Placed anywhere in the page, doesn't even need to

be in a form as the input element is hidden -->
{% csrf_token %}
</html>

Example 17.2: Taking the CSRF Token from the DOM

var csrfToken = $('[name=csrfmiddlewaretoken]').val();
var formData = {
csrfmiddlewaretoken: csrfToken,
name=name, age=age

};
$.ajax({
url: '/api/do-something/'',
data: formData,
type: 'POST'

})

17.6 Improving JavaScript Skills

One of the best things we can do when implementing the consumption of REST APIs on the client
side is to ensure our JavaScript skills are up to par. While Python developers sometimes like to
grumble about JavaScript, it is a very capable language in its own right. Any responsible web developer
will take the time to ramp up their skills so they can reap the benefits of modern JavaScript.

248

17.7: Follow JavaScript Coding Standards

17.6.1 Assessing Skill Levels

Noted JavaScript developer Rebecca Murphey created a JavaScript assessment tool. We found it a
wonderful way to determine how much JavaScript we actually knew, and what we needed to improve.

See github.com/rmurphey/js-assessment.

17.6.2 Learn More JavaScript!

There are plenty of resources available for improving your basic JavaScript skills. We list our favorites
at the end of Appendix C: Additional Resources.

17.7 Follow JavaScript Coding Standards

In the case of JavaScript, we advocate the following guides for both front- and back-end work:

ä Felix’s Node.js Style Guide
nodeguide.com/style.html

ä idiomatic.js
github.com/rwaldron/idiomatic.js

17.8 Summary

Material covered in this chapter included:

ä Debugging the client.
ä JavaScript static asset preprocessors.
ä Real-time woes.
ä Client-side anti-patterns.
ä AJAX and CSRF tokens.
ä Improving JavaScript skills.
ä Useful resources.

249

https://github.com/rmurphey/js-assessment
http://nodeguide.com/style.html
https://github.com/rwaldron/idiomatic.js/

Chapter 17: Consuming REST APIs

250

18 | Tradeoffs of Replacing
Core Components

There’s a lot of hype around swapping out core parts of Django’s stack for other pieces. Should you
do it?

Short Answer: Don’t do it. Even the CEO of Instagram (Kevin Systrom) said Forbes.com that it’s
completely unnecessary (bit.ly/2pZxOBO).

Long Answer: It’s certainly possible, since Django modules are simply just Python modules. Is it
worth it? Well, it’s worth it only if:

ä You are okay with sacrificing some or all of your ability to use third-party Django pack-
ages.

ä You have no problem giving up the powerful Django admin.
ä You have already made a determined effort to build your project with core Django com-

ponents, but you are running into walls that are major blockers.
ä You have already analyzed your own code to find and fix the root causes of your problems.

For example, you’ve done all the work you can to reduce the numbers of queries made in
your templates.

ä You’ve explored all other options including caching, denormalization, etc.
ä Your project is a real, live production site with tons of users. In other words, you’re certain

that you’re not just optimizing prematurely.
ä You’ve looked at and rejected adopting a Service Oriented Approach (SOA) for those

cases Django has problems dealing with.
ä You’re willing to accept the fact that upgrading Django will be extremely painful or im-

possible going forward.

That doesn’t sound so great anymore, does it?

251

http://bit.ly/2pZxOBO

Chapter 18: Tradeoffs of Replacing Core Components

18.1 The Temptation to Build FrankenDjango

Every year, a new fad leads waves of developers to replace some particular core Django component.
Here’s a summary of some of the fads we’ve seen come and go.

Fad Reasons

For performance reasons,
replacing the
database/ORM with a
NoSQL database and
corresponding ORM
replacement.

Not okay: “I have an idea for a social network for ice cream haters.
I just started building it last month. I need it to be web-scale!!!1!”

Okay: “Our site has 50M users and I’m hitting the limits of what I
can do with indexes, query optimization, caching, etc. We’re also
pushing the limits of our Postgres cluster. I’ve done a lot of
research on this and am going to try storing a simple denormalized
view of data in Cassandra to see if it helps. I’m aware of the CAP
theorem (en.wikipedia.org/wiki/CAP_theorem), and for
this view, eventual consistency is fine.”

For data processing
reasons, replacing the
database/ORM with a
NoSQL database and
corresponding ORM
replacement.

Not okay: “SQL Sucks! We’re going with a document-oriented
database like MongoDB!”

Okay: “While PostgreSQL’s HSTORE datatype replicates nearly
every aspect of MongoDB’s data storage system, we want to use
MongoDB’s built-in MapReduce functionality.”

Replacing Django’s
template engine with
Jinja2, Mako, or
something else.

Not okay: “I read on Hacker News that Jinja2 is faster. I don’t
know anything about caching or optimization, but I need Jinja2!”

Not okay: “I hate having logic in Python modules. I want logic in
my templates!”

Okay: “I have a small number of views which generate 1MB+
HTML pages designed for Google to index. I’ll use Django’s
native support for multiple template languages to render the
1MB+ sized pages with Jinja2, and serve the rest with Django
Template Language.”

Table 18.1: Fad-based Reasons to Replace Components of Django

252

https://en.wikipedia.org/wiki/CAP_theorem

18.2: Non-Relational Databases vs. Relational
Databases

Figure 18.1: Replacing more core components of cake with ice cream seems like a good idea. Which
cake would win? The one on the right, of course.

18.2 Non-Relational Databases vs. Relational
Databases

Even Django projects that use relational databases for persistent data storage rely on non-relational
databases. If a project relies on tools like Memcached for caching and Redis for queuing, then it’s
using non-relational databases.

The problem occurs when NoSQL solutions are used to completely replace Django’s relational
database functionality without considering in-depth the long-term implications.

18.2.1 Not All Non-Relational Databases Are ACID Compliant

ACID is an acronym for:

Atomicity means that all parts of a transaction work or it all fails. Without this, you risk data cor-
ruption.

Consistency means that any transaction will keep data in a valid state. Strings remain strings and
integers remain integers. Without this, you risk data corruption.

Isolation means that concurrent execution of data within a transaction will not collide or leak into
another transaction. Without this, you risk data corruption.

253

Chapter 18: Tradeoffs of Replacing Core Components

Durability means that once a transaction is committed, it will remain so even if the database server
is shut down. Without this, you risk data corruption.

Did you notice how each of those descriptions ended with ‘Without this, you risk data corruption.’? This
is because in the case of most NoSQL engines, there is little-to-no mechanism for ACID compliance.
It’s much easier to corrupt the data, which is mostly a non-issue for things like caching but another
thing altogether for projects handling processing of persistent medical or e-commerce data.

18.2.2 Don’t Use Non-Relational Databases for Relational Tasks

Imagine if we were to use a non-relational database to track the sale of properties, property owners,
and how property laws worked for them in 50 US states. There are a lot of unpredictable details, so
wouldn’t a schemaless datastore be perfect for this task?

Perhaps...

We would need to track the relationship between properties, property owners, and laws of 50 states.
Our Python code would have to maintain the referential integrity between all the components. We
would also need to ensure that the right data goes into the right place.

For a task like this, stick with a relational database.

18.2.3 Ignore the Hype and Do Your Own Research

It’s often said that non-relational databases are faster and scale better than relational databases.
Whether or not this is true, don’t blindly swallow the marketing hype of the companies behind
any particular alternative database solution.

Instead, do as we do: search for benchmarks, read case studies describing when things went right or
wrong, and form opinions as independently as possible.

Also, experiment with unfamiliar NoSQL databases on small hobby side projects before you make
major changes to your main project infrastructure. Your main codebase is not a playground.

Lessons learned by companies and individuals:

254

18.3: What About Replacing the Django Template Language?

ä Pinterest: medium.com/@Pinterest_Engineering/stop-using-shiny-3e1613c2ce14
ä Dan McKinley while at Etsy: mcfunley.com/why-mongodb-never-worked-out-at-etsy

18.2.4 How We Use Non-Relational Databases With Django

This is how we prefer to do things:

ä If we use a non-relational data store, limit usage to short-term things like caches, queues, and
sometimes denormalized data. But avoid it if possible, to reduce the number of moving parts.

ä Use relational data stores for long-term, relational data and sometimes denormalized data (Post-
greSQL’s array and HStore fields work great for this task).

For us, this is the sweet spot that makes our Django projects shine.

18.3 What About Replacing the Django Template
Language?

We advocate the practice of sticking entirely to the Django Template Language (DTL) with the
exception of rendered content of huge size. However, as this use case is now covered by Django’s
native support of alternate template systems, we’ve moved discussion of this topic to Chapter 15:
Django Templates and Jinja2.

18.4 Summary

Always use the right tool for the right job. We prefer to go with stock Django components, just like
we prefer using a scoop when serving ice cream. However, there are times when other tools make
sense.

Just don’t follow the fad of mixing vegetables into your ice cream. You simply can’t replace the classic
strawberry, chocolate, and vanilla with supposedly “high-performance” flavors such as broccoli, corn,
and spinach. That’s taking it too far.

255

https://medium.com/Pinterest_Engineering/learn-to-stop-using-shiny-new-things-and-love-mysql-3e1613c2ce14
http://mcfunley.com/why-mongodb-never-worked-out-at-etsy

Chapter 18: Tradeoffs of Replacing Core Components

256

19 | Working With the Django Admin

When people ask, “What are the benefits of Django over other web frameworks?” the admin is what
usually comes to mind.

Imagine if every gallon of ice cream came with an admin interface. You’d be able to not just see the
list of ingredients, but also add/edit/delete ingredients. If someone was messing around with your
ice cream in a way that you didn’t like, you could limit or revoke their access.

Figure 19.1: Chocolate chip ice cream with an admin interface.

Pretty surreal, isn’t it? Well, that’s what web developers coming from another background feel like
when they first use the Django admin interface. It gives you so much power over your web application
automatically, with little work required.

257

Chapter 19: Working With the Django Admin

19.1 It’s Not for End Users

The Django admin interface is designed for site administrators, not end users. It’s a place for your site
administrators to add/edit/delete data and perform site management tasks. Although it’s possible to
stretch it into something that your end users could use, you really shouldn’t. It’s just not designed for
use by every site visitor.

19.2 Admin Customization vs. New Views

It’s usually not worth it to heavily customize the Django admin. Sometimes, creating a simple view
or form from scratch results in the same desired functionality with a lot less work. We’ve always had
better results with creating custom management dashboards for client projects than we have with
modifying the admin to fit the need of the client.

19.3 Viewing String Representations of Objects

The default admin page for a Django app shows a list of generic looking objects like this:

Figure 19.2: Admin list page for an ice cream bar app.

258

19.3: Viewing String Representations of Objects

That’s because the default string representation of an IceCreamBar object is “IceCreamBar object”.
Wouldn’t it be helpful to display something better?

Figure 19.3: What? An admin interface for ice cream bars?

19.3.1 Using __str__()

Implementing __str__() is simple:

Example 19.1: String Representation of Objects

from django.db import models
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible # For Python 3.5+ and 2.7
class IceCreamBar(models.Model):

name = models.CharField(max_length=100)
shell = models.CharField(max_length=100)
filling = models.CharField(max_length=100)
has_stick = models.BooleanField(default=True)

def __str__(self):
return self.name

The result is as follows:

259

Chapter 19: Working With the Django Admin

Figure 19.4: Improved admin list page with better string representation of our objects.

It’s more than that. When you’re in the shell, you see the better string representation:

Example 19.2: List of Ice Cream Bar Types

>>> IceCreamBar.objects.all()
[<IceCreamBar: Vanilla Crisp>, <IceCreamBar: Mint Cookie Crunch>,
<IceCreamBar: Strawberry Pie>]

The __str__() method is called whenever you call str() on an object. This occurs in the Django
shell, templates, and by extension the Django admin. Therefore, try to make the results of __str__()
nice, readable representation of Django model instances.

19.3.2 Using list_display

If you want to change the admin list display in a way that isn’t quite a string representation of the
object, then use list_display.

260

19.4: Adding Callables to ModelAdmin Classes

Example 19.3: Admin List Display

from django.contrib import admin

from .models import IceCreamBar

@admin.register(IceCreamBar)
class IceCreamBarModelAdmin(admin.ModelAdmin):

list_display = ('name', 'shell', 'filling')

The result with the specified fields:

Figure 19.5: Further improvements to the admin list page.

19.4 Adding Callables to ModelAdmin Classes
You can use callables such as methods and functions to add functionality to the Django
django.contrib.admin.ModelAdmin class. This allows you to really modify the list and display
screens to suit your ice cream project needs.

For example, it’s not uncommon to want to see the exact URL of a model instance in the Django
admin. If you define a get_absolute_url() method for your model, what Django provides in the

261

Chapter 19: Working With the Django Admin

admin is a link to a redirect view whose URL is very different from the actual object URL. Also, there
are cases where the get_absolute_url() method is meaningless (REST APIs come to mind).

In the example below, we demonstrate how to use a simple callable to provide a link to our target
URL:

Example 19.4: Adding Callables to ModelAdmin Classes

icecreambars/admin.py
from django.contrib import admin
from django.urls import reverse, NoReverseMatch
from django.utils.html import format_html

from .models import IceCreamBar

@admin.register(IceCreamBar)
class IceCreamBarModelAdmin(admin.ModelAdmin):

list_display = ('name', 'shell', 'filling')
readonly_fields = ('show_url',)

def show_url(self, instance):
url = reverse('ice_cream_bar_detail', kwargs={'pk': instance.pk})
response = format_html("""{0}""", url)
return response

show_url.short_description = 'Ice Cream Bar URL'
Displays HTML tags
Never set allow_tags to True against user submitted data!!!
show_url.allow_tags = True

Since a picture is worth a thousand words, here is what our callable does for us:

262

19.5: Be Aware of the Complications of Multiuser Environments

Figure 19.6: Displaying URL in the Django Admin.

WARNING: Use the allow_tags Attribute With Caution

The allow_tags attribute, which is set to False by default, can be a security issue. When
allow_tags is set to True, HTML tags are allowed to be displayed in the admin.
Our hard rule is allow_tags can only be used on system generated data like primary keys,
dates, and calculated values. Data such as character and text fields are completely out, as is
any other user entered data.

19.5 Be Aware of the Complications of Multiuser Environments
Nothing in the Django admin locks records to a particular staff- or admin-level user. While this is
fine for a project with a single person with admin-level access, on a multi-user project it can be a very
serious problem. Here is what happens:

1 Via the Django admin, Daniel edits the record for “Peppermint Sundae” ice cream bar. He
starts to make changes. He gets a phone call from the marketing officer of Icecreamlandia and
leaves his screen open.

263

Chapter 19: Working With the Django Admin

2 In the meantime, Audrey decides to modify “Peppermint Sundae” ice cream bar. She spends
ten minutes making her changes, then saves the her data.

3 Daniel gets off the phone and finally saves his changes. He overwrites Audrey’s changes.

If you have multiple users with access to the Django admin, you need to be aware of this possibility.

19.6 Django’s Admin Documentation Generator
One of the more interesting developer tools that Django provides is the
django.contrib.admindocs package. Created in an era before the advent of the docu-
mentation tools that we cover in Chapter 23: Documentation: Be Obsessed, it remains a useful
tool.

It’s useful because it introspects the Django framework to display docstrings for project components
like models, views, custom template tags, and custom filters. Even if a project’s components don’t
contain any docstrings, simply seeing a list of harder-to-introspect items like oddly named custom
template tags and custom filters can be really useful in exploring the architecture of a complicated,
existing application.

Using django.contrib.admindocs is easy, but we like to reorder the steps described in the formal
documentation:

1 pip install docutils into your project’s virtualenv.
2 Add django.contrib.admindocs to your INSTALLED_APPS.
3 Add (r'^admin/doc/', include('django.contrib.admindocs.urls')) to your

root URLConf. Make sure it’s included before the r'^admin/' entry, so that requests to
/admin/doc/ don’t get handled by the latter entry.

4 Optional : Using the admindocs bookmarklets requires the XViewMiddleware to be installed.

Once you have this in place, go to /admin/doc/ and explore. You may notice a lot of your
project’s code lacks any sort of documentation. This is addressed in the formal documentation on
django.contrib.admindocs: docs.djangoproject.com/en/1.11/ref/contrib/admin/
admindocs/ and our own chapter on Chapter 23: Documentation: Be Obsessed.

19.7 Using Custom Skins With the Django Admin
Over the years there have been a number of efforts to reskin or theme the Django Admin. These
range from the venerable, stable, and very popular django-grappelli to more recent up-and-comers.

264

https://docs.djangoproject.com/en/1.11/ref/contrib/admin/admindocs/
https://docs.djangoproject.com/en/1.11/ref/contrib/admin/admindocs/

19.7: Using Custom Skins With the Django Admin

They allow easy-to-hard customization.

PACKAGE TIP: Custom django.contrib.admin Skins

Here are some of the more popular custom skins that are generally Python 2 and 3 compatible:
ä django-grappelli is the grand-daddy of all custom Django skins. Stable, robust, and

with a unique but friendly style.
ä django-suit is a relatively recent project and like many modern custom Django skins,

is built using the familiar Twitter Bootstrap front-end framework.
ä django-admin-bootstrapped is another port of the Django admin to Twitter Boot-

strap.
A more complete list can be found at
djangopackages.org/grids/g/admin-styling/.

Django has a gigantic community, so why aren’t there more skins?

It turns out that besides the most basic CSS-based modifications, creating custom Django themes
is very challenging. For anyone who has delved into the source code for these projects, it’s
clear that custom admin skins require arcane code to account for some of the idiosyncrasies of
django.contrib.admin.

Patrick Kranzlmueller, maintainer of django-grappelli, goes into great detail in his article on the
subject, ‘A Frontend Framework for the Django Admin Interface’, which you can read at the link
below:

ä sehmaschine.net/blog/django-admin-frontend-framework.

Here are some tips when working with custom django.contrib.admin skins:

19.7.1 Evaluation Point: Documentation is Everything

As mentioned earlier, writing a custom skin for django.contrib.admin is hard. While the suc-
cessful skins are relatively easy to add to a project, it’s the edge cases (invariably involved in extending
the ModelAdmin object) that can hurt.

Therefore, when evaluating one of these projects for use on a project, check to see how far the docu-
mentation goes beyond installation instructions.

265

https://djangopackages.org/grids/g/admin-styling/
http://sehmaschine.net/blog/django-admin-frontend-framework

Chapter 19: Working With the Django Admin

19.7.2 Write Tests for Any Admin Extensions You Create

For our purposes, we’ve found that while clients enjoy the more modern themes, you have to be careful
of how far you extend these admin skins. What works great in vanilla django.contrib.admin can
break in a custom skin. Since the custom skins have to wrap portions of django.contrib.admin
abstractions in curious ways, debugging these problems can prove to be a mind-numbing nightmare.

Therefore, if you use a custom skin, the best practice is to write tests of the admin, especially for any
customization. Yes, it is a bit of work up front, but it means catching these bugs much, much earlier.

For more on testing, see our writings on testing in Chapter 22: Testing Stinks and Is a Waste of
Money!.

19.8 Secure the Django Admin

Since the Django admin gives your site admins special powers that ordinary users don’t have, it’s good
practice to make it extra secure.

19.8.1 Change the Default Admin URL

By default, the admin URL is yoursite.com/admin/. Change it to something that’s long and difficult
to guess.

TIP: Jacob Kaplan-Moss Talks About Changing the Admin URL

Django project co-leader Jacob Kaplan-Moss says (paraphrased) that it’s an easy additional
layer of security to come up with a different name (or even different domain) for the admin.

It also prevents attackers from easily profiling your site. For example, attackers can tell which
version of Django you’re using, sometimes down to the point-release level, by examining the
content of admin/ on a project.

266

19.8: Secure the Django Admin

19.8.2 Use django-admin-honeypot

If you’re particularly concerned about people trying to break into your Django site, django-admin-
honeypot is a package that puts a fake Django admin login screen at admin/ and logs information
about anyone who attempts to log in.

See github.com/dmpayton/django-admin-honeypot for more information.

19.8.3 Only Allow Admin Access via HTTPS

This is already implied in Section 26.6: HTTPS Everywhere, but we want to especially emphasize
here that your admin needs to be TLS-secured. If your site allows straight HTTP access, you will
need to run the admin on a properly-secured domain, adding to the complexity of your deployment.
Not only will you need a second deployment procedure, but you’ll need to include logic in your
URLConf in order to remove the admin from HTTP access. In the experience of the authors, it’s
much easier to put the whole site on TLS/HTTPS.

Without TLS, if you log into your Django admin on an open WiFi network, it’s trivial for someone
to sniff your admin username/password.

19.8.4 Limit Admin Access Based on IP

Configure your web server to only allow access to the Django admin to certain IP addresses. Look
up the instructions for your particular web server.

ä Nginx instructions tech.marksblogg.com/django-admin-logins.html

An acceptable alternative is to put this logic into middleware. It’s better to do it at the web server
level because every middleware component adds an extra layer of logic wrapping your views, but in
some cases this can be your only option. For example, your platform-as-a-service might not give you
fine-grain control over web server configuration.

267

https://github.com/dmpayton/django-admin-honeypot
http://tech.marksblogg.com/django-admin-logins.html

Chapter 19: Working With the Django Admin

19.9 Securing the Admin Docs

Since the Django admin docs give your site admins a view into how the project is constructed, it’s
good practice to keep them extra-secure just like the Django admin. Borrowing from the previous
section on the Django admin, we advocate the following:

ä Changing the admin docs URL to something besides yoursite.com/admin/doc/.
ä Only allowing admin docs access via HTTPS.
ä Limiting admin docs access based on IP.

19.10 Summary

In this chapter we covered the following:

ä Who should be using the Django admin.
ä When to use the Django admin and when to roll a new dashboard.
ä String representation of objects.
ä Adding callables to Django admin classes.
ä Using Django’s admin docs.
ä Encouraging you to secure the Django admin.
ä Advised on working with custom Django skins.

268

20 | Dealing With the User Model

Django comes with a built-in support for user records. It’s a useful feature, doubly so once you learn
how to extend and expand on the basic functionality. So let’s go over best practices for Django 1.11.

20.1 Use Django’s Tools for Finding the User Model

The advised way to get to the user class is as follows:

Example 20.1: Using get_user_model to the User Record

Stock user model definition
>>> from django.contrib.auth import get_user_model
>>> get_user_model()
<class django.contrib.auth.models.User>

When the project has a custom user model definition
>>> from django.contrib.auth import get_user_model
>>> get_user_model()
<class profiles.models.UserProfile>

It is possible to get two different User model definitions depending on the project configuration.
This doesn’t mean that a project can have two different User models; it means that every project can
customize its own User model.

269

Chapter 20: Dealing With the User Model

20.1.1 Use settings.AUTH_USER_MODEL for Foreign Keys to User

In Django 1.11, the official preferred way to attach ForeignKey, OneToOneField, or Many-
ToManyField to User is as follows:

Example 20.2: Using settings.AUTH_USER_MODEL to Define Model Relations

from django.conf import settings
from django.db import models

class IceCreamStore(models.Model):

owner = models.OneToOneField(settings.AUTH_USER_MODEL)
title = models.CharField(max_length=255)

Yes, it looks a bit strange, but that’s what the official Django docs advise.

Figure 20.1: This looks strange too.

WARNING: Don’t Change settings.AUTH_USER_MODEL!

Once set in a project, changing settings.AUTH_USER_MODEL requires changing your
database schema accordingly. It’s one thing to add or modify User model fields, it’s another
thing to create a whole new User object.

20.1.2 Don’t Use get_user_model() for Foreign Keys to User

This is bad, as it tends to create import loops.

270

20.2: Custom User Fields for Django 1.11 Projects

Example 20.3: Using get_user_model() Improperly

DON'T DO THIS!
from django.contrib.auth import get_user_model
from django.db import models

class IceCreamStore(models.Model):

This following line tends to create import loops.
owner = models.OneToOneField(get_user_model())
title = models.CharField(max_length=255)

20.2 Custom User Fields for Django 1.11 Projects

In Django 1.11, as long as we incorporate the required methods and attributes, we can create our
own user model with its own fields.

PACKAGE TIP: Libraries for Defining Custom User Models

django-authtools is a library that makes defining custom user models easier. Of particular
use are the AbstractEmailUser and AbstractNamedUser models. Even if you don’t end
up using django-authtools, the source code is well worth examining.

20.2.1 Option 1: Subclass AbstractUser

Choose this option if you like Django’s User model fields the way they are, but need extra fields. For
what it’s worth, this is the first approach that we look at anytime we start a new project. When using
django-authtools’ base models, forms, and admin objects, we find that it’s the quickest and easiest
way to implement custom user models.

Here’s an example of how to subclass AbstractUser:

271

Chapter 20: Dealing With the User Model

Example 20.4: Subclassing of AbstractUser

profiles/models.py
from django.contrib.auth.models import AbstractUser
from django.db import models

class KarmaUser(AbstractUser):
karma = models.PositiveIntegerField(verbose_name='karma',

default=0,
blank=True)

The other thing you have to do is set this in your settings:

Example 20.5: Setting AUTH_USER_MODEL

AUTH_USER_MODEL = 'profiles.KarmaUser'

20.2.2 Option 2: Subclass AbstractBaseUser

AbstractBaseUser is the bare-bones option with only 3 fields: password, last_login, and
is_active.

Choose this option if:

ä You’re unhappy with the fields that the User model provides by default, such as first_name
and last_name.

ä You prefer to subclass from an extremely bare-bones clean slate but want to take advantage of
the AbstractBaseUser sane default approach to storing passwords.

If you want to go down this path, we recommend the following reading:

Official Django Documentation Example
docs.djangoproject.com/en/1.11/topics/auth/customizing/
#a-full-example

Source code of django-authtools (Especially admin.py, forms.py, and models.py)
github.com/fusionbox/django-authtools

272

https://docs.djangoproject.com/en/1.11/topics/auth/customizing/#a-full-example
https://docs.djangoproject.com/en/1.11/topics/auth/customizing/#a-full-example
https://github.com/fusionbox/django-authtools

20.2: Custom User Fields for Django 1.11 Projects

20.2.3 Option 3: Linking Back From a Related Model

This code is very similar to the pre-Django 1.5 project technique of creating ‘Profile’ models. Before
discarding this approach as legacy, consider the following use cases:

Use Case: Creating a Third Party Package

ä We are creating a third-party package for publication on PyPI.
ä The package needs to store additional information per user, perhaps a Stripe ID or another

payment gateway identifier.
ä We want to be as unobtrusive to the existing project code as possible. Loose coupling!

Use Case: Internal Project Needs

ä We are working on our own Django project.
ä We want different types of users to have different fields.
ä We might have some users with a combination of different user types.
ä We want to handle this at the model level, instead of at other levels.
ä We want this to be used in conjunction with a custom user model from options #1 or #2.

Either of these use cases provide motive for the continued use of this technique.

To make this technique work, we continue to use django.contrib.models.User (called prefer-
ably via django.contrib.auth.get_user_model()) and keep your related fields in separate
models (e.g. Profiles). Here’s an example:

Example 20.6: Custom User Profile Examples

profiles/models.py

from django.conf import settings
from django.db import models

from flavors.models import Flavor

class EaterProfile(models.Model):

Default user profile

273

Chapter 20: Dealing With the User Model

If you do this you need to either have a post_save signal or
redirect to a profile_edit view on initial login.
user = models.OneToOneField(settings.AUTH_USER_MODEL)
favorite_ice_cream = models.ForeignKey(Flavor, null=True, blank=True)

class ScooperProfile(models.Model):

user = models.OneToOneField(settings.AUTH_USER_MODEL)
scoops_scooped = models.IntegerField(default=0)

class InventorProfile(models.Model):

user = models.OneToOneField(settings.AUTH_USER_MODEL)
flavors_invented = models.ManyToManyField(Flavor, null=True, blank=True)

Using this approach, we can query for any user’s favorite ice cream trivially with the ORM:
user.eaterprofile.favorite_ice_cream. In addition, Scooper and Inventor profiles pro-
vide individual data that only applies to those users. Since that data is isolated into dedicated models,
it’s much harder for accidents between user types to occur.

The only downside to this approach is that it’s possible to take it too far in complexity of profiles or
in the supporting code. As always, keep your code as simple and clean as possible.

WARNING: Third-Party Libraries Should Not Be Defining the User
Model
Unless the express purpose of the library is to define custom user models for a project (à la
django-authtools), third-party libraries shouldn’t be using options #1 or #2 to add fields to
user models. Instead, they should rely on option #3.

20.3 Summary

In this chapter we covered the new method to find the User model and define our own custom ones.
Depending on the needs of a project, they can either continue with the current way of doing things
or customize the actual user model.

274

20.3: Summary

The next chapter is a dive into the world of third-party packages.

275

Chapter 20: Dealing With the User Model

276

21 | Django’s Secret Sauce:
Third-Party Packages

The real power of Django is more than just the framework and documentation available at
djangoproject.com. It’s the vast, growing selection of third-party Django and Python packages
provided by the open source community. There are many, many third-party packages available for
your Django projects which can do an incredible amount of work for you. These packages have been
written by people from all walks of life, and they power much of the world today.

Figure 21.1: A jar of Django’s mysterious secret sauce. Most don’t have a clue what this is.

Much of professional Django and Python development is about the incorporation of third-party
packages into Django projects. If you try to write every single tool that you need from scratch, you’ll
have a hard time getting things done.

This is especially true for us in the consulting world, where client projects consist of many of the
same or similar building blocks.

277

https://djangoproject.com

Chapter 21: Django’s Secret Sauce: Third-Party Packages

Figure 21.2: The secret is out. It’s just hot fudge.

21.1 Examples of Third-Party Packages

Appendix A: Packages Mentioned In This Book covers all of the packages mentioned throughout
Two Scoops of Django. This list is a great starting point if you’re looking for highly-useful packages
to consider adding to your projects.

Note that not all of those packages are Django-specific, which means that you can use some of them
in other Python projects. (Generally, Django-specific packages generally have names prefixed with
“django-” or “dj-”, but there are many exceptions.)

21.2 Know About the Python Package Index

The PythonPackage Index (PyPI), located at pypi.python.org/pypi, is a repository of software
for the Python programming language. As of the time this sentence was written, it lists over 100,000
packages, including Django itself.

For the vast majority of Python community, no open source project release is considered official until
it occurs on the Python Package Index.

The Python Package Index is much more than just a directory. Think of it as the world’s largest center
for Python package information and files. Whenever you use pip to install a particular release of
Django, pip downloads the files from the Python Package Index. Most Python and Django packages
are downloadable from the Python Package Index in addition to pip.

278

https://pypi.python.org/pypi

21.3: Know About DjangoPackages.org

21.3 Know About DjangoPackages.org
Django Packages (djangopackages.org) is a directory of reusable apps, sites, tools and more for
your Django projects. Unlike PyPI, it doesn’t store the packages themselves, instead providing a mix
of hard metrics gathered from the Python Package Index, GitHub, ReadTheDocs, and “soft” data
entered by users.

Django Packages is best known as a comparison site for evaluating package features. On Django
Packages, packages are organized into handy grids so they can be compared against each other.

Django Packages also happens to have been created by the authors of this book, with contribu-
tions from many, many people in the Python community. Thank to the current maintainer, Jannis
Gebaueur, and others it is continually maintained and improved as a helpful resource for Django
users.

21.4 Know Your Resources
Django developers unaware of the critical resources of Django Packages and the Python Package
Index are denying themselves one of the most important advantages of using Django and Python. If
you are not aware of these tools, it’s well worth the time you spend educating yourself.

As a Django (and Python) developer, make it your mission to use third-party libraries instead of
reinventing the wheel whenever possible. The best libraries have been written, documented, and
tested by amazingly competent developers working around the world. Standing on the shoulders of
these giants is the difference between amazing success and tragic downfall.

As you use various packages, study and learn from their code. You’ll learn patterns and tricks that
will make you a better developer.

On the other hand, it’s very important to be able to identify the good packages from the bad. It’s
well worth taking the time to evaluate packages written by others the same way we evaluate our own
work. We cover this later in this chapter in Section 21.10: What Makes a Good Django Package?

21.5 Tools for Installing and Managing Packages
To take full advantage of all the packages available for your projects, having virtualenv and pip
installed isn’t something you can skip over. It’s mandatory.

279

https://www.djangopackages.org/

Chapter 21: Django’s Secret Sauce: Third-Party Packages

Refer to Chapter 2: The Optimal Django Environment Setup for more details.

21.6 Package Requirements

As we mentioned earlier in Chapter 5: Settings and Requirements Files, we manage our Djan-
go/Python dependencies with requirements files. These files go into the requirements/ directory that
exists in the root of our projects.

21.7 Wiring Up Django Packages: The Basics

When you find a third-party package that you want to use, follow these steps:

21.7.1 Step 1: Read the Documentation for the Package

Are you sure you want to use it? Make sure you know what you’re getting into before you install any
package.

21.7.2 Step 2: Add Package and Version Number to Your
Requirements

If you recall from Chapter 5: Settings and Requirements Files, a requirements/base.txt file looks some-
thing like this (but probably longer):

Example 21.1: Adding Packages with Version Numbers to Requirements

Django==1.11
coverage==4.3.4
django-extensions==1.7.6
django-braces==1.11

Note that each package is pinned to a specific version number. Always pin your package dependencies
to version numbers.

280

21.7: Wiring Up Django Packages: The Basics

What happens if you don’t pin your dependencies? You are almost guaranteed to run into problems at
some point when you try to reinstall or change your Django project. When new versions of packages
are released, you can’t expect them to be backwards-compatible.

Our sad example: Once we followed a software-as-a-service platform’s instructions for using their
library. As they didn’t have their own Python client, but an early adopter had a working implemen-
tation on GitHub, those instructions told us to put the following into our requirements/base.txt:

Example 21.2: How Not To List Requirements

-e git+https://github.com/erly-adptr/py-junk.git#egg=py-jnk

Our mistake. We should have known better and pinned it to a particular git revision number.

Not the early adopter’s fault at all, but they pushed up a broken commit to their repo. Once we had
to fix a problem on a site very quickly, so we wrote a bug fix and tested it locally in development. It
passed the tests. Then we deployed it to production in a process that grabs all dependency changes;
of course the broken commit was interpreted as a valid change. Which meant, while fixing one bug,
we crashed the site.

Not a fun day.

The purpose of using pinned releases is to add a little formality and process to our published work.
Especially in Python, GitHub and other repos are a place for developers to publish their work-in-
progress, not the final, stable work upon which our production-quality projects depend.

One more thing, when pinning dependencies, try to pin the dependencies of dependencies. It just
makes deployment and testing that much more predictable.

21.7.3 Step 3: Install the Requirements Into Your Virtualenv

Assuming you are already in a working virtualenv and are at the <repo_root> of your project, you
pip install the appropriate requirements file for your setup, e.g. requirements/dev.txt.

If this is the first time you’ve done this for a particular virtualenv, it’s going to take a while for it to
grab all the dependencies and install them.

281

Chapter 21: Django’s Secret Sauce: Third-Party Packages

21.7.4 Step 4: Follow the Package’s Installation Instructions
Exactly

Resist the temptation to skip steps unless you’re very familiar with the package. Since open source
Django package developers tend to take pride in their documentation and love to get people to use
their packages, most of the time the installation instructions they’ve authored make it easy to get
things running.

21.8 Troubleshooting Third-Party Packages
Sometimes you run into problems setting up a package. What should you do?

First, make a serious effort to determine and solve the problem yourself. Pore over the documentation
and make sure you didn’t miss a step. Search online to see if others have run into the same issue. Be
willing to roll up your sleeves and look at the package source code, as you may have found a bug.

If it appears to be a bug, see if someone has already reported it in the package repository’s issue tracker.
Sometimes you’ll find workarounds and fixes there. If it’s a bug that no one has reported, go ahead
and file it.

If you still get stuck, try asking for help in all the usual places: StackOverflow, IRC #django, the
project’s IRC channel if it has its own one, and your local Python user group. Be as descriptive and
provide as much context as possible about your issue.

21.9 Releasing Your Own Django Packages
Whenever you write a particularly useful Django app, consider packaging it up for reuse in other
projects.

The best way to get started is to follow Django’s Advanced Tutorial: How to Write Reusable Apps, for
the basics: docs.djangoproject.com/en/1.11/intro/reusable-apps/

In addition to what is described in that tutorial, we recommend that you also:

ä Create a public repo containing the code. Most Django packages are hosted on GitHub these
days, so it’s easiest to attract contributors there, but various alternatives exist (Gitlab, Bitbucket,
Assembla, etc.).

282

https://docs.djangoproject.com/en/1.11/intro/reusable-apps/

21.10: What Makes a Good Django Package?

ä Release the package on the Python Package Index (pypi.python.org). Fol-
low the submission instructions at packaging.python.org/distributing/
#uploading-your-project-to-pypi.

ä Add the package to Django Packages (djangopackages.org).
ä Use Read the Docs (readthedocs.io) to host your Sphinx documentation.

TIP: Where Should I Create a Public Repo?

There are websites that offer free source code hosting and version control for open source
projects. As mentioned in Chapter 2: The Optimal Django Environment Setup, GitHub or
GitLab are two popular options.

When choosing a hosted version control service, keep in mind that pip only supports Git,
Mercurial, Bazaar, and Subversion.

21.10 What Makes a Good Django Package?

Here’s a checklist for you to use when creating a new open source Django package. Much of this
applies to Python packages that are not Django-specific. This checklist is also helpful for when you’re
evaluating a Django package to use in any of your projects.

21.10.1 Purpose

Your package should do something useful and do it well. The name should be descriptive. The package
repo’s root folder should be prefixed with ‘django-’ or ‘dj-’ to help make it easier to find.

If part of the package’s purpose can be accomplished with a related Python package that doesn’t
depend on Django, then create a separate Python package and use it as a dependency.

21.10.2 Scope

Your package’s scope should be tightly focused on one small task. This means that your application
logic will be tighter, and users will have an easier time patching or replacing the package.

283

https://pypi.python.org
https://packaging.python.org/distributing/#uploading-your-project-to-pypi
https://packaging.python.org/distributing/#uploading-your-project-to-pypi
https://www.djangopackages.org
https://readthedocs.io/

Chapter 21: Django’s Secret Sauce: Third-Party Packages

21.10.3 Documentation

A package without documentation is a pre-alpha package. Docstrings don’t suffice as documentation.

As described in Chapter 23: Documentation: Be Obsessed, your docs should be written in ReStruc-
turedText. A nicely-formatted version of your docs should be generated with Sphinx and hosted
publicly. We encourage you to use readthedocs.io with webhooks so that your formatted docu-
mentation automatically updates whenever you make a change.

If your package has dependencies, they should be documented. Your package’s installation instruc-
tions should also be documented. The installation steps should be bulletproof.

21.10.4 Tests

Your package should have tests. Tests improve reliability, make it easier to advance Python/Django
versions, and make it easier for others to contribute effectively. Write up instructions on how to run
your package’s test suite. If you or any contributor can run your tests easily before submitting a pull
request, then you’re more likely to get better quality contributions.

21.10.5 Templates

In the past, some Django packages provided instructions for creating templates in their docs in lieu of
actual template files. However, nowadays it’s pretty standard for Django packages to come with a set
of barebones templates that demonstrate basic functionality. Typically these templates contain only
minimalist HTML, any needed JavaScript, and no CSS. The exception is for packages containing
widgets that require CSS styling.

21.10.6 Activity

Your package should receive regular updates from you or contributors if/when needed. When you
update the code in your repo, you should consider uploading a minor or major release to the Python
Package Index.

284

https://readthedocs.io/

21.10: What Makes a Good Django Package?

21.10.7 Community

Great open source packages, including those for Django, often end up receiving contributions from
other developers in the open source community. All contributors should receive attribution in a
CONTRIBUTORS.rst or AUTHORS.rst file.

Be an active community leader if you have contributors or forks of your package. If your package is
forked by other developers, pay attention to their work. Consider if there are ways that parts or all
of their work can be merged into your fork. If the package’s functionality diverges a lot from your
package’s purpose, be humble and consider asking the other developer to give their fork a new name.

21.10.8 Modularity

Your package should be as easily pluggable into any Django project that doesn’t replace core compo-
nents (templates, ORM, etc) with alternatives. Installation should be minimally invasive. Be careful
not to confuse modularity with over-engineering, though.

21.10.9 Availability on PyPI

All major and minor releases of your package should be available for download from the Python
Package Index. Developers who wish to use your package should not have to go to your repo to get
a working version of it. Use proper version numbers per the next section.

21.10.10 Uses the Broadest Requirements Specifiers Possible

Your third-party package should specify in setup.py the install_requires argument what other
libraries your package requires in the broadest terms possible. However, this is a terrible way to define
a package’s requirements:

285

Chapter 21: Django’s Secret Sauce: Third-Party Packages

Example 21.3: Narrow Requirements for a Package

DON'T DO THIS!
requirements for django-blarg

Django==1.10.2
requests==1.2.3

The reason is dependency graphs. Every so often something that you absolutely pin to a specific
version of Django or another library will break on someone else’s site project. For example, what
if icecreamratings.com was our site and this was its deployed project’s requirements.txt file, and we
installed django-blarg?

Example 21.4: Requirements.txt for icecreamratings.com

requirements.txt for the mythical web site 'icecreamratings.com'
Django==1.11
requests==2.13.0
django−blarg==1.0

Note that unlike the django−blarg library , we explicitly pin
the requirements so we have total control over the environment

What would happen if Bad Example 21.2 were installed to a project with Example 21.3 requirements
is that the Django 1.10.2 requirement would overwrite the Django 1.11 specification during installa-
tion of icecreamratings.com requirements. As there are several backwards incompatibilities between
Django 1.10.2 and 1.11, django-blarg could make icecreamratings.com site simply throw HTTP 500
errors.

Your third-party package should specify what other libraries your package requires in the broadest
terms possible:

Example 21.5: Broadly Defined Package Requirements

requirements for django-blarg

Django>=1.10,<1.12
requests>=2.6.0,<=2.13.0

286

21.10: What Makes a Good Django Package?

Additional Reading:

ä pip.pypa.io/en/stable/reference/pip_install/#requirement-specifiers
ä nvie.com/posts/pin-your-packages/

21.10.11 Proper Version Numbers

Like Django and Python, we prefer to adhere to the strict version of PEP 386 naming schema. In
fact we follow the ‘A.B.C’ pattern. Let’s go through each element:

‘A’ represents the major version number. Increments should only happen with large changes that
break backwards compatibility from the previous major version. It’s not uncommon to see
large API changes between versions.

‘B’ is the minor version number. Increments include less breaking changes, or deprecation notices
about forthcoming changes.

‘C’ represents bug fix releases, and purists call this the ‘micro’ release. It’s not uncommon for devel-
opers to wait until a project has its first release at this level before trying the latest major or
minor release of an existing project.

For alpha, beta, or release-candidates for a project, the convention is to place this information as a
suffix to the upcoming version number. So you might have:

ä Django 1.11-alpha
ä django-crispy-forms 1.6.1-beta

WARNING: Don’t Upload Unfinished Code to PyPI

PyPI, the Python Package Index, is meant to be the place where dependable, stable packages
can be harnessed to build Python projects. PyPI is not the place for Alpha, Beta, or Release
Candidate code, especially as pip and other tools will fetch the latest release by default.

Be nice to other developers and follow the convention of only placing proper releases on PyPI.

Note: While recent versions of pip no longer install pre-releases by default, it’s dangerous to
expect users of code to have the latest pip version installed.

287

https://pip.pypa.io/en/stable/reference/pip_install/#requirement-specifiers
http://nvie.com/posts/pin-your-packages/

Chapter 21: Django’s Secret Sauce: Third-Party Packages

Additional Reading:

ä python.org/dev/peps/pep-0386
ä semver.org

21.10.12 Name

The name of the project is absolutely critical. A well-named project makes it easy to discover and
remember, a poor name hides it from potential users, can scare off its use from some developer shops,
and even block it from being listed on PyPI, Django Packages, and other resources.

We did cover the basics in Section 4.2: What to Name Your Django Apps, but here are tips that
apply to open source Django packages:

ä Check to see that the name isn’t already registered on PyPI. Otherwise, it won’t be trivial to install
with pip.

ä Check to see that the name isn’t on Django Packages. This applies only to packages designed for
use with Django.

ä Don’t use names that include obscenity. While you might find them funny, it’s unfortunate for
others. For example a noted developer once created a library that couldn’t be used at NASA
until he agreed to change the name.

21.10.13 License

Your package needs a license. Preferably, for individuals it should be licensed under the MIT licenses,
which are generally accepted for being permissive enough for most commercial or noncommercial
uses. If you are worried about patents, then go with the Apache license.

Create a LICENSE.rst file in your repo root, mention the license name at the top, and paste in the
appropriate text from the (OSI) approved list at choosealicense.com.

TIP: Licenses Protect You and the World
In this era of casual litigation and patent trolls adding a software license isn’t just a matter of
protecting your ownership of the code. It’s much, much more. If you don’t license your code,

288

https://www.python.org/dev/peps/pep-0386
http://semver.org/
https://choosealicense.com/

21.11: Creating Your Own Packages the Easy Way

or use an unapproved license not vetted by real lawyers, you run the risk of your work being
used as a weapon by a patent troll, or in the case of financial or medical disaster, you could
be held liable.
OSI-approved licenses all include a couple critical statements on copyright, redistribution,
disclaimer of warranty, and limitation of liability.

21.10.14 Clarity of Code

The code in your Django package should be as clear and simple as possible, of course. Don’t use weird,
unusual Python/Django hacks without explaining what you are doing.

21.10.15 Use URL Namespaces

Described in Section 8.4: Use URL Namespaces, URL namespaces allow for greater interoperability.
Using means it’s easier to manage collisions between projects, or even prepare for it ahead of time.

If there is concern about future collisions, settings-based URL namespace systems can be imple-
mented. This is where the project defines its URL namespace as a setting, then provides a Django
context processor and detailed instructions on use. While it’s not hard to implement, it does create a
level of abstraction that can make a project a little bit harder to maintain.

21.11 Creating Your Own Packages the Easy Way
Releasing your own bit of code can be a wonderfully rewarding experience. Everyone should do it!

That said, putting all the pieces together in order to make a reusable Django package is a lot of work,
and it’s common to get things wrong. Fortunately, Cookiecutter makes this easy.

PACKAGE TIP: Cookiecutter: Project Templates Made Easy

In 2013 Audrey created the popular Cookiecutter utility for generating project templates. It’s
easy to use and very powerful. Numerous templates exist for Python and Django packages.
Even better, many IDEs such as PyCharm and Visual Studio Code now provide support for

289

Chapter 21: Django’s Secret Sauce: Third-Party Packages

Cookiecutter-based templates.
ä github.com/audreyr/cookiecutter
ä cookiecutter.readthedocs.io

In the Cookiecutter templates referenced below, we have vetted them by aggressively asking for them
to be reviewed by leaders in both the Django and Python communities. Just use the following bash
example at the command-line:

Example 21.6: Using Cookiecutter to Jumpstart Packages

Only if you haven't installed cookiecutter yet
$ pip install cookiecutter

Creating a Django Package from scratch
$ cookiecutter https://github.com/pydanny/cookiecutter-djangopackage.git

Creating a Python Package from scratch
$ cookiecutter https://github.com/audreyr/cookiecutter-pypackage.git

You’ll be prompted to provide information. The generated result will be an implementation of a base
Django/Python/etc. package template that includes code, documentation, tests, license, and much
more.

21.12 Maintaining Your Open Source Package

WARNING: Open Source Burnout and Giving Too Much

Unless you are getting paid professionally to do open source work, remember that this is
volunteer work done for pleasure. Do what you can at your own pace, and just try your best.

The open source packages that you create have a life of their own. They mature over time, changing
as their needs and the development standards grow over time. Here are some things we should do
when maintaining open source projects:

290

https://github.com/audreyr/cookiecutter
http://cookiecutter.readthedocs.io/

21.12: Maintaining Your Open Source Package

21.12.1 Give Credit for Pull Requests

When someone submits a pull request that’s accepted, treat them right. Make sure to add the contrib-
utor to a project’s author document called something like CONTRIBUTORS.txt or AUTHORS.txt.

21.12.2 Handling Bad Pull Requests

Sometimes you get pull requests that you just have to reject. Be nice and positive about it, since a
well-handled rejected pull request can make a friend for life.

Here are problematic pull requests that should be considered for rejection:

ä Any pull request that fails the tests. Ask for fixes. See Chapter 22: Testing Stinks and Is a Waste
of Money!.

ä Any added code that reduces test coverage. Again, see chapter 22.
ä Pull requests should change/fix as little as possible. Large, wide-sweeping changes in a pull request

should be rejected, with comments to isolate changes in smaller, atomic pull requests.
ä Overly complex code submissions should be carefully considered. There is nothing wrong with asking

for simplification, better comments, or even rejecting an overly complex pull request.
ä Code that breaks PEP-8 needs to be resubmitted. The Django world follows PEP-8 very closely,

and so should your project. Submissions that violate PEP 8 can be requested to be improved.
ä Code changes combined with major whitespace cleanup. If someone submits a change of two lines

of code and corrects 200 lines of whitespace issues, the diff on that pull request is functionally
unreadable and should be rejected. Whitespace cleanups need to be in their own pull request.

WARNING:CodeChangesCombinedWithMajorWhitespaceCleanup

We’re adding a warning because this is arguably a form of code obfuscation by a third party.
One could argue it’s potentially a security risk. What better way to inject malignant code
than through a pull request?

21.12.3 Do Formal PyPI Releases

In the Python community, it’s considered irresponsible to force developers to rely on a ‘stable’ master
or trunk branch of critical open source projects because the PyPI version is out of date. This can

291

Chapter 21: Django’s Secret Sauce: Third-Party Packages

cause problems as open source code repositories are not considered to be good sources of production
quality code. For example, which particular commit or tag should be used? On the other hand, PyPI,
is a known resource designed to securely provide valid installable packages.

In the Python world, the accepted best practice is to release when significant (or even minor) changes
or bug fixes happen on trunk or master. In fact, minor bug fix releases are a part of every ongoing
software project and no one faults anyone for these kinds of things (except in US government IT
contracts, but that’s outside the scope of this book).

If you aren’t sure how this works, please look at python-request’s change history, it being
one of Python’s most popular projects: github.com/kennethreitz/requests/blob/master/
HISTORY.rst

To create and upload your distribution, use the following steps:

Example 21.7: Using Twine to Upload Package Distributions

$ pip install twine
$ python setup.py sdist
$ twine upload dist/*

PACKAGE TIP: What is Twine?
Twine is the preferred library for uploading packages to PyPI. The problem with python
setup.py is that it sends files over a non-SSH connection, exposing your library to a man-
in-the-middle attack. In contrast, twine uses only verified TLS to upload your package.

That’s not all! Twine works better at uploading Wheels (see the next subsection), doesn’t
require executing the setup.py, and even pre-signs your releases. If you are seriously security
minded, it’s the tool of choice.

21.12.4 Create and Deploy Wheels to PyPI

According to PEP 427, Wheels are the new standard of python distribution. They are intended to
replace eggs and provide a number of advantages including faster installation and allow secure digital
signing. Support is offered in pip >= 1.4 and setuptools >= 0.8.

292

https://github.com/kennethreitz/requests/blob/master/HISTORY.rst
https://github.com/kennethreitz/requests/blob/master/HISTORY.rst

21.12: Maintaining Your Open Source Package

Example 21.8: Installing Wheel

$ pip install wheel

Then, after you’ve deployed your package to PyPI, run the following commands:

Example 21.9: Creating Wheel Distributions and Uploading Them

$ python setup.py bdist_wheel
$ twine upload dist/*

For supporting Python 2.7 and 3.3+, Twine makes universal wheels when the optional setup.cfg file
is at the same level as setup.py and includes this snippet:

Example 21.10: Configuring Universal Wheels

setup.cfg
[wheel]
universal = 1

Wheel Resources:

Specification: PEP 427 python.org/dev/peps/pep-0427
Wheel Package on PyPI pypi.python.org/pypi/wheel
Documentation wheel.readthedocs.io
Advocacy pythonwheels.com

21.12.5 Upgrade the Package to New Versions of Django

Every once in awhile, Django is updated with a minor release. Approximately once a year there is
a major Django release. When this happens, it’s very important to run our package’s test suite in a
virtualenv that contain Django’s latest release.

If for no other reason, this is an excellent reason to include tests in your project.

293

http://www.python.org/dev/peps/pep-0427/
https://pypi.python.org/pypi/wheel
http://wheel.readthedocs.io/
http://pythonwheels.com/

Chapter 21: Django’s Secret Sauce: Third-Party Packages

21.12.6 Follow Good Security Practices

We discuss security in-depth in Chapter 26: Security Best Practices. However, core Django, Python,
and PyPy developer Alex Gaynor has an incredibly useful article for maintainers of any open source
project:
alexgaynor.net/2013/oct/19/security-process-open-source-projects

TIP: Alex Gaynor on Security for Open Source Projects

“Security vulnerabilities put your users, and often, in turn, their users at risk. As
an author and distributor of software, you have a responsibility to your users to
handle security releases in a way most likely to help them avoid being exploited.”

21.12.7 Provide Sample Base Templates

Always include some basic templates for views using your project. We prefer to write either incredibly
simple HTML or use a common front-end frameworks such as Twitter Bootstrap. This makes ‘test-
driving’ the project much easier for developers who are considering using it to solve their problems.
Invariably they’ll modify the templates inside their own templates/ directory, but this just makes
everything so much easier.

In addition, include a templates/myapp/base.html to increase interoperability. You can see a descrip-
tion and example of this in cookiecutter-djangopackage:

bit.ly/2onSzCV

21.12.8 Give the Package Away

Sometimes, life takes you away from maintaining a package. It might be family or a new job, but
sometimes you just have no need for a particular open source project. Time considerations might
mean that you don’t have the ability to review pull requests or explore ideas for new features. If you’re
the creator of a project it can be extremely challenging to let it go.

294

https://alexgaynor.net/2013/oct/19/security-process-open-source-projects/
http://bit.ly/2onSzCV

21.13: Additional Reading

However, by giving a project away to an active maintainer, it can be reborn and prove more useful. It
also earns the respect of the developer community at large.

Some notable giveaways in the Django and Python communities include:

ä Ian Bicking and pip/virtualenv.
ä Daniel and Audrey Roy Greenfeld and djangopackages.org
ä Daniel Roy Greenfeld and django-uni-form and dj-stripe.
ä Rob Hudson and django-debug-toolbar.

21.13 Additional Reading

The following are links to useful articles for anyone contributing to, creating, or maintaining open
source libraries:

ä djangoappschecklist.com A personal favorite of ours, the Django Apps Checklist is a
checklist for everything in this chapter.

ä alexgaynor.net/2013/sep/26/effective-code-review
ä hynek.me/articles/sharing-your-labor-of-love-pypi-quick-and-dirty
ä jeffknupp.com/blog/2013/08/16/open-sourcing-a-python-project-the-right-way

21.14 Summary

Django’s real power is in the vast selection of third-party packages available to you for use in your
Django projects.

Make sure that you have pip and virtualenv installed and know how to use them, since they’re your
best tools for installing packages on your system in a manageable way.

Get to know the packages that exist. The Python Package Index and Django Packages are a great
starting point for finding information about packages.

Package maturity, documentation, tests, and code quality are good starting criteria when evaluating
a Django package.

Installation of stable packages is the foundation of Django projects big and small. Being able to
use packages means sticking to specific releases, not just the trunk or master of a project. Barring a

295

http://djangoappschecklist.com/
http://alexgaynor.net/2013/sep/26/effective-code-review/
https://hynek.me/articles/sharing-your-labor-of-love-pypi-quick-and-dirty/
https://jeffknupp.com/blog/2013/08/16/open-sourcing-a-python-project-the-right-way/

Chapter 21: Django’s Secret Sauce: Third-Party Packages

specific release, you can rely on a particular commit. Fixing problems that a package has with your
project takes diligence and time, but remember to ask for help if you get stuck.

We also covered how to create your own third-party package, and provided basic instruction on how
to use cookiecutter to jump-start you on your way to releasing something on the Python Package
Index. We also included instructions on using the new Wheel format.

Finally, we provided guidance on how to maintain a package.

296

22 | Testing Stinks and Is a Waste of
Money!

There, got you to this chapter.

Now you have to read it.

We’ll try and make this chapter interesting.

22.1 Testing Saves Money, Jobs, and Lives
Daniel ’s Story: Ever hear the term “smoke test”?

Gretchen Davidian, a Management and Program Analyst at NASA, told me that when she was still
an engineer, her job as a tester was to put equipment intended to get into space through such rigorous
conditions that they would begin emitting smoke and eventually catch on fire.

That sounds exciting! Employment, money, and lives were on the line, and knowing Gretchen’s at-
tention to detail, I’m sure she set a lot of hardware on fire.

Keep in mind that for a lot of us, as software engineers, the same risks are on the line as NASA. I
recall in 2004 while working for a private company how a single miles-vs-kilometers mistake cost a
company hundreds of thousands of dollars in a matter of hours. Quality Assurance (QA) staff lost
their jobs, which meant that money and health benefits were gone. In other words, employment,
money, and possibly lives can be lost without adequate tests. While the QA staff were very dedicated,
everything was done via manually clicking through projects, and human error simply crept into the
testing process.

297

Chapter 22: Testing Stinks and Is a Waste of Money!

Today, as Django moves into a wider and wider set of applications, the need for automated testing is
just as important as it was for Gretchen at NASA and for the poor QA staff in 2004. Here are some
cases where Django is used today that have similar quality requirements:

ä Your application handles medical information.
ä Your application provides life-critical resources to people in need.
ä Your application works with other people’s money now or will at some point in the future.

PACKAGE TIP: Useful Library for Testing Django Projects

We like to use coverage.py.

This tool provides clear insight into what parts of your code base are covered by tests, and
what lines haven’t been touched by tests. You also get a handy percentage of how much of your
code is covered by tests. Even 100% test coverage doesn’t guarantee a bug-free application,
but it helps.

We want to thank Ned Batchelder for his incredible work in maintaining coverage.py. It’s a
superb project and is useful for any Python related project.

22.2 How to Structure Tests
Let’s say we’ve just created a new Django app. The first thing we do is delete the default but useless
tests.py module that python manage.py startapp creates. In it’s place we create a directory called
tests and place an empty __init__.py within.

Inside that new directory, because most apps need them, we create test_forms.py, test_models.py,
test_views.py modules. Tests that apply to forms go into test_forms.py, model tests go into
test_models.py, and so on.

Here’s what it looks like:

Example 22.1: How to Structure Tests

popsicles/
__init__.py
admin.py

298

22.3: How to Write Unit Tests

forms.py
models.py
tests/

__init__.py
test_forms.py
test_models.py
test_views.py

views.py

Also, if we have other files besides forms.py, models.py and views.py that need testing, we create
corresponding test files.

We like this approach because while it does add an extra layer of nesting, the alternative is to have an
app structure with a painful number of modules to navigate.

TIP: Prefix Test Modules With test_
It’s critically important that we always prefix test modules with test_, otherwise Django’s
test runner can’t trivially discover our test files. Also, it’s a nice convention that allows for
greater flexibility for viewing filenames in IDEs and text editors. As always, never lean on
your preferred IDE for how you name things.

22.3 How to Write Unit Tests

It’s not uncommon for programmers to feel at the top of their game at the moment they are writing
code. When they revisit that same code in months, weeks, days, or even hours and it’s not uncommon
for programmers to feel as if that same code is of poor quality.

The same applies to writing unit tests.

Over the years, we’ve evolved a number of practices we like to follow when writing tests, including
unit tests. Our goal is always to write the most meaningful tests in the shortest amount of time.
Hence the following:

299

Chapter 22: Testing Stinks and Is a Waste of Money!

22.3.1 Each Test Method Tests One Thing

A test method must be extremely narrow in what it tests. A single unit test should never assert the
behavior of multiple views, models, forms, or even multiple methods within a class. Instead, a single
test should assert the behavior of a single view, model, form, method or function.

Of course, therein lies a conundrum. How does one run a test for a view, when views often require
the use of models, forms, methods, and functions?

The trick is to be absolutely minimalistic when constructing the environment for a particular test, as
shown in the example below:

Example 22.2: Testing Just One Thing

flavors/tests/test_api.py
import json

from django.test import TestCase
from django.urls import reverse

from flavors.models import Flavor

class FlavorAPITests(TestCase):

def setUp(self):
Flavor.objects.get_or_create(title='A Title', slug='a-slug')

def test_list(self):
url = reverse('flavor_object_api')
response = self.client.get(url)
self.assertEquals(response.status_code, 200)
data = json.loads(response.content)
self.assertEquals(len(data), 1)

In this test, taken from code testing the API we presented in Section 16.2: Illustrating Design Con-
cepts With a Simple API, we use the setUp() method to create the minimum possible number of
records needed to run the test.

300

22.3: How to Write Unit Tests

Here’s a much larger example, one based on the REST API example that we provided in Chapter 16:
Building REST APIs With Django REST Framework.

Example 22.3: Testing API Code

flavors/tests/test_api.py
import json

from django.test import TestCase
from django.urls import reverse

from flavors.models import Flavor

class DjangoRestFrameworkTests(TestCase):

def setUp(self):
Flavor.objects.get_or_create(title='title1', slug='slug1')
Flavor.objects.get_or_create(title='title2', slug='slug2')

self.create_read_url = reverse('flavor_rest_api')
self.read_update_delete_url = \

reverse('flavor_rest_api', kwargs={'slug': 'slug1'})

def test_list(self):
response = self.client.get(self.create_read_url)

Are both titles in the content?
self.assertContains(response, 'title1')
self.assertContains(response, 'title2')

def test_detail(self):
response = self.client.get(self.read_update_delete_url)
data = json.loads(response.content)
content = {'id': 1, 'title': 'title1', 'slug': 'slug1',

'scoops_remaining': 0}
self.assertEquals(data, content)

def test_create(self):

301

Chapter 22: Testing Stinks and Is a Waste of Money!

post = {'title': 'title3', 'slug': 'slug3'}
response = self.client.post(self.create_read_url, post)
data = json.loads(response.content)
self.assertEquals(response.status_code, 201)
content = {'id': 3, 'title': 'title3', 'slug': 'slug3',

'scoops_remaining': 0}
self.assertEquals(data, content)
self.assertEquals(Flavor.objects.count(), 3)

def test_delete(self):
response = self.client.delete(self.read_update_delete_url)
self.assertEquals(response.status_code, 204)
self.assertEquals(Flavor.objects.count(), 1)

22.3.2 For Views, When Possible Use the Request Factory

The django.test.client.RequestFactory provides a way to generate a request instance that
can be used as the first argument to any view. This provides a greater amount of isolation than the
standard Django test client, but it does require a little bit of extra work on the part of the test writer.
This is because the request factory doesn’t support middleware, including session and authentication.

See docs.djangoproject.com/en/1.11/topics/testing/advanced/

Unfortunately the documentation doesn’t cover when you want to test a view wrapped with a single
middleware class. For example, if your view required sessions, this is how you would do it:

Example 22.4: How to Add Middleware to Requests and Responses

from django.contrib.auth.models import AnonymousUser
from django.contrib.sessions.middleware import SessionMiddleware
from django.test import TestCase, RequestFactory

from .views import cheese_flavors

def add_middleware_to_request(request, middleware_class):
middleware = middleware_class()

302

https://docs.djangoproject.com/en/1.11/topics/testing/advanced/

22.3: How to Write Unit Tests

middleware.process_request(request)
return request

def add_middleware_to_response(request, middleware_class):
middleware = middleware_class()
middleware.process_response(request)
return request

class SavoryIceCreamTest(TestCase):
def setUp(self):

Every test needs access to the request factory.
self.factory = RequestFactory()

def test_cheese_flavors(self):
request = self.factory.get('/cheesy/broccoli/')
request.user = AnonymousUser()

Annotate the request object with a session
request = add_middleware_to_request(request, SessionMiddleware)
request.session.save()

process and test the request
response = cheese_flavors(request)
self.assertContains(response, 'bleah!')

22.3.3 Don’t Write Tests That Have to Be Tested

Tests should be written as simply as possible. If the code in a test (or the code called to help run
a test) feels complicated or abstracted, then you have a problem. In fact, we ourselves are guilty of
writing overly complicated utility test functions that required their own tests in the past. As you can
imagine, this made debugging the actual tests a nightmare.

303

Chapter 22: Testing Stinks and Is a Waste of Money!

22.3.4 Don’t Repeat Yourself Doesn’t Apply to Writing Tests

The setUp() method is really useful for generating reusable data across all test methods in a test
class. However, sometimes we need similar but different data between test methods, which is where
we often fall into the trap of writing fancy test utilities. Or worse, we decide that rather than write
20 similar tests, we can write a single method that when passed certain arguments will handle all the
work for us.

Our favorite method of handling these actions is to just dig in and write the same or similar code
multiple times. In fact, we’ll quietly admit to copy/pasting code between tests to expedite our work.

TIP: Our Problem With the Django Testing Tutorial #5

The official Django beginner tutorial on testing demonstrates the implementation of a cre-
ate_question() utility method, which is designed to take some of the repetition out of
the process of created questions.
We think it’s inclusion in the tutorial is a mistake. Simple examples in the official documen-
tation that follow poor practice provide encouragement that often play out in terrible ways.
We’ve encountered projects inspired by this example to add deep layers of abstraction to their
testing code, abstraction that makes it incredibly challenging to correct and enhance existing
tests.
Again, Don’t Repeat Yourself doesn’t apply to tests.

22.3.5 Don’t Rely on Fixtures

We’ve learned over time that using fixtures is problematic. The problem is that fixtures are hard to
maintain as a project’s data changes over time. Modifying JSON-formatted files to match your last
migration is hard, especially as it can be difficult to identify during the JSON load process where
your JSON file(s) is either broken or a subtly inaccurate representation of the database.

Rather than wrestle with fixtures, we’ve found it’s easier to write code that relies on the ORM. Other
people like to use third-party packages.

304

22.3: How to Write Unit Tests

PACKAGE TIP: Tools to Generate Test Data
The following are popular tools for test data generation:

ä factory boy A package that generates model test data.
ä faker This package generates test data, but rather than a random jumble of text, it

creates localized names, addresses, and text. It even comes with instructions on how
to integrate it with factory boy: faker.readthedocs.io/en/master/
#how-to-use-with-factory-boy

ä model mommy Another package that generates model test data.
ä mock Not explicitly for Django, this allows you to replace parts of your system with

mock objects. This project made its way into the standard library as of Python 3.3.

22.3.6 Things That Should Be Tested

Everything! Seriously, you should test whatever you can, including:

Views: Viewing of data, changing of data, and custom class-based view methods.
Models: Creating/updating/deleting of models, model methods, model manager methods.
Forms: Form methods, clean() methods, and custom fields.
Validators: Really dig in and write multiple test methods against each custom validator you write.

Pretend you are a malignant intruder attempting to damage the data in the site.
Signals: Since they act at a distance, signals can cause grief especially if you lack tests on them.
Filters: Since filters are essentially just functions accepting one or two arguments, writing tests for

them should be easy.
Template Tags: Since template tags can do anything and can even accept template context, writing

tests often becomes much more challenging. This means you really need to test them, since
otherwise you may run into edge cases.

Miscellany: Context processors, middleware, email, and anything else not covered in this list.
Failure What happens when any of the above fail? Testing for system error is as important as testing

for system success.

The only things that shouldn’t be tested are parts of your project that are already covered by tests in
core Django and third-party packages. For example, a model’s fields don’t have to be tested if you’re
using Django’s standard fields as-is. However, if you’re creating a new type of field (e.g. by subclassing

305

http://faker.readthedocs.io/en/master/#how-to-use-with-factory-boy
http://faker.readthedocs.io/en/master/#how-to-use-with-factory-boy

Chapter 22: Testing Stinks and Is a Waste of Money!

FileField), then you should write detailed tests for anything that could go wrong with your new
field type.

Figure 22.1: Test as much of your project as you can, as if it were free ice cream.

22.3.7 Test for Failure

Let’s say we have a view that allows users to edit their own ice cream shop reviews. The obvious
tests involve logging in, attempting to change the review, and then checking whether they’ve actually
changed. Test success, coverage 100%. Right?

However, this only tests part of the scenario. What if the user isn’t logged in? What if the user is
trying to edit someone else’s review? Does the view produce an error and most importantly: is the
object left unchanged? It has been argued that this test is even more important than the success
scenario: a failure in the success scenario will cause inconvenience for users, but will be reported. A
failure in the fail scenario will cause a silent security hole that could go undetected until it’s too late.

This is only a sampling of the things that can go wrong when we don’t test for what happens when
our systems break down. It is up to us to learn how to test for the exceptions our code may throw:

ä docs.python.org/2/library/unittest.html#unittest.TestCase.
assertRaises

306

https://docs.python.org/2/library/unittest.html#unittest.TestCase.assertRaises
https://docs.python.org/2/library/unittest.html#unittest.TestCase.assertRaises

22.3: How to Write Unit Tests

ä bit.ly/2pAxLtm PyTest assertion docs

22.3.8 Use Mock to Keep Unit Tests From Touching the World

Unit tests are not supposed to test things external to the function or method they are calling. Which
means that during tests we should not access external APIs, receive emails or webhooks, or anything
that is not part of the tested action. Alas, this causes a conundrum when you are trying to write a
unit test for a function that interacts with an external API.

At this point you have two choices:

ä Choice #1: Change the unit test to be an Integration Test.
ä Choice #2: Use the Mock library to fake the response from the external API.

The Mock library, created by Michael Foord, has as one of its features the capability to briefly monkey-
patch libraries in order to make them return the exact value that we want. This way we are testing
not the availability of the external API, but instead just the logic of our code.

In the example displayed below, we are monkey-patching a function in a mythical Ice Cream API
library so our test code doesn’t access anything external to our application.

Example 22.5: Using Mock to Keep Unit Tests From Touching the World

from unittest import mock, TestCase

import icecreamapi

from flavors.exceptions import CantListFlavors
from flavors.utils import list_flavors_sorted

class TestIceCreamSorting(TestCase):

Set up monkeypatch of icecreamapi.get_flavors()
@mock.patch.object(icecreamapi, 'get_flavors')
def test_flavor_sort(self, get_flavors):

Instructs icecreamapi.get_flavors() to return an unordered list.
get_flavors.return_value = ['chocolate', 'vanilla', 'strawberry',]

307

https://docs.pytest.org/en/latest/assert.html#assertions-about-expected-exceptions

Chapter 22: Testing Stinks and Is a Waste of Money!

list_flavors_sorted() calls the icecreamapi.get_flavors()
function. Since we've monkeypatched the function, it will always
return ['chocolate', 'strawberry', 'vanilla',]. Which the.
list_flavors_sorted() will sort alphabetically
flavors = list_flavors_sorted()

self.assertEqual(
flavors,
['chocolate', 'strawberry', 'vanilla',]

)

Now let’s demonstrate how to test the behavior of the list_flavors_sorted() function when
the Ice Cream API is innaccessible.

Example 22.6: Testing For When API is Unavailable

@mock.patch.object(icecreamapi, 'get_flavors')
def test_flavor_sort_failure(self, get_flavors):

Instructs icecreamapi.get_flavors() to throw a FlavorError.
get_flavors.side_effect = icecreamapi.FlavorError()

list_flavors_sorted() catches the icecreamapi.FlavorError()
and passes on a CantListFlavors exception.
with self.assertRaises(CantListFlavors):

list_flavors_sorted()

As an added bonus for API authors, here’s how we test how code handles two different python-
requests connection problems:

Example 22.7: Testing python-requests Connection Failures

@mock.patch.object(requests, 'get')
def test_request_failure(self, get)

"""Test if the target site is innaccessible."""
get.side_effect = requests.exception.ConnectionError()

308

22.3: How to Write Unit Tests

with self.assertRaises(CantListFlavors):
list_flavors_sorted()

@mock.patch.object(requests, 'get')
def test_request_failure(self, get)

"""Test if we can handle SSL problems elegantly."""
get.side_effect = requests.exception.SSLError()

with self.assertRaises(CantListFlavors):
list_flavors_sorted()

22.3.9 Use Fancier Assertion Methods

Comparing two lists (or tuples) is a very common use case. However, if the lists are al-
lowed to have different sort orders, then we have to sort the lists to match, then run
self.assertEqual(control_list, candidate_list) right?

Not if we know to use unittest’s ListItemsEqual() assertion method! In fact, Python and
Django’s unittest documentation includes handy links to the very useful assertion types we get for
free:

ä docs.python.org/3/library/unittest.html#assert-methods
ä docs.djangoproject.com/en/1.11/topics/testing/tools/#assertions

We’ve found the following assert methods extremely useful:

ä assertRaises
ä Python 2.7: ListItemsEqual(), Python 3+ assertCountEqual()
ä assertDictEqual()
ä assertFormError()
ä assertContains() Check status 200, checks in response.content.
ä assertHTMLEqual() Amongst many things, ignores whitespace differences.
ä assertJSONEqual()

309

https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.djangoproject.com/en/1.11/topics/testing/tools/#assertions

Chapter 22: Testing Stinks and Is a Waste of Money!

22.3.10 Document the Purpose of Each Test

Just as it is a good idea to document the purpose of a class, method, or function with docstrings, it
is also a good idea to document the purpose the test analogs of these items. If undocumented code
makes a project somewhat harder to maintain, undocumented test code can make a project impossible
to test. To remedy this, a little bit of docstring can go a long way.

If you think this is boring, well, we’ve found that a good way to deal with an impossible-to-debug
problem is to document the related tests. By the time the tests are documented, you have either
figured out the problem or you have documented tests. Either case is a win!

22.4 What About Integration Tests?
Integration testing is when individual software modules are combined and tested as a group. This is
best done after unit tests are complete. Examples of integration tests can include:

ä Selenium tests to confirm that an application works in the browser.
ä Actual testing against a third-party API instead of mocking responses. For example, Django

Packages conducts periodic tests against GitHub and the PyPI API to ensure that its interac-
tion with those systems is valid.

ä Interacting with requestb.in or httpbin.org to confirm the validity of outbound requests.
ä Using runscope.com to validate that our API is working as expected.

Integration tests are a great way to confirm that ‘all the pieces’ are working. We can confirm that our
users will see what they are supposed to see and our APIs are functioning correctly.

The downside of integration tests are:

ä Setting up integration tests can take a lot of time.
ä Compared to unit tests, integrations are extremely slow. That’s because instead of testing the

smallest components, integration tests are, by definition, testing the whole system.
ä When errors are thrown by integration tests, uncovering the problem is harder than unit tests.

For example, a problem affecting a single type of browser might be caused by a unicode trans-
formation happening at the database level.

ä Integration tests are fragile compared to unit tests. A small change in a component or setting
can break them. We’ve yet to work on a significant project where at least one person wasn’t
forever blocked from running them successfully.

310

http://requestb.in/
http://httpbin.org/
https://www.runscope.com/

22.5: Continuous Integration

Even with these problems, integration tests are useful and worth considering adding to our testing
stack.

22.5 Continuous Integration

For projects of any size, we recommend setting up a continuous integration (CI) server to run the
project’s test suite whenever code is committed and pushed to the project repo. See Chapter 32:
Continuous Integration for more details.

22.6 Who Cares? We Don’t Have Time for Tests!

“Tests are the Programmer’s stone, transmuting fear into boredom.”

–Kent Beck

Let’s say you are confident of your coding skill and decide to skip testing to increase your speed of
development. Or maybe you feel lazy. It’s easy to argue that even with test generators and using tests
instead of the shell, they can increase the time to get stuff done.

Oh, really?

What about when it’s time to upgrade?

That’s when the small amount of work you did up front to add tests saves you a lot of work.

For example, in the summer of 2010, Django 1.2 was the standard when we started Django Packages
(djangopackages.org). Since then the project has stayed current with new Django versions, which
has been really useful. Because of its pretty good test coverage, moving it up a version of Django (or
the various dependencies) has been easy. Our path to upgrade:

ä Upgrade the version in a local instance of Django Packages.
ä Run the tests.
ä Fix any errors that are thrown by the tests.
ä Do some manual checking.

If Django Packages didn’t have tests, any time we upgraded anything we would have to click through
dozens and dozens of scenarios manually, which is error-prone. Having tests means we can make

311

http://www.djangopackages.org

Chapter 22: Testing Stinks and Is a Waste of Money!

changes and dependency upgrades with the confidence that our users (i.e. the Django community)
won’t have to deal with a buggy experience.

This is the benefit of having tests.

22.7 The Game of Test Coverage

A great, fun game to play is trying get test coverage as high as possible. Every day that we increase
our test coverage is a victory, and every day that the coverage goes down is a loss.

22.8 Setting Up the Test Coverage Game

Yes, we call test coverage a game. It’s a good tool for developers to push themselves. It’s also a nice
metric that both developers and their clients/employers/investors can use to help evaluate the status
of a project.

We advocate following these steps because most of the time we want to only test our own project’s
apps, not all of Django and the myriad of third-party libraries that are the building blocks of our
project. Testing those ‘building blocks’ takes an enormous amount of time, which is a waste because
most are already tested or require additional setup of resources.

22.8.1 Step 1: Start Writing Tests

We’ve done that already, right?

22.8.2 Step 2: Run Tests and Generate Coverage Report

Let’s try it out! In the command-line, at the <project_root>, type:

Example 22.8: Running Django tests using coverage.py

$ coverage run manage.py test --settings=twoscoops.settings.test

If we have nothing except for the default tests for two apps, we should get a response that looks like:

312

22.8: Setting Up the Test Coverage Game

Example 22.9: Positive Test Results

Creating test database for alias "default"...
..

Ran 2 tests in 0.008s

OK

Destroying test database for alias "default"...

This doesn’t look like much, but what it means is that we’ve constrained our application to only run
the tests that you want. Now it’s time to go and look at and analyze our embarrassingly low test
coverage numbers.

22.8.3 Step 3: Generate the Report!

coverage.py provides a very useful method for generating HTML reports that don’t just provide
percentage numbers of what’s been covered by tests, it also shows us the places where code is not
tested. In the command-line, at the <project_root>:

Example 22.10: Test Results Without admin.py

$ coverage html --omit="admin.py"

Ahem...don’t forget to change <project-root> to match the development machine’s structure! For ex-
ample, depending on where one does things, the <path-to-project-root> could be:

ä /Users/audreyr/code/twoscoops/twoscoops/
ä /Users/pydanny/projects/twoscoops/twoscoops/
ä c:\ twoscoops

After this runs, in the <project_root> directory there is a new directory called htmlcov/ . In the htmlcov/
directory, open the index.html file using any browser.

313

Chapter 22: Testing Stinks and Is a Waste of Money!

What is seen in the browser is the test results for our test run. Unless we already wrote some tests,
the total on the front page will be in the single digits, if not at 0%. Click into the various modules
listed and we should see lots of code that’s red-colored. Red is bad.

Let’s go ahead and admit that our project has a low coverage total. If your project has a low coverage
total, you need to admit it as well. It’s okay just so long as we also resolve to improve the coverage
total.

In fact, there is nothing wrong in saying publicly that you are working to improve a project’s test
coverage. Then, other developers (including ourselves) will cheer you on!

22.9 Playing the Game of Test Coverage

The game has a single rule:

Mandate that no commit can lower test coverage.

If we add a feature or bug fix and coverage is 65% when we start, we can’t merge our code in until
coverage is at least 65% again. At the end of each day, if test coverage goes up by any amount, it
means we’re winning.

Keep in mind that the gradual increase of test coverage can be a very good thing over huge jumps.
Gradual increases can mean that we developers aren’t putting in bogus tests to bump up coverage
numbers; instead, we are improving the quality of the project.

22.10 Alternatives to unittest

All the examples in this chapter thus far have used the unittest library. While every known authority
on testing agrees that unittest is a very powerful, useful tool, not all of them like it. The specific reason,
and one we fully comprehend, is that it requires too much boilerplate.

Fortunately, there are alternatives that require a lot less boilerplate. These are:

ä pypi.python.org/pypi/pytest-django/
ä pypi.python.org/pypi/django-nose

314

https://pypi.python.org/pypi/pytest-django/
https://pypi.python.org/pypi/django-nose

22.11: Summary

These two libraries are wrappers around the pytest and nose libraries. In return for a little bit of extra
setup, these libraries allow for not just the running of unittest-based tests, but also for running any
function (and class/directory/module) prefixed with “test_”. For example, you could write a simple
test that looks like this:

Example 22.11: py.test example

test_models.py
from pytest import raises

from cones.models import Cone

def test_good_choice():
assert Cone.objects.filter(type='sugar').count() == 1

def test_bad_cone_choice():
with raises(Cone.DoesNotExist):

Cone.objects.get(type='spaghetti')

While this example is based on pytest, similar functionality can be used with nose and it’s
nose.tools.raises decorator.

A possible downside of the simplicity of these function-based tests is the lack of inheritance. If a
project needs to have similar behavior over a lot of different tests, then writing tests this way may not
make sense.

22.11 Summary

All of this might seem silly, but testing can be very serious business. In a lot of developer groups this
subject, while gamified, is taken very seriously. Lack of stability in a project can mean the loss of
clients, contracts, and even employment.

In the next chapter we cover a common obsession of Python developers: documentation.

315

Chapter 22: Testing Stinks and Is a Waste of Money!

316

23 | Documentation: Be Obsessed

Given a choice between ice cream and writing great documentation, most Python developers would
probably choose to write the documentation. That being said, writing documentation while eating
ice cream is even better.

When you have great documentation tools like reStructuredText and Sphinx, you actually can’t help
but want to add docs to your projects.

PACKAGE TIP: Install Sphinx Systemwide

We’ve found that simply installing Sphinx fetches for us all the pieces you need to document
our Django (or Python) project. We recommend pip installing Sphinx systemwide, as you’ll
want to have it handy for every Django project.

23.1 Use reStructuredText for Python Docs

You’ll want to learn and follow the standard Python best practices for documentation. These days, re-
StructuredText (RST) is the most common markup language used for documenting Python projects.

What follows are links to the formal reStructuredText specification and a couple sample projects
which benefit from using it:

ä docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
ä docs.djangoproject.com/en/1.11/
ä docs.python.org

317

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
https://docs.djangoproject.com/en/1.11/
http://docs.python.org

Chapter 23: Documentation: Be Obsessed

While it’s possible to study the formal documentation for reStructuredText and learn at least the
basics, here is a quick primer of some very useful commands you should learn.

Example 23.1: ReStructured Text Primer

Section Header
==============

emphasis (bold/strong)

italics

Simple link: https://twoscoopspress.com
Fancier Link: `Two Scoops of Django`_

.. _Two Scoops of Django: https://twoscoopspress.com

Subsection Header

#) An enumerated list item

#) Second item

* First bullet

* Second bullet

* Indented Bullet

* Note carriage return and indents

Literal code block::

def like():
print("I like Ice Cream")

for i in range(10):

318

23.2: Use Sphinx to Generate Documentation From reStructuredText

like()

Python colored code block (requires pygments):

code-block:: python

You need to "pip install pygments" to make this work.

for i in range(10):
like()

JavaScript colored code block:

code-block:: javascript

console.log("Don't use alert()");

23.2 Use Sphinx to Generate Documentation From
reStructuredText

Sphinx is a tool for generating nice-looking docs from your .rst files. Output formats include HTML,
LaTeX, manual pages, and plain text.

Follow the instructions to generate Sphinx docs: sphinx-doc.org.

TIP: Build Your Sphinx Documentation at Least Weekly

You never know when bad cross-references or invalid formatting can break the Sphinx build.
Rather than discover that the documentation is unbuildable at an awkward moment, just
make a habit of creating it on a regular basis.

23.3 What Docs Should Django Projects Contain?

Developer-facing documentation refers to notes and guides that developers need in order to set
up and maintain a project. This includes notes on installation, deployment, architecture, how to run

319

http://sphinx-doc.org/

Chapter 23: Documentation: Be Obsessed

tests or submit pull requests, and more. We’ve found that it really helps to place this documentation
in all our projects, private or public.

Here we provide a table that describes what we consider the absolute minimum documentation:

Filename or Directory Reason Notes
README.rst Every Python project you begin

should have a README.rst file in
the repository root.

Provide at least a short
paragraph describing what the
project does. Also, link to the
installation instructions in the
docs/ directory.

docs/ Your project documentation should
go in one, consistent location. This
is the Python community standard.

A simple directory.

docs/deployment.rst This file lets you take a day off. A point-by-point set of
instructions on how to
install/update the project into
production, even if it’s done
via something powered by
Ruby, Fabric, or a Makefile.

docs/installation.rst This is really nice for new people
coming into a project or when you
get a new laptop and need to set up
the project.

A point-by-point set of
instructions on how to
onboard yourself or another
developer with the software
setup for a project.

docs/architecture.rst A guide for understanding what
things evolved from as a project ages
and grows in scope.

This is how you imagine a
project to be in simple text
and it can be as long or short
as you want. Good for
keeping focused at the
beginning of an effort.

Table 23.1: Documentation Django Projects Should Contain

320

23.4: Additional Documentation Resources

Figure 23.1: Even ice cream could benefit from documentation.

23.4 Additional Documentation Resources
ä python.org/dev/peps/pep-0257 Official specification on docstrings.
ä readthedocs.io Read the Docs is a free service that can host your Sphinx documentation.
ä pythonhosted.org Python Hosted is another free service for documentation hosting.

23.5 The Markdown Alternative
Markdown is a plain text formatting syntax not too dissimilar to reStructuredText. While it doesn’t
have all the built-in features of reStructuredText, it does have the advantage of being easier to learn.
While used infrequently in the Python and Django communities, it’s very popular in tangential places
including the JavaScript and technical book-writing community.

When using Markdown instead of reStructuredText for open source projects, keep the following in
mind:

ä PyPI will not format the long_description if it’s written in anything except reStructured-
Text.

321

http://www.python.org/dev/peps/pep-0257
https://readthedocs.io/
http://pythonhosted.org/

Chapter 23: Documentation: Be Obsessed

ä Many Python and Django developers will search reStructuredText-powered documentation
sources before Markdown-powered ones.

23.5.1 README.md to README.rst: Using Pandoc for Packages
Uploaded to PyPI

Pandoc is a command-line tool that allows us to convert files from one markup format into another.
We can write a README in one format, and for uploading to PyPI, display it in another. Here’s
how some people use pandoc in their setup.py module:

Example 23.2: Using Pandoc in setup.py To Convert Markdown to ReStructuredText

setup.py
import subprocess
import sys

if sys.argv[-1] == 'md2rst':
subprocess.call('pandoc README.md -o README.rst', shell=True)

...

To convert a README.md to README.rst, just run python setup.py md2rst. Then we up-
load the package to PyPI as per the normal process.

23.5.2 Markdown Resources

ä en.wikipedia.org/wiki/Markdown
ä mkdocs.org is a static site generator geared towards project documentation written in mark-

down.
ä documentup.com will host README documents written in Markdown format.
ä progrium.viewdocs.io allows for Markdown documents to be organized and displayed in

a Sphinx-like format. Also provides free hosting.
ä johnmacfarlane.net/pandoc is a useful tool for converting between Markdown to other

formats, but it’s not perfect. It’s great for converting README.md to README.rst, which
we describe in the previous subsection

322

https://en.wikipedia.org/wiki/Markdown
http://www.mkdocs.org/
http://documentup.com
http://progrium.viewdocs.io/
http://johnmacfarlane.net/pandoc/

23.6: Wikis and Other Documentation Methods

23.6 Wikis and Other Documentation Methods

For whatever reason, if you can’t place developer-facing documentation in the project itself, you
should have other options. While wikis, online document stores, and word processing documents
don’t have the feature of being placed in version control, they are better than no documentation.

Please consider creating documents within these other methods with the same names as the ones we
suggested in the table on the previous page.

23.7 Summary

In this chapter we went over the following:

ä The use of reStructuredText to write documentation in plaintext format.
ä The use of Sphinx to render your documentation in HTML and EPUB formats. If you know

how to install LaTeX you can even render it as PDF. For reference, installing LaTeX is easy
to do on Linux and Windows and a bit harder on Mac OS X.

ä Advice on the documentation requirements for any Django project.
ä Using Markdown for documentation, and converting README.md to README.rst.

Next, we’ll take a look at common bottlenecks in Django projects and ways to deal with them.

323

Chapter 23: Documentation: Be Obsessed

324

24 | Finding and Reducing
Bottlenecks

This chapter covers a few basic strategies for identifying bottlenecks and speeding up your Django
projects.

24.1 Should You Even Care?
Remember, premature optimization is bad. If your site is small- or medium-sized and the pages are
loading fine, then it’s okay to skip this chapter.

On the other hand, if your site’s user base is growing steadily or you’re about to land a strategic
partnership with a popular brand, then read on.

24.2 Speed Up Query-Heavy Pages
This section describes how to reduce bottlenecks caused by having too many queries, as well as those
caused by queries that aren’t as snappy as they could be.

We also urge you to read up on database access optimization in the official Django docs: docs.
djangoproject.com/en/1.11/topics/db/optimization/

24.2.1 Find Excessive Queries With Django Debug Toolbar

You can use django-debug-toolbar to help you determine where most of your queries are coming
from. You’ll find bottlenecks such as:

325

https://docs.djangoproject.com/en/1.11/topics/db/optimization/
https://docs.djangoproject.com/en/1.11/topics/db/optimization/

Chapter 24: Finding and Reducing Bottlenecks

ä Duplicate queries in a page.
ä ORM calls that resolve to many more queries than you expected.
ä Slow queries.

You probably have a rough idea of some of the URLs to start with. For example, which pages don’t
feel snappy when they load?

Install django-debug-toolbar locally if you don’t have it yet. Look at your project in a web browser,
and expand the SQL panel. It’ll show you how many queries the current page contains.

PACKAGE TIP: Packages for Profiling and Performance Analysis

django-debug-toolbar is a critical development tool and an invaluable aid in page-by-page
analysis. We also recommend adding django-cache-panel to your project, but only config-
ured to run when settings/local.py module is called. This will increase visibility into what your
cache is doing.

django-extensions comes with a tool called RunProfileServer that starts Django’s run-
server command with hotshot/profiling tools enabled.

silk (github.com/mtford90/silk) Silk is a live profiling Django app that intercepts and
stores HTTP requests and database queries before presenting them in a user interface for
further inspection.

24.2.2 Reduce the Number of Queries

Once you know which pages contain an undesirable number of queries, figure out ways to reduce
that number. Some of the things you can attempt:

ä Try using select_related() in your ORM calls to combine queries. It follows For-
eignKey relations and combines more data into a larger query. If using CBVs, django-braces
makes doing this trivial with the SelectRelatedMixin. Beware of queries that get too large
by explicitly passing the related field names you are interested in. Only the specified relations
will be followed. Combine that with careful testing!

ä For many-to-many and many-to-one relationships that can’t be optimized with se-
lect_related(), explore using prefetch_related() instead.

326

https://github.com/mtford90/silk

24.2: Speed Up Query-Heavy Pages

ä If the same query is being generated more than once per template, move the query into the
Python view, add it to the context as a variable, and point the template ORM calls at this new
context variable.

ä Implement caching using a key/value store such as Memcached or Redis. Then write tests to
assert the number of queries run in a view. See
docs.djangoproject.com/en/1.11/topics/testing/tools/#django.test.
TransactionTestCase.assertNumQueries for instructions.

ä Use the django.utils.functional.cached_property decorator to cache in memory
the result of method call for the life of an object instance. This is incredibly useful, so please
see Section 29.3.5: django.utils.functional.cached_property in chapter 29.

24.2.3 Speed Up Common Queries

The length of time it takes for individual queries can also be a bottleneck. Here are some tips, but
consider them just starting points:

ä Make sure your indexes are helping speed up your most common slow queries. Look at the raw
SQL generated by those queries, and index on the fields that you filter/sort on most frequently.
Look at the generated WHERE and ORDER_BY clauses.

ä Understand what your indexes are actually doing in production. Development machines will
never perfectly replicate what happens in production, so learn how to analyze and understand
what’s really happening with your database.

ä Look at the query plans generated by common queries.
ä Turn on your database’s slow query logging feature and see if any slow queries occur frequently.
ä Use django-debug-toolbar in development to identify potentially-slow queries defensively, be-

fore they hit production.

Once you have good indexes, and once you’ve done enough analysis to know which queries to rewrite,
here are some starting tips on how to go about rewriting them:

1 Rewrite your logic to return smaller result sets when possible.
2 Re-model your data in a way that allows indexes to work more effectively.
3 Drop down to raw SQL in places where it would be more efficient than the generated query.

327

https://docs.djangoproject.com/en/1.11/topics/testing/tools/#django.test.TransactionTestCase.assertNumQueries
https://docs.djangoproject.com/en/1.11/topics/testing/tools/#django.test.TransactionTestCase.assertNumQueries

Chapter 24: Finding and Reducing Bottlenecks

TIP: Use EXPLAIN ANALYZE / EXPLAIN
If you’re using PostgreSQL, you can use EXPLAIN ANALYZE to get an extremely detailed
query plan and analysis of any raw SQL query. For more information, see:

ä revsys.com/writings/postgresql-performance.html
ä craigkerstiens.com/2013/01/10/more-on-postgres-performance/

The MySQL equivalent is the EXPLAIN command, which isn’t as detailed but is still helpful.
For more information, see:

ä dev.mysql.com/doc/refman/5.7/en/explain.html

A nice feature of django-debug-toolbar is that the SQL pane has an EXPLAIN feature.

24.2.4 Switch ATOMIC_REQUESTS to False

The clear, vast majority of Django projects will run just fine with the setting of ATOMIC_REQUESTS to
True. Generally, the penalty of running all database queries in a transaction isn’t noticeable. However,
if your bottleneck analysis points to transactions causing too much delay, it’s time to change the
project run as ATOMIC_REQUESTS to True. See Section 7.7.2: Explicit Transaction Declaration for
guidelines on this setting.

24.3 Get the Most Out of Your Database

You can go a bit deeper beyond optimizing database access. Optimize the database itself ! Much of
this is database-specific and already covered in other books, so we won’t go into too much detail here.

24.3.1 Know What Doesn’t Belong in the Database

Frank Wiles of Revolution Systems taught us that there are two things that should never go into any
large site’s relational database:

Logs. Don’t add logs to the database. Logs may seem OK on the surface, especially in development.
Yet adding this many writes to a production database will slow their performance. When the ability

328

http://www.revsys.com/writings/postgresql-performance.html
http://www.craigkerstiens.com/2013/01/10/more-on-postgres-performance/
http://dev.mysql.com/doc/refman/5.7/en/explain.html

24.3: Get the Most Out of Your Database

to easily perform complex queries against your logs is necessary, we recommend third-party services
such as Splunk or Loggly, or use of document-based NoSQL databases.

Ephemeral data. Don’t store ephemeral data in the database. What this means is data that re-
quires constant rewrites is not ideal for use in relational databases. This includes examples such as
django.contrib.sessions, django.contrib.messages, and metrics. Instead, move this data to things like
Memcached, Redis, Riak, and other non-relational stores.

TIP: Frank Wiles on Binary Data in Databases

Actually, Frank says that there are three things to never store in a database, the
third item being binary data. Storage of binary data in databases is addressed by
django.db.models.FileField, which does the work of storing files on file servers like
AWS CloudFront or S3 for you. Exceptions to this are detailed in Section 6.4.5: When to
Use BinaryField.

24.3.2 Getting the Most Out of PostgreSQL

If using PostgreSQL, be certain that it is set up correctly in production. As this is outside the scope
of the book, we recommend the following articles:

ä wiki.postgresql.org/wiki/Detailed_installation_guides
ä wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
ä revsys.com/writings/postgresql-performance.html
ä craigkerstiens.com/2012/10/01/understanding-postgres-performance
ä craigkerstiens.com/2013/01/10/more-on-postgres-performance

For further information, you may want to read the book “PostgreSQL 9.0 High Performance”: amzn.
to/1fWctM2

24.3.3 Getting the Most Out of MySQL

It’s easy to get MySQL running, but optimizing production installations requires experience and
understanding. As this is outside the scope of this book, we recommend the following links to help
you:

329

http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.revsys.com/writings/postgresql-performance.html
http://www.craigkerstiens.com/2012/10/01/understanding-postgres-performance/
http://www.craigkerstiens.com/2013/01/10/more-on-postgres-performance/
http://amzn.to/1fWctM2
http://amzn.to/1fWctM2

Chapter 24: Finding and Reducing Bottlenecks

ä “The Unofficial MySql Optimizer Guide” unofficialmysqlguide.com
ä “High Performance MySQL” amzn.to/188VPcL

24.4 Cache Queries With Memcached or Redis

You can get a lot of mileage out of simply setting up Django’s built-in caching system with Mem-
cached or Redis. You will have to install one of these tools, install a package that provides Python
bindings for them, and configure your project.

You can easily set up the per-site cache, or you can cache the output of individual views or template
fragments. You can also use Django’s low-level cache API to cache Python objects.

Reference material:

ä docs.djangoproject.com/en/1.11/topics/cache/
ä github.com/niwinz/django-redis

24.5 Identify Specific Places to Cache

Deciding where to cache is like being first in a long line of impatient customers at Ben and Jerry’s on
free scoop day. You are under pressure to make a quick decision without being able to see what any
of the flavors actually look like.

Here are things to think about:

ä Which views/templates contain the most queries?
ä Which URLs are being requested the most?
ä When should a cache for a page be invalidated?

Let’s go over the tools that will help you with these scenarios.

24.6 Consider Third-Party Caching Packages

Third-party packages will give you additional features such as:

ä Caching of QuerySets.

330

http://www.unofficialmysqlguide.com/
http://amzn.to/188VPcL
https://docs.djangoproject.com/en/1.11/topics/cache/
https://github.com/niwinz/django-redis

24.7: Compression and Minification of HTML, CSS, and JavaScript

ä Cache invalidation settings/mechanisms.
ä Different caching backends.
ä Alternative or experimental approaches to caching.

A few of the popular Django packages for caching are:

ä django-cache-machine
ä johnny-cache
ä django-cachalot

See djangopackages.org/grids/g/caching/ for more options.

WARNING: Third-Party Caching Libraries Aren’t Always the
Answer
Having tried many of the third-party Django cache libraries, we have to ask our readers to
test them very carefully and be prepared to drop them. They are cheap, quick wins, but can
lead to some hair-raising debugging efforts at the worst possible times.

Cache invalidation is hard, and in our experience, magical cache libraries are better for
projects with more static content. By-hand caching is a lot more work, but leads to better
performance in the long run and doesn’t risk those terrifying moments.

24.7 Compression and Minification of HTML, CSS, and
JavaScript

When a browser renders a web page, it usually has to load HTML, CSS, JavaScript, and image files.
Each of these files consumes the user’s bandwidth, slowing down page loads. One way to reduce
bandwidth consumption is via compression and minification. Django even provides tools for you:
GZipMiddleware and the {% spaceless %} template tag. Through the at-large Python community,
we can even use WSGI middleware that performs the same task.

The problem with making Django and Python do the work is that compression and minification take
up system resources, which can create bottlenecks of their own. A better approach is to use Apache
and Nginx web servers configured to compress the outgoing content. If you are maintaining your
own web servers, this is absolutely the way to go.

331

https://www.djangopackages.org/grids/g/caching/

Chapter 24: Finding and Reducing Bottlenecks

A common approach is to use a third-party compression module or Django library to compress and
minify the HTML, CSS, and JavaScript in advance. Our preference is django-pipeline which comes
recommended by Django core developer Jannis Leidel.

For CSS and JavaScript, many people use JavaScript-powered tools for minification. The advantage
of this approach is the greater mindshare of tools and solved problems in this domain space.

Tools and libraries to reference:

ä Apache and Nginx compression modules
ä django-pipeline
ä django-compressor
ä django-htmlmin
ä Django’s built-in spaceless tag: docs.djangoproject.com/en/1.11/ref/templates/

builtins/spaceless
ä djangopackages.org/grids/g/asset-managers/

24.8 Use Upstream Caching or a Content Delivery
Network

Upstream caches such as Varnish are very useful. They run in front of your web server and speed up
web page or content serving significantly. See varnish-cache.org.

Content Delivery Networks (CDNs) like Fastly, Akamai, and Amazon Cloudfront serve static me-
dia such as images, video, CSS, and JavaScript files. They usually have servers all over the world,
which serve out your static content from the nearest location. Using a CDN rather than serving
static content from your application servers can speed up your projects.

24.9 Other Resources

Advanced techniques on scaling, performance, tuning, and optimization are beyond the scope of this
book, but here are some starting points.

On general best practices for web performance:

332

https://docs.djangoproject.com/en/1.11/ref/templates/builtins/#spaceless
https://docs.djangoproject.com/en/1.11/ref/templates/builtins/#spaceless
http://www.djangopackages.org/grids/g/asset-managers/
http://varnish-cache.org/

24.9: Other Resources

ä YSlow’s Web Performance Best Practices and Rules:

developer.yahoo.com/yslow/
ä Google’s Web Performance Best Practices:

developers.google.com/speed/docs/best-practices/rules_intro

On scaling large Django sites:

ä Written with a focus on scaling Django, the book “High Performance Django” espouses many
good practices. Full of useful information and tricks, as well as questions in each section that
force you to think about what you are doing. highperformancedjango.com

ä David Cramer often writes and speaks about scaling Django at Disqus, Dropbox, and Sentry.
Read his blog and keep an eye out for his talks, Quora posts, comments, etc. justcramer.com

ä Watch videos and slides from past DjangoCons and PyCons about different develop-
ers’ experiences. Scaling practices vary from year to year and from company to company:
http://lanyrd.com/search/?q=django+scaling

Figure 24.1: With your site running smoothly, you’ll be feeling as cool as a cone.

TIP: For Sites With High Volume: High Performance Django

We want to reiterate that “High Performance Django” is worth getting if your site has enough
traffic to cause issues. While it’s getting old, Peter Baumgartner and Yann Malet wrote the
book more at the conceptual level, making it a volume that you should consider purchasing.

ä highperformancedjango.com
ä amazon.com/High-Performance-Django/dp/1508748128

333

http://developer.yahoo.com/yslow/
https://developers.google.com/speed/docs/best-practices/rules_intro
https://highperformancedjango.com
http://justcramer.com/
http://lanyrd.com/search/?q=django+scaling
https://highperformancedjango.com
https://www.amazon.com/High-Performance-Django/dp/1508748128/?tag=mlinar-20

Chapter 24: Finding and Reducing Bottlenecks

24.10 Summary

In this chapter we explored a number of bottleneck reduction strategies including:

ä Whether you should even care about bottlenecks in the first place.
ä Profiling your pages and queries.
ä Optimizing queries.
ä Using your database wisely.
ä Caching queries.
ä Identifying what needs to be cached.
ä Compression of HTML, CSS, and JavaScript.
ä Exploring other resources.

In the next chapter, we’ll cover various practices involving asynchronous task queues, which may
resolve our bottleneck problems.

334

25 | Asynchronous Task Queues

An asynchronous task queue is one where tasks are executed at a different time from when they
are created, and possibly not in the same order they were created. Here is an example of a human-
powered asynchronous task queue:

1 In their spare time, Audrey and Daniel make ice cream cakes, taking orders from friends and
family. They use an issue tracker to track their tasks for scooping, spreading, and decorating
each cake.

2 Every so often, when they have spare time, they review the list of tasks and pick one to do.
Audrey prefers scooping and decorating, always doing those tasks first. Daniel prefers scooping
and spreading, finishing those before decorating. The result is asynchronous completion of
cake-making tasks.

3 As a cake-making task is completed and delivered, they mark the issue as closed.

TIP: Task Queue vs Asynchronous Task Queue

In the Django world, both terms are used to describe asynchronous taskqueue. When some-
one writes task queue in the context of Django, they usually mean asynchronous task queue.

Before we get into best practices, let’s go over some definitions:

Broker The storage for the tasks themselves. This can be implemented using any sort of persistence
tool, although in Django the most common ones in use are RabbitMQ and Redis. In the
human-powered example, the storage is an online issue tracker.

Producer The code that adds tasks to the queue to be executed later. This is application code, the
stuff that makes up a Django project. In the human-powered example, this would be Audrey
and Daniel, plus anyone they can get to pitch in to help.

335

Chapter 25: Asynchronous Task Queues

Worker The code that takes tasks from the broker and performs them. Usually there is more than
one worker. Most commonly each worker runs as a daemon under supervision. In the human-
powered example, this is Audrey and Daniel.

Serverless Usually provided by services such as AWS Lambda, this is, to paraphrase Martin Fowler,
“where some amount of server-side logic is written by us but unlike traditional architectures
is run in stateless compute containers that are event-triggered, ephemeral (only last for one
invocation), and fully managed by a 3rd party.” Serverless takes over the role of Broker and
Worker. In the human-powered example, it’s as if Daniel and Audrey use a third-party service
to take the orders and then follow their precise instructions on doing the work.

25.1 Do We Need a Task Queue?

It depends. They add complexity but can improve user experience. Arguably it comes down to whether
a particular piece of code causes a bottleneck and can be delayed for later when more free CPU cycles
are available.

Here is a useful rule of thumb for determining if a task queue should be used:

Results take time to process: Task queue should probably be used.
Users can and should see results immediately: Task queue should not be used.

Let’s go over some possible use cases:

Issue Use Task Queue?

Sending bulk email Yes
Modifying files (including images) Yes
Fetching large amounts of data from third-party Ice Cream APIs Yes
Inserting or updating a lot of records into a table Yes
Updating a user profile No
Adding a blog or CMS entry No
Performing time-intensive calculations Yes
Sending or receiving of webhooks Yes

Table 25.1: Should a Project Have a Task Queue?

336

25.2: Choosing Task Queue Software

Please keep in mind there are site-traffic driven exceptions to all of these use cases:

ä Sites with small-to-medium amounts of traffic may never need a task queue for any of these
actions.

ä Sites with larger amounts of traffic may discover that nearly every user action requires use of a
task queue.

Determining whether or not a site or action needs a task queue is a bit of an art. There is no easy
answer we can provide. However, knowing how to use them is a really powerful tool in any developer’s
toolkit.

25.2 Choosing Task Queue Software

Celery, Django Channels, or calls to serverless services such as AWS Lambda, which to choose?
Let’s go over their pros and cons:

Software Pros Cons

Celery A Django and Python standard,
many different storage types,
flexible, full-featured, great for
high volume

Challenging setup, steep
learning curve for anything
but the basic stuff

DjangoChannels Defacto Django standard,
flexible, easy-to-use, adds
websocket support to Django

No retry mechanism,
Redis-only

AWSLambda Flexible, scalable, easy setup API call can be slow,
requires external logging
services, adds complexity,
requires creating REST
API for notifications

Redis-Queue, Huey, other
Django-friendly queues

Lower memory footprint than
Celery, relatively easy setup

Not as many features as
Celery, usually Redis-only,
smaller communities

337

http://celeryproject.org
https://channels.readthedocs.io
https://aws.amazon.com/lambda
http://python-rq.org/
https://github.com/coleifer/huey

Chapter 25: Asynchronous Task Queues

Software Pros Cons
django-background-tasksVery easy setup, easy to use,

works on Windows, good for
small volume or batch jobs, uses
Django ORM for backend

Uses Django ORM for
backend, absolutely terrible
for medium-to-high
volume

Table 25.2: Comparing Task Queue Software

Here is our general rule of thumb:

ä If time permits, move all asynchronous processes to Serverless systems such as AWS Lambda.
ä If API calls to Serverless become an issue, encapsulate these calls in Celery tasks. For us, this

has only been a problem with bulk API calls to AWS Lambda.
ä Use Django Channels for websockets. The lack of retry mechanism forces you to invent things

that Celery provides out-of-the-box.
ä For security and performance reasons, any and all API calls to user-defined URLs are done

through task queues.

Of course, your own experience and knowledge should be used to determine which task queue system
you use for a project. Examples:

ä If you have a good amount of Celery experience and are comfortable with it, then by all means
use it for small volume or toy projects.

ä Most Serverless systems have hard-limits on disk drive space (Example: AWS Lambda limits
you to 512MB). This can be a problem when manipulating large files (transcoding of video)
or using certain libraries. In these cases, you can either use third-party services or construct
dedicated servers running Celery to handle such tasks.

ä The extensibility of the Django Channel’s Generic Consumers are so nice that we’ve been
tempted to write our own retry mechanisms. While we haven’t had the time to do it, you
might. Just be aware that it’s a larger, more complicated task than you might expect.

ä In theory, queues like Redis Queue and Huey have easier setup than Celery. However, project
templates like Cookiecutter Django render this advantage moot.

338

https://github.com/arteria/django-background-tasks

25.3: Best Practices for Task Queues

25.3 Best Practices for Task Queues

While each of the different task queue packages has their own quirks, there are some constants we
can apply to all of them. A nice feature about these practices is that they help with the portability
of your task functions. This can be incredibly useful when you discover that while Django Channels
has been useful, the lack of a retry mechanism requires you to switch to Celery.

25.3.1 Treat Tasks Like Views

Throughout this book we recommend that views contain as little code as possible, calling methods
and functions from other places in the code base. We believe the same thing applies to tasks.

A common trap is for the code inside task functions to become long and ugly, because the assumption
is that “the task queue hides it from the user.” We’ve been guilty of this ourselves. To avoid this, you
can put your task code into a function, put that function into a helper module, and then call that
function from a task function.

All task queue packages do some kind of serialization/abstraction of our task functions and their
arguments. This makes debugging them much more difficult. By using our task functions to call
more easily tested normal functions, we not only make writing and debugging our code easier, we
also encourage more reuse.

The same goes for Serverless code. Rather than put a lot of logic into our AWS lambda functions,
we create installable, testable packages that we import from. This means a gigantic reduction of
production-style debugging.

25.3.2 Tasks Aren’t Free

Remember that the memory and resources to process a task have to come from somewhere. Overly
resource-heavy tasks might be hidden, but they can still cause site problems.

Even if resource-intensive code is executed from a task, it should still be written as cleanly as possible,
minimizing any unnecessary resource usage. Optimization and profiling can help here.

339

Chapter 25: Asynchronous Task Queues

Even Serverless tasks are not free. Remember, the term ‘Serverless’ is a misnomer, the code is being
run in servers. Slow Serverless-tasks can literally run out of time or create a surprisingly large bill at
the end of the month.

25.3.3 Only Pass JSON-Serializable Values to Task Functions

Just like views, for task function arguments, only pass JSON-serializable values. That limits us to
integers, floats, strings, lists, tuples, and dictionaries. Don’t pass in complex objects. Here’s why:

1 Passing in an object representing persistent data. For example, ORM instances can cause a race
condition. This is when the underlying persistent data changes before the task is run. Instead,
pass in a primary key or some other identifier that can be used to call fresh data.

2 Passing in complex objects that have to be serialized into the task queue is time and memory
consuming. This is counter-productive to the benefits we’re trying to achieve by using a task
queue.

3 We’ve found debugging JSON-serializable values easier than debugging more complex objects.
4 Depending on the task queue in use, only JSON-serializable primitives are accepted.

25.3.4 Write Tasks as Idempotent Whenever Possible

When we say idempotent (en.wikipedia.org/wiki/Idempotence) we mean that you can run
the task multiple times and get the same result. This is important with task queues because retries
are expected, even with successfully completed tasks (not uncommon with broker restarts). When a
retry, intentional or not, occurs, you want the task to respond with the same result each time it runs.

TIP: Pure Functions Over Idempotent Functions

Nathan Cox, Djangonaut and bleeding edge language enthusiast, encourages us to write tasks
using pure functions (en.wikipedia.org/wiki/Pure_function). The main difference
being:

ä pure functions either do not allow or strongly discourage side effects, while
ä idempotent functions don’t mind if there are side effects just so long as the direct result

is the same over two function calls.
This may seem like a fine distinction, but it’s worth keeping pure functions in mind when

340

https://en.wikipedia.org/wiki/Idempotence
https://en.wikipedia.org/wiki/Pure_function

25.3: Best Practices for Task Queues

writing idempotent tasks as it encourages us to write more straight-forward task code. Con-
sidering the complexity that task queues can bring to a project, we should embrace anything
we can do to make ourselves write cleaner asynchronous code.

25.3.5 Don’t Keep Important Data in Your Queue

Except for Django Channels, all the asychronous task queue options we’ve presented include a built-
in retry mechanism. This is great, but sometimes even the retries fail. This can occur for any reason,
most commonly bugs within our own code or encountering latency when communicating with third-
party APIs. What this means is that critical tasks can fail to run. We’ve seen this occur with billing
customers, sending emails, or making reservations.

The solution is to track the status of an action within the affected record(s). For example, as a customer
is about to be billed, mark them as not having been billed yet, then call the task. If the task succeeds,
have it update the customer has having been billed. If the task fails, then it will fail to update the
customer and a simple query will reveal the customer hasn’t yet paid their bill.

If you want to know more, Dan Poirier of Caktus wrote an excellent article about this technique:

ä http://bit.ly/2eqd1DZ

25.3.6 Learn How to Monitor Tasks and Workers

Gaining visibility into the status of tasks and workers is critical for debugging of task functions. Some
useful tools:

ä Celery: pypi.python.org/pypi/flower

25.3.7 Logging!

Since task queues are working “behind the scenes,” it can be hard to determine exactly what is going
on. This is where logging (Chapter 27: Logging: What’s It For, Anyway?) and tools like Sentry

341

https://www.caktusgroup.com/blog/2016/10/18/dont-keep-important-data-your-celery-queue/
https://pypi.python.org/pypi/flower

Chapter 25: Asynchronous Task Queues

become really useful. In error-prone task code, it can be a good idea to log inside of each task function.
This will make debugging production code easier.

When using Serverless tasks, we’ve found that Sentry isn’t an option, it is an absolute necessity. When
you hit that obscure edge case no amount of logging will capture the depth of data that Sentry
provides.

25.3.8 Monitor the Backlog

As traffic increases, tasks can pile up if there aren’t enough workers. When we see this happening,
it’s time to increase the number of workers. Of course, this doesn’t apply to Serverless tasks.

25.3.9 Periodically Clear Out Dead Tasks

Sometimes a task is passed into a queue and then just sits there doing nothing for some reason. It
could be caused by a bug, e.g. a resource being used by the task might no longer exist. However these
things happen, they can build up over time, taking up space in our system.

Learn how your software cleans out dead tasks, and check to make sure it’s running properly. Of
course, this doesn’t apply to Serverless tasks.

25.3.10 Ignore Results We Don’t Need

When a task completes, the broker is designed to record whether it succeeded or failed. While use-
ful for statistical purposes, this exit status is not the result of the job the task was performing. As
recording this status takes up time and storage space, it’s a feature we usually turn off.

25.3.11 Use the Queue’s Error Handling

What happens when a task fails? It can be caused by a network error, a third-party API going down,
or anything else that can be imagined. Look up how to do the following for your task queue software
and learn how to set them:

342

25.4: Resources for Task Queues

ä Max retries for a task
ä Retry delays

Retry delays deserve a lot of consideration. When a task fails, we like to wait at least 10 seconds
before trying again. Even better, if the task queue software allows it, increase the delay each time an
attempt is made. We set things this way in order to give the conditions that caused a failure to resolve
themselves.

25.3.12 Learn the Features of Your Task Queue Software

Celery, Django Channels, and Redis Queue allow for definition of multiple queues. In fact, Celery
has fancy routing features that no other software package possesses.

If we don’t take the time to explore, learn, and use these features, we’re losing out on lots of secret
sauce. Staying ignorant of these features can mean that instead of leaning on our package of choice,
we end up writing code that duplicates what the package provides.

In fact, while we’ve become fans of using Boto3 to call AWS Lambda to perform tasks, half the
reason we don’t let go of Celery is because it gives us so much control over execution.

25.4 Resources for Task Queues

General:

ä vinta.com.br/blog/2016/database-concurrency-in-django-the-right-way/
Essential reading!

ä fullstackpython.com/task-queues.html
ä slideshare.net/bryanhelmig/task-queues-comorichweb-12962619
ä github.com/carljm/django-transaction-hooks

Django database backends that permit registering post-transaction-commit hooks.

Celery:

ä celeryproject.com Homepage of Celery
ä denibertovic.com/posts/celery-best-practices/ Must-read article for anyone

learning Celery

343

http://www.vinta.com.br/blog/2016/database-concurrency-in-django-the-right-way/
http://www.fullstackpython.com/task-queues.html
https://www.slideshare.net/bryanhelmig/task-queues-comorichweb-12962619
https://github.com/carljm/django-transaction-hooks
http://celeryproject.com
https://denibertovic.com/posts/celery-best-practices/

Chapter 25: Asynchronous Task Queues

ä pypi.python.org/pypi/flower A web-based tool for managing Celery clusters
ä wiredcraft.com/blog/3-gotchas-for-celery
ä caktusgroup.com/blog/tags/celery/ The Caktus blog has a number of incredibly use-

ful articles on Celery.

Django Channels

ä channels.readthedocs.io Homepage of Django Channels
ä github.com/django/channels Source repo

25.5 Summary

In this chapter we explored high-level practices for working with task queues. Because of the ab-
straction involved in using them, we advocate treating them like views, minimizing the amount of
business logic within.

We also covered the use of Serverless tasks through mostly the lens of AWS Lambda. It’s an exciting
new way of doing things, but the limitations can be overwhelming.

In the next chapter, we’ll go over the basics of securing Django projects.

344

https://pypi.python.org/pypi/flower
http://wiredcraft.com/blog/3-gotchas-for-celery/
https://www.caktusgroup.com/blog/tags/celery/
https://channels.readthedocs.io
https://github.com/django/channels

26 | Security Best Practices

When it comes to security, Django has a pretty good record. This is due to security tools provided
by Django, solid documentation on the subject of security, and a thoughtful team of core developers
who are extremely responsive to security issues. However, it’s up to individual Django developers
such as ourselves to understand how to properly secure Django-powered applications.

This chapter contains a list of things helpful for securing your Django application. This list is by no
means complete. Consider it a starting point.

TIP: What to Do if You Have a Security Breach

If you’re in the midst of a security crisis, please go to Appendix H: Handling Security Failures.

26.1 Reference Security Sections in Other Chapters

A number of other chapters in this book contain dedicated security sections, or touch on security
matters. These are found at the following locations:

ä Section 5.3: Separate Configuration From Code
ä Section 12.3: Always Use CSRF Protection With HTTP Forms That Modify Data
ä Section 17.5.1: Set settings.CSRF_COOKIE_HTTPONLY Appropriately
ä Section 26.27: Never Display Sequential Primary Keys
ä Section 19.8: Secure the Django Admin
ä Appendix H: Handling Security Failures

345

Chapter 26: Security Best Practices

26.2 Harden Your Servers
Search online for instructions and checklists for server hardening. Server hardening measures in-
clude but are not limited to things like setting up firewalls (help.ubuntu.com/community/UFW),
changing your SSH port, and disabling/removing unnecessary services.

26.3 Know Django’s Security Features
Django 1.11’s security features include:

ä Cross-site scripting (XSS) protection.
ä Cross-site request forgery (CSRF) protection.
ä SQL injection protection.
ä Clickjacking protection.
ä Support for TLS/HTTPS/HSTS, including secure cookies.
ä Secure password storage, using the PBKDF2 algorithm with a SHA256 hash by default.
ä Automatic HTML escaping.
ä An expat parser hardened against XML bomb attacks.
ä Hardened JSON, YAML, and XML serialization/deserialization tools.

Most of Django’s security features “just work” out of the box without additional configuration, but
there are certain things that you’ll need to configure. We’ve highlighted some of these details in this
chapter, but please make sure that you read the official Django documentation on security as well:
docs.djangoproject.com/en/1.11/topics/security/

26.4 Turn Off DEBUG Mode in Production
Your production site should not be running in DEBUG mode. Attackers can find out more than
they need to know about your production setup from a helpful DEBUG mode stack trace page. For
more information, see docs.djangoproject.com/en/1.11/ref/settings/#debug.

Keep in mind that when you turn off DEBUG mode, you will need to set ALLOWED_HOSTS
or risk raising a SuspiciousOperation error, which generates a 500 error that can be hard to debug.
For more information on setting/debugging ALLOWED_HOSTS see:

ä Section 26.7: Use Allowed Hosts Validation
ä Section 33.2.4: That Troublesome settings.ALLOWED_HOSTS Error

346

https://help.ubuntu.com/community/UFW
https://docs.djangoproject.com/en/1.11/topics/security/
https://docs.djangoproject.com/en/1.11/ref/settings/#debug

26.5: Keep Your Secret Keys Secret

26.5 Keep Your Secret Keys Secret

If your SECRET_KEY setting is not secret, this means you risk everything from remote code
execution to password hacking. Your API keys and other secrets should be carefully guarded as well.
These keys should not even be kept in version control.

We cover the mechanics of how to keep your SECRET_KEY out of version control in Chapter 5:
Settings and Requirements Files, Section 5.3: Separate Configuration From Code, and Section 5.4:
When You Can’t Use Environment Variables.

26.6 HTTPS Everywhere

It is always better to deploy a site behind HTTPS. Not having HTTPS means that malicious network
users can sniff authentication credentials between your site and end users. In fact, all data sent between
your site and end users is up for grabs.

There is also no guarantee that any of your users are seeing what you expect them to see: an attacker
could manipulate anything in the request or the response. So HTTPS makes sense even if all your
information is public, but you do care about the integrity of the information.

Your entire site should be behind HTTPS. Your site’s static resources should also be served via
HTTPS, otherwise visitors will get warnings about “insecure resources” which should rightly scare
them away from your site. For reference, these warnings exist because they are a potential man-in-
the-middle vector.

TIP: Jacob Kaplan-Moss on HTTPS vs HTTP

Django co-leader Jacob Kaplan-Moss says, “Your whole site should only be available via
HTTPS, not HTTP at all. This prevents getting “firesheeped” (having a session cookie stolen
when served over HTTP). The cost is usually minimal.”

If visitors try to access your site via HTTP, they should be redirected to HTTPS. This can be done
either through configuration of your web server or with Django middleware. Performance-wise, it’s
better to do this at the web server level, but if you don’t have control over your web server settings
for this, then redirecting via Django middleware is fine.

347

Chapter 26: Security Best Practices

You should obtain an SSL certificate from a reputable source rather than creating a self-signed cer-
tificate. To set it up, follow the instructions for your particular web server or platform-as-a-service.
Our preferred service is the very reputable (and free) letsencrypt.org. This service makes it so
easy to create SSL certificates there is no reason to use self-signed certificates.

TIP: Please Use Let’s Encrypt for SSL Certificates

It used to be that getting an SSL certificate was a painful process. The tools and documenta-
tion were and are unpleasant to use, and some of the companies provided them covered their
sites with so many shady advertisements that you wondered if they were run by criminals.
That all changed in April of 2016 with the launch of Let’s Encrypt (letsencrypt.org).
It’s a free service sponsored by large and small organizations who had the same problems we
did. They provide easy-to-use open source software that is very well documented and used
for millions of projects.
Going forward, our opinion is that unless you are using a trusted service that integrates with
your hosting platform, you should be using Let’s Encrypt. An example of this would be
Amazon’s Certificate Manager for EC2-based projects.

TIP: Use django.middleware.security.SecurityMiddleware

The tool of choice for projects on Django 1.11+ for enforcing HTTPS/SSL across an entire
site through middleware is built right in. To activate this middleware just follow these steps:

1 Add django.middleware.security.SecurityMiddleware to the
settings.MIDDLEWARE_CLASSES definition.

2 Set settings.SECURE_SSL_HOST to True .

WARNING: django.middleware.security.SecurityMiddleware Does Not
Include static/media
Even if all Django requests are served over HTTPS, omitting HTTPS for resources like
javascript would still allow attackers to compromise your site.
As JavaScript, CSS, images, and other static assets are typically served directly by the web
server (nginx, Apache), make certain that serving of such content is done via HTTPS.
Providers of static assets such as Amazon S3 now do this by default.

348

https://letsencrypt.org
https://letsencrypt.org

26.6: HTTPS Everywhere

26.6.1 Use Secure Cookies

Your site should inform the target browser to never send cookies unless via HTTPS. You’ll need to
set the following in your settings:

Example 26.1: Securing Cookies

SESSION_COOKIE_SECURE = True
CSRF_COOKIE_SECURE = True

Read docs.djangoproject.com/en/1.11/topics/security/#ssl-https for more details.

26.6.2 Use HTTP Strict Transport Security (HSTS)

HSTS can be configured at the web server level. Follow the instructions for your web server, platform-
as-a-service, and Django itself (via settings.SECURE_HSTS_SECONDS).

If you have set up your own web servers, Wikipedia has sample HSTS configuration snippets that
you can use: en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

When you enable HSTS, your site’s web pages include a HTTP header that tells HSTS-compliant
browsers to only connect to the site via secure connections:

ä HSTS-compliant browsers will redirect HTTP links to HTTPS.
ä If a secure connection isn’t possible (e.g. the certificate is self-signed or expired), an error mes-

sage will be shown and access will be disallowed.

To give you a better idea of how this works, here’s an example of what a HTTP Strict Transport
Security response header might look like:

Example 26.2: HSTS Response Header

Strict-Transport-Security: max-age=31536000; includeSubDomains

Some HSTS configuration advice:

349

https://docs.djangoproject.com/en/1.11/topics/security/#ssl-https
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

Chapter 26: Security Best Practices

1 You should use HSTS’ includeSubDomains mode if you can. This prevents attacks involving
using non-secured subdomains to write cookies for the parent domain.

2 Set max-age to a small value like 3600 (1 hour) during initial deployment of a secured site to
make sure you haven’t screwed something up or forgotten to make some portion of the site
available via HTTPS. We suggest this small value because once you set max-age, you can’t
unset it for users; their browsers control expiration, not you.

3 Once you’ve confirmed that your site is properly secured, set max-age to a large value like
31536000 (12 months) or 63072000 (24 months) if you can.

WARNING: Choose Your HSTS Policy Duration Carefully

Remember that HSTS is a one-way switch. It’s a declaration that for the next N seconds,
your site will be HTTPS-only. Don’t set a HSTS policy with a max-age longer than you are
able to maintain. Browsers do not offer an easy way to unset it.

Note that HSTS should be enabled in addition to redirecting all pages to HTTPS as described earlier.

WARNING: Additional Warning for includeSubDomains

We recommend everyone to use HSTS with a long duration and to use includeSubDo-
mains. However, especially in projects with lots of legacy components, the combination
requires great care when configuring.

Example: Imagine we create a new Django website called example.com. Of course, the site
is HTTPS with HSTS. We test the HSTS settings, which work fine, and then increase the
duration to a year. Alas, after a month, someone realises legacy.example.com is still a production
service and does not support HTTPS. We remove includeSubdomains from the header,
but by now it’s already too late: all clients inside the company have the old HSTS header
remembered.

In short, before even considering includeSubdomains, one should be entirely aware of what
might be hosted under the domain that HSTS is configured on.

350

26.7: Use Allowed Hosts Validation

26.6.3 HTTPS Configuration Tools

Mozilla provides a SSL configuration generator at the mozilla.github.io/server-side-tls/
ssl-config-generator/, which can provide a starting point for your own configuration. While
not perfect, it expedites setting up HTTPS. As our security reviewers say, “In general, any HTTPS
is better than plain HTTP.”

Once you have a server set up (preferably a test server), use the Qualys SSL Labs server test at
sllabs.com/ssltest/ to see how well you did. A fun security game is trying to score an A+.
Especially as the official Two Scoops of Django reward for getting that good of a grade is a trip to
the local favorite ice cream saloon.

26.7 Use Allowed Hosts Validation

In production, you must set ALLOWED_HOSTS in your settings to a list of allowed host/domain
names in order to avoid raising SuspiciousOperation exceptions. This is a security measure to
prevent the use of fake HTTP host headers to submit requests.

We recommend that you avoid setting wildcard values here. For more information, read the Django
documentation on ALLOWED_HOSTS and the get_host() method:

ä docs.djangoproject.com/en/1.11/ref/settings/#allowed-hosts
ä docs.djangoproject.com/en/1.11/ref/request-response/#django.http.

HttpRequest.get_host

26.8 Always Use CSRF Protection With HTTP Forms That
Modify Data

Django comes with easy-to-use cross-site request forgery protection (CSRF) built in, and by default
it is activated across the site via the use of middleware. We have some strong recommendations
discussed in Section 12.3: Always Use CSRF Protection With HTTP Forms That Modify Data.

26.9 Prevent Against Cross-Site Scripting (XSS) Attacks
XSS attacks usually occur when users enter malignant JavaScript that is then rendered into a template
directly. This isn’t the only method, but it is the most common. Fortunately for us, Django by default

351

https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://www.ssllabs.com/ssltest/
https://docs.djangoproject.com/en/1.11/ref/settings/#allowed-hosts
https://docs.djangoproject.com/en/1.11/ref/request-response/#django.http.HttpRequest.get_host
https://docs.djangoproject.com/en/1.11/ref/request-response/#django.http.HttpRequest.get_host

Chapter 26: Security Best Practices

escapes <, >, ’, ”, and &, which is all that is needed for proper HTML escaping.

The following are recommended by the Django security team:

26.9.1 Use format_html Over mark_safe

Django gives developers the ability to mark content strings as safe, meaning that Django’s own
safeguards are taken away. A better alternative is django.utils.html.format_html , which is like
Python’s str.format() method, except designed for building up HTML fragments. All args and
kwargs are escaped before being passed to str.format() which then combines the elements.

Reference: docs.djangoproject.com/en/1.11/ref/utils/#django.utils.html.
format_html

26.9.2 Don’t Allow Users to Set Individual HTML Tag Attributes

If you allow users to set individual attributes of HTML tags, that gives them a venue for injecting
malignant JavaScript.

26.9.3 Use JSON Encoding for Data Consumed by JavaScript

Rely on JSON encoding rather than finding ways to dump Python structures directly to templates.
It’s not just easier to integrate into client-side JavaScript, it’s safer.

26.9.4 Beware Unusual JavaScript

Due to JavaScript’s weird semantics, it’s possible to construct syntactically-valid,
executable programs from a very tiny subset of characters. Per jazcash.com/
a-javascript-journey-with-only-six-characters, it’s possible to transform regular-
looking JavaScript into an alphabet of only six characters (plus sign, exclamation mark, open/close
bracket and open/close parenthesis).

352

https://docs.djangoproject.com/en/1.11/ref/utils/#django.utils.html.format_html
https://docs.djangoproject.com/en/1.11/ref/utils/#django.utils.html.format_html
http://www.jazcash.com/a-javascript-journey-with-only-six-characters/
http://www.jazcash.com/a-javascript-journey-with-only-six-characters/

26.10: Defend Against Python Code Injection Attacks

26.9.5 Add Content Security Policy Headers

Also known as CSP, Content Security Policy provides a standard method to declare approved origins
of content that browsers should be allowed to load on a website. Covered types are JavaScript, CSS,
HTML frames, web workers, fonts, images, embeddable objects such as Java applets, ActiveX, audio
and video files, and other HTML5 features. Even with django-csp, implementing this isn’t trivial as
it requires standing up a reporting service or using a third-party service.

ä en.wikipedia.org/wiki/Content_Security_Policy
ä github.com/mozilla/django-csp

26.9.6 Additional Reading

There are other avenues of attack that can occur, so educating yourself is important.

ä docs.djangoproject.com/en/1.11/ref/templates/builtins/#escape
ä en.wikipedia.org/wiki/Cross-site_scripting

26.10 Defend Against Python Code Injection Attacks
We once were hired to help with a project that had some security issues. The requests coming into the
site were being converted from django.http.HttpRequest objects directly into strings via creative
use of the str() function, then saved to a database table. Periodically, these archived Django requests
would be taken from the database and converted into Python dicts via the eval() function. This
meant that arbitrary Python code could be run on the site at any time.

Needless to say, upon discovery the critical security flaw was quickly removed. This just goes to show
that no matter how secure Python and Django might be, we always need to be aware that certain
practices are incredibly dangerous.

26.10.1 Python Built-Ins That Execute Code

Beware of the eval() , exec() , and execfile() built-ins. If your project allows arbitrary strings or
files to be passed into any of these functions, you are leaving your system open to attack.

353

https://en.wikipedia.org/wiki/Content_Security_Policy
https://github.com/mozilla/django-csp
https://docs.djangoproject.com/en/1.11/ref/templates/builtins/#escape
http://en.wikipedia.org/wiki/Cross-site_scripting

Chapter 26: Security Best Practices

For more information, read “Eval Really Is Dangerous” by Ned Batchelder:
nedbatchelder.com/blog/201206/eval_really_is_dangerous.html

26.10.2 Python Standard Library Modules That Can Execute Code

“Never unpickle data received from an untrusted or unauthenticated source.”

– docs.python.org/3/library/pickle.html

You should not use the Python standard library’s picklemodule to deserialize anything which could
have been modified by the user. As a general rule, avoid accepting pickled values from user for any
reason. Specific warnings about pickle and security are listed below:

ä lincolnloop.com/blog/playing-pickle-security/
ä blog.nelhage.com/2011/03/exploiting-pickle/

26.10.3 Third-Party Libraries That Can Execute Code

When using PyYAML, only use safe_load() . While the use of YAML in the Python and Django
communities is rare outside of continuous integration, it’s not uncommon to receive this format
from other services. Therefore, if you are accepting YAML documents, only load them with the
yaml.safe_load() method.

For reference, the yaml.load() method will let you create Python objects, which is really bad. As Ned
Batchelder says, yaml.load() should be renamed to yaml.dangerous_load() : nedbatchelder.
com/blog/201302/war_is_peace.html

26.10.4 Be Careful With Cookie-Based Sessions

Typically most Django sites use either database- or cache-based sessions. These function by storing
a hashed random value in a cookie which is used as a key to the real session value, which is stored
in the database or cache. The advantage of this is that only the key to the session data is sent to the
client, making it very challenging for malignant coders to penetrate Django’s session mechanism.

354

http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
http://docs.python.org/3/library/pickle.html
https://lincolnloop.com/blog/playing-pickle-security/
https://blog.nelhage.com/2011/03/exploiting-pickle/
http://nedbatchelder.com/blog/201302/war_is_peace.html
http://nedbatchelder.com/blog/201302/war_is_peace.html

26.10: Defend Against Python Code Injection Attacks

However, Django sites can also be built using cookie-based sessions, which place the session data
entirely on the client’s machine. While this means slightly less storage needs for the server, it comes
with security issues that justify caution. Specifically:

1 It is possible for users to read the contents of cookie-based sessions.
2 If an attacker gains access to a project’s SECRET_KEY and your session serializer is JSON-

based, they gain the ability to falsify session data and therefore, if authentication is used, im-
personate any user.

3 If an attacker gains access to a project’s SECRET_KEY and your session serializer is pickle-
based, they gain the ability to not only falsify session data and also execute arbitrary code. In
other words, not only can they assume new rights and privileges, they can also upload working
Python code. If you are using pickle-based sessions or are considering using them, please read
the tip below.

4 Another disadvantage of this configuration is that sessions can’t be invalidated in a guaranteed
way (except when they expire): you can try to override the cookie in the browser with a new
value, but you can’t enforce an attacker to use it: if they continue sending requests with the old
cookie, the session backend won’t know the difference.

TIP: Use JSON for Cookie-Based Sessions

The default cookie serializer for Django is JSON-based, meaning that even if an attacker
discovers a project’s SECRET_KEY , they can’t execute arbitrary code. If you decide to
write your own cookie serializer, stick to using JSON as the format.
Never, ever use the optional pickle serializer.

Resources on the subject:
ä docs.djangoproject.com/en/1.11/topics/http/sessions/

#session-serialization
ä docs.djangoproject.com/en/1.11/ref/settings/#session-serializer

Another thing to consider is that cookie-based sessions are a potential client-side performance bot-
tleneck. Transmitting the session data server-to-client is generally not an issue, but client-to-server
transmissions are much, much slower. This is literally the difference between download and upload
speeds all internet users encounter.

In general, we try to avoid cookie-based sessions.

355

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#session-serialization
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#session-serialization
https://docs.djangoproject.com/en/1.11/ref/settings/#session-serializer

Chapter 26: Security Best Practices

Additional reading:

ä docs.djangoproject.com/en/1.11/topics/http/sessions/
#using-cookie-based-sessions

ä http://bit.ly/2plfHqU Threatpost.com article on cookies
ä yuiblog.com/blog/2007/03/01/performance-research-part-3/

26.11 Validate All Incoming Data With Django Forms
Django forms should be used to validate all data being brought into your project, including from
non-web sources. Doing so protects the integrity of our data and is part of securing your application.
We cover this in Section 12.1: Validate All Incoming Data With Django Forms.

TIP: Using DRF Serializers Instead of Django Forms

Django REST Framework’s validation is as well constructed and secure as Django’s form
libraries. If you are more familiar with DRF, then using serializers to validate all incoming
data is perfectly okay.

26.12 Disable the Autocomplete on Payment Fields
You should disable the HTML field autocomplete browser feature on fields that are gateways to
payment. This includes credit card numbers, CVVs, PINs, credit card dates, etc. The reason is that a
lot of people use public computers or their personal computers in public venues.

For reference, Django forms make this easy:

Example 26.3: Disabling Autocomplete in Form Fields

from django import forms

class SpecialForm(forms.Form):
my_secret = forms.CharField(

widget=forms.TextInput(attrs={'autocomplete': 'off'}))

For any site that might be used in a public area (an airport for example), consider changing the form
field itself to PasswordInput:

356

https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cookie-based-sessions
https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cookie-based-sessions
https://threatpost.com/security-vulnerability-in-django-could-allow-attackers-access-to-cookies/102501/
http://yuiblog.com/blog/2007/03/01/performance-research-part-3/

26.13: Handle User-Uploaded Files Carefully

Example 26.4: Changing Public Widget to PasswordInput

from django import forms

class SecretInPublicForm(forms.Form):

my_secret = forms.CharField(widget=forms.PasswordInput())

26.13 Handle User-Uploaded Files Carefully

The only way to completely safely serve user-provided content is from a completely separate domain.
For better or worse, there are an infinite number of ways to bypass file type validators. This is why
security experts recommend the use of content delivery networks (CDNs): they serve as a place to
store potentially dangerous files.

If you must allow upload and download of arbitrary file types, make sure that the server uses the
“Content-Disposition: attachment” header so that browsers won’t display the content inline.

26.13.1 When a CDN Is Not an Option

When this occurs, uploaded files must be saved to a directory that does not allow them to be executed.
In addition, at the very least make sure the HTTP server is configured to serve images with image
content type headers, and that uploads are restricted to a whitelisted subset of file extensions.

Take extra care with your web server’s configuration here, because a malicious user can try to attack
your site by uploading an executable file like a CGI or PHP script and then accessing the URL. This
won’t solve every problem, but it’s better than the defaults.

Consult your web server’s documentation for instructions on how to configure this, or consult the
documentation for your platform-as-a-service for details about how static assets and user-uploaded
files should be stored.

357

Chapter 26: Security Best Practices

26.13.2 Django and User-Uploaded Files

Django has two model fields that allow for user uploads: FileField and ImageField. They come
with some built-in validation, but the Django docs also strongly advise you to “pay close attention to
where you’re uploading them and what type of files they are, to avoid security holes.”

If you are only accepting uploads of certain file types, do whatever you can do to ensure that the user
is only uploading files of those types. For example, you can:

ä Use the python-magic library to check the uploaded file’s headers:
github.com/ahupp/python-magic

ä Validate the file with a Python library that specifically works with that file type. Unfortunately
this isn’t documented, but if you dig through Django’s ImageField source code, you can see
how Django uses PIL to validate that uploaded image files are in fact images.

ä Use defusedxml instead of native Python XML libraries or lxml. See Section 26.21: Guard
Against XML Bombing With defusedxml.

WARNING: Custom Validators Aren’t the Answer Here
Don’t just write a custom validator and expect it to validate your uploaded files before dan-
gerous things happen. Custom validators are run against field content after they’ve already
been coerced to Python by the field’s to_python() method.

If the contents of an uploaded file are malicious, any validation happening after
to_python() is executed may be too late.

Further reading:

ä docs.djangoproject.com/en/1.11/ref/models/fields/#filefield

26.14 Don’t Use ModelForms.Meta.exclude

When using ModelForms, always use Meta.fields. Never use Meta.exclude. The use of
Meta.exclude is considered a grave security risk, specifically a Mass Assignment Vulnerability.
We can’t stress this strongly enough. Don’t do it.

358

https://github.com/ahupp/python-magic
https://docs.djangoproject.com/en/1.11/ref/models/fields/#filefield

26.14: Don’t Use ModelForms.Meta.exclude

One common reason we want to avoid the Meta.exclude attribute is that its behavior implicitly
allows all model fields to be changed except for those that we specify. When using the excludes
attribute, if the model changes after the form is written, we have to remember to change the form.
If we forget to change the form to match the model changes, we risk catastrophe.

Let’s use an example to show how this mistake could be made. We’ll start with a simple ice cream
store model:

Example 26.5: Sample Store Model

stores/models.py
from django.conf import settings
from django.db import models

class Store(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField()
owner = models.ForeignKey(settings.AUTH_USER_MODEL)
Assume 10 more fields that cover address and contact info.

Here is the wrong way to define the ModelForm fields for this model:

Example 26.6: Implicit Definition of Form Fields

DON'T DO THIS!
from django import forms

from .models import Store

class StoreForm(forms.ModelForm):

class Meta:
model = Store
DON'T DO THIS: Implicit definition of fields.
Too easy to make mistakes!
excludes = ("pk", "slug", "modified", "created", "owner")

In contrast, this is the right way to define the same ModelForm’s fields:

359

Chapter 26: Security Best Practices

Example 26.7: Explicit Definition of Form Fields

from django import forms

from .models import Store

class StoreForm(forms.ModelForm):

class Meta:
model = Store
Explicitly specifying the fields we want
fields = (

"title", "address_1", "address_2", "email",
"usstate", "postal_code", "city",

)

The first code example, as it involves less typing, appears to be the better choice. It’s not, as when
you add a new model field you now you need to track the field in multiple locations (one model and
one or more forms).

Let’s demonstrate this in action. Perhaps after launch we decide we need to have a way of tracking
store co-owners, who have all the same rights as the owner. They can access account information,
change passwords, place orders, and specify banking information. The store model receives a new
field as shown on the next page:

Example 26.8: Added Co-Owners Field

stores/models.py
from django.conf import settings
from django.db import models

class Store(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField()
owner = models.ForeignKey(settings.AUTH_USER_MODEL)
co_owners = models.ManyToManyField(settings.AUTH_USER_MODEL)
Assume 10 more fields that cover address and contact info.

360

26.15: Don’t Use ModelForms.Meta.fields = ”__all__”

The first form code example which we warned against using relies on us remembering to alter it to
include the new co_owners field. If we forget, then anyone accessing that store’s HTML form can
add or remove co-owners. While we might remember a single form, what if we have more than one
ModelForm for a model? In complex applications this is not uncommon.

On the other hand, in the second example, where we used Meta.fields we know exactly what
fields each form is designed to handle. Changing the model doesn’t alter what the form exposes, and
we can sleep soundly knowing that our ice cream store data is more secure.

26.14.1 Mass Assignment Vulnerabilities

The problem we describe in this section is a Mass Assignment Vulnerability.

These occur when the patterns such as Active Record, designed to empower developers, create se-
curity risks for web applications. The solution is the approach we advocate in this section, which is
explicit definition of fields that can be modified.

See n.wikipedia.org/wiki/Mass_assignment_vulnerability for more detail.

26.15 Don’t Use ModelForms.Meta.fields = ”__all__”

This includes every model field in your model form. It’s a shortcut, and a dangerous one. It’s very
similar to what we describe in Section 26.14: Don’t Use ModelForms.Meta.exclude, and even with
custom validation code, exposes projects to form-based Mass Assignment Vulnerabilities. We advo-
cate avoiding this technique as much as possible, as we feel that it’s simply impossible to catch all
variations of input.

26.16 Beware of SQL Injection Attacks

The Django ORM generates properly-escaped SQL which will protect your site from users attempt-
ing to execute malignant, arbitrary SQL code.

Django allows you to bypass its ORM and access the database more directly through raw SQL. When
using this feature, be especially careful to escape your SQL code properly. This is of concern in these
specific components of Django:

361

https://en.wikipedia.org/wiki/Mass_assignment_vulnerability

Chapter 26: Security Best Practices

ä The .raw() ORM method.
ä The .extra() ORM method.
ä Directly accessing the database cursor.

Reference:

ä docs.djangoproject.com/en/1.11/topics/security/
#sql-injection-protection

26.17 Never Store Credit Card Data
Unless you have a strong understanding of the PCI-DSS security standards
(pcisecuritystandards.org) and adequate time/resources/funds to validate your PCI
compliance, storing credit card data is too much of a liability and should be avoided.

Instead, we recommend using third-party services like Stripe, Braintree, Adyen, PayPal, and others
that handle storing this information for you, and allow you to reference the data via special tokens.
Most of these services have great tutorials, are very Python and Django friendly, and are well worth
the time and effort to incorporate into your project.

TIP: Educate Yourself on PCI Compliance

Ken Cochrane has written an excellent blog post on PCI
compliance. Please read kencochrane.net/blog/2012/01/
developers-guide-to-pci-compliant-web-applications/

TIP: Read the Source Code of Open Source E-Commerce
Solutions
If you are planning to use any of the existing open source Django e-commerce solutions,
examine how the solution handles payments. If credit card data is being stored in the database,
even encrypted, then please use another solution.

26.18 Monitor Your Sites
Check your web servers’ access and error logs regularly. Install monitoring tools and check on them
frequently. Keep an eye out for suspicious activity.

362

https://docs.djangoproject.com/en/1.11/topics/security/#sql-injection-protection
https://docs.djangoproject.com/en/1.11/topics/security/#sql-injection-protection
https://www.pcisecuritystandards.org/
https://www.kencochrane.net/blog/2012/01/developers-guide-to-pci-compliant-web-applications/
https://www.kencochrane.net/blog/2012/01/developers-guide-to-pci-compliant-web-applications/

26.19: Keep Your Dependencies Up-to-Date

26.19 Keep Your Dependencies Up-to-Date

You should always update your projects to work with the latest stable release of Django and third-
party dependencies. This is particularly important when a release includes security fixes. For that, we
recommend pyup.io, which automatically checks requirements files against the latest versions that
PyPI provides.

‘I’ve set up (these kinds of services) for distinct actions: it mails me once a week for
each project with any outdated dependencies, and if it finds an insecure version it auto-
matically creates a pull request in GitHub, so tests run automatically and I can deploy
quickly.’

– Erik Romijn, Django core dev and security reviewer for Two Scoops of Django 1.8

Useful links for updates to Django itself.

ä The official Django weblog at djangoproject.com/weblog/
ä The official django-announce mailing list at groups.google.com/forum/#!forum/

django-announce

26.20 Prevent Clickjacking

Clickjacking is when a malicious site tricks users to click on a concealed element of another site that
they have loaded in a hidden frame or iframe. An example is a site with a false social media ‘login’
button that is really a purchase button on another site.

Django has instructions and components to prevent this from happening:

ä docs.djangoproject.com/en/1.11/ref/clickjacking/

26.21 Guard Against XML Bombing With defusedxml

Attacks against XML libraries are nothing new. For example, the amusingly titled but devastating
‘Billion Laughs’ attack (http://en.wikipedia.org/wiki/Billion_laughs) was discovered
in 2003.

363

https://pyup.io/
https://www.djangoproject.com/weblog/
https://groups.google.com/forum/#!forum/django-announce
https://groups.google.com/forum/#!forum/django-announce
https://docs.djangoproject.com/en/1.11/ref/clickjacking/
http://en.wikipedia.org/wiki/Billion_laughs

Chapter 26: Security Best Practices

Unfortunately, Python, like many other programming languages, doesn’t account for this or other
venues of attack via XML. Furthermore, third-party Python libraries such as lxml are vulnerable to
at least 4 well-known XML-based attacks. For a list of Python and Python library vulnerabilities see
pypi.python.org/pypi/defusedxml#python-xml-libraries.

Fortunately for us, Christian Heimes created defusedxml, a Python library designed to patch
Python’s core XML libraries and some of the third-party libraries (including lxml).

For more information, please read:

ä pypi.python.org/pypi/defusedxml

26.22 Explore Two-Factor Authentication

Two-factor authentication (2FA) requires users to authenticate by combining two separate means
of identification.

For modern web applications, what that usually means is you enter your password as well as a value
provided to you on your mobile device. A value that is either sent to your personal phone number or
is reset every thirty seconds.

The advantage of 2FA is that it adds another component, one that changes frequently, to the authen-
tication process, great for any site involving personal identity, finance, or medical requirements.

The downside is that the user needs to have a charged mobile device with access to a network in order
to log in to your site, making it not so ideal for users who may not have a charged mobile device or
easy access to a network.

ä en.wikipedia.org/wiki/Two_factor_authentication
ä pypi.python.org/pypi/django-two-factor-auth

PACKAGE TIP: Look for TOTP in 2FA Products and Packages

TOTP is short for en.wikipedia.org/wiki/Time-based_One-time_Password_
Algorithm, which is an open standard used by Google Authenticator and many other ser-
vices. TOTP does not require network access, which is useful for building certain kinds of
Django projects. However, SMS implementations of course require cellular network access

364

https://pypi.python.org/pypi/defusedxml#python-xml-libraries
https://pypi.python.org/pypi/defusedxml
http://en.wikipedia.org/wiki/Two_factor_authentication
https://pypi.python.org/pypi/django-two-factor-auth
https://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm
https://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm

26.23: Embrace SecurityMiddleware

or third-party services such as twilio.com.

WARNING: The Issue of 2FA Recovery

An important issue is how people recover from loss of their 2FA token or phone number.
Passwords are generally recovered by sending an e-mail with a secret link. However, if the
2FA token can also be reset by e-mail, access to the user’s e-mail has basically become the
single factor of authentication. Common methods include offering TOTP authentication
with SMS as a fallback, or offering a number of recovery codes that need to be kept by the
user. In some cases, organisations will only reset these tokens after receiving a scan of an
identity card belonging to the account holder. In any case, a recovery process will be needed,
so think of this in advance.

26.23 Embrace SecurityMiddleware

We’ve mentioned Django’s built-in django.middleware.security.SecurityMiddleware
several times already in this chapter. We owe it to ourselves and our users to embrace and use this
feature of Django.

26.24 Force the Use of Strong Passwords

A strong password is one that more than just a list of characters. It is long and preferably complex,
including punctuation, digits, and both character cases. Let’s pledge to protect our users by enforcing
the use of such passwords.

So what makes the best password?

Our opinion is that at this point in time, length is more important than complexity. An 8 character
length password mixing cases, numbers, and special characters is easier by several orders of magnitude
to break than a 50-character sentence of just lower cased letters. Of course, what’s even better is if
you have a 30-50 character sentence that includes numbers, mixed cases, and special characters.

Quality Password Specification

Bad 6-10 characters of just the alphabet
365

https://www.twilio.com/

Chapter 26: Security Best Practices

Quality Password Specification

Okay Minimum 8 characters, mixed case + numeric + special characters

Better Minimum 30 characters of just the alphabet

Best Minimum 30 characters, mixed case + numeric + special characters

Table 26.1: Password Strength: Length vs Complexity

Reference: xkcd.com/936/

26.25 Give Your Site a Security Checkup

There are a number of services that provide automated checkups for sites. They aren’t security audits,
but they are great, free ways to make certain that your production deployment doesn’t have any gaping
security holes.

pyup.io’s Safety library (github.com/pyupio/safety) checks your installed dependencies for
known security vulnerabilities. By default it uses the open Python vulnerability database Safety DB,
but can be upgraded to use pyup.io’s Safety API using the --key option.

Erik Romijn, on the Django security team, has created Pony Checkup (ponycheckup.com), an
automated security checkup tool for Django websites. There are several security practices that can
easily be probed from the outside, and this is what his site checks for.

Mozilla also provides a similar, but non-Django specific service called Observatory (observatory.
mozilla.org).

26.26 Put Up a Vulnerability Reporting Page

It’s a good idea to publish information on your site about how users can report security vulnerabilities
to you.

GitHub’s “Responsible Disclosure of Security Vulnerabilities” page is a good example of this and
rewards reporters of issues by publishing their names:
help.github.com/articles/responsible-disclosure-of-security-vulnerabilities/

366

https://xkcd.com/936/
https://pyup.io/
https://github.com/pyupio/safety
https://pyup.io/
https://ponycheckup.com
https://observatory.mozilla.org/
https://observatory.mozilla.org/
https://help.github.com/articles/responsible-disclosure-of-security-vulnerabilities/

26.27: Never Display Sequential Primary Keys

26.27 Never Display Sequential Primary Keys

Displaying sequential primary keys is to be avoided because:

ä They inform potential rivals or hackers of your volume
ä By displaying these values we make it trivial to exploit InsecureDirectObjectReferences
ä We also provide targets for XSS attacks

Here are some patterns for looking up records without revealing sequential identifiers:

26.27.1 Lookup by Slug

In the Django world, this is incredibly common. There are literally hundreds of examples available
on how to do it. This is the goto method for many Django projects. However, it becomes a little
challenging when you have issues with duplicate slugs. In which case, one of the other methods
apply.

26.27.2 UUIDs

Django comes with very useful models.UUIDField. While a use case for using them as primary
keys for large distributed systems exists, they also serve nicely for public lookups. Here is a sample
model:

Example 26.9: Using UUID for Public Lookups

import uuid as uuid_lib
from django.db import models

class IceCreamPayment(models.Model):
uuid = models.UUIDField(

db_index=True,
default=uuid_lib.uuid4,
editable=False)

def __str__(self):

367

https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References

Chapter 26: Security Best Practices

return str(self.pk)

And here is how we call that model:

Example 26.10: Looking Up Payment By UUID

>>> from payments import IceCreamPayment
>>> payment = IceCreamPayment()
>>> IceCreamPayment.objects.get(id=payment.id)
<IceCreamPayment: 1>
>>> payment.uuid
UUID('0b0fb68e-5b06-44af-845a-01b6df5e0967')
>>> IceCreamPayment.objects.get(uuid=payment.uuid)
<IceCreamPayment: 1>

WARNING: The Dangers of Obfuscating Sequential IDs

Slugs and UUIDs both have their disadvantages. The slug-based approach runs into colli-
sions quickly, causing things like, “vanilla”, “vanilla-2”, “vanilla-3” to occur. UUIDs, to put
it simply, are long and not memorizable by most humans. What can we do?
You can obfuscate the sequential ID. But we don’t recommend it. Why not?
The short answer: Obfuscating is not an effective way to hide sequential IDs.
The long answer: There are any number of methods for obfuscating numbers ranging from

base64 encoding to using the hashids library. These approaches work by converting a
number to a alphanumeric code and back again. They not only hide the number, they
also shorten it. Sounds great, right?
The problem is that every method of obfuscating sequential IDs is fundamentally
insecure. Base64 encoding is trivial to undo. Libraries like hashids can be broken
with brute-forceattacks or by anyone with a good understanding of cryographic
knowledge (carnage.github.io/2015/08/cryptanalysis-of-hashids).

To summarize: If you want to hide your sequential identifiers, don’t rely on obfuscation.

26.28 Reference Our Security Settings Appendix
Keeping track of everything that relates to security and Django is challenging. This chapter alone is
nigh 30 pages long and at the beginning we make it very clear this is not an absolute reference.

368

https://pypi.python.org/pypi/hashids
https://en.wikipedia.org/wiki/Brute-force_attack
http://carnage.github.io/2015/08/cryptanalysis-of-hashids

26.29: Review the List of Security Packages

In order to add clarity, we’ve created Appendix G: Security Settings Reference. This is where we
put important and useful information on how to better configure the security settings of a Django
project.

26.29 Review the List of Security Packages

In the security section of Appendix A: Packages, we list over ten related security packages that can
make a difference to your site. While some are listed in this chapter, others are unique to that section
of this book.

26.30 Keep Up-to-Date on General Security Practices

We end this chapter with some common-sense advice.

First, keep in mind that security practices are constantly evolving, both in the Django community
and beyond. Subscribe to groups.google.com/forum/#!forum/django-announce and check
Twitter, Hacker News, and various security blogs regularly.

Second, remember that security best practices extend well beyond those practices specific to Django.
You should research the security issues of every part of your web application stack, and you should
follow the corresponding sources to stay up to date.

TIP: Good Books and Articles on Security

Paul McMillan, Django core developer, security expert, and Two Scoops reviewer, recom-
mends the following books:

ä “The Tangled Web: A Guide to Securing Modern Web Applications”:
amzn.to/1hXAAyx

ä “The Web Application Hacker’s Handbook”:
amzn.to/1dZ7xEY

In addition, we recommend the following reference site:
ä wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines

369

https://groups.google.com/forum/#!forum/django-announce
http://amzn.to/1hXAAyx
http://amzn.to/1dZ7xEY
https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines

Chapter 26: Security Best Practices

26.31 Summary

Please use this chapter as a starting point for Django security, not the ultimate reference guide. See
the Django documentation’s list for additional security topics:
docs.djangoproject.com/en/1.11/topics/security/#additional-security-topics

Django comes with a good security record due to the diligence of its community and attention to
detail. Security is one of those areas where it’s a particularly good idea to ask for help. If you find
yourself confused about anything, ask questions and turn to others in the Django community for
help.

370

https://docs.djangoproject.com/en/1.11/topics/security/#additional-security-topics

27 | Logging: What’s It For, Anyway?

Logging is like rocky road ice cream. Either you can’t live without it, or you forget about it and
wonder once in awhile why it exists.

Anyone who’s ever worked on a large production project with intense demands understands the im-
portance of using the different log levels appropriately, creating module-specific loggers, meticulously
logging information about important events, and including extra detail about the application’s state
when those events are logged.

While logging might not seem glamorous, remember that it is one of the secrets to building extremely
stable, robust web applications that scale and handle unusual loads gracefully. Logging can be used
not only to debug application errors, but also to track interesting performance metrics.

Logging unusual activity and checking logs regularly is also important for ensuring the security of
your server. In the previous chapter, we covered the importance of checking your server access and
error logs regularly. Keep in mind that application logs can be used in similar ways, whether to track
failed login attempts or unusual application-level activity.

27.1 Application Logs vs. Other Logs

This chapter focuses on application logs. Any log file containing data logged from your Python web
application is considered an application log.

In addition to your application logs, you should be aware that there are other types of logs, and that
using and checking all of your server logs is necessary. Your server logs, database logs, network logs,
etc. all provide vital insight into your production system, so consider them all equally important.

371

Chapter 27: Logging: What’s It For, Anyway?

27.2 Why Bother With Logging?

Logging is your go-to tool in situations where a stack trace and existing debugging tools aren’t enough.
Whenever you have different moving parts interacting with each other or the possibility of unpre-
dictable situations, logging gives you insight into what’s going on.

The different log levels available to you are DEBUG, INFO, WARNING, ERROR, and CRITICAL. Let’s
now explore when it’s appropriate to use each logging level.

27.3 When to Use Each Log Level

In places other than your production environment, you might as well use all the log levels. Log levels
are controlled in your project’s settings modules, so we can fine tune this recommendation as needed
to account for load testing and large scale user tests.

In your production environment, we recommend using every log level except for DEBUG.

Figure 27.1: Appropriate usage of CRITICAL/ERROR/WARNING/INFO logging in ice cream.

Since the same CRITICAL, ERROR, WARNING, and INFO logs are captured whether in production or
development, introspection of buggy code requires less modification of code. This is important to
remember, as debug code added by developers working to fix one problem can create new ones.

The rest of this section covers how each log level is used.

372

27.3: When to Use Each Log Level

27.3.1 Log Catastrophes With CRITICAL

Use the CRITICAL log level only when something catastrophic occurs that requires urgent attention.

For example, if your code relies on an internal web service being available, and if that web service is
part of your site’s core functionality, then you might log at the CRITICAL level anytime that the web
service is inaccessible.

This log level is never used in core Django code, but you should certainly use it in your code anywhere
that an extremely serious problem can occur.

27.3.2 Log Production Errors With ERROR

Let’s look at core Django for an example of when ERROR level logging is appropriate. In core Django,
the ERROR log level is used very sparingly. There is one very important place where it is used: whenever
code raises an exception that is not caught, the event gets logged by Django using the following code:

Example 27.1: Logging Production Errors

Taken directly from core Django code.
Used here to illustrate an example only, so don't
copy this into your project.
logger.error('Internal Server Error: %s', request.path,

exc_info=exc_info,
extra={

'status_code': 500,
'request': request

}
)

How does Django put this to good use? Well, when DEBUG=False is in your settings, everyone listed
in ADMINS immediately gets emailed the following:

ä A description of the error
ä A complete Python traceback from where the error occurred
ä Information about the HTTP request that caused the error

373

Chapter 27: Logging: What’s It For, Anyway?

If you’ve ever received one of those email notifications, you know how useful ERROR logs are when
you need them most.

Similarly, we recommend that you use the ERROR log level whenever you need to log an error that is
worthy of being emailed to you or your site admins. When your code catches the exception, log as
much information as you can to be able to resolve the problem.

For example, an exception may be thrown when one of your views cannot access a needed third-party
API. When the exception is caught, you can log a helpful message and the API’s failure response, if
any.

27.3.3 Log Lower-Priority Problems With WARNING

This level is good for logging events that are unusual and potentially bad, but not as bad as ERROR-
level events.

For example, if you are using django-admin-honeypot to set up a fake admin/ login form, you might
want to log intruders’ login attempts to this level.

Django uses the log level in several parts of CsrfViewMiddleware, to log events that result in a
403 Forbidden error. For example, when an incoming POST request is missing its csrf_token,
the event gets logged as follows:

Example 27.2: Logging Missing CSRF

Taken directly from core Django code.
Used here to illustrate an example only, so don't
copy this into your project.
logger.warning('Forbidden (%s): %s',

REASON_NO_CSRF_COOKIE, request.path,
extra={

'status_code': 403,
'request': request,

}
)

374

27.3: When to Use Each Log Level

27.3.4 Log Useful State Information With INFO

We recommend using this level to log any details that may be particularly important when analysis
is needed. These include:

ä Startup and shutdown of important components not logged elsewhere
ä State changes that occur in response to important events
ä Changes to permissions, e.g. when users are granted admin access

In addition to this, the INFO level is great for logging any general information that may help in
performance analysis. It’s a good level to use while hunting down problematic bottlenecks in your
application and doing profiling.

27.3.5 Log Debug-Related Messages to DEBUG

In development, we recommend using DEBUG and occasionally INFO level logging wherever you’d
consider throwing a print statement into your code for debugging purposes.

Getting used to logging this way isn’t hard. Instead of this:

Example 27.3: Using Print to Display Data

from django.views.generic import TemplateView

from .helpers import pint_counter

class PintView(TemplateView):

def get_context_data(self, *args, **kwargs):
context = super(PintView, self).get_context_data(**kwargs)
pints_remaining = pint_counter()
print('Only %d pints of ice cream left.' % (pints_remaining))
return context

We do this:

375

Chapter 27: Logging: What’s It For, Anyway?

Example 27.4: Using Logging to Display Data

import logging

from django.views.generic import TemplateView

from .helpers import pint_counter

logger = logging.getLogger(__name__)

class PintView(TemplateView):

def get_context_data(self, *args, **kwargs):
context = super(PintView, self).get_context_data(**kwargs)
pints_remaining = pint_counter()
logger.debug('Only %d pints of ice cream left.' % pints_remaining)
return context

Sprinkling print statements across your projects results in problems and technical debt:

ä Depending on the web server, a forgotten print statement can bring your site down.
ä Print statements are not recorded. If you don’t see them, then you miss what they were trying to

say.
ä As the Django world migrates more and more to Python 3, old-style print statements like

print IceCream.objects.flavor() will break your code.

Unlike print statements, logging allows different report levels and different response methods. This
means that:

ä We can write DEBUG level statements, leave them in our code, and never have to worry about
them doing anything when we move code to production.

ä The response method can provide the response as email, log files, console and stdout. It can
even report as pushed HTTP requests to applications such as Sentry!

Note that there’s no need to go overboard with debug-level logging. It’s great to add log-
ging.debug() statements while you’re debugging, but there’s no need to clutter your code with
logging every single line.

376

27.4: Log Tracebacks When Catching Exceptions

Figure 27.2: Appropriate usage of DEBUG logging in ice cream.

27.4 Log Tracebacks When Catching Exceptions
Whenever you log an exception, it’s usually helpful to log the stack trace of the exception. Python’s
logging module supports this:

1 Logger.exception() automatically includes the traceback and logs at ERROR level.
2 For other log levels, use the optional exc_info keyword argument.

Here’s an example of adding a traceback to a WARNING level log message:

Example 27.5: Capturing Tracebacks with exc_info

import logging
import requests

logger = logging.getLogger(__name__)

def get_additional_data():
try:

r = requests.get('http://example.com/something-optional/')

377

Chapter 27: Logging: What’s It For, Anyway?

except requests.HTTPError as e:
logger.exception(e)
logger.debug('Could not get additional data', exc_info=True)
return None

return r

27.5 One Logger Per Module That Uses Logging
Whenever you use logging in another module, don’t import and reuse a logger from elsewhere. In-
stead, define a new logger specific to the module like this:

Example 27.6: One Logger Per Module

You can place this snippet at the top
of models.py, views.py, or any other
file where you need to log.
import logging

logger = logging.getLogger(__name__)

What this gives you is the ability to turn on and off only the specific loggers that you currently need.
If you’re running into a strange issue in production that you can’t replicate locally, you can temporarily
turn on DEBUG logging for just the module related to the issue. Then, when you identify the problem,
you can turn that logger back off in production.

27.6 Log Locally to Rotating Files
When you create a new Django project with startproject, your default settings file is configured
to email ERROR and higher log messages to whomever you list in ADMINS. This occurs via a handler
called AdminEmailHandler that comes with Django.

In addition to this, we recommend also writing logs of level INFO and higher to rotating log files
on disk. On-disk log files are helpful in case the network goes down or emails can’t be sent to your
admins for some reason. Log rotation keeps your logs from growing to fill your available disk space.

A common way to set up log rotation is to use the UNIX logrotate utility with log-
ging.handlers.WatchedFileHandler.

378

27.7: Other Logging Tips

Note that if you are using a platform-as-a-service, you might not be able to set up rotating log files.
In this case, you may need to use an external logging service such as Loggly: loggly.com.

27.7 Other Logging Tips

ä Control the logging in settings files per the Django documentation on logging: docs.
djangoproject.com/en/1.11/topics/logging/

ä While debugging, use the Python logger at DEBUG level.
ä After running tests at DEBUG level, try running them at INFO and WARNING levels. The re-

duction in information you see may help you identify upcoming deprecations for third-party
libraries.

ä Don’t wait until it’s too late to add logging. You’ll be grateful for your logs if and when your
site fails.

ä You can do useful things with the emails you receive when ERROR or higher level events occur.
For example, you can configure a PagerDuty (pagerduty.com) account to alert you and your
team repeatedly until you’ve taken action.

PACKAGE TIP: Logutils Provides Useful Handlers

The logutils package by Vinay Sajip comes with a number of very interesting logging han-
dlers. Features include:

ä Colorizing of console streams under Windows, Linux and Mac OS X.
ä The ability to log to queues. Useful in situations where you want to queue up log mes-

sages to a slow handler like SMTPHandler.
ä Classes that allow you to write unit tests for log messages.
ä An enhanced HTTPHandler that supports secure connections over HTTPS.

Some of the more basic features of logutils are so useful that they have been absorbed into
the Python standard library!

27.8 Necessary Reading Material

ä docs.djangoproject.com/en/1.11/topics/logging/
ä docs.python.org/3/library/logging.html
ä docs.python.org/3/library/logging.config.html

379

http://loggly.com/
https://docs.djangoproject.com/en/1.11/topics/logging/
https://docs.djangoproject.com/en/1.11/topics/logging/
http://www.pagerduty.com/
https://docs.djangoproject.com/en/1.11/topics/logging/
http://docs.python.org/3/library/logging.html
http://docs.python.org/3/library/logging.config.html

Chapter 27: Logging: What’s It For, Anyway?

ä docs.python.org/3/library/logging.handlers.html
ä docs.python.org/3/howto/logging-cookbook.html

27.9 Useful Third-Party Tools

ä Sentry (sentry.io) aggregates errors for you and is trusted by the authors, Dropbox, AirBnB,
and host of other firms. Their product is open source, and they have an awesome history of sup-
porting various developers with their open source efforts. We can’t recommend them enough.

ä Opbeat (opbeat.com) tracks errors and performance issues in your app. They provide some
of the functionality of Sentry, and also include performance monitering. Unlike Sentry, they
do not contribute back to the greater good of the open source community.

ä loggly.com (loggly.com) simplifies log management and provides various query tools.

27.10 Summary

Django projects can easily take advantage of the rich logging functionality that comes with Python.
Combine logging with handlers and analysis tools, and suddenly you have real power. You can use
logging to help you improve the stability and performance of your projects.

In the next chapter we’ll discuss signals, which become much easier to follow, debug, and understand
with the help of logging.

380

http://docs.python.org/3/library/logging.handlers.html
http://docs.python.org/3/howto/logging-cookbook.html
https://www.sentry.io/
https:///opbeat.com/
http://loggly.com/

28 | Signals: Use Cases and
Avoidance Techniques

The Short Answer: Use signals as a last resort.
The Long Answer: Often when new Djangonauts first discover signals, they get signal-happy. They

start sprinkling signals everywhere they can and feeling like real experts at Django.

After coding this way for a while, projects start to turn into confusing, knotted hairballs that
can’t be untangled. Signals are being dispatched everywhere and hopefully getting received
somewhere, but at that point it’s hard to tell what exactly is going on.

Many developers also confuse signals with asynchronous message queues such as what Celery
and Django Channels provides. Make no mistake, signals are synchronous and blocking, and call-
ing performance-heavy processes via signals provides absolutely no benefit from a performance
or scaling perspective. In fact, moving such processes unnecessarily to signals is considered code
obfuscation.

Signals can be useful, but they should be used as a last resort, only when there’s no good way
to avoid using them.

28.1 When to Use and Avoid Signals

Do not use signals when:

ä The signal relates to one particular model and can be moved into one of that model’s methods,
possibly called by save().

381

Chapter 28: Signals: Use Cases and Avoidance Techniques

ä The signal can be replaced with a custom model manager method.
ä The signal relates to a particular view and can be moved into that view.

It might be okay to use signals when:

ä Your signal receiver needs to make changes to more than one model.
ä You want to dispatch the same signal from multiple apps and have them handled the same way

by a common receiver.
ä You want to invalidate a cache after a model save.
ä You want to create hooks for a third-party installable app’s interaction with the database. In

some cases this can be a better approach than extending objects.
ä You have an unusual scenario that needs a callback, and there’s no other way to handle it besides

using a signal. For example, you want to trigger something based on the save() or init()
of a third-party app’s model. You can’t modify the third-party code and extending it might be
impossible, so a signal provides a trigger for a callback.

TIP: Aymeric Augustin Thoughts on Signals

Django core developer Aymeric Augustin says: “I advise not to use signals as soon as a regular
function call will do. Signals obfuscate control flow through inversion of control. They make
it difficult to discover what code will actually run.

Use a signal only if the piece of code sending it has positively no way to determine what its
receivers will be.”

28.2 Signal Avoidance Techniques

Let’s go over some scenarios where you can simplify your code and remove some of the signals that
you don’t need.

28.2.1 Using Custom Model Manager Methods Instead of Signals

Let’s imagine that our site handles user-submitted ice cream-themed events, and each ice cream event
goes through an approval process. These events are set with a status of “Unreviewed” upon creation.

382

28.2: Signal Avoidance Techniques

The problem is that we want our site administrators to get an email for each event submission so they
know to review and post things quickly.

We could have done this with a signal, but unless we put in extra logic in the post_save() code,
even administrator created events would generate emails.

An easier way to handle this use case is to create a custom model manager method and use that in
your views. This way, if an event is created by an administrator, they don’t have to go through the
review process.

Since a code example is worth a thousand words, here is how we would create such a method:

Example 28.1: Manager Method Instead of a Signal

events/managers.py
from django.db import models

class EventManager(models.Manager):

def create_event(self, title, start, end, creator):
event = self.model(title=title,

start=start,
end=end,
creator=creator)

event.save()
event.notify_admins()
return event

Now that we have our custom manager with its custom manager method in place, let’s attach it to
our model (which comes with a notify_admins() method:

Example 28.2: Attaching the Manager

events/models.py
from django.conf import settings
from django.core.mail import mail_admins
from django.db import models

from model_utils.models import TimeStampedModel

383

Chapter 28: Signals: Use Cases and Avoidance Techniques

from .managers import EventManager

class Event(TimeStampedModel):

STATUS_UNREVIEWED, STATUS_REVIEWED = (0, 1)
STATUS_CHOICES = (

(STATUS_UNREVIEWED, "Unreviewed"),
(STATUS_REVIEWED, "Reviewed"),

)

title = models.CharField(max_length=100)
start = models.DateTimeField()
end = models.DateTimeField()
status = models.IntegerField(choices=STATUS_CHOICES,

default=STATUS_UNREVIEWED)
creator = models.ForeignKey(settings.AUTH_USER_MODEL)

objects = EventManager()

def notify_admins(self):
create the subject and message
subject = "{user} submitted a new event!".format(

user=self.creator.get_full_name())
message = """TITLE: {title}

START: {start}
END: {end}""".format(title=self.title, start=self.start,

end=self.end)

Send to the admins!
mail_admins(subject=subject,

message=message,
fail_silently=False)

Using this follows a similar pattern to using the User model. To generate an event, instead of calling
create(), we call a create_event() method.

384

28.2: Signal Avoidance Techniques

Example 28.3: Using the Custom Manager Method

>>> from django.contrib.auth import get_user_model
>>> from django.utils import timezone
>>> from events.models import Event
>>> user = get_user_model().objects.get(username="audreyr")
>>> now = timezone.now()
>>> event = Event.objects.create_event(
... title="International Ice Cream Tasting Competition",
... start=now,
... end=now,
... user=user
...)

28.2.2 Validate Your Model Elsewhere

If you’re using a pre_save signal to trigger input cleanup for a specific model, try writing a custom
validator for your field(s) instead.

If validating through a ModelForm, try overriding your model’s clean() method instead.

28.2.3 Override Your Model’s Save or Delete Method Instead

If you’re using pre_save and post_save signals to trigger logic that only applies to one particular
model, you might not need those signals. You can often simply move the signal logic into your model’s
save() method.

The same applies to overriding delete() instead of using pre_delete and post_delete signals.

385

Chapter 28: Signals: Use Cases and Avoidance Techniques

28.2.4 Use a Helper Function Instead of Signals

We find this approach useful under two conditions:

1 Refactoring: Once we realize that certain bits of code no longer need to be obfuscated as signals
and want to refactor, the question of ‘Where do we put the code that was in a signal?’ arises. If
it doesn’t belong in a model manager, custom validator, or overloaded model method, where
does it belong?

2 Architecture: Sometimes developers use signals because we feel the model has become too heavy-
weight and we need a place for code. While Fat Models are a nice approach, we admit it’s not
much fun to have to parse through a 500 or 2000 line chunk of code.

This solution, suggested to us by Django core developer Aymeric Augustin, is to place the code in
helper functions. If done right, this helps us write cleaner, more reusable code.

One interesting thing about this approach is to test the transition out of signals. Simply follow these
steps:

1 Write a test for the existing signal call.
2 Write a test for the business logic of the existing signal call as if it were in a separate function.
3 Write a helper function that duplicates the business logic of the signal, matching the assertions

of the test written in the second step.
4 Run the tests.
5 Call the helper function from the signal.
6 Run the tests again.
7 Remove the signal and call the helper function from the appropriate location.
8 Run the tests again.
9 Rinse and repeat until done.

This approach allows us to carefully remove the signal without breaking things. It also helps us identify
when an existing signal is required for a specific process.

28.3 Summary

Signals are a powerful tool in any Django developer’s toolbox. However, they are easy to misuse and
it’s good practice to delve into why and when to use them.

386

29 | What About Those Random
Utilities?

29.1 Create a Core App for Your Utilities

Sometimes we end up writing shared classes or little general-purpose utilities that are useful every-
where. These bits and pieces don’t belong in any particular app. We don’t just stick them into a
sort-of-related random app, because we have a hard time finding them when we need them. We also
don’t like placing them as “random” modules in the root of the project.

Our way of handling our utilities is to place them into a Django app called core that contains modules
which contains functions and objects for use across a project. (Other developers follow a similar
pattern and call this sort of app common, generic, util , or utils.)

For example, perhaps our project has both a custom model manager and a custom view mixin used
by several different apps. Our core app would therefore look like:

Example 29.1: Core App Layout Example

core/
__init__.py
managers.py # contains the custom model manager(s)
models.py
views.py # Contains the custom view mixin(s)

387

Chapter 29: What About Those Random Utilities?

TIP: Always Make the Core App a Real Django App

We always make the core directory a Django app. At some point we inevitably end up doing
at least one of the following:

ä Have non-abstract models in core.
ä Have admin auto-discovery working in core.
ä Have template tags and filters in core.

Now, if we want to import our custom model manager and/or view mixin , we import using the same
pattern of imports we use for everything else:

Example 29.2: Importing From the Core App

from core.managers import PublishedManager
from core.views import IceCreamMixin

29.2 Optimize Apps With Utility Modules
Synonymous with helpers, these are commonly called utils.py and sometimes helpers.py. They are
places where we place functions and classes which make common patterns shorter and easier. Let’s
go into why this is helpful.

29.2.1 Storing Code Used in Many Places

There are times when we have functions or classes used in several places that doesn’t quite fit in
models.py, forms.py, or any other specifically named module. When this occurs, we put this logic in
the utils.py module.

29.2.2 Trimming Models

This is best explained with an example.

We use the Flavor model frequently. We start attaching field after field, method after method,
property after property, classmethod after classmethod. One day we notice that our fat model has

388

29.3: Django’s Own Swiss Army Knife

reached brobdingnagian proprtions and is over a thousand lines of code. Debugging and maintenance
have become hard. What do we do?

We start looking for methods (or properties or classmethods) whose logic can be easily encapsulated
in functions stored in flavors/utils.py. The existing methods (or properties or classmethods) become
simple wrappers calling functions from flavors/utils.py. The result is a more distributed code base that
encourages code reuse as well as easier testing.

29.2.3 Easier Testing

A side effect of moving logic from more complex constructs into functions placed in isolated modules
is that it becomes easier to test. By isolation we mean it is usually imported within the app, rather
than doing in-app/in-project imports. This causes less business logic overhead, hence making it easier
to write tests for what logic is present in the module.

TIP: Make Utility Code Constructs as Focused as Possible

Be it a function or a class, avoid allowing multiple behaviors or conditions. Each utility func-
tion should do one and only one thing well. Don’t repeat yourself. Don’t create utility func-
tions that are duplicates of model behaviors.

29.3 Django’s Own Swiss Army Knife
The Swiss army knife is a multi-purpose tool that is compact and useful. Django has a number of
useful helper functions that don’t have a better home than the django.utils package. It’s tempting
to dig into the code in django.utils and start using things, but don’t. Most of those modules are
designed for internal use and their behavior or inclusion can change between Django versions.

Instead, read docs.djangoproject.com/en/1.11/ref/utils/ to see which modules in there
are stable.

TIP: Malcolm Tredinnick on Django’s Utils Package.

Django core developer Malcolm Tredinnick liked to think of django.utils as being in the
same theme as Batman’s utility belt: indispensable tools that are used everywhere internally.

389

https://docs.djangoproject.com/en/1.11/ref/utils/

Chapter 29: What About Those Random Utilities?

Figure 29.1: A utility belt for serious ice cream eaters.

There are some gems in there that have turned into best practices:

29.3.1 django.contrib.humanize

This is a set of localized template filters designed to give user presented data a more ‘human’ touch.
For example it includes a filter called ‘intcomma’ that converts integers to strings containing commas
(or periods depending on locale) every three digits.

While django.contrib.humanize’s filters are useful for making template output more attractive,
we can also import each filter individually as a function. This is quite handy when processing any sort
of text, especially when used in conjunction with REST APIs.

29.3.2 django.utils.decorators.method_decorator(decorator)

Django has some really great function decorators. Many of us have written decorators for Django
projects, especially when we’re working with Function-Based Views. However, there comes a time
when we discover that our favorite function decorator would also make sense as a method decorator.
Fortunately, Django provides the method_decorator

29.3.3 django.utils.decorators.decorator_from_middleware(
middleware)

Middleware is a wonderful tool, but is global in nature. This can generate extra queries or other
complications. Fortunately, we can isolate the use of middleware on a per-view basis by using this

390

29.3: Django’s Own Swiss Army Knife

view decorator.

Also see the related decorator_from_middleware_with_args decorator.

29.3.4 django.utils.encoding.force_text(value)

This forces Django to take anything and turn it into a plain str representation on Python 3 and
unicode on Python 2. It avoids the display of a django.utils.functional.__proxy__ object.
For more details, see Appendix D.

29.3.5 django.utils.functional.cached_property

Reinout van Rees educated us about this incredibly useful method decorator introduced in Django
1.5. What it does is cache in memory the result of a method with a single self argument as a property.
This has wonderful implications in regards to performance optimization of a project. We use it in
every project, enjoying how it allows us to cache the results of expensive computations trivially.

For a description on how to use the cached_property decorator, the official Django documentation
on the subject is excellent: docs.djangoproject.com/en/1.11/ref/utils/#django.utils.
functional.cached_property

In addition to the potential performance benefits, we’ve used this decorator to make sure that values
fetched by methods remain static over the lifetime of their object. This has proven very useful when
dealing with third-party APIs or dealing with database transactions.

WARNING: Careful Using cached_property Outside of Django

It is tempting to copy/paste the source code for cached_property for use outside of Django.
However, when used outside a web framework, we discovered the code for this function has
problems in multithreaded environments. Therefore, if coding outside of Django, you might
want to take a look at the third-party cached_property library:

ä github.com/pydanny/cached-property
ä pydanny.com/cached-property.html

391

https://docs.djangoproject.com/en/1.11/ref/utils/#django.utils.functional.cached_property
https://docs.djangoproject.com/en/1.11/ref/utils/#django.utils.functional.cached_property
https://github.com/pydanny/cached-property
http://www.pydanny.com/cached-property.html

Chapter 29: What About Those Random Utilities?

29.3.6 django.utils.html.format_html(format_str,
args, **kwargs)

This is similar to Python’s str.format() method, except designed for building up HTML frag-
ments. All args and kwargs are escaped before being passed to str.format() which then combines
the elements.

Reference: docs.djangoproject.com/en/1.11/ref/utils/#django.utils.html.
format_html

29.3.7 django.utils.html.strip_tags(value)

When we need to accept content from users and have to strip out anything that could be HTML,
this function removes those tags for we while keeping all the existing text between tags.

WARNING: Security Advisory on strip_tags Safety

When using the strip_tags function, or the striptags template tage, make absolutely
certain that the outputted content is not marked as safe. This especially applies if you have
disabled automatic escaping in your templates. Reference:
djangoproject.com/weblog/2014/mar/22/strip-tags-advisory/

29.3.8 django.utils.six

Six is a Python 2 and 3 compatibility library by Benjamin Peterson. It’s bundled directly into Django
(hence its inclusion in Django’s utils library), but we can also find it as an independent package for
other projects.

ä Six on PyPI: pypi.python.org/pypi/six
ä Six documentation: pythonhosted.org/six
ä Six repo on GitHub: github.com/benjaminp/six
ä Six in Django: github.com/django/django/blob/master/django/utils/six.py

392

https://docs.djangoproject.com/en/1.11/ref/utils/#django.utils.html.format_html
https://docs.djangoproject.com/en/1.11/ref/utils/#django.utils.html.format_html
https://djangoproject.com/weblog/2014/mar/22/strip-tags-advisory/
https://pypi.python.org/pypi/six
http://pythonhosted.org/six/
https://github.com/benjaminp/six
https://github.com/django/django/blob/master/django/utils/six.py

29.3: Django’s Own Swiss Army Knife

Figure 29.2: Six smooths over the differences between 2 and 3.

29.3.9 django.utils.text.slugify(value)

We recommend that whatever you do, don’t write your own version of the slugify() function, as
any inconsistency from what Django does with this function will cause subtle yet nasty problems in
our data. Instead, we use the same function that Django uses and slugify() consistently.

It is possible to use django.templates.defaultfilters.slugify() in our Python code, as
this calls the function described here. Nevertheless, we like to use the function directly from Django’s
utils directory, as it is a more appropriate import path.

However we decide to import this function, we try to keep it consistent across a project as there is a
use case for when it has to be replaced, as described in the next subsection.

393

Chapter 29: What About Those Random Utilities?

29.3.10 Slugification and Languages Besides English

Tomek Paczkowski points out that Django’s built-in slugify() function can cause problems with
localization:

Example 29.3: Slugification That Converts to the English Alphabet

>>> from django.utils.text import slugify
>>> slugify('straße') # German
'strae'

Fortunately, you can use the allow_unicode flag to overcome this issue:

Example 29.4: Slugification That Preserves Original Characters

>>> slugify('straße', allow_unicode=True) # Again with German
'straße'

PACKAGE TIP: awesome-slugify

If you want even more control over slugification you can’t do wrong with the awesome-slugify
package. It provides a greater control over the slugification process, allowing the following
benefits:

ä Customizing of seperators
ä Detailed control of the case of the outputting string
ä Translation mappings
ä Is Django-independent, which is useful for microservices
ä Lots more!

References:
ä github.com/dimka665/awesome-slugify
ä pydanny.com/awesome-slugify-human-readable-url-slugs-from-any-string.

html

394

https://github.com/dimka665/awesome-slugify
https://www.pydanny.com/awesome-slugify-human-readable-url-slugs-from-any-string.html
https://www.pydanny.com/awesome-slugify-human-readable-url-slugs-from-any-string.html

29.4: Exceptions

29.3.11 django.utils.timezone

It’s good practice for us to have time zone support enabled. Chances are that our users live in more
than one time zone.

When we use Django’s time zone support, date and time information is stored in the database uni-
formly in UTC format and converted to local time zones as needed.

29.3.12 django.utils.translation

Much of the non-English speaking world appreciates use of this tool, as it provides Django’s i18n
support. See Appendix D: Internationalization and Localization for a more in-depth reference.

29.4 Exceptions

Django comes with a lot of exceptions. Most of them are used internally, but a few of them stand
out because the way they interact with Django can be leveraged in fun and creative ways. These, and
other built-in Django exceptions, are documented at docs.djangoproject.com/en/dev/ref/
exceptions.

29.4.1 django.core.exceptions.ImproperlyConfigured

The purpose of this module is to inform anyone attempting to run Django that there is a configuration
issue. It serves as the single Django code component considered acceptable to import into Django
settings modules. We discuss it in both Chapter 5: Settings and Requirements Files and Appendix
E: : Settings Alternatives.

29.4.2 django.core.exceptions.ObjectDoesNotExist

This is the base Exception from which all DoesNotExist exceptions inherit from. We’ve found
this is a really nice tool for working with utility functions that fetch generic model instances and do
something with them. Here is a simple example:

395

https://docs.djangoproject.com/en/dev/ref/exceptions
https://docs.djangoproject.com/en/dev/ref/exceptions

Chapter 29: What About Those Random Utilities?

Example 29.5: Example Generic Load Function

core/utils.py
from django.core.exceptions import ObjectDoesNotExist

class BorkedObject:
loaded = False

def generic_load_tool(model, pk):
try:

instance = model.objects.get(pk=pk)
except ObjectDoesNotExist:

return BorkedObject()
instance.loaded = True
return instance

Also using this exception, we can create our own variant of Django’s
django.shortcuts.get_object_or_404 function, perhaps raising a HTTP 403 excep-
tion instead of a 404:

Example 29.6: get_object_or_403

core/utils.py
from django.core.exceptions import MultipleObjectsReturned
from django.core.exceptions import ObjectDoesNotExist
from django.core.exceptions import PermissionDenied

def get_object_or_403(model, **kwargs):
try:

return model.objects.get(**kwargs)
except ObjectDoesNotExist:

raise PermissionDenied
except MultipleObjectsReturned:

raise PermissionDenied

396

29.4: Exceptions

29.4.3 django.core.exceptions.PermissionDenied

This exception is used when users, authenticated or not, attempt to get responses from
places they are not meant to be. Raising it in a view will trigger the view to return a
django.http.HttpResponseForbidden.

This exception can prove useful to use in functions that are touching the sensitive data and compo-
nents of a high-security project. It means that if something bad happens, instead of just returning a
500 exception, which may rightly alarm users, we simply provide a “Permission Denied” screen.

Example 29.7: PermissionDenied in Action

stores/calc.py

def finance_data_adjudication(store, sales, issues):

if store.something_not_right:
msg = 'Something is not right. Please contact the support team.'
raise PermissionDenied(msg)

Continue on to perform other logic.

In this case, if this function were called by a view and something was ‘not right,’ then the Permis-
sionDenied exception would force the view to display the project’s 403 error page. Speaking of 403
error pages, we can set this to any view we want. In the root URLConf of a project, just add:

Example 29.8: Specifying a Custom Permission Denied View

urls.py

This demonstrates the use of a custom permission denied view. The default
view is django.views.defaults.permission_denied
handler403 = 'core.views.permission_denied_view'

As always, with exception-handling views, because they handle all HTTP methods equally, we prefer
to use function-based views.

397

Chapter 29: What About Those Random Utilities?

29.5 Serializers and Deserializers
Whether it’s for creating data files or generating one-off simple REST APIs, Django has some great
tools for working with serialization and deserialization of data of JSON, Python, YAML and XML
data. They include the capability to turn model instances into serialized data and then return it back
to model instances.

Here is how we serialize data:

Example 29.9: serializer_example.py

serializer_example.py
from django.core.serializers import get_serializer

from favorites.models import Favorite

Get and instantiate the serializer class
The 'json' can be replaced with 'python' or 'xml'.
If you have pyyaml installed, you can replace it with
'pyyaml'
JSONSerializer = get_serializer('json')
serializer = JSONSerializer()

favs = Favorite.objects.filter()[:5]

Serialize model data
serialized_data = serializer.serialize(favs)

save the serialized data for use in the next example
with open('data.json', 'w') as f:

f.write(serialized_data)

Here is how we deserialize data:

Example 29.10: deserializer_example.py

deserializer_example.py
from django.core.serializers import get_serializer

398

29.5: Serializers and Deserializers

from favorites.models import Favorite

Get and instantiate the serializer class
The 'json' can be replaced with 'python' or 'xml'.
If you have pyyaml installed, you can replace it with
'pyyaml'
JSONSerializer = get_serializer('json')
serializer = JSONSerializer()

open the serialized data file
with open('data.txt') as f:

serialized_data = f.read()

deserialize model data into a generator object
we'll call 'python data'
python_data = serializer.deserialize(serialized_data)

iterate through the python_data
for element in python_data:

Prints 'django.core.serializers.base.DeserializedObject'
print(type(element))

Elements have an 'object' that are literally instantiated
model instances (in this case, favorites.models.Favorite)
print(

element.object.pk,
element.object.created

)

Django already provides a command-line tool for using these serializers and deserializers: the dump-
data and loaddata management commands. While we can use them, they don’t grant us the same
amount of control that direct code access to the serializers provides.

This brings us to something that we always need to keep in mind when using Django’s built-in
serializers and deserializers: they can cause problems. From painful experience, we know that they
don’t handle complex data structures well.

Consider these guidelines that we follow in our projects:

399

Chapter 29: What About Those Random Utilities?

ä Serialize data at the simplest level.
ä Any database schema change may invalidate the serialized data.
ä Don’t just import serialized data. Consider using Django’s form libraries or Django Rest Frame-

work serializers to validate incoming data before saving to the database.

Let’s go over some of the features provided by Django when working with specific formats:

29.5.1 django.core.serializers.json.DjangoJSONEncoder

Out of the box, Python’s built-in JSON module can’t handle encoding of date/time or decimal types.
Anyone who has done Django for a while has run into this problem. Fortunately for all of us, Django
provides a very useful JSONEncoder class. See the code example below:

Example 29.11: DjangoJSONEncoder

json_encoding_example.py
import json

from django.core.serializers.json import DjangoJSONEncoder
from django.utils import timezone

data = {'date': timezone.now()}

If you don't add the DjangoJSONEncoder class then
the json library will throw a TypeError.
json_data = json.dumps(data, cls=DjangoJSONEncoder)

print(json_data)

29.5.2 django.core.serializers.pyyaml

While powered by the third-party library, pyyaml, Django’s YAML serializer tools handles the time
conversion from Python-to-YAML that pyyaml doesn’t.

400

29.5: Serializers and Deserializers

For deserialization, it also uses the yaml.safe_load() function under the hood, which means that
we don’t have to worry about code injection. See Section 26.10.3: Third-Party Libraries That Can
Execute Code for more details.

29.5.3 django.core.serializers.xml_serializer

By default Django’s XML serializer uses Python’s built-in XML handlers. It also incorporates ele-
ments of Christian Heimes’ defusedxml library, protecting usage of it from XML bomb attacks. For
more information, please read Section 26.21: Guard Against XML Bombing With defusedxml.

29.5.4 rest_framework.serializers

There are times when Django’s built-in serializers just don’t do enough. Here are common examples
of their limitations:

ä They only serialize data stored in fields. You can’t include data from methods or properties.
ä You can’t constrain the fields serialized. This can be a security or performance consideration.

When we run into these obstacles, it’s a good idea to consider switching to Django Rest Framework’s
Serializers toolset. They allow for a lot more customization of both the serialization and deserializa-
tion process. While that power comes with complexity, we’ve found it’s worth it to use this tool rather
than constructing a manual process from scratch.

References:

ä django-rest-framework.org/api-guide/serializers/
ä Serializing Objects:

django-rest-framework.org/api-guide/serializers/#serializing-objects
ä Deserializing Objects:

django-rest-framework.org/api-guide/serializers/
#deserializing-objects

401

http://www.django-rest-framework.org/api-guide/serializers/
http://www.django-rest-framework.org/api-guide/serializers/#serializing-objects
http://www.django-rest-framework.org/api-guide/serializers/#serializing-objects
http://www.django-rest-framework.org/api-guide/serializers/#serializing-objects

Chapter 29: What About Those Random Utilities?

29.6 Summary

We follow the practice of putting often reused files into utility packages. We enjoy being able to
remember where we placed our often reused code. Projects that contain a mix of core, common, util,
and utils directories are just that much harder to navigate.

Django’s own ‘utility belt’ includes a plethora of useful tools, including useful functions, exceptions,
and serializers. Leveraging them is on of the ways experienced Django developers accelerate devel-
opment and avoid some of the tangles that can be caused by some of the very features of Django.

Now that we’ve covered tools to make things work, in the next chapter we’ll begin to cover sharing
a project with the world.

402

30 | Deployment: Platforms as a
Service

If you’re working on a small side project or are a founder of a small startup, you’ll definitely save time
by using a Platform as a Service (PaaS) instead of setting up your own servers. Even large projects
can benefit from the advantages of using them.

First, a public service message:

TIP: Never Get Locked Into a Platform as a Service
There are amazing services which will host your code, databases, media assets, and also pro-
vide a lot of wonderful accessories services. These services, however, can go through changes
that can destroy your project. These changes include crippling price increases, performance
degradation, unacceptable terms of service changes, untenable service license agreements,
sudden decreases in availability, or can simply go out of business.

This means that it’s in your best interest to do your best to avoid being forced into architectural
decisions based on the needs of your hosting provider. Be ready to be able to move from one
provider to another without major restructuring of your project.

We try to make sure that our projects are not intrinsically tied to any hosting solution, mean-
ing that we are not locked into a single vendor’s pricing, policies, and functionality.

As a WSGI-compliant framework, Django is supported on many PaaS providers. The most
commonly-used Django-friendly PaaS companies as of this writing are:

403

Chapter 30: Deployment: Platforms as a Service

ä Elastic Beanstalk (aws.amazon.com/elasticbeanstalk/) is an up-and-coming PaaS in
the Python world. It comes with built-in autoscaling and tight integration with other AWS
tools.

ä Heroku (heroku.com) is a popular option in the Python community well known for its doc-
umentation and add-ons system.

ä PythonAnywhere (pythonanywhere.com) is a Python-powered PaaS that is incredibly
beginner-friendly.

Why do we like these services? We’ve evaluated them carefully for our needs. Your needs may be
different, so read on about how to choose a PaaS.

30.1 Evaluating a PaaS

When a PaaS is chosen to host a project, that project forces architecture concessions in order for the
application to work in their system. Therefore, even if we heed our warning at the top of this chapter,
extracting ourselves from the PaaS takes effort and time.

Therefore, when a PaaS is chosen for a project, or while we are using a PaaS, we constantly consider
the following:

30.1.1 Compliance

Before you begin evaluating any other aspect, it’s critical to check to see if the PaaS meets local or
federal mandates. Examples:

ä Many medical-based projects in the United States require meeting HIPAA standards. If the
PaaS doesn’t meet HIPAA standards, and the project contains user medical data and a project
is deployed there, everyone involved is at risk for civil and criminal prosecution under Title II of
HIPAA. See en.wikipedia.org/wiki/HIPAA#Security_Rule

ä Most e-commerce projects require at least SSL, and anything dealing with credit cards
needs to adhere to PCI. While services like Stripe often make this moot, many projects
require internal integration of credit card processing. Make sure the PaaS complies with
the PCI specification. See en.wikipedia.org/wiki/Payment_Card_Industry_Data_
Security_Standard.

404

https://aws.amazon.com/elasticbeanstalk/
http://heroku.com
https://www.pythonanywhere.com
https://en.wikipedia.org/wiki/HIPAA#Security_Rule
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

30.1: Evaluating a PaaS

ä For the European Union, if you are processing any identifiable data you’ll need to follow EU
Directive 95/46/EC on the protection of personal data into account. Amongst other things,
this places restrictions on exporting such data outside the European Union, especially if your
PaaS doesn’t participate in the US-EU Safe Harbor. If in doubt, consult legal counsel.

30.1.2 Pricing

Most PaaS options provide a free tier for beginner and toy projects, and Heroku and PythonAny-
where are good examples of this trend. We’ve gotten a lot of mileage out of this, and it’s been great.
You can even add extra services for a reasonable monthly fee. However, if one loses track of projects
and services, then this ‘reasonable fee’ can quickly add up to a hefty monthly service bill. Therefore,
it’s a good idea to keep up on service costs and your monthly provider bills.

At the other end of things, if high traffic is anticipated, it’s a good idea to see how much a site will cost
with all the settings dialed up. For example, Heroku maxed out on dynos and enterprise PostgreSQL
will cost over $40,000 a month. While the chances of a project needing this much horsepower is slim,
the fact that Heroku offers this means that it can and does happen.

While all of this is going on, keep in mind that PaaS companies are under no legal or moral obligation
to keep their prices or pricing methods static. In fact, developers we know of have built architecture
for projects to take advantage of how billing is done by a PaaS, only to face crippling bills when the
said PaaS changes its terms. To make matters worse, because they had tied their internal infrastructure
tightly to the billing structure of the PaaS, they lacked the option of quickly moving off.

30.1.3 Uptime

For PaaS this is a very tricky issue. They would really like to provide 99.999999% uptime (sometimes
referred to as the ‘nines’), but even with the best engineering, it’s not entirely under their control:

ä Most of them, including Heroku and PythonAnywhere, rent space from vendors such as AWS
and Rackspace. If those services go down, then they go down.

ä All of them are reliant on the physical infrastructure of the internet. Natural disasters or indus-
trial accidents can bring everything to a halt.

405

Chapter 30: Deployment: Platforms as a Service

Even if we ignore these factors, providing a PaaS infrastructure is a hard business. It’s more than
standing up servers or Linux containers, it’s maintaining a billing system, customer-facing tools,
customer contact systems, and a host of other systems. This volume of work, challenging in its own
right, can conflict with the business of making sure our projects work and scale as we need them.

That said, because it is integral to their business to provide consistent service, they aim for as high
a stability number as they can. In general most PaaS companies have pretty good uptime, slowly
increasing over time as they make continual system improvements. Furthermore, the good companies
provide status pages and publish formal reports about any outages or issues. Therefore, we don’t bother
with reading outage reports that are over a few months old, as they are not indicative of the current
engineering status of a company.

However, if there are recent, multiple reports of outages, or a recent outage of an unacceptable dura-
tion, we consider other PaaS options.

WARNING: If You Need Very High Uptime

It’s worth mentioning that for projects that are life-critical, i.e. people could die if they lack
immediate access, then a PaaS is not the right solution. Instead, please use an infrastructure
service that provides a formal Service License Agreement.

30.1.4 Staffing

Yes, it’s important to know about the staffing level of a PaaS:

ä If a PaaS lacks staff, then they can’t provide 24x7 engineering support, especially across holidays.
No matter how enthusiastic a small shop is, and the deals they offer, they can’t fix problems
when their engineer is sleeping.

ä Do they have the staff to answer emails and problem tickets? If their engineering staff is man-
aging all of these requests, when do they have time to maintain the system?

We recommend testing out their level of support and responsiveness by filing a support ticket early
on. Use this opportunity to ask a thoughtful question about something that’s unclear in their docu-
mentation, or get needed help from their staff.

406

30.1: Evaluating a PaaS

30.1.5 Scaling

How easy is it to scale up? If an e-commerce site is mentioned on CNN or on national television,
can the site be dialed up quickly?

On the flip side, how easy it is to scale back down? Sometimes a traffic spike is followed by slow
periods and it should be easy to dial things back.

Finally, can we automate this process?

For reference, we like how easy Elastic Beanstalk makes it to handle autoscaling.

30.1.6 HTTP Server

Most Python-friendly PaaS use Nginx or their own similar systems to serve data, and all of them can
handle WSGI. What you have to look out for is that some PaaS only support WSGI, which makes
it impossible to use Django Channels.

For example, at the time of this book’s publication, Elastic Beanstalk uses Apache and mod_wsgi.
This makes it impossible to use it with Django Channels. If Django Channels is a must for you, then
don’t use Elastic Beanstalk.

30.1.7 Documentation

In Chapter 23: Documentation: Be Obsessed we make it pretty clear that we really care about docu-
mentation. While we readily admit to exploiting every channel we know to ask questions (see Chap-
ter 34: Where and How to Ask Django Questions), we want the services that we use to have good,
maintained documentation. It’s important to have this as readily-found reference material, and it
demonstrates that the PaaS in question is serious about what they do.

TIP: Why We Don’t Document How Each PaaS Works

Every PaaS changes their API and documentation over time, some more rapidly than others.
Since the Django PaaS space is still evolving rapidly, specific PaaS commands and instruc-

407

Chapter 30: Deployment: Platforms as a Service

tions are not listed here. We ask the reader to follow the documentation listed on the PaaS
provider site.

30.1.8 Performance Degradation

Sometimes a project that has been running for a while under consistent load starts to slow down.
When this occurs, it could be caused by one or more problems. We use the following workflow:

1 Check the project’s commit history for changes could have caused a performance degradation.
There may even be a major bug hiding.

2 Examine the project for undiscovered performance bottlenecks. See Chapter 24: Finding and
Reducing Bottlenecks.

3 Ask the PaaS support team to look into the problem. They might have a quick answer for you.
4 The physical hardware that the project is running on might have a problem. The ‘cloud’ is

actually hardware and hardware breaks or gets old. Start up a new project instance, port the
data, and update the DNS records to match. Sometimes that resolves the issue.

5 Ask the PaaS support team for further assistance. It doesn’t hurt to ask for help, especially as
a paying customer.

If none of this works, consider running the project on another PaaS or your own servers. If it runs
well in another environment, it might be time to move it off.

TIP: Free/Beginner Tiers Will Run Slowly

The free tier of any PaaS is not going to run fast or handle any significant load. That takes
resources that cost the PaaS money. Even with the hefty angel or VC funding in the tech
industry, it’s just not going to happen. If the PaaS provides a free or inexpensive tier that
handles very high loads, see the next section on ‘Company Stability.’

30.1.9 Geography

Consider the location of primary usage compared to the location of the PaaS. For example, if the
majority of users are in China, then a PaaS that only serves from US-based data centers isn’t a good

408

30.2: Best Practices for Deploying to PaaS

option. Latency issues can cause clients and users to become quickly unhappy with a project.

30.1.10 Company Stability

A PaaS is an enormous undertaking. When done well, it requires a lot of overhead. Engineers, servers,
customer support, account, and marketing are all expensive business. Since the advent of PaaS so-
lutions, we’ve seen a number of them fail because of lack of sales, over expenditure of funds, and
sheer exhaustion by overworked staff. Fortunately, they’ve all provided a grace period during which
projects were given time to move off, but it’s not realistic to count on that.

Therefore, it behooves us to look at the pricing plans carefully. Once a PaaS is out of its beta or initial
launch period, if there isn’t a way to capture profitability, then using the PaaS is risky.

30.2 Best Practices for Deploying to PaaS

30.2.1 Aim for Identical Environments

The holy grail of deployment is identical environments between development and production. How-
ever, as soon as you decide to use a PaaS, this is no longer possible as the production system con-
figuration is beyond your control. Nevertheless, the closer your can keep things identical between
development and production the more maintainable your project will be.

To aid developers working with their systems, all PaaS provide some measure of specifics as to their
hosting environment. With the advent of Docker, some go as far as providing distributions that
closely mirror production. We cover this futher in Section 2.5: Optional: Identical Environments.

30.2.2 Maintain a Staging Instance

With automation often comes the ability to run staging instances of projects at a lower cost tier. This
is a great place to test production deployments, not to mention a place to demo feature changes.

409

Chapter 30: Deployment: Platforms as a Service

30.2.3 Automate All the Things!

When it comes time to push an update to a production instance, it’s never a good idea to do all the
steps manually. It’s simply too easy to make a mistake. Our solution is to use simple automation using
one of the following tools:

ä Makefiles are useful for simple projects. Their limited capability means we won’t be tempted
to make things too fancy. As soon as you need more power, it’s time to use something else.
Something like Invoke as described in the next bullet.

ä Invoke is the direct descendant of the venerable Fabric library. It is similar to Fabric, but is
designed for running tasks locally rather than on a remote server. Tasks are defined in Python
code, which allows for a bit more complexity in task definitions (although it’s easy to take
things too far). It has full support for Python 3.3 and up.

30.2.4 Multiple Requirements Files in Multiple Environments

Most PaaS limit themselves to only reading the root requirements.txt file. While it can be good to be
constrained to identical environments everywhere, under some circumstances we just need different
versions of software in different places. For example, production might run Django 1.11.3, and we
want staging to run Django 1.11.5.

When this need arises, we fall back on our automation and the use of cascading pip files. For example,
let’s say we want to deploy with the packages described in staging.txt instead of requirements.txt. To
handle this, we might have a Makefile with this commands:

Example 30.1: Makefile for Multiple Requirement Deployments

Makefile
deploystaging:
^^Iecho -r requirements/staging.txt > requirements.txt

^^Igit commit -am "Requirements change for staging deployment"

^^Igit push heroku master # For heroku or other 'git push' deployments

^^Ieb deploy # For Elastic Beanstalk or other command deployments

^^Iecho -r requirements/production.txt > requirements.txt

^^Igit commit -am "Change back to production requirements"

410

30.3: Summary

30.2.5 Prepare for Disaster With Backups and Rollbacks

Even with all the precautions we take, sometimes deployments just blow up. Therefore, before any
change is pushed a live site, we make certain for a particular PaaS we know how to:

ä Restore databases and user-uploaded files from backups.
ä Roll back to a previous code push.

30.2.6 Keep External Backups

The great virtue of PaaS is that they abstract away many deployment and operational issues, allowing
us to focus on writing our project. With that comes the risk that the PaaS might encounter their own
problems. While most PaaS provide the capability to generate backups to their own systems, it’s a
good idea to periodically run backups to external services. This includes the databases and uploaded
user files.

Suggestions for storing the data include Dropbox, Crashplan, Amazon S3, and Rackspace Cloud
Files, but there are many more. Which service to choose should be based on architectural decisions
such as the location of the PaaS (For example, Elastic Beanstalk- and Heroku-based projects would
use Amazon services).

30.3 Summary

Platforms as a Service are a great way to expedite delivery of deployable projects. They allow for de-
velopers to quickly harness significant resources that are maintained by specialized operations teams.
On the other hand, they do come with a price tag and various limitations. Therefore, deciding to use
a PaaS should be based per the project and skill set at hand, not out of personal preference.

In addition, it’s a good idea to honor the practices we provide in this chapter, or to listen carefully to
peers to determine what they do to best utilize these services.

In the next chapter, we cover the nuts and bolts of deployment at a high level.

411

Chapter 30: Deployment: Platforms as a Service

412

31 | Deploying Django Projects

Deployment of Django projects is an in-depth topic that could fill an entire book on its own. Here,
we touch upon deployment at a high level.

31.1 Single-Server for Small Projects
Single-server is the quickest way to get a small Django project up onto a server. It’s also the cheapest
Django deployment option.

The obvious drawback is that your server will go down if your website URL gets featured on Hacker
News or any popular blog.

31.1.1 Should You Bother?

Typically we don’t bother with the single-server setup even for small projects, because using
cookiecutter-django with Elastic Beanstalk or even Heroku is less work and gives us peace-
of-mind in the event of traffic spikes.

However, we highly recommend that you try setting up a single-server Django deployment in these
situations:

ä If you’ve never done it before. It’s an extremely important learning experience. Doing it will
give you a deeper understanding of how Python web applications work.

ä If your Django project is more of a toy project or experiment. Websites with paying customers
can’t afford to risk downtime, but the risk of a temporary spike is bearable to non-paying side
projects.

413

Chapter 31: Deploying Django Projects

ä If you’re certain that one server is adequate for your site’s traffic. For example, a Django site
for your wedding guests will probably be fine on a single server.

31.1.2 Example: Quick Ubuntu + Gunicorn Setup

Here’s an example of how we could deploy a single-server Django project easily with the following
components:

ä An old computer or cheap cloud server
ä Ubuntu Server OS
ä PostgreSQL
ä Virtualenv
ä Gunicorn

You can either use a computer that you have lying around your house, or you can use a cheap cloud
server from a provider like DigitalOcean, Rackspace, or AWS.

Typicaly, we start out by installing the latest LTS version of Ubuntu Server onto a cloud server. Cloud
server providers often have readymade disk images that are installable with a click, making this trivial.
But doing this manually by downloading an installer like ubuntu.com/server works fine too.

We then install the Ubuntu packages needed. They can vary, but typically we end up installing at
least these:

For pip/virtualenv python-pip, python-virtualenv
For PostgreSQL postgresql, postgresql-contrib, libpq-dev, python-dev

Notice how Gunicorn and Django aren’t in that list. Whenever we can install a Python package
rather than an Ubuntu package, we go with the Python package. It’ll almost always be more recent.

Then we do all the server setup basics like updating packages and creating a user account for the
project.

At this point, it’s Django time. We clone the Django project repo into our user’s home directory and
create a virtualenv with the project’s Python package dependencies, including Gunicorn. We create
a PostgreSQL database for the Django project and run python manage.py migrate.

414

http://www.ubuntu.com/server

31.2: Multi-Server for Medium to Large Projects

Then we run the Django project in Gunicorn. As of this writing, this requires a simple 1-line com-
mand. See:
docs.djangoproject.com/en/1.11/howto/deployment/wsgi/gunicorn/

At this point, we see the Django site running when we go to the server’s IP address in a web browser.
Then we can configure the server hostname and point a domain name at that IP address.

Of course, this is just a quick overview that leaves out many important details. Once you have a
single-server setup working experimentally, you’ll want to go back and read Chapter 26: Security
Best Practices, and then secure your server and site.

You’ll also outgrow the single-server setup pretty quickly. At that point, you may get fancier with
your setup, e.g. adding nginx, Redis, and/or memcached, or setting up Gunicorn behind an nginx
proxy. Eventually, you’ll want to either sign up for a PaaS or move to a multi-server setup.

TIP: Look Up the Specifics Online

Our aim here is to give you a general idea and example of how the most minimal Django
deployment might work, rather than a detailed how-to guide.

Because commands and package names change quickly, and because this is not a tutorial
book, we have not provided links to any particular setup instructions. But you should be able
to find detailed instructions with a quick web search.

31.2 Multi-Server for Medium to Large Projects

Companies and growing startups who opt not to use a PaaS typically use a multi-server setup. Here
is what a basic one might look like:

415

https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/gunicorn/

Chapter 31: Deploying Django Projects

Figure 31.1: Example of a basic multi-server setup.

This is what you need at the most basic level:

ä Database server. Typically PostgreSQL in our projects when we have the choice, though
Eventbrite uses MySQL.

ä WSGI application server. Typically uWSGI or Gunicorn with Nginx, or Apache with
mod_wsgi.

Additionally, we may also want one or more of the following:

ä Static file server. If we want to do it ourselves, Nginx or Apache are fast at serving static files.
However, CDNs such as Amazon CloudFront are relatively inexpensive at the basic level.

ä Caching and/or asynchronous message queue server. This server might run Redis, Mem-
cached or Varnish.

ä Miscellaneous server. If our site performs any CPU-intensive tasks, or if tasks involve waiting
for an external service (e.g. the Twitter API) it can be convenient to offload them onto a server
separate from your WSGI app server.

By having specialized servers that each focus on one thing, they can be switched out, optimized, or
changed in quantity to serve a project’s needs.

416

31.2: Multi-Server for Medium to Large Projects

TIP: Using Redis for All Ephemeral Data

Redis has similar features to Memcached, but adds in the following:
ä Authentication, which Memcached doesn’t have out of the box.
ä State is saved, so if a server is restarted the data doesn’t go away.
ä Additional data types means it can be used as an asynchronous message queue, in

conjunction with tools like celery and rq.

Finally, we also need to be able to manage processes on each server. We recommend in descending
order of preference:

1 Supervisord
2 init scripts

Figure 31.2: Managing an ice cream replenishment process with Supervisord.

31.2.1 Advanced Multi-Server Setup

Here is an example of a much larger multi-server setup, complete with multiple servers of each type
and load balancing:

417

Chapter 31: Deploying Django Projects

Figure 31.3: Example of an advanced multi-server setup.

Load balancers can be hardware- or software-based. Commonly-used examples include:

ä Software-based: HAProxy, Varnish, Nginx
ä Hardware-based: Foundry, Juniper, DNS load balancer
ä Cloud-based: Amazon Elastic Load Balancer, Rackspace Cloud Load Balancer

418

31.3: WSGI Application Servers

TIP: Horizontal vs. Vertical Scaling

The above is an example of horizontal scaling, where more servers are added to handle load.
Before scaling horizontally, it’s good to scale vertically by upgrading your servers’ hardware
and maxing out the RAM on each server. Vertical scaling is relatively easy, since it’s just a
matter of throwing money at the problem.

TIP: Scaling Horizontally and Sessions

When scaling horizontally, make sure that users don’t need sticky sessions. For example, if
someone uploads a file to server 1, and then comes back thru the load balancer and lands on
server 2, that shouldn’t cause problems. Ways around this are storing uploaded media in a
common shared drive or more commonly on cloud-based systems such as Amazon S3.

31.3 WSGI Application Servers

Always deploy your Django projects with WSGI.

Django 1.8’s startproject command, sets up a wsgi.py file for us. This file contains the default
configuration for deploying our Django project to any WSGI server. For what it’s worth, the sample
project templates we recommend in Chapter 3: How to Lay Out Django Projects, also includes a
wsgi.py in its config/ directory.

The most commonly-used WSGI deployment setups are:

1 uWSGI with Nginx.
2 Gunicorn behind a Nginx proxy.
3 Apache with mod_wsgi.

419

Chapter 31: Deploying Django Projects

Here’s a quick summary comparing the three setups.

Setup Advantages Disadvantages

uWSGI with Nginx Lots of great features and options.
Extremely configurable. Said to
be better performing than the
other setup options.

Documentation still
growing. Not as time-tested
as Apache. Not as
beginner-friendly as the
others.

Gunicorn (sometimes with
Nginx)

Written in pure Python.
Supposedly this option has
slightly better memory usage, but
your mileage may vary.

Documentation is brief for
nginx (but growing). Not as
time-tested as Apache.

Apache with mod_wsgi Has been around for a long time
and is tried and tested. Very
stable. Works on Windows. Lots
of great documentation, to the
point of being kind of
overwhelming.

Unless run in Elastic
Beanstalk, doesn’t work
with environment variables.
Apache configuration can
get overly complex. Lots of
crazy conf files. Doesn’t
work with Channels.

Table 31.1: Gunicorn vs Apache vs uWSGI

There’s a lot of debate over which option is faster. Don’t trust benchmarks blindly, as many of them
are based on serving out tiny “Hello World” pages, which of course will have different performance
from real web applications.

Ultimately, though, all three choices are in use in various high volume Django sites around the world.
Configuration of any high volume production server can be very difficult, and if a site is busy enough
it’s worth investing time in learning one of these options very well.

The disadvantage of setting up our own web servers is the added overhead of extra sysadmin work.
It’s like making ice cream from scratch rather than just buying and eating it. Sometimes we just want
to buy ice cream so we can focus on the enjoyment of eating it.

420

31.4: Performance and Tuning: uWSGI and Gunicorn

31.4 Performance and Tuning: uWSGI and Gunicorn

uWSGI and Gunicorn are very popular amongst Django developers looking to squeeze every last bit
of performance out of their web servers. As of now, uWSGI is more configurable, but Gunicorn is
very configurable too, and arguably easier to configure.

Useful reading:

ä uwsgi-docs.readthedocs.org
ä docs.djangoproject.com/en/1.11/howto/deployment/wsgi/uwsgi/
ä justcramer.com/2013/06/27/serving-python-web-applications/ David

Cramer’s blog article arguing for using Nginx + UWSGI
ä gunicorn.org
ä cerebralmanifest.com/uwsgi-vs-gunicorn

31.5 Stability and Ease of Setup: Gunicorn and Apache

If you just want to get a Django site up and running fast, Gunicorn or Apache are your best bet.
Apache used to be the easiest option, but Gunicorn has come a long way. These days, with Gunicorn
and the default Django-provided wsgi.py file, the setup “just works” with zero or minimal debugging.

31.6 Common Apache Gotchas

WARNING: Do Not Use mod_python

The official Django documentation explicitly warns against using mod_python. Django’s
mod_python support was deprecated in Django 1.3. In Django 1.5, the mod_python request
handler was removed from Django.

Unfortunately, there are still many online resources that talk about configuring Django with
mod_python, causing many people confusion. Do not use mod_python. If using Apache, use
mod_wsgi instead.

421

http://uwsgi-docs.readthedocs.org
https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/uwsgi/
http://justcramer.com/2013/06/27/serving-python-web-applications/
http://gunicorn.org/
http://cerebralmanifest.com/uwsgi-vs-gunicorn/

Chapter 31: Deploying Django Projects

31.6.1 Apache and Environment Variables

Outside of Elastic Beanstalk, Apache doesn’t work with environment variables as described in Chap-
ter 5: Settings and Requirements Files. You’ll need to do something like load a local configuration
file for secret values into your settings module written in .ini, .cfg, .json, or .xml formats. Please read
Section 5.4: When You Can’t Use Environment Variables.

31.6.2 Apache and Virtualenv

Thanks to the hard work of Graham Dumpleton, getting Apache to work with virtualenv is a task
that’s pretty straightforward:

ä If using mod_wsgi 3.4 or newer and daemon mode, just add the following option to the WS-
GIDaemonProcess directive:
python-home=/some/path/to/root/of/virtualenv

ä If using embedded mode: WSGIPythonHome /some/path/to/root/of/virtualenv
ä If using mod_wsgi 3.3 or older and daemon mode, instead use the follow-

ing option to WSGIDaemonProcess where X.Y is the Python version: python-
path=/some/path/to/root/of/virtualenv/lib/pythonX.Y

Figure 31.4: How ice cream is deployed to cones and bowls.

422

31.7: Automated, Repeatable Deployments

31.7 Automated, Repeatable Deployments

When we configure our servers, we really shouldn’t be SSHing into our servers and typing in con-
figuration commands from memory. It’s too easy to forget what we’ve done. If servers configured
this way go down and need to be recreated in an emergency, it’s almost impossible to set them up
identically to what we had before.

When you have a lot of moving parts, all those pieces need to be re-creatable in the event of a problem.
Problems can and will occur. Relying on you or your system administrator’s memory of how he or
she set up everything a year ago is dangerous.

Instead, our server setup should be automated and documented in a way that makes it trivial to
recreate everything from scratch. In the reader’s case, you or your sysadmin should be able to set up
everything without having to log into a single server manually.

Specifically, this means:

ä We should be able to spin up and configure our entire server setup from scratch by running a
command, then sitting back and watching as everything happens automatically.

ä Even if it’s just a single command, it should be documented precisely. Imagine that someone
just got hired by our company. On their first day of work, without knowledge of our web
application or servers, he or she should be able to open our deployment.rst document and set
up our production servers.

ä Each time we run the command, there should be no dependency on pre-existing server state.
ä Any scripts should be idempotent, producing the same results no matter whether they are run

for the first time or the hundredth time.

In order to achieve all of the above, companies who don’t rely on a PaaS typically use one or more
infrastructure automation and management tools.

423

Chapter 31: Deploying Django Projects

Figure 31.5: Infrastructure automation can be very powerful.

WARNING: Caveat About the Rest of This Chapter

Our challenge in writing about automated deployments is twofold:
ä Django is a web development framework, not a deployment system.
ä The fact is that everything we wrote before has gotten stale. Web application deploy-

ment is a rapidly moving target.
Therefore, we’re going to cover best practices at a very high level.

31.7.1 A Rapidly Changing World

As mentioned above, the world of automated deployments is evolving quickly. How quickly? Let’s
look at configuration management from the perspective of Two Scoops of Django:

Date Milestone Status of Config Management Tools

Through 2011 ‘Ancient History’ Chef/Puppet preferred, CFEngine
predates the iPhone

424

31.7: Automated, Repeatable Deployments

2012 Work on Two Scoops commences Chef/Puppet preferred, Salt/Ansible still
very experimental

Jan 2013 Two Scoops of Django 1.5 Alpha Chef and Puppet still strong, Salt/Ansible
getting popular

Mar 2013 Two Scoops of Django 1.5 Final Docker open sourced.

Jan 2014 Two Scoops of Django 1.6 Salt/Ansible are stable and popular,
Chef/Puppet not so much, Docker still
experimental, surges forward

Mar 2015 Two Scoops of Django 1.8 Docker for identical environments, many
use it for deployments, Salt/Ansible going
strong, Chef/Puppet waning, Kubernetes
is on the radar

2016 Two Scoops of Django 1.8 Docker is mature. Docker Swarm,
Kubernetes and Mesos become popular
for managing containers, Chef/Puppet
declining rapidly

2017 Two Scoops of Django 1.11 Docker is mature. Docker Swarm and
Mesos strong, but not as popular as
Kubernetes. Salt/Ansible starting to
wane.

2019 Projected Django 2.2 Release Tools we use today may be relegated to
the same boring place as CFEngine

Table 31.2: Timeline of DevOps Tools

If anything, this timeline makes it clear that it’s a good idea for us not to tie our projects to a specific
configuration management tool. Unfortunately, as a project grows over time, moving from one of
these tools to another is a challenging process. Hence, we recommend choosing the tool of choice
very carefully.

425

Chapter 31: Deploying Django Projects

31.8 Which Automation Tool Should Be Used?
Because Python web application deployment is such a huge problem and pain point, the space has
been flooded with tools attempting to solve it. We’re hearing lots of big promises from every tool,
but at this point no particular tool has gone mainstream as The Easiest Way to Deploy, Self-Hosted.

31.8.1 Too Much Corporate Fluff

In the past few years we’ve seen an vibrant ecosystem of companies dedicated to the issue of automat-
ing deployments. There is a lot of money to be made.

The result is that there are many good tools being built, but there is also a lot of corporate fluff to
sift through. The creators of various tools each have their own corporate interests in mind, increasing
with the amount of funding that they obtain from investors. Because a lot of money is involved, they
each have their own marketing departments putting out a lot of convincing promises about what
their tools have to offer.

This isn’t a bad thing per se, but it can make it hard for us to determine what is the right tool for us.

31.8.2 Do Your Own Research

Great work is being done on great tools, but until these tools mature further, it’s hard to figure out
what’s actually great and what’s just a corporate promise. The only way to figure out what you like is
to try everything, and to say “No, thanks!” when the “Kool-Aid” is being offered.

31.9 Current Infrastructure Automation Tools
Among Django users, Docker, Kubernetes, Ansible, and SaltStack are the most popular tools for
automating deployments.

All of these automation tools tend to be complex to set up and use, with a steep learning curve. That’s
because they’re designed to manage not just one server, but thousands or more.

Here is what these tools can perform at large scale:

Remote execution:

426

31.9: Current Infrastructure Automation Tools

ä Installing packages via apt-get or other system package management tools on remote servers
ä Running commands on remote servers. For example, running the virtualenv command with

the –no-site-packages option on staging/production servers.
ä Starting services, and restarting them under certain conditions. For example, restarting an

Nginx web server when the site’s Nginx configuration file changes.
ä When a command is executed remotely, logging and returning the response from the server.

Configuration management:

ä Creating or updating conf files for services. For example, creating a pg_hba.conf file for a
freshly installed PostgreSQL instance.

ä Populating configuration values differently for different servers, based on variables like each
server’s particular IP address or OS-specific information.

Orchestration and targeting:

ä Controlling which servers a job is sent to, and when it should be sent.
ä Managing various components at a high level, creating pipelines to handle different workflows.
ä Pushing jobs to servers from a master server, in push mode.
ä Asking the master server what needs to occur, in pull mode.

Docker, Ansible, SaltStack are pretty similar and can perform all of the above. Let’s explore what
differentiates them:

Tool Pros Cons

Docker Fast deployments due to only applying
deltas. Containerization approach. YAML
config. Gigantic community. Open source.
Many tooling options.

Written in Go. Periodic API
changes.

SaltStack Primarily push mode. Blazing fast
transport via 0mq. YAML config. Lots of
Salt states and examples online. Large
community. Open source. Written in
Python.

Complexity can be overwhelming.

427

Chapter 31: Deploying Django Projects

Tool Pros Cons
Ansible Primarily push mode. Doesn’t require

daemons running on remote servers aside
from OpenSSH. Easy to learn. YAML
config. Open source. Written in Python.

Slower transport over SSH, but can
use Fireball Mode which sets up a
temporary 0mq daemon.

Kubernetes Up and coming. Supported by Google and
other big firms. Large Community. Open
source.

Pain points with implementation
details not mentioned in the
documentation. Understanding it
at a high level is challenging. Don’t
try using it until you have huge pain
points with your current
deployments.

Table 31.3: Infrastructure Automation Tool Comparison

TIP: What About Fabric and Invoke?
Fabric and its Python 3-friendly successor Invoke are tools that allow you to execute remote
commands. Smaller in scope than the above, it focuses on doing one thing well. It is fre-
quently used in conjunction with all of the above tools.

The trend now seems to be Docker, SaltStack, Ansible, and for those who want to challenge them-
selves, Kubernetes. They all use YAML for configuraton. Since the latter two are written in Python,
as a Python user it’s easy to dig into their source code. The reality of development is that whenever
you rely on a tool for long enough at large scale, you end up hitting bugs or interesting edge cases.
When this happens, you’ll be grateful that you can search the issue tracker, find others with the same
problem, and look at or even modify source code if you need to.

Keep in mind that things are evolving quickly. If you spend a lot of your time on devops, you need to
read blogs, follow other operations engineers on Twitter, attend infrastructure-related meetups, and
keep the pulse of new developments.

428

31.10: Other Resources

Figure 31.6: Hopefully, one day someone will invent a one-button machine that deploys Django
projects and makes ice cream.

31.10 Other Resources

The following are useful references for deploying projects.

ä highperformancedjango.com
ä fullstackpython.com/deployment.html

31.11 Summary

In this chapter we provided a very high level overview for deploying Django projects, including ba-
sic descriptions of single and multi-server setups. We also covered different the three most popular
WSGI application servers. Finally, we compared infrastructure automation and configuration man-
agement tools.

429

https://highperformancedjango.com
http://www.fullstackpython.com/deployment.html

Chapter 31: Deploying Django Projects

430

32 | Continuous Integration

Continuous integration (CI) is one of those things where, to explain the concept, we quote one of its
originators:

Continuous integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily — leading
to multiple integrations per day. Each integration is verified by an automated build (in-
cluding test) to detect integration errors as quickly as possible. Many teams find that
this approach leads to significantly reduced integration problems and allows a team to
develop cohesive software more rapidly.

— Martin Fowler, martinfowler.com/articles/continuousIntegration.
html

Here’s a typical development workflow when using continuous integration:

1 Developer writes code, runs local tests against it, then pushes the code to an instance of a code
repository on GitHub or GitLab. This should happen at least once per day.

2 The code repository informs an automation tool that a new commit is ready for integration.
3 Automation integrates the code into the project, building out the project. Any failures during

the build process and the commit are rejected.
4 Automation runs developer-authored tests against the new build. Any failures of the tests and

the commit is rejected.
5 The developer is notified of success or the details of failure. Based on the report, the developer

can mitigate the failures. If there are no failures, the developer celebrates and moves to the
next task.

431

https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html

Chapter 32: Continuous Integration

The advantages of this process are immediately clear. Thanks to continuous integration, we have the
following:

ä Earlier warnings of bugs and breakdowns.
ä Deployment-breaking issues in the code are more frequently caught.
ä Daily merges to the main trunk mean that no one person’s code dramatically changes the code

base.
ä Immediate positive and negative feedback is readily available about the project.
ä Automation tools that make this possible include a lot of metrics that make both developers

and managers happy.

32.1 Principles of Continuous Integration

Now that we’ve gone over why continuous integration is great, let’s go over some key components
when using this work process. This is our interpretation of principles explored Martin Fowler’s
discussion of the topic at martinfowler.com/articles/continuousIntegration.html#
PracticesOfContinuousIntegration

32.1.1 Write Lots of Tests!

One of the nice things about continuous integration is that it ties so well with everything we discuss
in chapter 22, our chapter on testing. Without comprehensive tests, continuous integration simply
lacks that killer punch. Sure, some people would argue that without tests, continuous integration
is useful for checking if a deployment would succeed and keeps everyone on the same branch, but
we think they are thinking from the perspective of statically-typed languages, where a successful
compilation already provides significant guarantees that the software at least starts.

32.1.2 Keeping the Build Fast

This is a tricky one. Your tests should arguably be running against the same database engine as your
production machine. However, under certain circumstances, tests can take a minute or ten. Once a
test suite takes that long, Continuous Integration stops being advantageous, and starts becoming a
burden.

432

https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration

32.2: Tools for Continuously Integrating Your Project

It’s at this point that developers (including the authors) begin considering using Sqlite3 in-memory
for tests. We’ll admit that we’ve done it ourselves. Unfortunately, because SQLite3’s behaves signifi-
cantly differently than PostgreSQL or MySQL, this can be a mistake. For example, field types are
not constrained the same way.

Here are a few tips for speeding up testing on large projects:

ä Avoid fixtures. This is yet another reason why we advise against their use.
ä Avoid TransactionTestCase except when absolutely necessary.
ä Avoid heavyweight setUp() methods.
ä Write small, focused tests that run at lightning speed, plus a few larger integration-style tests.
ä Learn how to optimize your database for testing. This is discussed in public forums like Stack

Overflow: stackoverflow.com/a/9407940/93270

32.2 Tools for Continuously Integrating Your Project

Use the following tools:

32.2.1 Tox

tox.readthedocs.io

This is a generic virtualenv management and testing command-line tool that allows us to test our
projects against multiple Python and Django versions with a single command at the shell. You can
also test against multiple database engines. It’s how the authors and oodles of developers around the
world check the compatibility of their code against different versions of Python.

If that isn’t enough to convince you:

ä Tox checks that packages install correctly with different Python versions and interpreters. Check
on Python 2.7, 3.5„ 3.6, PyPy and more all in one go!

ä Tox runs tests in each of the environments, configuring your test tool of choice.
ä Tox can act “as a frontend to continuous integration servers, reducing boilerplate and merging

CI and shell-based testing.”

433

http://stackoverflow.com/a/9407940/93270
http://tox.readthedocs.io/

Chapter 32: Continuous Integration

Figure 32.1: It’s easy to get carried away. Pictured are two absolutely unnecessary Tox environments,
just so we could get extra tastes.

32.2.2 Jenkins

jenkins-ci.org

Jenkins is a extensible continuous integration engine used in private and open source efforts around
the world. It is the standard for automating the components of Continuous Integration, with a huge
community and ecosystem around the tool. If an alternative to Jenkins is considered, it should be
done so after careful consideration.

32.3 Continuous Integration as a Service

Jenkins is an awesome tool, but sometimes you want to have someone else do the work in regards
to setting it up and serving it. There are various services that provide automation tools powered
by Jenkins or analogues. Some of these plug right into popular repo hosting sites like GitHub and
GitLab, and most provide free repos for open source projects. Some of our favorites include:

Service Python Versions Supported Link

Travis-CI 3.6, 3.5, 3.4, 3.3, 2.7, PyPy travis-ci.org

434

http://jenkins-ci.org/
https://travis-ci.org

32.4: Additional Resources

Service Python Versions Supported Link
AppVeyor (Windows) 3.6, 3.5, 3.4, 3.3, 2.7 appveyor.com

GitLab 3.6, 3.5, 3.4, 3.3, 2.7, PyPy gitlab.com

Table 32.1: Continuous Integration Services

32.3.1 Code Coverage as a Service

When we use continuous integration through one of the above CI services, what we don’t get back is
our code coverage. This causes problems with Section 22.7: The Game of Test Coverage. Fortunately
for us, services like codecov.io can generate coverage reports and the game can continue.

32.4 Additional Resources

ä en.wikipedia.org/wiki/Continuous_Integration
ä jenkins-ci.org
ä caktusgroup.com/blog/2010/03/08/django-and-hudson-ci-day-1/
ä ci.djangoproject.com
ä docs.python-guide.org/en/latest/scenarios/ci/

32.5 Summary

Continuous integration has become a standard for open source and private projects around the world.
While there is the cost of doing work up front, the benefits of safer deployments and more robust
projects easily outweigh the investment. Furthermore, there are enough resources and recipes that
setting up continuous integration is faster than ever.

One final note: even if tests are not written for a project, the practice of continual project building
makes continuous integration worth the setup.

435

http://www.appveyor.com/
https://gitlab.com
https://codecov.io
http://en.wikipedia.org/wiki/Continuous_Integration
http://jenkins-ci.org/
http://www.caktusgroup.com/blog/2010/03/08/django-and-hudson-ci-day-1/
http://ci.djangoproject.com/
http://docs.python-guide.org/en/latest/scenarios/ci/

Chapter 32: Continuous Integration

436

33 | The Art of Debugging

Whether they are on a brand new shiny project or a legacy Django system that’s a decade old, debug-
ging just happens. This chapter provides useful tips we can do to make the debugging process better
and easier.

33.1 Debugging in Development

These are common tricks and tools for debugging locally.

33.1.1 Use django-debug-toolbar

We’ve already mentioned this invaluable package repeatedly. It is arguably the easiest/fastest way to
display various debug information about the current request/response cycle. If you want to know how
fast your templates are rendering, what queries are being made, and what variables are being used,
this is the tool.

If you don’t have it set up and configured, stop everything else you are doing and add it to your project.

ä pypi.python.org/pypi/django-debug-toolbar
ä django-debug-toolbar.readthedocs.org

33.1.2 That Annoying CBV Error

If you are using CBVs this is an error you might see in the console or a view test:

437

https://pypi.python.org/pypi/django-debug-toolbar
http://django-debug-toolbar.readthedocs.org

Chapter 33: The Art of Debugging

Example 33.1: That Annoying CBV Error

twoscoopspress$ python discounts/manage.py runserver 8001
Starting development server at http://127.0.0.1:8001/
Quit the server with CONTROL-C.

Internal Server Error: /
Traceback (most recent call last):
File "/.envs/oc/lib/python.7/site-packages/django/core/handlers/base.py",

line 132, in get_response response = wrapped_callback(request,
*callback_args, **callback_kwargs)

File "/.envs/oc/lib/python.7/site-packages/django/utils/decorators.py",
line 145, in inner

return func(*args, **kwargs)
TypeError: __init__() takes exactly 1 argument (2 given)

This is a bug that djangonauts of all skill levels introduce into their codebases.

The first thing we do when we see TypeError: __init__() takes exactly 1 argument (2
given) in the console is we check our urls.py modules. Chances are somewhere we are defining
URLs where we forgot to add the as_view() method to our CBV routing.

Example of TypeError generating code:

Example 33.2: How to Throw a CBV TypeError

Forgetting the 'as_view()' method
url(r'^$', HomePageView, name='home'),

Example of fixed code:

Example 33.3: Correct CBV-calling Code in URLconf

url(r'^$', HomePageView.as_view(), name='home'),

438

33.1: Debugging in Development

33.1.3 Master the Python Debugger

Also known as just PDB, this in essence provides an enhanced REPL for interacting with source code
at breakpoints you specify. You can also step forward in the code to see how things change as the
code is executed. In regards to Django, there tends to be three places PDB is used:

1 Inside of test cases.
2 During an HTTP request against development breakpoints allow us to examine at our own

pace the process of evaluating the request.
3 To debug management commands.

WARNING: Before Deploying Check for PDB

Having PDB breakpoints in code that reaches production is disastrous as it will stop comple-
tion of user requests. Therefore, before deployment, search the code for ‘pdb’. You can also
rely on tools like flake8 to automatically check for existence of pdb (and other problems).

While PDB is useful, it becomes dramatically more powerful when extended by third-party packages
such as ipdb. What ipdb does is add the ipython interface to the PDB interface, turning a handy
tool into a something worth celebrating with ice cream.

References:

ä Python’s pdb documentation: docs.python.org/3/library/pdb.html
ä Using PDB with Django: /mike.tig.as/blog/2010/09/14/pdb/

Packages:

ä IPDB: pypi.python.org/pypi/ipdb
ä Using IPDB with pytest pypi.python.org/pypi/pytest-ipdb

33.1.4 Remember the Essentials for Form File Uploads

Unless we consistently work on file uploads, there are two easily forgotten items that will cause file
uploads to fail silently. This can be very frustrating, as code that fails silently is harder to debug.
Anyway, should there be any problems with file uploads, check the following:

439

https://docs.python.org/3/library/pdb.html
https://mike.tig.as/blog/2010/09/14/pdb/
https://pypi.python.org/pypi/ipdb
https://pypi.python.org/pypi/pytest-ipdb

Chapter 33: The Art of Debugging

1. Does the <form> tag include an encoding type?

Example 33.4: Proper Encoding for File Uploads

<form action="{% url 'stores:file_upload' store.pk %}"
method="post"
enctype="multipart/form-data">

2. Do the views handle request.FILES? In Function-Based Views?

Example 33.5: Function-Based Views and File Uploads

stores/views.py

from django.shortcuts import render, redirect, get_object_or_404
from django.views.generic import View

from stores.forms import UploadFileForm
from stores.models import Store

def upload_file(request, pk):
"""Simple FBV example"""
store = get_object_or_404(Store, pk=pk)
if request.method == 'POST':

Don't forget to add request.FILES!
form = UploadFileForm(request.POST, request.FILES)
if form.is_valid():

store.handle_uploaded_file(request.FILES['file'])
return redirect(store)

else:
form = UploadFileForm()

return render(request, 'upload.html', {'form': form, 'store': store})

Or what about Class-Based Views?

440

33.1: Debugging in Development

Example 33.6: Class-Based Views and File Uploads

stores/views.py
from django.shortcuts import render, redirect, get_object_or_404
from django.views.generic import View

from stores.forms import UploadFileForm
from stores.models import Store

class UploadFile(View):
"""Simple CBV example"""
def get_object(self):

return get_object_or_404(Store, pk=self.kwargs['pk'])

def post(self, request, *args, **kwargs):
store = self.get_object()
form = UploadFileForm(request.POST, request.FILES)
if form.is_valid():

store.handle_uploaded_file(request.FILES['file'])
return redirect(store)

return redirect('stores:file_upload', pk=pk)

def get(self, request, *args, **kwargs):
store = self.get_object()
form = UploadFileForm()
return render(

request,
'upload.html',
{'form': form, 'store': store})

TIP: Form-Based Class Based Generic Views
If a view inherits from one of the following then we don’t need to worry about re-
quest.FILES in your view code. Django handles most of the work involved.

ä django.views.generic.edit.FormMixin
ä django.views.generic.edit.FormView
ä django.views.generic.edit.CreateView
ä django.views.generic.edit.UpdateView

441

Chapter 33: The Art of Debugging

In these examples we don’t provide the code for the store.handle_uploaded_file() method.
We’re just demonstrating where we might place such a method call.

33.1.5 Lean on the Text Editor or IDE

When using a Text Editor like Sublime Text, Textmates, Vim, Emacs, or many other choices, find
Python and Django specific options or plugins and use them. Even if all they do is highlight code
and identify PEP-8 violations, that will help immensely.

When using an IDE (Integrated Development Environment) like PyCharm, PyDev, WingIDE,
Komodo, etc., then all of the IDE’s capabilities with Python and Django should be embraced and
used. That means use breakpoints and other advanced features. If we aren’t using the IDE to the
fullest, then why are we bothering with the effort of setting up the IDE?

Just make sure not to code to the IDE (or Text Editor). See subsection 1.7.2.

TIP: What Is The Best IDE or Text Editor?
“Whatever you prefer the most.”

Each of us is an individual. Whatever flavor of ice cream or source code editor we prefer the
most is our own unique expression. The only right answer is the one chosen for ourselves.

For what it is worth, as of 2015 Audrey prefers PyCharm and Atom and Daniel prefers
Atom.

33.2 Debugging Production Systems

There are some bugs that turn up in production that seem impossible to duplicate in development.
This happens when there are specific conditions that cannot be easily duplicated locally, including
load conditions, third-party APIs, and the size of data. Debugging these problems can be really
frustrating and time consuming. This section provides some tips on things that can be done to ease
the pain.

442

33.2: Debugging Production Systems

33.2.1 Read the Logs the Easy Way

The problem with diving into production log files is they can be so large they obfuscate the cause of
errors. Instead, use an error aggregator like Sentry to get a better view into what is going on in your
application.

33.2.2 Mirroring Production

This concept is to mirror production in an environment that can be accessed by the maintainers for
the sake of debugging. The growing popularity of modern deployment techniques (PaaS, devops,
identical environments) in theory makes this easier to do. Generally, when duplicating a production
environment, the following steps are taken:

1 Behind a firewall or some other protective measure, set up a remote server identical to the
production environment.

2 Copy production data over, taking special care to remove Personally Identifying Informa-
tion. By this, we mean anything that can be used to identify critical details of individual users,
including email addresses.

3 Provide shell access to those who need it.

Once these steps have been taken, try to replicate the reported bug. If the production mirror is
completely inaccessible to anyone outside the product (i.e. behind a firewall), you can even consider
changing the settings.DEBUG to True.

WARNING: Take Special Care With User Data

Ludvig Wadenstein notes that email addresses “might not seem like a big deal to keep around
on your dev server, but all it takes is one small mishap and you have sent emails to all of your
users.”
The same goes for things like OAuth tokens or API keys to third-party services like stripe.
com, Google accounts, or anything else involving authentication or access.

443

https://sentry.io
https://stripe.com
https://stripe.com

Chapter 33: The Art of Debugging

33.2.3 UserBasedExceptionMiddleware

What if you could provide superusers with access to the settings.DEBUG=True 500 error page
in production? That would make debugging much easier, right? The problem, of course, is that hav-
ing settings.DEBUG=True in production is serious security problem. However, thanks to Simon
Willison, co-creator of Django, there is a way to use this powerful debugging tool in production.

Example 33.7: UserBasedExceptionMiddleware

core/middleware.py
import sys

from django.views.debug import technical_500_response

class UserBasedExceptionMiddleware:
def process_exception(self, request, exception):

if request.user.is_superuser:
return technical_500_response(request, *sys.exc_info())

WARNING: UserBasedExceptionMiddleware is a Security Concern

An attacker that managed to gain access to a super user account might be able to get deeper
into the system based on the technical 500 response alone. Please keep this in mind when
implementing UserBasedExceptionMiddleware.

33.2.4 That Troublesome settings.ALLOWED_HOSTSError

I see that my old nemesis, settings.ALLOWED_HOSTS, has returned.

– Daniel Roy Greenfeld

The ALLOWED_HOSTS setting is a list of strings representing the host/domain names that a Django
site can serve. This is a wonderful security measure that defaults to ['localhost', '127.0.0.1',
'[::1]'] when settings.DEBUG is set to True. For most projects, this means that Django “just

444

33.3: Feature Flags

works” during development. However, as soon as settings.DEBUG is set to False, then AL-
LOWED_HOSTS defaults to an empty list. An empty ALLOWED_HOSTS will generate constant 500
errors. Checking the logs will show that SuspiciousOperation errors are being raised.

So what is happening?

1 settings.DEBUG is False
2 Django has nothing in ALLOWED_HOSTS hence can’t match the host/domains named against

what is being served. For example, trying to serve pages from example.com will generate an
error because ’example.com’ in [] is False .

3 Django thinks that something suspicious is going on, and raises a SuspiciousOperation
error.

Therefore, whenever a project is deployed for the first time and always returns a 500 error, check
settings.ALLOWED_HOSTS. As for knowing what to set, here is a starting example:

Example 33.8: Sample ALLOWED_HOSTS Configuration

settings.py
ALLOWED_HOSTS = [

'.djangopackages.org',
'.djangopackages.com',

]

Reference:

ä docs.djangoproject.com/en/1.11/ref/settings/#allowed-hosts

33.3 Feature Flags
An incredibly powerful technique, Feature Flags allow us to turn a project’s feature on or off via a
web-based interface.

TIP: Simon Willison’ Advice on Feature Flags

Django project co-creator Simon Willison says:
“Feature flags offer the best bang-for-your-buck of anything I’ve ever added to
a codebase.”

445

https://docs.djangoproject.com/en/1.11/ref/settings/#allowed-hosts

Chapter 33: The Art of Debugging

Let’s say we’re adding a new feature to our site, perhaps the ability to remotely control a robot that
serves ice cream. Works great on our laptops, fine on a QA server. Then we push the change to
production, thousands of users start to command the robot and it goes haywire. Utter disaster unfolds
as chocolate ice cream is served to vanilla ice cream aficionados. We quickly shut everything down
then spend days cleaning up the mess. However, the damage is done as ice cream eaters around the
world decide not to use our ice cream serving robot.

While a silly example, this kind of thing happens. Identical environments can help, but aren’t always
the answer. For example, it’s not uncommon for users to discover a broken element of a new feature
or bug fix that was missed in tests. Anyone who has pushed code to a production server experiences
this from time to time. Of course, you can ask people to play around on a QA or staging server, but
that isn’t the same as having them use the production site for real. What if we could allow a subset
of real users (i.e. ‘beta users’) defined through an admin-style interface to interact with a new feature
before turning it on for everyone?

This is what feature flags are all about!

If fact, production problems have been uncovered by having a smaller set of users more willing to try
a new, possibly buggy feature. This can include staff, friends of staff, and friendly users willing to try
out beta-level features before anyone else gets a chance.

33.3.1 Feature Flag Packages

The two most common feature flag packages for Django are django-gargoyle and django-waffle.
They both support a similar feature set, though Gargoyle offers more options for building custom
segments in exchange for more complexity. Either of them are very useful tools worth adding to
projects.

ä github.com/disqus/gargoyle
ä github.com/jsocol/django-waffle

33.3.2 Unit Testing Code Affected by Feature Flags

One gotcha with feature flags is running tests against code that are turned off by them. How do
we know that our new feature is tested when the flag to run them is turned off? The answer to this

446

https://github.com/disqus/gargoyle
https://github.com/jsocol/django-waffle

33.4: Summary

question is that our tests should cover both code paths, with feature flags on or off. To do this, we
need to familiarize ourselves with how to turn a feature flag on or off within the Django testing
framework:

ä gargoyle.readthedocs.io/en/latest/usage/index.html#testing-switches
ä http://waffle.readthedocs.io/en/latest/testing/automated.html#

testing-automated

33.4 Summary

Still can’t figure out the problem? No worries, in the next chapter we provide some great tips for
asking questions.

447

http://gargoyle.readthedocs.io/en/latest/usage/index.html#testing-switches
http://waffle.readthedocs.io/en/latest/testing/automated.html#testing-automated
http://waffle.readthedocs.io/en/latest/testing/automated.html#testing-automated

Chapter 33: The Art of Debugging

448

34 | Where and How to Ask
Django Questions

All developers get stuck at one point or another on something that’s impossible to figure out alone.
When you get stuck, don’t give up!

TIP: The Django Code of Conduct

This chapter provides instructions on how to interact with the Django community. To keep
things civil, the Django Software Foundation has instituted a formal code of conduct.

Django’s code of conduct applies to all spaces managed by the Django project and the Django
Software Foundation. That includes IRC and all the mailing lists under djangoproject.
com. Amongst other things, the Code of Conduct states participants should be welcoming,
considerate and respectful. Harassment and other exclusionary behaviour are not acceptable.
The Django Software Foundation Code of Conduct committee deals with possible violations
of the Code of Conduct.

The Django Code of Conduct: djangoproject.com/conduct/

If you believe someone is violating the Code of Conduct, whether it’s aimed at you or at
someone else, please report this to the committee. Even if you aren’t sure - they’d rather have
a few extra reports about events which turn out not to be a violation, than not know about
something that was a violation. The committee will keep your identity confidential.

Reporting Code of Conduct Violations: djangoproject.com/conduct/reporting/

449

https://djangoproject.com
https://djangoproject.com
https://www.djangoproject.com/conduct/
https://www.djangoproject.com/conduct/reporting/

Chapter 34: Where and How to Ask Django Questions

34.1 What to Do When You’re Stuck

Follow these steps to increase your chances of success:

1 Troubleshoot on your own as much as possible. For example, if you’re having issues with a
package that you just installed, make sure the package has been installed into your virtualenv
properly, and that your virtualenv is active.

2 Read through the documentation in detail, to make sure you didn’t miss something.
3 See if someone else has had the same issue. Check Google, mailing lists, and StackOverflow.
4 Can’t find anything? Now ask on StackOverflow. Construct a tiny example that illustrates the

problem. Be as descriptive as possible about your environment, the package version that you
installed, and the steps that you took.

5 Still don’t get an answer after a couple of days? Try asking on the django-users mailing list or
in IRC.

34.2 How to Ask Great Django Questions in IRC

IRC stands for Internet Relay Chat. There are channels like #python and #django on the Freenode
IRC network, where you can meet other developers and get help.

A warning to those who are new to IRC: sometimes when you ask a question in a busy IRC channel,
you get ignored. Sometimes you even get trolled by cranky developers. Don’t get discouraged or take
it personally!

The IRC #python and #django channels are run entirely by volunteers. You can and should help out
and answer questions there too, whenever you have a few free minutes.

1 When you ask something in IRC, be sure that you’ve already done your homework. Use it as
a last resort for when StackOverflow doesn’t suffice.

2 Paste a relevant code snippet and traceback into gist.github.com (or another pastebin).
3 Ask your question with as much detail and context as possible. Paste the link to your code snip-

pet/traceback. Be friendly and honest.
TIP: Use a Pastebin!
Don’t ever paste code longer than a few characters into IRC. Seriously, don’t do it.
You’ll annoy people. Use a pastebin!

450

https://gist.github.com/

34.3: Feed Your Brain

4 When others offer advice or help, thank them graciously and make them feel appreciated. A
little gratitude goes a long way. A lot of gratitude could make someone’s day. Think about how
you would feel if you were volunteering to help for free.

34.3 Feed Your Brain
Fill up your ice cream bowl with these tasty tidbits of Django and Python information. They’ll help
you keep up to date with the latest and greatest.

1 djangoproject.com/community Django Project’s Feeds
2 Subscribe to PyCoders Weekly and Python Weekly, two excellent methods for finding new

articles and packages on the Python programming language.

34.4 Insider Tip: Be Active in the Community
The biggest secret to getting help when you need it is simple: be an active participant in the Python
and Django communities.

The more you help others, the more you get to know people in the community. The more you put in,
the more you get back.

34.4.1 9 Easy Ways to Participate

1 Attend Python and Django user group meetings. Join all the local groups that you can find on
wiki.python.org/moin/LocalUserGroups. Search meetup.com for Python and join all
the groups near you.

2 Attend Python and Django conferences in your region and country. Learn from the experts.
Stay for the entire duration of the sprints and contribute to open source projects. You’ll meet
other developers and learn a lot.

3 Contribute to open source Django packages and to Django itself. Find issues and volunteer to
help with them. File issues if you find bugs.

4 Join #python and #django on IRC Freenode and help out.
5 Find and join other smaller niche Python IRC channels. There’s #pyladies, and there are also

foreign-language Python IRC channels listed on www.python.org/community/irc/.
6 Answer Django questions on StackOverflow.

451

https://www.djangoproject.com/community/
http://wiki.python.org/moin/LocalUserGroups
http://www.python.org/community/irc/

Chapter 34: Where and How to Ask Django Questions

7 Meet other fellow Djangonauts on Twitter and Facebok. Be friendly and get to know everyone.
8 Join the Django group on LinkedIn, comment on posts, and occasionally post things that are

useful to others.
9 Volunteer for diversity efforts. Get involved with Django Girls and PyLadies and help make

the Python community more welcoming to women. Remember that there are many angles
to diversity: something as small as helping with a PyCon in an underrepresented country can
make a major difference.

Figure 34.1: The ice cream eating help desk.

34.5 Summary

One of the strengths of Django is the human factor of the community behind the framework. Assume
a friendly, open stance when you need guidance and odds are the community will rise to the task of
helping you. They won’t do your job for you, but in general they will reach out and attempt to answer
questions or point you in the right direction.

452

35 | Closing Thoughts

While we’ve covered a lot of ground here in this fourth edition of the book. Yet this is just the tip
of the ice cream cone. For starters we plan to write more technical books and grow our open source
projects.

As for Two Scoops of Django, if there is another edition, it won’t be out until Django 2.2 LTS is
released. The reason is that Django 1.11 is a Long Term Support version of Django, meaning that
the content in this book will remain current until at least April 2020.

We’d genuinely love to hear from you, and so would the rest of the Django community. For specific
book content-related feedback, we’re using GitHub issues to track submissions and commentary from
readers. Report any of the following at github.com/twoscoops/two-scoops-of-django-1.
11/issues::

ä Did you find any of the topics unclear or confusing?
ä Any errors or omissions that we should know about?
ä What additional topics do you think we should cover in this edition?

We hope that this has been a useful and worthwhile read for you. If you enjoyed reading this book,
please tell others by writing a positive reviews. We need and appreciate your support.

Cheers to your success with your Django projects!

Daniel Roy Greenfeld and Audrey Roy Greenfeld

ä pydanny.com / audreyr.com / twoscoopspress.com
ä GitHub: @pydanny, @audreyr, and @twoscoopspress
ä Twitter: @pydanny, @audreyr, and @twoscoopspress
ä Facebook: facebook.com/twoscoopspress

453

https://github.com/twoscoops/two-scoops-of-django-1.11/issues
https://github.com/twoscoops/two-scoops-of-django-1.11/issues
https://pydanny.com
http://audreyr.com
https://twoscoopspress.com
https://github.com/pydanny
https://github.com/audreyr
https://github.com/twoscoops
https://twitter.com/pydanny
https://twitter.com/audreyr
https://twitter.com/twoscoopspress
https://www.facebook.com/twoscoopspress

Chapter 35: Closing Thoughts

454

Appendix A: Packages Mentioned In This
Book

This is a list of the third-party Python, Django, and front-end packages that we’ve described or
mentioned in this book. We’ve also snuck in a few really useful packages that we don’t mention in
the book but that we feel are extremely useful.

As for the packages that we’re currently using in our own projects: the list has some overlap with this
list but is always changing. Please don’t use this as the definitive list of what you should and should
not be using.

Core

Django djangoproject.com
The web framework for perfectionists with deadlines.

django-debug-toolbar django-debug-toolbar.readthedocs.org
Display panels used for debugging Django HTML views.

django-model-utils pypi.python.org/pypi/django-model-utils
Useful model utilities including a time stamped model.

ipdb pypi.python.org/pypi/ipdb
IPython-enabled pdb

Pillow pypi.python.org/pypi/Pillow
Friendly installer for the Python Imaging Library.

pip pip-installer.org
Package installer for Python. Comes built-in with Python 3.4 or higher.

455

https://djangoproject.com
http://django-debug-toolbar.readthedocs.org/
https://pypi.python.org/pypi/django-model-utils
https://pypi.python.org/pypi/ipdb
https://pypi.python.org/pypi/Pillow
http://www.pip-installer.org

Chapter 35: Appendix A: Packages Mentioned In This Book

pipenv docs.pipenv.org
Sacred Marriage of Pipfile, Pip, & Virtualenv. Mostly replaces virtualenvwrapper and adds a
lot more features in the process.

Sphinx sphinx-doc.org
Documentation tool for Python projects.

virtualenv virtualenv.org
Virtual environments for Python.

virtualenvwrapper doughellmann.com/projects/virtualenvwrapper
Makes virtualenv better for Mac OS X and Linux!

virtualenvwrapper-win pypi.python.org/pypi/virtualenvwrapper-win
Makes virtualenv better for Windows! win

Asynchronous
celery celeryproject.org

Distributed task queue.
flower pypi.python.org/pypi/flower

Tool for monitoring and management of Celery tasks.
django-channels pypi.python.org/pypi/django-channels

Official Django websockets interface, can also be used as task queue.
rq pypi.python.org/pypi/rq

RQ is a simple, lightweight, library for creating background jobs, and processing them.
django-rq pypi.python.org/pypi/django-rq

A simple app that provides django integration for RQ (Redis Queue).
django-background-tasks github.com/arteria/django-background-tasks

Database backed asynchronous task queue.

Database
psycopg2 pypi.python.org/pypi/psycopg2

PostgreSQL database adapter.
django-maintenancemode github.com/shanx/django-maintenancemode

Allows you to turn a site on and off with a management command.
django-maintenancemode-2 github.com/alsoicode/django-maintenancemode-2

A database-powered solution great for flipping portions of a site in and out of read-only mode.

456

http://docs.pipenv.org/
http://sphinx-doc.org/
http://virtualenv.org
http://www.doughellmann.com/projects/virtualenvwrapper/
https://pypi.python.org/pypi/virtualenvwrapper-win
http://www.celeryproject.org/
https://pypi.python.org/pypi/flower
https://pypi.python.org/pypi/django-channels
https://pypi.python.org/pypi/rq
https://pypi.python.org/pypi/django-rq
https://github.com/arteria/django-background-tasks
https://pypi.python.org/pypi/psycopg2
https://github.com/shanx/django-maintenancemode
https://github.com/alsoicode/django-maintenancemode-2

Deployment

Fabric pypi.python.org/pypi/Fabric
Simple tool for remote execution and deployment.

Invoke pypi.python.org/pypi/invoke
Like Fabric, also works in Python 3.

Supervisor supervisord.org
Supervisord is a client/server system that allows its users to monitor and control a number of
processes on UNIX-like operating systems.

Forms

django-crispy-forms django-crispy-forms.readthedocs.io
Rendering controls for Django forms. Uses Twitter Bootstrap widgets by default, but skinnable.

django-floppyforms django-floppyforms.readthedocs.io
Form field, widget, and layout that can work with django-crispy-forms.

django-forms-builder A Django reusable app providing the ability for admin users to
create their own forms within the admin interface. github.com/stephenmcd/
django-forms-builder

Front-End

JSCS jscs.info
JavaScript code style linter.

CSScomb csscomb.com
Coding style formatter for CSS.

Logging

logutils pypi.python.org/pypi/logutils
Adds useful handlers for logging.

Sentry sentry.io
Exceptional error aggregation, with an open source code base.

457

https://pypi.python.org/pypi/Fabric
https://pypi.python.org/pypi/invoke
http://supervisord.org/
http://django-crispy-forms.readthedocs.io/
http://django-floppyforms.readthedocs.io/
https://github.com/stephenmcd/django-forms-builder
https://github.com/stephenmcd/django-forms-builder
http://jscs.info/
http://csscomb.com/
https://pypi.python.org/pypi/logutils
http://sentry.io

Chapter 35: Appendix A: Packages Mentioned In This Book

Project Templates
Cookiecutter Django github.com/pydanny/cookiecutter-django

The sample project layout detailed in chapter 3 of this book.
Cookiecutter cookiecutter.readthedocs.io

Not explicitly for Django, a command-line utility for creating project and app templates. It’s
focused, heavily tested and well documented. By one of the authors of this book.

REST APIs
django-rest-framework django-rest-framework.org

The defacto REST package for Django. Exposes model and non-model resources as a RESTful
API.

django-jsonview github.com/jsocol/django-jsonview
Provides a simple decorator that translates Python objects to JSON and makes sure decorated
views will always return JSON.

django-tastypie django-tastypie.readthedocs.io
Expose model and non-model resources as a RESTful API.

Security
bleach pypi.python.org/pypi/bleach

An easy whitelist-based HTML-sanitizing tool.
defusedxml pypi.python.org/pypi/defusedxml

Must-have Python library if you are accepting XML from any foreign source.
django-autoadmin pypi.python.org/pypi/django-autoadmin

Automatic admin users for Django projects with autogenerated passwords, takes the headache
out of providing secure access with auto-created sites.

django-admin-honeypot pypi.python.org/pypi/django-admin-honeypot
A fake Django admin login screen to notify admins of attempted unauthorized access.

django-axes github.com/django-pci/django-axes
Keep track of failed login attempts in Django-powered sites.

django-csp github.com/mozilla/django-csp
Adds Content Security Policy to Django.

django-ratelimit-backend pypi.python.org/pypi/django-ratelimit-backend
Login rate-limiting at the auth backend level.

458

https://github.com/pydanny/cookiecutter-django
http://cookiecutter.readthedocs.io
http://django-rest-framework.org/
https://github.com/jsocol/django-jsonview
http://django-tastypie.readthedocs.io
https://pypi.python.org/pypi/bleach
https://pypi.python.org/pypi/defusedxml
https://pypi.python.org/pypi/django-autoadmin
https://pypi.python.org/pypi/django-admin-honeypot
https://github.com/django-pci/django-axes
https://github.com/mozilla/django-csp
https://pypi.python.org/pypi/django-ratelimit-backend

django-restricted-sessions github.com/erikr/django-restricted-sessions
This third-party package lets you restrict sessions to an IP or an IP range and/or the user agent.

django-secure pypi.python.org/pypi/django-secure
Helps you lock down your site’s security using practices advocated by security specialists. Much
of its functionality has been subsumed by Django’s SecurityMiddleware class.

django-two-factor-auth pypi.python.org/pypi/django-two-factor-auth
Complete Two-Factor Authentication for Django.

django-user-sessions pypi.python.org/pypi/django-user-sessions
Django sessions with a foreign key to the user.

peep pypi.python.org/pypi/peep
Uses only verified TLS to upload to PyPI protecting your credentials from theft. Has other
useful features worth looking at.

Twine pypi.python.org/pypi/twine
Uses only verified TLS to upload to PyPI protecting your credentials from theft. Has other
useful features worth looking at.

Testing
coverage coverage.readthedocs.io

Checks how much of your code is covered with tests.
django-test-plus github.com/revsys/django-test-plus

Useful additions to Django’s default TestCase, which the Two Scoops authors learned from
the creator of this package and continue to use to this day. We’re happy to see this bundled up
for ease of use.

factory boy pypi.python.org/pypi/factory_boy
A package that generates model test data.

model mommy pypi.python.org/pypi/model_mommy
Another package that generates model test data.

mock pypi.python.org/pypi/mock
Not explicitly for Django, this allows you to replace parts of your system with mock objects.
This project made its way into the standard library as of Python 3.4.

pytest pytest.org
A mature full-featured Python testing tool that is very useful for Python and Django projects.

pytest-django pytest-django.readthedocs.io
pytest-django is a plugin for py.test that provides a set of useful tools for testing Django appli-

459

https://github.com/erikr/django-restricted-sessions
https://pypi.python.org/pypi/django-secure
https://pypi.python.org/pypi/django-two-factor-auth
https://pypi.python.org/pypi/django-user-sessions
https://pypi.python.org/pypi/peep
https://pypi.python.org/pypi/twine
http://coverage.readthedocs.io/
https://github.com/revsys/django-test-plus
https://pypi.python.org/pypi/factory_boy
https://pypi.python.org/pypi/model_mommy
https://pypi.python.org/pypi/mock
http://pytest.org/
http://pytest-django.readthedocs.io/

Chapter 35: Appendix A: Packages Mentioned In This Book

cations and projects.
tox tox.readthedocs.io

A generic virtualenv management and test command line tool that allows testing of projects
against multiple Python version with a single command at the shell.

User Registration
django-allauth django-allauth.readthedocs.io

General-purpose registration and authentication. Includes Email, Twitter, Facebook, GitHub,
Google, and lots more.

python-social-auth django-social-auth.readthedocs.io
Easy social authentication and registration for Twitter, Facebook, GitHub, Google, and lots
more.

django-registration github.com/ubernostrum/django-registration
A simple, extensible user-registration app for Django

Views
django-braces django-braces.readthedocs.io

Drop-in mixins that really empower Django’s class-based views.
django-vanilla-views django-vanilla-views.org

Simplifies Django’s generic class-based views by simplifying the inheritance chain.

Time
python-dateutil pypi.python.org/pypi/python-dateutil

Provides powerful extensions to Python’s datetime module.
pytz pypi.python.org/pypi/pytz

Brings the Olson tz database into Python. This library allows accurate and cross platform
timezone calculations. It also solves the issue of ambiguous times at the end of daylight saving
time. Library Reference

Miscellaneous
awesome-slugify pypi.python.org/pypi/awesome-slugify

A flexible slugify function.

460

http://tox.readthedocs.io/
http://django-allauth.readthedocs.io/
http://django-social-auth.readthedocs.io/
https://github.com/ubernostrum/django-registration
http://django-braces.readthedocs.io
http://django-vanilla-views.org/
https://pypi.python.org/pypi/python-dateutil
https://pypi.python.org/pypi/pytz/
https://pypi.python.org/pypi/awesome-slugify

dj-stripe pypi.python.org/pypi/dj-stripe
Django + Stripe made easy.

django-compressor django-compressor.readthedocs.io
Compresses linked and inline JavaScript or CSS into a single cached file.

django-extensions django-extensions.readthedocs.io
Provides shell_plus management command and a lot of other utilities.

django-haystack github.com/django-haystack/django-haystack
Full-text search that works with SOLR, Elasticsearch, and more.

django-js-reverse github.com/ierror/django-js-reverse
Javascript url handling for Django that doesn’t hurt.

django-pipeline github.com/jazzband/django-pipeline
Compression of CSS and JS. Use with cssmin and jsmin packages.

django-htmlmin github.com/cobrateam/django-htmlmin
HTML minifier for django.

django-reversion github.com/etianen/django-reversion
An extension to the Django web framework that provides comprehensive version control facil-
ities.

django-watson github.com/etianen/django-watson
Full-text multi-table search application for Django using SQL database features.

envdir github.com/jezdez/envdir A Python port of daemontools’ envdir.
flake8 pypi.python.org/pypi/flake8

Checks code quality by using PyFlakes, pep8, and other tools.
pathlib pypi.python.org/pypi/pathlib Object-oriented filesystem paths being merged into

Python as of release 3.4.
pip-tools github.com/nvie/pip-tools

A set of tools to keep your pinned Python dependencies fresh.
pyyaml pypi.python.org/pypi/PyYAML

YAML parser and emitter for Python.
requests docs.python-requests.org

Easy-to-use HTTP library that replaces Python’s urllib2 library.
silk github.com/mtford90/silk

Silk is a live profiling and inspection tool for the Django framework. Silk intercepts and stores
HTTP requests and database queries before presenting them in a user interface for further
inspection.

461

https://pypi.python.org/pypi/dj-stripe
http://django-compressor.readthedocs.io/
http://django-extensions.readthedocs.io/
https://github.com/django-haystack/django-haystack
https://github.com/ierror/django-js-reverse
https://github.com/jazzband/django-pipeline
https://github.com/cobrateam/django-htmlmin
https://github.com/etianen/django-reversion
https://github.com/etianen/django-watson
https://github.com/jezdez/envdir
https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/pathlib
https://github.com/nvie/pip-tools
https://pypi.python.org/pypi/PyYAML
http://docs.python-requests.org
https://github.com/mtford90/silk

Chapter 35: Appendix A: Packages Mentioned In This Book

462

Appendix B: Troubleshooting
Installation

This appendix contains tips for troubleshooting common Django installation issues.

Identifying the Issue

Often, the issue is one of:

ä That Django isn’t on your system path, or
ä That you’re running the wrong version of Django

Run this at the command line:

Example 35.1: Checking Your Django Version

python -c "import django; print django.get_version()"

If you’re running Django 1.11, you should see the following output:

Example 35.2: Django Version

1.11

Don’t see the same output? Well, at least you now know your problem. Read on to find a solution.

463

Chapter 35: Appendix B: Troubleshooting Installation

Our Recommended Solutions

There are all sorts of different ways to resolve Django installation issues (e.g. manually editing your
PATH environment variable), but the following tips will help you fix your setup in a way that is
consistent with what we describe in chapter on The Optimal Django Environment Setup.

Check Your Virtualenv Installation

Is virtualenv installed properly on your computer? At the command line, try creating a test virtual
environment and activating it.

If you’re on a Mac or Linux system, verify that this works:

Example 35.3: Checking Virtualenv on Mac or Linux

$ virtualenv testenv
$ source testenv/bin/activate

If you’re on Windows, verify that this works:

Example 35.4: Checking Virtualenv on Windows

C:\code\> virtualenv testenv
C:\code\> testenv\Scripts\activate

Your virtualenv should have been activated, and your command line prompt should now have the
name of the virtualenv prepended to it.

On Mac or Linux, this will look something like:

Example 35.5: Virtualenv Prompt on Mac and Linux

(testenv) $

On Windows, this will look something like:

464

Example 35.6: Virtualenv Prompt on Windows

(testenv) >

Did you run into any problems? If so, study the Virtualenv documentation (virtualenv.org) and
fix your installation of Virtualenv.

If not, then continue on.

Check if Your Virtualenv Has Django 1.11 Installed

With your virtualenv activated, check your version of Django again:

Example 35.7: Checking the Django Version Again

python -c "import django; print django.get_version()"

If you still don’t see 1.11, then try using pip to install Django 1.11 into testenv:

Example 35.8: Pip Installing Django 1.11

(testenv) $ pip install Django==1.11

Did it work? Check your version of Django again. If not, check that you have pip installed correctly
as per the official documentation (pip-installer.org).

Check for Other Problems

Follow the instructions in the official Django docs for troubleshooting problems related to running
django-admin.py:
docs.djangoproject.com/en/1.11/faq/troubleshooting/

465

http://virtualenv.org
http://pip-installer.org
https://docs.djangoproject.com/en/1.11/faq/troubleshooting/

Chapter 35: Appendix B: Troubleshooting Installation

466

Appendix C: Additional Resources

For a list of learning resources that are specific to current versions of Python and Django, please use
the following links. They provide titles, descriptions, and links for books, videos, and web articles
that serve as tutorials and references.

ä twoscoopspress.com/pages/current-django-books
ä twoscoopspress.com/pages/django-tutorials

This rest of this appendix lists additional resources that we feel are timeless. Some of them might be
for previous versions of Python or Django, but the concepts they present transcend version.

Timeless Python and Django Material

Books:

High Performance Django
amazon.com/High-Performance-Django/dp/1508748128/
highperformancedjango.com
Written with a focus on scaling Django, this book espouses many good practices. Full of useful
information and tricks, as well as questions in each section that force you to think about what
you are doing.

Two Scoops of Django: Best Practices for Django 1.8 (print)
twoscoopspress.com/products/two-scoops-of-django-1-8
The third printed edition of this book.

Web:

467

https://www.twoscoopspress.com/pages/current-django-books
https://www.twoscoopspress.com/pages/django-tutorials
http://mybook.to/hpd
https://highperformancedjango.com
https://www.twoscoopspress.com/products/two-scoops-of-django-1-8

Chapter 35: Appendix C: Additional Resources

Django Packages
djangopackages.org
A directory of reusable apps, sites, tools, and more for your Django projects maintained by the
authors of Two Scoops of Django.

Classy Class-Based Views
ccbv.co.uk
A website that has provides detailed descriptions, with full methods and attributes, for each of
Django’s class-based generic views.

Classy Django REST Framework
cdrf.co
Detailed descriptions, with full methods and attributes, for each of Django REST Framework’s
class-based views and serializers.

pydanny’s blog
pydanny.com/tag/django.html
A good amount of this blog is about modern Django. As the author of this blog is also one of
this book’s authors, the style of the blog loosely resembles the content of this book.

Django Model Behaviors
blog.kevinastone.com/django-model-behaviors.html
Kevin Stone explores how to structure models and associated code in large Django projects.

Awesome-Django
awesome-django.com
A curated list of awesome Django apps, projects and resources.

Real Python Blog
realpython.com/blog/categories/django/
In addition to their excellent tutorial book, the Real Python blog contains a lot of useful Django
material on a wide range of subjects.

Timeless Beginner Django Material

Web:

Django Girls Tutorial
tutorial.djangogirls.org
Created and maintained by the international Django Girls organization, this is an excellent
resource no matter your gender.

468

https://www.djangopackages.org
http://ccbv.co.uk/
http://www.cdrf.co/
http://pydanny.com/tag/django.html
http://blog.kevinastone.com/django-model-behaviors.html
http://awesome-django.com/
https://realpython.com/blog/categories/django/
http://tutorial.djangogirls.org/

Official Django 1.11 Documentation
docs.djangoproject.com/en/1.11/
The official Django documentation is incredibly useful. If you’ve used a previous version of
Django, make sure that you are reading the correct edition of the documentation.

Timeless Beginner Python Material

Learn Python the Hard Way Online Edition
learnpythonthehardway.org
By going right to the source, this free for HTML, paid for video resources, is one of the best
places to start. The video resources are especially useful.

Automate the Boring Stuff with Python
amazon.com/gp/product/1593275994
This fascinating book teaches Python by instructing on how to make boring computer tasks
easy through automation. Why update 150 columns of a spreadsheet when Python can do it
for you?

Timeless Useful Python Material

Fluent Python
amzn.to/2oHTORa
One of our favorite Python books, author Luciano Ramalho tours Python’s core language
features and libraries, and shows us how to make code shorter, faster, and more readable at the
same time.

Effective Python
amzn.to/1NsiqVr
Instructs on many useful practices and techniques when coding in Python.

Python Cookbook, 3rd Edition
amzn.to/I3Sv6q
An incredible book by Python luminaries David Beazley and Brian Jones, it’s filled with deli-
cious ice cream recipes... err... incredibly useful Python recipes for any developer using Python
3.3 or greater.

Treading on Python Volume 2
amzn.to/1kVWi2a
Covers more advanced Python structures.

469

https://docs.djangoproject.com/en/1.11/
http://learnpythonthehardway.org/
http://mybook.to/atbsp
http://amzn.to/2oHTORa
http://amzn.to/1NsiqVr
http://amzn.to/I3Sv6q
http://amzn.to/1kVWi2a

Chapter 35: Appendix C: Additional Resources

Writing Idiomatic Python 3.3
amzn.to/1aS5df4
Great tips for optimizing your code and increasing the legibility of your work. There are a few
places it differs from our practices (imports being the largest area of difference), but overall we
concur. A 2.7 version is available at amzn.to/1fj9j7z

JavaScript Resources

Books:

Secrets of a JavaScript Ninja (Print and Kindle)
amzn.to/18QzT0r

Definitive Guide to JavaScript (Print and Kindle)
amzn.to/1cGVkDD

JavaScript: The Good Parts (Print and Kindle)
amzn.to/1auwJ6x

JavaScript Patterns (Print and Kindle)
amzn.to/1dii9Th

Web Resources:

Mozilla Developer Network
developer.mozilla.org/en-US/docs/Web/JavaScript

Learning JavaScript Design Patterns
addyosmani.com/resources/essentialjsdesignpatterns/book/

Stack Overflow
stackoverflow.com/questions/tagged/javascript

WARNING: Stay Away From W3Schools

One problem about JavaScript (and CSS) research on the web is that W3Schools will turn
up at the top of search engine results. This is unfortunate, because much of the data there is
outdated enough to be incorrect. Be smart and avoid this resource.

We scan the results page for the Mozilla Developer Network (MDN) link, usually around
the third position, and click on that one.

470

http://amzn.to/1aS5df4
http://amzn.to/1fj9j7z
http://amzn.to/18QzT0r
http://amzn.to/1cGVkDD
http://amzn.to/1auwJ6x
http://amzn.to/1dii9Th
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://addyosmani.com/resources/essentialjsdesignpatterns/book/
http://stackoverflow.com/questions/tagged/javascript

Appendix D: Internationalization and
Localization

Django and Python provides a lot of very useful tools for dealing with internationalization, local-
ization, and of course, Unicode.

This appendix, added as of the second edition, contains a list of things helpful for preparing your
Django application for non-English readers and non-USA users. This list is by no means complete,
and we invite the reader to provide additional feedback.

Start Early

It is always easier to start with and grow an internationalized, localized project than to convert an
existing project.

For Python 2.7: Define Python Source Code Encodings

In PEP 263 we are given a formal specification for defining how encoding of Python modules is
to occur. Amongst other things, this affects how Python handles unicode literals. To define this
encoding in internationalized projects, at the top each module add:

Example 35.9: Defining UTF-8 Encoding at Top of Python Modules

-*- coding: utf-8 -*-

Or as shown in the next code example:

471

Chapter 35: Appendix D: Internationalization and Localization

Example 35.10: Python Declaration with UTF-8 Encoding

#!/usr/bin/python
-*- coding: utf-8 -*-

More information can be found at python.org/dev/peps/pep-0263/

Wrap Content Strings with Translation Functions

Every string presented to end users should be wrapped in a translation function. This is de-
scribed in-depth in the official Django documentation on django.utils.translation at docs.
djangoproject.com/en/1.11/topics/i18n/translation/. Since that is a lot of text to
swallow, the table on the following page is a reference guide for knowing when and where to use
what translation function for what tasks.

Function Purpose Link

ugettext() For content executed at runtime, e.g.
form validation errors.

docs.djangoproject.com/
en/1.11/topics/i18n/
translation/
#standard-translation

ugettext_lazy() For content executed at compile time,
e.g. verbose_name in models.

docs.djangoproject.com/
en/1.11/topics/i18n/
translation/
#lazy-translation

string_concat() Replaces the standard str.join()
method for joining strings. Rarely
used.

docs.djangoproject.com/
en/1.11/topics/i18n/
translation/
#localized-names-of-languages

Table 35.1: django.utils.translation Function Reference

472

http://www.python.org/dev/peps/pep-0263/
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#standard-translation
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#standard-translation
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#standard-translation
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#standard-translation
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#lazy-translation
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#lazy-translation
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#lazy-translation
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#lazy-translation
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#localized-names-of-languages
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#localized-names-of-languages
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#localized-names-of-languages
https://docs.djangoproject.com/en/1.11/topics/i18n/translation/#localized-names-of-languages

Convention: Use the Underscore Alias to Save Typing

As you know, normally we aren’t fans of abbreviations or shortcuts. However, in the case of interna-
tionalizing Python code, the existing convention is to use a _, or underscore, to save on letters.

Example 35.11: The Underscore Alias in Action

from django.utils.translation import ugettext as _

print(_('We like gelato.'))

Don’t Interpolate Words in Sentences

The golden rule is always have as much grammar as possible in the string, don’t let the
code piece the grammar together; and generally verbs are the most problematic.

– Patrick McLoughlan

We used to construct translation strings all the time, going so far as to include it in the 1.5 edition
of the book. This is when you use slightly-clever code to construct sentences out of various Python
objects. For reference, this was part of Example 8.7:

Example 35.12: Our Bad Code from the 1.5 Edition

DON'T DO THIS!

Skipping the rest of imports for the sake of brevity
class FlavorActionMixin:

@property
def action(self):

msg = '{0} is missing action.'.format(self.__class__)
raise NotImplementedError(msg)

def form_valid(self, form):
msg = 'Flavor {0}!'.format(self.action)
messages.info(self.request, msg)

473

Chapter 35: Appendix D: Internationalization and Localization

return super(FlavorActionMixin, self).form_valid(form)

Snipping the rest of this module for the sake of brevity

While seemingly handy in that it makes for a self-maintaining mixin, it is overly clever in we
can’t internationalize the result of calling self.__class__. In other words, you can’t just add
django.utils.translation the following and expect it to produce anything meaningful for
translators to work from:

Example 35.13: Making Things Impossible For Translators

DON'T DO THIS!
from django.utils.translations import ugettext as _

Skipping the rest of this module for the sake of brevity

def form_valid(self, form):

This generates a useless translation object.
msg = _('Flavor {0}!'.format(self.action))
messages.info(self.request, msg)
return super(FlavorActionMixin, self).form_valid(form)

Skipping the rest of this module for the sake of brevity

Rather than writing code that constructs sentences out of various Python constructs, now we write
more meaningful dialogues that can be readily translated. This means a little more work, but the
result is a more easily translatable project. Hence why we now follow this pattern:

Example 35.14: Use of Complete Strings

Skipping the rest of imports for the sake of brevity
from django.utils.translation import ugettext as _

class FlavorActionMixin:

@property

474

def success_msg(self):
return NotImplemented

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

model = Flavor

Slightly longer but more meaningful dialogue
success_msg = _('Flavor created!')

Skipping the rest of this module for the sake of brevity

For reference, you can combine individual strings representing meaningful sentences and dialogues
into larger values. However, you shouldn’t build sentences by concatenating pieces, because other
languages may require a different order. For the same reason, you should always include punctuation
in translated strings. See as follows:

Example 35.15: Using Punctuation in Translated Strings

from django.utils.translation import ugettext as _

class FlavorActionMixin:

@property
def success_msg(self):

return NotImplemented

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

model = Flavor

Example combining strings
part_one = _('Flavor created! ')
part_two = _('Let's go try it!')
success_msg = part_one + part_two

Skipping the rest of this module for the sake of brevity

475

Chapter 35: Appendix D: Internationalization and Localization

Unicode Tricks
Here are some things we’ve learned when dealing with unicode-related issues.

Python 3 Makes Unicode Easier

In our experience Python 3 makes unicode handling much, much easier. While in theory things can
and are back-ported to Python 2.7, we’ve found that when using Python 3 we just don’t have the
same kinds of problems. If working on a new project, this is as good a reason as any to consider
switching to Python 3.

Yes, there have been articles stating that Python 3 handles unicode poorly, but those were mostly
written by someone working at a lower level than 99% of Django developers. See our take on Armin
Ronacher’s commentary in Appendix F: Is Moving to Python 3 Worth It?

Use django.utils.encoding.force_text() Instead of str()

When you are working with Python 3.x (or Python 2.7) and need to ensure that a useful string-type
value is returned, don’t use the str() (or unicode() if on Python 2.7) built-ins. What can happen
is that under certain circumstances, instead of returning a unicode or str object, Django will return
a nigh-meaningless django.utils.functional.__proxy__ object, which is a lazy instance of
the data requested.

Instead, do as our friend Douglas Miranda suggested to us, and use
django.utils.encoding.force_text. In the case that you are dealing with a proxy object or
lazy instance, it resolves them as strings.

TIP: Django is Lazy

One of the ways that Django does optimizations is via lazy loading, a design pattern which
defers initialization of an object until it is needed. The place where this is most obviously
used is Django’s ORM, as described at docs.djangoproject.com/en/1.11/topics/
db/queries/#querysets-are-lazy. This use of lazy objects can cause problems with
display of content, hence the need for django.utils.encoding.force_text().

476

https://docs.djangoproject.com/en/1.11/topics/db/queries/#querysets-are-lazy
https://docs.djangoproject.com/en/1.11/topics/db/queries/#querysets-are-lazy

Browser Page Layout

Assuming you’ve got your content and Django templates internationalized and localized, you can
discover that your layouts are broken.

A good Django-based example is Mozilla and their various sites for supporting tools like Firefox. On
these sites they handle translations for over 80 languages. Unfortunately, a title that fits the page in
English breaks the site in more verbose languages such as German.

Mozilla’s answer is to determine the width of a title container, then use JavaScript adjust the font
size of the title text downwards until the text fits into the container with wrapping.

A simpler way of handling this issue is to assume that other languages can take up twice as much
space as English. English is a pretty concise language that, because of its short words, handles text
wrapping very well.

The Challenges of Time

Time is a tricky subject even without timezones and different calendering systems. Here are resources
to help navigate through time-based coding:

ä yourcalendricalfallacyis.com

477

http://yourcalendricalfallacyis.com/

Chapter 35: Appendix D: Internationalization and Localization

478

Appendix E: Settings Alternatives

Here a couple of alternative patterns for managing settings that we feel can be recommended. They
avoid the local_settings anti-pattern and allow for management of configuration that will work with
either the Environment Variables Pattern or the Secrets File Pattern.

WARNING: Converting Existing Settings is Hard

If you have an existing project using multiple settings modules and you want to convert it
to the single settings style, you might want to reconsider. Migrating settings approaches is
always a tricky process, and requires deep and wide test coverage. Even with the best test
coverage, there is a chance it’s not going to be worth it.

For these reasons, we suggest being conservative about switching to new settings approaches.
Only do it when the current settings management approach has become a pain point, not
when a new method becomes popular.

Twelve Factor-Style Settings

If we’re relying on environment variables, why not use the simplest settings.py system possible? Bruno
Renié, creator of django-floppyforms and FeedHQ (feedhq.org), advocates an alternate approach
to Django settings files, in which all environments use the same single settings file.

The argument for this approach is that when using the multiple settings files approach, you end up
with environment-specific code. For instance, when doing local development, you’re not running the
code with production settings. This increases the chance of running into production-specific bugs
when you update some code without updating the production settings accordingly.

479

https://feedhq.org

Chapter 35: Appendix E: Settings Alternatives

This style involves using sensible default settings and as few environment specific values as possible.
When combined with tools like Vagrant and Docker, it means that mirroring production is trivial.

It results in a much simpler settings file, and for Twelve Factor App fans, it’s right in line with that
approach.

If you want to see an example of the approach in action, check out FeedHQ’s settings module:
github.com/feedhq/feedhq/blob/master/feedhq/settings.py

We’ve enjoyed this approach for new and smaller projects. When done right, it makes things elegantly
simple.

However, it’s not a perfect solution for all problems:

ä It doesn’t provide much benefit for simplification when development environments are drasti-
cally different than production.

ä It doesn’t work as well with projects being deployed to more than one operating system.
ä Complex settings on large projects are not really simplified or shortened by this approach. It

can be challenging to use on large or complex projects.

If you would like to know more about this approach, we recommend the following articles:

ä bruno.im/2013/may/18/django-stop-writing-settings-files/
ä 12factor.net/config

480

https://github.com/feedhq/feedhq/blob/master/feedhq/settings.py
http://bruno.im/2013/may/18/django-stop-writing-settings-files/
http://12factor.net/config

Appendix F: Advice for Python 2.7 Users

Django 1.11 is the last version of the framework to support Python 2.7. Starting with Django 2.0
you must use Python 3.5 or higher. Fortunately, Django 1.11 is a long-term support (LTS) version,
and will be maintained by the Django core team until 2020.

This should provide enough time to migrate a project from Python 2.7. Since the common critical
Python libraries all support versions of Python 3, not moving upwards is often a factor of inertia
rather than a lack of library conversion.

Is Moving to Python 3 Worth It?
If you plan to continue using Django after 1.11, then moving to Python 3 isn’t worth it, it’s a necessity.

Since the autumn of 2015 we’ve exclusively coded all of our Django projects in Python 3.4 or higher.
For us, the differences between Python 3 and 2 were minor, including when it came to us converting
some of the third-party libraries we maintain.

One of the features we like most of all about Python 3 is how easy it makes working with unicode.
No longer are we mystified by Python 2’s inconsistent behavior.

TIP: But Armin said Python 3’s Unicode Handling Sucks!

Armin Ronacher, creator of Jinja2, Flask, Click, and other libraries, is notable for his critiques
of how Python 3 handles unicode. His arguments were valid for him: his work often touches
low-level features of Python that are not the normal thing web developers encounter on
a day-to-day basis. These critiques spurred the Python core team to address some of the
shortcomings he identified, and other issues have been resolved by working around the quirks

481

Chapter 35: Appendix F: Advice for Python 2.7 Users

of Python 3.
The end result of Armin’s critiques is that in the world of Python 3, it’s rare to encounter a
unicode problem. While that’s not to say everything is fixed, let’s just say that as US-educated
coders we’re no longer afraid of unicode.

Django’s Documentation on Python 3

Django’s official documentation has a well-written page that covers much of what’s involved with
working with Python 3. Here are some specific sections you should pay careful attention to:

Django Official Docs on Python 3 docs.djangoproject.com/en/1.11/topics/python3/
Coding Guidelines docs.djangoproject.com/en/1.11/topics/python3/

#coding-guidelines
Writing Compatible Code with Six docs.djangoproject.com/en/1.11/topics/

python3/#writing-compatible-code-with-six

Here are some other things you should know.

Most Critical Packages Work with Python 3

As of the time of this writing, Django Packages lists over 1232 packages that support Python 3. A
lot more work with Python 3, just haven’t identified them as such. This includes such critical libraries
as:

ä Django itself
ä Pillow
ä django-allauth
ä django-braces
ä django-crispy-forms
ä django-debug-toolbar
ä django-rest-framework
ä python-requests

You can see a list of Django specific libraries at djangopackages.org/python3/.

482

https://docs.djangoproject.com/en/1.11/topics/python3/
https://docs.djangoproject.com/en/1.11/topics/python3/#coding-guidelines
https://docs.djangoproject.com/en/1.11/topics/python3/#coding-guidelines
https://docs.djangoproject.com/en/1.11/topics/python3/#writing-compatible-code-with-six
https://docs.djangoproject.com/en/1.11/topics/python3/#writing-compatible-code-with-six
https://www.djangopackages.org/python3/

Checking for Python 3 Compatibility

Here are the steps we follow in rough order when determining if a third-party library actually works
with Python 3:

ä Check on https://www.djangopackages.org/python3/.
ä Look up the package on PyPI and see if any of its trove classifiers mention Python 3 status.
ä See if a pull request for Python 3 support is outstanding.
ä Run the test suite using Python 3.5 or higher.
ä If a Django project, check the models for __str__() methods. If it has them, it’s a pretty

good indicator that it’s Python 3 friendly.

Converting a Library to Work with Python 3

How we converted our Python 2 code to Python 3:

ä Get the test harness working with Python 3.
ä Lean on django.contrib.six as much as possible. Add a compat.py module only if abso-

lutely needed.
ä Fix any problems you find in the code. Try to keep solutions as simple as possible.
ä Submit the pull request.
ä Politely poke the package owner to accept the pull request.
ä Once the owner accepts the pull request, gently poke the package owner to push the update

to PyPI.

TIP: Dealing with Slow Maintainers

Ranting to or complaining about slow-moving maintainers is absolutely counter-productive.
People have lives and jobs that sometimes get in the way of open source. It’s more productive
to be patient, be polite, and if necessary do an absolutely minimal fork or find a working
alternative.

Use Python 3.5 or Later
Django is a large, complicated system. While it’s heavily tested for multiple versions of Python 3,
we’ve found that it just works better with more recent versions of the language. The classic example

483

https://www.djangopackages.org/python3/

Chapter 35: Appendix F: Advice for Python 2.7 Users

that often occured was how migrate failed in curious ways when using Python 3.3.0.

Working With Python 2 and 3
We usually encounter this scenario when we are writing a third-party package for use in Django
or even just vanilla Python. However, there are use cases where an entire Django project might be
deployed to Python 2.7 as well as Python 3. Fortunately, most of the following suggestions apply no
matter the scale of the project.

Tests and Continuous Integration

If there isn’t a working test harness and functioning continuous integration, now is the time to set it
up. Testing compatibility across major Python versions simply requires automation.

Keep Compatibility Minimally Invasive

The last thing that a project needs is complex branches to deal with different versions of Python.
Therefore, use the following imports at the top of a Python module to keep code identical:

Example 35.16: Future Imports

The __future__ imports in this module means that all code
in this example will work identically in Python 2.7 and
Python 3 or higher.

Multi-Line and Absolute/Relative imports will work identically across
Python versions.
from __future__ import absolute_import

Any division will return float objects. Example 3 / 2 = 1.5
from __future__ import division

All strings defined in Python 2 and 3 can use Python 3's name = 'django'
syntax for defining unicode-friendly strings.
from __future__ import unicode_literals

484

When we do need more complexity or any sort of logic, that’s when it’s time to create a compat.py
module.

TIP: Use ”from __future__ import absolute_import”

Python 3 updates and improves how imports work, and it does this in a
good way. Fortunately, it’s been back-ported to Python 2.7 via the use of the
from __future__ import absolute_import statement. Even if you don’t plan to
use Python 3, this is a great feature and allows for the explicit relative imports demonstrated
in the table below.

Use django.utils.encoding.python_2_unicode_compatible in Models

Rather than write both __str__() and __unicode__() methods, use
django.utils.encoding.python_2_unicode_compatible so it only has to be written once.
See Section 19.3: Viewing String Representations of Objects.

Resources

The following are useful resources for Python 3 topics:

Porting to Python 3
http://python3porting.com/
Lennart Regebro’s free HTML or paid e-book bundle on the subject of moving from Python
2 to 3.

Porting Django apps to Python 3
http://youtu.be/cJMGvAYYUyY
This is Jacob Kaplan-Moss’ PyCon US 2013 video on the subject.

Python Cookbook, 3rd Edition
http://amzn.to/I3Sv6q
David Beazley and Brian Jones’ book of handy recipes for Python 3.

Writing Idiomatic Python 3.3
http://amzn.to/1aS5df4
Jeff Knupp’s guide to writing Python 3 code the ‘right’ way.

485

http://python3porting.com/
http://youtu.be/cJMGvAYYUyY
http://amzn.to/I3Sv6q
http://amzn.to/1aS5df4

Chapter 35: Appendix F: Advice for Python 2.7 Users

486

Appendix G: Security
Settings Reference

In Django, knowing which setting should be set to what value in development vs production requires
an unfortunate amount of domain knowledge. This appendix is a reference for better understanding
how to configure a Django project for both development and production.

Setting Development Production

ALLOWED_HOSTS any list See subsection 33.2.4

Cross Site Request Forgery protection See next page See next page

DEBUG True False
DEBUG_PROPAGATE_EXCEPTIONS False False
Email SSL See next page See next page

MIDDLEWARE_CLASSES Standard Add SecurityMiddleware

SECRET_KEY Use cryptographic key See section 5.3

SECURE_CONTENT_TYPE_NOSNIFF True True
SECURE_PROXY_SSL_HEADER None See next page

SECURE_SSL_HOST False True
SESSION_COOKIE_SECURE False True
SESSION_SERIALIZER See below See next page

Table 35.2: Security Settings Reference

487

Chapter 35: Appendix G: Security Settings Reference

Cross Site Request Forgery Protection Settings

For most cases, the standard Django defaults for these settings are adequate. This list provides refer-
ences to edge cases and the CSRF setting documentation that might provide mitigation:

ä Internet Explorer and CSRF failure: docs.djangoproject.com/en/1.11/ref/
settings/#csrf-cookie-age

ä Cross-subdomain request exclusion, (e.g. posting from vanilla.twoscoopspress.com
to chocolate.twoscoopspress.com): docs.djangoproject.com/en/1.11/ref/
settings/#csrf-cookie-domain

ä Changing the default CSRF failure view: docs.djangoproject.com/en/1.11/ref/
settings/#csrf-failure-view

Email SSL

Django now supports secure connections to SMTP servers. If emails from a site contains security-
related material, we strongly suggest using this feature. Documentation on the following settings
begins at docs.djangoproject.com/en/1.11/ref/settings/#email-use-tls

ä EMAIL_USE_TLS
ä EMAIL_USE_SSL
ä EMAIL_SSL_CERTFILE
ä EMAIL_SSL_KEYFILE

SESSION_SERIALIZER

Per subsection 26.10.4:

SESSION_SERIALIZER = django.contrib.sessions.serializers.JSONSerializer.

SECURE_PROXY_SSL_HEADER

For some setups, most notably Heroku, this should be:

SECURE_PROXY_SSL_HEADER = (`HTTP_X_FORWARDED_PROTO', `https')

488

https://docs.djangoproject.com/en/1.11/ref/settings/#csrf-cookie-age
https://docs.djangoproject.com/en/1.11/ref/settings/#csrf-cookie-age
https://docs.djangoproject.com/en/1.11/ref/settings/#csrf-cookie-domain
https://docs.djangoproject.com/en/1.11/ref/settings/#csrf-cookie-domain
https://docs.djangoproject.com/en/1.11/ref/settings/#csrf-failure-view
https://docs.djangoproject.com/en/1.11/ref/settings/#csrf-failure-view
https://docs.djangoproject.com/en/1.11/ref/settings/#email-use-tls

Appendix H: Handling Security Failures

Have a Plan Ready for When Things Go Wrong

Handling security failures is incredibly stressful. There is a sense of urgency and panic that can over-
whelm our better judgement, leading to snap decisions that can involve ill-advised ‘bug fixes’ and
public statements that worsen the problem.

Therefore, it’s critical that a point-by-point plan be written and made available to maintainers and
even non-technical participants of a project. Here is a sample plan:

1 Shut everything down or put it in read-only mode.
2 Put up a static HTML page.
3 Back everything up.
4 After reading docs.djangoproject.com/en/dev/internals/security/, email secu-

rity@djangoproject.com about your security-related problem, even if it’s your fault.
5 Start looking into the problem.

Let’s go over these steps:

Shut Everything Down or Put It in Read-Only Mode

The first thing to do is remove the ability for the security problem to continue. That way, further
damage is hopefully prevented.

On Heroku:

489

https://docs.djangoproject.com/en/dev/internals/security/

Chapter 35: Appendix H: Handling Security Failures

Example 35.17: Turning on Maintenance Mode for Heroku Projects

$ heroku maintenance:on
Enabling maintenance mode for myapp... done

For projects you deploy yourself or with automated tools, you’re going to have create this capability
yourself. Fortunately, other people have faced this before so we come prepared with reference material:

ä cyberciti.biz/faq/custom-nginx-maintenance-page-with-http503 for putting
up maintenance 503 pages.

ä github.com/shanx/django-maintenancemode allows you to turn a site on and off with
a management command.

ä github.com/alsoicode/django-maintenancemode-2 is a database-powered solution
great for flipping portions of a site in and out of read-only mode.

ä Other tools can be found at djangopackages.org/grids/g/emergency-management

Put Up a Static HTML Page

You should have a maintenance page formatted and ready to go when you launch your project. This
way, when things go wrong and you’ve shut everything down, you can display that to the end user. If
done well, the users might understand and give you the breathing room to work out the problem.

Back Everything Up

Get a copy of the code and then the data off the servers and keep it on a local hard drive or SSD. You
might also consider a bonded, professional storage company.

Why? First, when you back things up at this stage, you are protecting your audit trail. This might
provide you with the capability to determine where and when things went wrong.

Second, and this might be unpleasant to hear, but malignant staff can cause as many problems as
any bug or successful penetration. What that means is that the best software-based security is useless
against a developer who creates a backdoor or a non-technical staff level user who decides to cause
trouble.

490

https://www.cyberciti.biz/faq/custom-nginx-maintenance-page-with-http503/
https://github.com/shanx/django-maintenancemode
https://github.com/alsoicode/django-maintenancemode-2
https://djangopackages.org/grids/g/emergency-management/

Email security@djangoproject.com, Even if It’s Your Fault

As long as your problem is security related, read through docs.djangoproject.com/en/dev/
internals/security/, then send a quick email summarizing the problem. Ask for help while
you are at it.

There are a number of reasons why this is important:

ä Writing up a quick summary will help you focus and gather your thoughts. You’re going to
be under an amazing amount of stress. The stress and urgency of the situation can make you
attempt stupid things that can aggravate the problem.

ä You never know, the Django security team might have good advice or even an answer for you.
ä It might be a Django problem! If that is the case, the Django security team needs to know so

they can mitigate the problem for everyone else before it becomes public.

TIP: Jacob Kaplan-Moss on Reporting to the Django Project

Former Django BDFL and former Director of Security for Heroku Jacob Kaplan-Moss
says, “I’d much rather have people send things that aren’t actual problems in Django to secu-
rity@djangoproject.com than accidentally disclose security issues publicly because they don’t
know better.”

Start Looking Into the Problem

You’ve shut things down, backed everything up, are displaying a static HTML page, emailed secu-
rity@djangoproject.com, and are looking at the problem. By following the above steps, you’ve given
yourself (and possibly your team) time to breathe and figure out what really happened.

This will be a stressful time and people will be on the edge of panic. Start doing research, perhaps in
this book, ask questions as per Chapter 34: Where and How to Ask Django Questions, and find a
resolution.

Before you implement a correction, it’s often better to make sure you have a real, proper fix for the
problem then do a rushed emergency patch that destroys everything. Yes, this is where tests and
continuous integration shine.

491

https://docs.djangoproject.com/en/dev/internals/security/
https://docs.djangoproject.com/en/dev/internals/security/

Chapter 35: Appendix H: Handling Security Failures

Stay positive: now is the time for everyone to come together and fix the problem. Start taking notes,
ask for help from the best people you know, remind yourself (or the team) that you have the will and
the smarts to fix things, and make things right!

WARNING: The Nightmare of the Zero-Day Attack

Zero-day attacks are attacks on vulnerabilities that are known to the public or a closed list
but still unpatched. For example:

ä Attacks the day of a software update release, right before most people get around to
installing the software update.

ä Attacks right after a user writes up a blog post about a vulnerability they found, before
package maintainers have the chance to write and release a patch.

ä Attacks targeting vulnerabilities in discussion on a closed security mailing list.

With zero-day attacks, there is often no time to address and patch the vulnerability, making
the compromise especially difficult to manage. If there was ever a reason to have a battle plan
for handling security issues, this is it.

See en.wikipedia.org/wiki/0day

492

https://en.wikipedia.org/wiki/0day

Appendix I: WebSockets with Channels

Already mentioned in Chapter 25: Asynchronous Task Queues, Channels provides the capability
for Django to handle WebSockets. The advantage of using Channels for this purpose is that unlike
alternative approaches such as Tornado or Node.js , Channels allows us to use Websockets in a way
very similar to views. Better yet, by using Channels, we can access our project’s code base, allowing
us to access our models and other custom code. We’ve found Channels to be a very powerful tool,
especially when we follow the same practices we espouse in the rest of this book.

Keep in mind that the advantage of WebSockets is much more than providing a real-time interface.
It’s that the protocol is lighter than HTTP. This makes it a faster way to transmit data back and forth
between client and server.

Here are our thoughts on using Channels based off lessons learned:

Each Browser Tab Has Its Own WebSocket Connection

If a user has one hundred tabs open to our project, then they are connecting to us with one hundred
WebSockets. As can be imagined, this causes browsers to crash and if enough users share this behavior,
can overload servers. While we can’t realistically force users to close their tabs, we can optimize servers
on our end. We cover this in Chapter 24: Finding and Reducing Bottlenecks.

Another option is to track the number of WebSockets a particular user has to your system. If they
have more than twenty (or any number of your choosing) open, then close the connections that don’t
seem to be doing anything. We found this to be a pretty effective way of protecting servers from
unnecessary load. Unfortunately, there isn’t yet a stock solution for resolving things in this manner.

493

Chapter 35: Appendix I: WebSockets with Channels

Expect WebSocket Connections to Drop All the Time

WebSockets in Channels works very differently than the typical Django request-response cycle. In-
stead of receiving an HTTP request from a user and then sending out an HTTP response in the
form of HTML or JSON, WebSockets open a constant connection, or socket, between the server
and the browser. Hence the term ‘WebSocket’.

The problem is that the odds are stacked against the connection’s survival. Let’s go over some of what
threatens it, shall we?

ä Small amounts of latency between the browser and the server
ä The server throws the equivelant of the 500 error
ä The server crashes
ä The browser tab crashing
ä The browser crashing
ä The user putting their computer to sleep

Rather than address this problem with some kind of long poll fallback like socket.io or SockJS,
Django Channels just lets the connection die. When this happens, the client has to trigger a new
connection. Conveniently, Django Channels provides a small JavaScript library that creates a new
connection when the old one dies.

The important thing in all this is to remember is that when using Channels we have to take into
account that long polling isn’t an option we can use.

Channels Works Better With Python 3.6+

Our experience is that WebSockets is more stable on Python 3.6. We don’t have evidence to back up
this claim, but it makes a bit of sense when we think about it. The asyncio standard library package
powering Channels needed time to mature. By Python 3.6 it had truly arrived.

What we’re excited by is the hope that at some point Channels will support the uvloop library.
For reference, uvloop is a drop-in replacement for asyncio that provides immense speed boosts,
putting Django in the realm of Node.js performance—or better.

494

Validate Incoming Data!

WebSockets provide another means for our users to send data to our project. As always, validate in-
coming data before you do anything else with it. We’ve used both DjangoForms and DjangoREST
FrameworkSerializers in this capacity. We cover the former technique in depth in Section 12.1: Val-
idate All Incoming Data With Django Forms.

Watch Out For Spaghetti Code

Alright, it’s time for an admission: Our first real effort with Channels turned into a nasty plate of
spaghetti code. We had a blast putting it together but when we were done we realized our backend
code was unmaintainable.

Later we took our time, leaned on the concept of fat models and helper files documented as we
worked, wrote better tests, and embraced Generic Consumers as if they were Class-Based Views. In
other words, we practiced what we preach.

In talking to other coders we discovered we weren’t the only ones whose first Channels project turned
out messy. The lesson learned from this is that in the excitement to play with Django Channels, it’s
easy to make basic mistakes. So do yourself a favor the first time you write Channels code: Remember
to take the time and use standard best practices. Especially when it comes to writing tests: channels.
readthedocs.io/en/stable/testing.html

495

https://channels.readthedocs.io/en/stable/testing.html
https://channels.readthedocs.io/en/stable/testing.html

Chapter 35: Appendix I: WebSockets with Channels

496

Acknowledgments

This book was not written in a vacuum. We would like to express our thanks to everyone who had a
part in putting it together.

The Python and Django Community

The Python and Django communities are an amazing family of friends and mentors. Thanks to the
combined community we met each other, fell in love, and were inspired to write this book.

Technical Reviewers for 1.11

Matt Braymer-Hayes is a data analyst and software developer interested in building tools that make
analytics easier. He works on external and internal analysis products at ECONorthwest, an eco-
nomic consulting firm. He is currently working on real estate redevelopment models, technical
editing for Two Scoops of Django 1.11, and the occasional pull request. He lives in Portland,
Oregon with his wife Katie.

Nathan Cox is a bleeding edge language enthusiast and purveyor of best-practice methodologies.
While a Django developer by trade, Nathan delights in discovering the best way to solve a
given problem across a multitude of platforms and languages, then teaching those solutions to
his peers. When he isn’t buried in his work Nathan is an active martial artist and motorcycle
lover. He lives in California with his wife and children but dreams of travels abroad.

Ola Sendecka is a Python and Django enthusiast who fell in love with Django in 2010 and stayed in
the community ever since. She is currently working as a senior software engineer in London. In
2013 she started her adventure with conference organising and she was involved with various
DjangoCon Europes and Django: Under the Hoods conferences. Together with her friend Ola

497

http://www.econw.com/

Chapter 35: Acknowledgments

Sitarska, she co-founded Django Girls djangogirls.org and she is now a part of Django
Girls Foundation. She also runs the YouTube channel “Coding is For Girls” (youtube.com/
channel/UC0hNd2uW8jTR5K3KBzRuG2A), where she teaches basics of Python to beginners.

Jannis Gebauer is a serial founder, developer at heart and open source enthusiast. Among other
projects, he currently runs pyup.io, is the current maintainer of djangopackages.org, and
is doing occasional consultant work for selected clients. He lives in Germany where he likes
to cook and play with his dog.

Haris Ibrahim K V is a human (WIP) living in Kerala, India. He’s also a son, brother, husband,
speaker, teacher and a computer Science Engineer at the Karnataka Learning Partnership
(klp.org.in/). He wrote the book “A ‘Psyco’ Pat” (sosaysharis.wordpress.com/
the-psycho-book/). Compelled to help others learn, he has been a DjangoGirls coach,
a PyCon India organizers, and herded geeks at hasgeek.com.

Tom Christie is an API Engineer, who works on Open Source Software full-time as a result of a
collaborative funding model. He is currently working on both his main project, Django REST
framework, as well as on a newer framework, API Star. He lives and works in Brighton UK,
with his Wife and two kids.

Michael Herman is a software engineer and educator who lives and works in the Denver/Boulder
area. He started using Django in 2010 and is the co-founder/author of realpython.com.

Humphrey Butau is the founder and current chairman of PyZim, an organization focused on pro-
moting the use of Python and Django in Zimbabwe. He has co-organized PyConZim 2016
(zw.pycon.org) and Django girls events in Zimbabwe. He also enjoys growing vegetables
and playing with his two sons, one daughter and wife.

Security Reviewers for 1.11

Erik Romijn is the co-founder and CTO of a small Django development firm in Amsterdam. Erik
is a core Django committer, chair of the Dutch Django Association, member of the DSF
Code of Conduct committee, and co-organiser of various conferences. Erik has a specific in-
terest in ethical issues and the well-being around communities and development. Some of
Erik’s side projects include the Less Obvious Conference Checklist (github.com/erikr/
lessobviouschecklist) and the Open-Source Happiness Packets (happinesspackets.
io).

James Bennet fell in love with Django shortly after it was initially released, and worked for several
years at the Lawrence Journal-World. Now he’s at Clover Health in San Francisco, and serves
on Django’s technical board and security team, as well the board of directors of the DSF.

498

https://djangogirls.org/
https://www.youtube.com/channel/UC0hNd2uW8jTR5K3KBzRuG2A
https://www.youtube.com/channel/UC0hNd2uW8jTR5K3KBzRuG2A
https://pyup.io/
https://djangopackages.org/
https://klp.org.in/
https://sosaysharis.wordpress.com/the-psycho-book/
https://sosaysharis.wordpress.com/the-psycho-book/
https://hasgeek.com
https://realpython.com
http://zw.pycon.org/
https://github.com/erikr/lessobviouschecklist
https://github.com/erikr/lessobviouschecklist
https://happinesspackets.io/
https://happinesspackets.io/

Florian Apolloner started using Django in early 2007 as part of the ubuntuusers.de team. When
he is not fixing servers he tries to find security issues in Django and related projects. He works
and lives in Graz, Austria.

Aymeric Augustin is a software engineer, a proud member of the Django community, and a com-
mitter since 2011. In his professional and open-source projects, he likes organizing teams and
setting up tools in order to create better software. He lives near Paris in France.

Contributors to 1.11 Beta

Andrés Pérez-Albela H., Leila Loezer, Martin Koistinen, Miguel Pachas, José Augusto Costa Mar-
tins Jr., Daniel Bond, John Carter, Bernard ‘BJ’ Jauregui, Peter Inglesby, Michael Scharf, Jason
Wolosonovich, Dipanjan Sarkar, Anish Menon, Ramon Maria Gallart Escolà, You Zhou

Contributors to 1.11 Alpha

Bassem Ali, Jonathan Mitchell, Anton Backer, Martijn Mhkuu, Photong, Michael John Barr, Kevin
Marsh, Greg Smith, Muraoka Yusuke, Michael Helmick, Zachery Tapp, Jesús Gómez, Klemen
Strušnik, Peter Brooks, Bernat Bonet, Danilo Cabello, Alenajk, Piotr Szpetkowski, Nick Wright,
Michael Sanders, Nate Guerin, David Adam Hernandez, Brendan M. Sleight, Maksim Iakovlev,
and David Dahan

If your name is not on this list but should be, please send us an email so that we can make corrections!

Technical Reviewers for 1.8

The following were critical in supporting the 1.8 edition of this book.

Bartek Ogryczak
Barry Morrison
Kevin Stone
Paul Hallett
Saurabh Kumar
Erik Romijn - Security Reviewer

499

https://ubuntuusers.de/

Chapter 35: Acknowledgments

Contributors to 1.8
The following individuals helped us improve this edition: Kenneth Love, Patrick McLoughlan, Se-
bastián J. Seba, Kevin Campbell, Doug Folland, Kevin London, Ramon Maria Gallart Escolà, Eli
Bendersky, Dan O’Donovan, Ryan Currah, Shafique Jamal, Russ Ferriday, Charles L. Johnson,
Josh Wiegand, William Vincent, Tom Atkins, Martey Dodoo, Krace Kumar Ramaraju, Felipe Ar-
ruda Pontes, Ed Patrick Tan, Sven Aßmann, Christopher Lambacher, Colin O’Brien, Sebastien de
Menten, Evangelos Mantadakis, Silas Wegg, Michal Hoftich, Markus Holterman, Pat Curry, Gas-
ton Keller, Mihail Russu, Jean-Baptiste Lab, Kaleb Elwert, Tim Bell, Zuhair Parvez, Ger Schinkel,
Athena Yao, Norberto Bensa, Abhaya Agarwal, Steve Sarjeant, Karlo Tamayo, Cary Kempston, José
Padilla, Konstantinos Faliagkas, Kelsey Gilmore-Innis, Adam Bogdał, Tyler Davis, Javier Liendo,
Kevin Xu, Michael Barr, Caroline Simpson, John Might, Tom Christie, Nicolas Pannetier, Marc
Tamlyn, Loïc Bistuer, Arnaud Limbourg, Alasdair Nicol, and Ludvig Wadenstein.

Technical Reviewers for 1.6
The following were critical in supporting the 1.6 edition of this book.

Aymeric Augustin
Barry Morrison
Ken Cochrane
Paul McMillan - Security Reviewer

Technical Reviewers for 1.5
The following individuals gave us their invaluable help, aid and encouragement for the initial release
of this book. We give special recognition here to Malcolm for his contributions to this book and the
world.

Malcolm Tredinnick lived in Sydney, Australia and spent much of his time travelling internationally.
He was a Python user for over 15 years and Django user since just after it was released to the
public in mid-2005, becoming a Django core developer in 2006. A user of many programming
languages, he felt that Django was one of the better web libraries/frameworks that he used
professionally and was glad to see its incredibly broad adoption over the years. In 2012 when
he found out that we were co-hosting the first PyCon Philippines, he immediately volunteered
to fly out, give two talks, and co-run the sprints. Sadly, he passed away in March of 2013, just

500

two months after this book was released. His leadership and generosity in the Python and
Django community will always be remembered.

The following were also critical in supporting the 1.5 edition of this book.

Kenneth Love
Lynn Root
Barry Morrison
Jacob Kaplan-Moss
Jeff Triplett
Lennart Regebro
Randall Degges
Sean Bradley

Chapter Reviewers for 1.5

The following are people who gave us an amazing amount of help and support with specific chapters
during the writing of the 1.5 edition. We would like to thank Preston Holmes for his contributions
to the User model chapter, Tom Christie for his sage observations to the REST API chapter, and
Donald Stufft for his support on the Security chapter.

Contributors to 1.5

The following individuals sent us corrections, cleanups, bug fixes, and suggestions. This includes:
Álex González, Alex Gaynor, Amar Šahinović, Andrew Halloran, Andrew Jordan, Anthony Burke,
Aymeric Augustin, Baptiste Mispelon, Bernardo Brik, Branko Vukelic, Brian Shumate, Carlos Car-
doso, Charl Botha, Charles Denton, Chris Foresman, Chris Jones, Dan Loewenherz, Dan Poirier,
Darren Ma, Daryl Yu, Dave Castillo, Dave Murphy, David Beazley, David Sauve, Davide Rizzo,
Deric Crago, Dolugen Buuraldaa, Dominik Aumayr, Douglas Miranda, Eric Woudenberg, Erik
Romijn, Esteban Gaviota, Fabio Natali, Farhan Syed, Felipe Coelho, Felix Ingram, Florian Apol-
loner, Francisco Barros, Gabe Jackson, Gabriel Duman, Garry Cairns, Graham Dumpleton, Hamid
Hoorzad, Hamish Downer, Harold Ekstrom, Hrayr Artunyan, Jacinda Shelly, Jamie Norrish, Ja-
son Best, Jason Bittel, Jason Novinger, Jannis Leidel, Jax, Jim Kalafut, Jim Munro, João Oliveira,
Joe Golton, John Goodleaf, John Jensen, Jonas Obrist, Jonathan Hartley, Jonathan Miller, Josh
Schreuder, Kal Sze, Karol Breguła, Kelly Nicholes, Kelly Nichols, Kevin Londo, Khee Chin, Lach-
lan Musicman, Larry Prince, Lee Hinde, Maik Hoepfel, Marc Tamlyn, Marcin Pietranik, Martin

501

Chapter 35: Acknowledgments

B”achtold, Matt Harrison, Matt Johnson, Michael Reczek, Mickey Cheong, Mike Dewhirst, Myles
Braithwaite, Nick August, Nick Smith, Nicola Marangon, Olav Andreas Lindekleiv, Patrick Jacobs,
Patti Chen, Peter Heise, Peter Valdez, Phil Davis, Prahlad Nrsimha Das, R. Michael Herberge,
Richard Cochrane, Richard Corden, Richard Donkin, Robbie Totten, Robert W�glarek, Rohit Ag-
garwa, Russ Ferriday, Saul Shanabrook, Simon Charettes, Stefane Fermigier, Steve Klass, Tayfun
Sen, Tiberiu Ana, Tim Baxter, Timothy Goshinski, Tobias G. Waaler, Tyler Perkins, Vinay Sajip,
Vinod Kurup, Vraj Mohan, Wee Liat, William Adams, Xianyi Lin, Yan Kalchevskiy, Zed Shaw,
and Zoltán Árokszállási.

Typesetting

We thank Laura Gelsomino for helping us with all of our LaTeX issues and for improving upon the
book layout.

Laura Gelsomino is an economist keen about art and writing, and with a soft spot for computers,
who found the meeting point between her interests the day she discovered LaTeX. Since that
day, she habitually finds any excuse to vent her aesthetic sense on any text she can lay her hands
on, beginning with her economic models.

We originally typeset the alpha version of the 1.5 edition with iWork Pages. Later editions of the
book were written using LaTeX. All editions have been written on 2011 Macbook Airs.

502

List of Figures

1 Throwing caution to the wind. xxx

1.1 Using import * in an ice cream shop. 8

2.1 Pip, virtualenv, and virtualenvwrapper in ice cream bar form. 17

3.1 Yet another reason why repositories are important. 23
3.2 Three-tiered scoop layout. 24
3.3 An isolated environment, allowing your ice cream to swim freely. 27
3.4 Project layout differences of opinion can cause ice cream fights. 31

4.1 It’ll make more sense when you see the next figure. 33
4.2 Did that make sense? If not, read it again. 34
4.3 Our vision for Icecreamlandia. 36
4.4 Two small, single-flavor pints are better than a giant, 100-flavor container. 37

5.1 As your project grows, your Django settings can get pretty complex. 41
5.2 While we’re at it, let’s go down this path. 59

6.1 Cones migrating south for the winter. Django’s built-in migration system started out
as an external project called South. 71

6.2 A common source of confusion. 75

7.1 This flavor of ice cream contains raw SQL. It’s a bit chewy. 96
7.2 Because no one loves ice cream quite like a database. 101

8.1 Should you use a FBV or a CBV? flow chart. 104
8.2 Loose coupling of chocolate chip cookie dough ice cream. 106

9.1 If you look at sprinkles closely, you’ll see that they’re Python decorators. 123

503

List of Figures

10.1 Popular and unpopular mixins used in ice cream. 126
10.2 The other CBV: class-based vanilla ice cream. 132
10.3 Views + ModelForm Flow . 135
10.4 Views + Form Flow . 139

11.1 At Tasty Research, every flavor must begin with “Tasty”. 147
11.2 Why would they do this to us? . 155

12.1 When ice cream validation fails. 170

13.1 An excerpt from the Zen of Ice Cream. 180
13.2 Two Scoops, official halftime sponsor of the Super Bowl. 182
13.3 Bubble gum ice cream looks easy to eat but requires a lot of processing. 188

14.1 This filter transforms 1-2 flavors of ice cream into vanilla, outputting to a cone. . . . 202

16.1 An Ice Cream as a Service API. 228
16.2 A tasty pie is one filled with ice cream. 240

17.1 Server-side vs. client-side ice cream. 242

18.1 Replacing more core components of cake with ice cream seems like a good idea.
Which cake would win? The one on the right, of course. 253

19.1 Chocolate chip ice cream with an admin interface. 257
19.2 Admin list page for an ice cream bar app. 258
19.3 What? An admin interface for ice cream bars? . 259
19.4 Improved admin list page with better string representation of our objects. 260
19.5 Further improvements to the admin list page. 261
19.6 Displaying URL in the Django Admin. 263

20.1 This looks strange too. 270

21.1 A jar of Django’s mysterious secret sauce. Most don’t have a clue what this is. 277
21.2 The secret is out. It’s just hot fudge. 278

22.1 Test as much of your project as you can, as if it were free ice cream. 306

23.1 Even ice cream could benefit from documentation. 321

504

List of Figures

24.1 With your site running smoothly, you’ll be feeling as cool as a cone. 333

27.1 CRITICAL/ERROR/WARNING/INFO logging in ice cream. 372
27.2 Appropriate usage of DEBUG logging in ice cream. 377

29.1 A utility belt for serious ice cream eaters. 390
29.2 Six smooths over the differences between 2 and 3. 393

31.1 Example of a basic multi-server setup. 416
31.2 Managing an ice cream replenishment process with Supervisord. 417
31.3 Example of an advanced multi-server setup. 418
31.4 How ice cream is deployed to cones and bowls. 422
31.5 Infrastructure automation can be very powerful. 424
31.6 Hopefully, one day someone will invent a one-button machine that deploys Django

projects and makes ice cream. 429

32.1 It’s easy to get carried away. Pictured are two absolutely unnecessary Tox environ-
ments, just so we could get extra tastes. 434

34.1 The ice cream eating help desk. 452

505

List of Tables

Author’s Ice Cream Preferences . xxxiii

1.1 Imports: Absolute vs. Explicit Relative vs. Implicit Relative 6

3.1 Repository Root Files and Directories . 26
3.2 Django Project Files and Directories . 26

5.1 Settings files and their purpose . 44
5.2 Setting DJANGO_SETTINGS_MODULE per location 45

6.1 Pros and Cons of the Model Inheritance Styles 65
6.2 When to Use Null and Blank by Field . 74
6.3 When to Use Null and Blank for Postgres Fields 80

7.1 When to Use Transactions . 101

10.1 Django CBV Usage Table . 128

13.1 Template Tags in base.html . 192
13.2 Template Objects in about.html . 194

15.1 DTL vs Jinja2 Syntax Differences . 209

16.1 HTTP Methods . 219
16.2 HTTP Status Codes . 220
16.3 URLConf for the Flavor REST APIs . 224

18.1 Fad-based Reasons to Replace Components of Django 252

23.1 Documentation Django Projects Should Contain 320

506

List of Tables

25.1 Should a Project Have a Task Queue? . 336
25.2 Comparing Task Queue Software . 338

26.1 Password Strength: Length vs Complexity . 366

31.1 Gunicorn vs Apache vs uWSGI . 420
31.2 Timeline of DevOps Tools . 425
31.3 Infrastructure Automation Tool Comparison . 428

32.1 Continuous Integration Services . 435

35.1 django.utils.translation Function Reference . 472

35.2 Security Settings Reference . 487

507

List of Tables

508

Index

–settings, 44, 45
<configuration_root>, 23, 24
<django_project_root>, 23, 26
<repository_root>, 23, 25, 56
__str__(), 259–260, 485
__unicode__(), 485
{% block %}, 192, 193, 196
{% extends %}, 193
{% include %}, 196
{% load %}, 192
{% static %}, 192
{{ block.super }}, 192–195

abstract base classes, 64–67, 85
AbstractBaseUser, 272
AbstractUser, 271
ACID, 97, 253–255
Acknowledgments, 497–502
Additional Resources, 467–470
AJAX, 167, 217, 221, 246–248
allow_tags warning, 263
ALLOWED_HOSTS, 346, 444–445
Ansible, 422
Apache, 49, 331, 332, 416, 419–422

Environment Variables, 49, 422
assertions, 309
assets/, 27
Asynchronous Task Queues, 335–344

ATOMIC_REQUESTS, 328
Avoid Using Import *, 7–8, 47
AWS Lambda, 336–339, 343

BASE_DIR, 58–61
BitBucket, 282
Bottleneck Analysis, 99, 325–334

caching, 72, 181, 204, 251, 326, 327, 330–331,
334, 382

Cassandra, 252
CBVs, see Class-Based Views
CDN, see Content Delivery Networks
Class-Based Views, 103–116, 120, 124–144,

197, 217, 326
clean() methods, 152–154, 169, 170
Code of Conduct, 449
Coding Style, 1–12
Content Delivery Networks, 332, 357, 416
Continuous Integration, 99, 311, 431–435, 484
Core API, 238–239
CouchDB, 252–253
CSRF, 166–167, 246–248, 346, 351, 374
custom field validators, 147, 148, 150, 152
Custom User models, 269–275

database, 87
Database Migrations, 71
database normalization, 72–73

509

Index

DEBUG, 44, 46, 346
debugging, 437–447

mirroring production, 443
UserBasedExceptionMiddleware, 443–444

Decorators, 121–124
denormalization, 72–73, 252, 255
deployment, 403–411, 413–429, 457
Django Code of Conduct, 449
Django Coding Style Guidelines, 8–10
Django Packages, 277–296, 311
Django Templates and Jinja2, 209–215
Django’s Admin, 257–268

Secure the Django Admin, 266–268
django-admin.py, 18, 21–24, 28–31, 45, 54
django-admin.py startproject, 21–24
django.contrib.admin, 257–268
django.contrib.admindocs, 264–268
django.contrib.auth.mixins.LoginRequiredMixin,

130–133, 136–137
django.contrib.humanize, 390
django.contrib.messages, 136–138
django.core.exceptions

ImproperlyConfigured, 395
ObjectDoesNotExist, 395–396
PermissionDenied, 118, 397

django.core.serializers
json.DjangoJSONEncoder, 400
pyyaml, 400
xml_serializer, 401

django.db, 63–85
django.db.migrations, 67–71
django.db.migrations.RunPython.noop, 69–70
django.db.models, 63–82
django.db.transaction, 97–102
django.forms.renderers.TemplatesSetting, 174

django.http.HttpResponse, 131
django.http.HttpResponseForbidden, 397
django.http.HttpResponseRedirect, 131
django.http.StreamingHttpResponse, 101–102
django.utils.decorators

decorator_from_middleware, 390–391
method_decorator, 390

django.utils.encoding.force_text, 391, 476
django.utils.functional.cached_property, 391
django.utils.html.format_html(), 352, 391–392
django.utils.html.strip_tags(), 392
django.utils.html.timezone, 395
django.utils.six, 392–393
django.utils.translation, 395, 472–474
django.views.generic.View, 125, 128–129, 141–

143
DJANGO_SETTINGS_MODULE, 45
Docker, 19–20
Documentation, 264–268, 317–323
docutils, 264
Don’t Repeat Yourself, 41, 43, 106, 108, 110, 157,

206, 304

Elastic Beanstalk, 51, 403–411
Enum, 78–79
environment variables, 48–56
Environment Variables Pattern, 48–54, 479
Error Page Templates, 198–199
eval(), 353
exec(), 353
execfile(), 353
Explicit Relative Imports, 4–7

Fat Models, 82–84
FBVs, see Function-Based Views
Feature Flags, 445–447

510

Index

FileField, 75
filters, 201–203, 305
fixtures, 15, 304–305
form.is_valid(), 169
form_invalid, 172
form_invalid(), 131–132
form_valid(), 131, 137–139, 169, 170
Forms, 7, 131–141, 145–176, 356–361
FrankenDjango, 251
Function-Based Views, 99, 103–124, 141–143,

217
functools.wraps(), 123

GCBVs, see Generic Class-Based Views
Generic Class-Based Views, 125, 128–129, 142–

144, 460
get_absolute_url(), 262
get_env_variable(), 52, 53
get_object_or_404(), 88, 396
get_secret(), 54–56
Git, 19, 22, 281, 283
GitHub, 19, 279, 281–283, 366, 431, 434
GitLab, 19, 282, 283, 431, 434
Grunt, 11
Gulp, 11

Heroku, 51, 403–411, 489–490
HttpRequest, 117–122, 494
HttpResponse, 121–122, 124, 494

i18n, 471–477
idempotent, 340–341
ImproperlyConfigured, 53
indexes, 85, 96–97
INSTALLED_APPS, 33, 264
intcomma, 390
Integration Tests, 310–311

is_valid(), 169

JavaScript, 241–249
Jenkins, 434
Jinja2, 209–215

context processors, 214
CSRF, 211
Django-style Filters, 212–214
jinja2.Environment, 214–215
Template Tags, 212

JQuery, 246
JSCS, 11
JSON, 54–56, 142, 217, 220–225, 230, 300, 304,

340, 346, 352, 355, 397–400, 422

Keep It Simple, Stupid, xxxiii–xxxiv
kept out of version control, 42
KISS, xxxiii–xxxiv

license, ii
Linux, 14, 19, 27, 28, 49, 379, 464
list_display, 260–261
local_settings anti-pattern, 42–43, 48, 54, 479
logging, 371–380

CRITICAL, 372, 373
DEBUG, 372, 375–377
ERROR, 372, 373
exceptions, 377–378
INFO, 372, 375
WARNING, 372, 374

loggly.com, 380
logrotate, 378
Loose coupling, 106, 108

Mac OS X, 14, 19, 27, 28, 49, 323, 379, 464
makemigrations, 68
manage.py, 18, 54

511

Index

mark_safe, 352
Markdown, 321–322
Memcached, 253, 327, 329, 330, 416
Mercurial, 25, 283
Meta.exclude, 358–361
Meta.fields, 358–361
method resolution order, 127
MIGRATION_MODULES, 68
Migrations, 67–71
mixins, 125–127, 138, 139, 161, 388
mod_wsgi, 416
model _meta, 80–81
Model Choice Constants, 77–79
model managers, 81–82, 382, 383
ModelForms, 145, 146, 150, 152, 156, 170, 171,

358, 359, 361, 385
models, 7, 63–85
models.field.BinaryField, 75–76

warning, 75–76
models.field.GenericForeignKey, 76–77
MongoDB, 252–253
Mozilla, 477
multi-table inheritance, 64, 65, 67
Multiple Settings Files, 43–47
MySQL, 14, 71, 102, 186, 328–330, 416

NASA, xxvii, 297
Never Code to the IDE, 11
Nginx, 54, 331, 332, 407, 419–422
node.js, xxvii, 243, 493, 494
NoSQL, 252–255

Opbeat, 380
Open Source Initiative, 288, 289
Open Source Licenses, 289
ORM, xxxiv, 14, 63–85, 87–102, 139, 170, 184,

186, 187, 252–253, 274, 285, 304, 326,
327, 361–362, 476

PaaS, see Platforms as a Service
Packages A-D

awesome-slugify, 393–394, 460
bleach, 458
Boto3, 343
cached-property, 391
celery, 189, 337–339, 343–344, 381, 417,

456
Cookiecutter, 21, 28–31
cookiecutter, 289–290, 294, 458
cookiecutter-django, 28–31
coverage.py, 298, 312–314, 459
CSScomb, 457
defusedxml, 358, 363–364, 401, 458
dj-stripe, 461
Django Channels, 189, 337–339, 343–344,

456, 493–495
django-admin-honeypot, 266–267, 458
django-allauth, 460, 482
django-autoadmin, 458
django-axes, 458
django-background-tasks, 456
django-braces, 125, 240, 326, 460, 482
django-compressor, 332, 461
django-crispy-forms, 145, 204, 287, 457,

482
django-csp, 352–353, 458
django-debug-toolbar, 44, 112, 295, 325–

328, 437, 455, 482
django-extensions, 63, 85, 326, 461
django-extra-views, 143
django-floppyforms, 145, 457
django-forms-bootstrap, 145

512

Index

django-forms-builder, 457
django-haystack, 461
django-htmlmin, 332, 461
django-js-reverse, 461
django-jsonview, 240, 458
django-maintenancemode, 456, 490
django-maintenancemode2, 456, 490
django-model-utils, 63, 85, 455
django-pipeline, 332, 461
django-ratelimit-backend, 458
django-registration, 460
django-rest-framework, 167, 217–240, 458,

482
django-reversion, 461
django-rq, 456
django-secure, 365, 459
django-tastypie, 239, 458
django-two-factor-auth, 459
django-user-sessions, 459
django-vanilla-views, 143, 460
django-watson, 461
django-wysiwyg, 204
flower, 456
rest_framework.serializers, 401

Packages E-O
envdir, 461
ESLint, 10–11
fabric, 25, 428, 457
factory boy, 305, 459
flake8, 2, 461
gunicorn, 416, 419–422
invoke, 25, 428, 457
ipdb, 439, 455
jinja2, 209–215, 252–253
JSCS, 457

logutils, 379, 457
Mock, 307–309
mock, 305, 459
model mommy, 305, 459

Packages P-Z
celery, 341
pathlib, 59–60, 461
paver, 25
peep, 459
pillow, 455, 482
pip, 16, 18, 20, 264, 278–279, 283, 287, 288,

295, 317, 455, 465
pip-tools, 461
pipenv, 456
psycopg2, 456
pytest, 459
pytest-django, 460
python-dateutils, 460
python-requests, 482
python-social-auth, 460
pytz, 460
pyYAML, 354, 400–401, 461
Redis Queue, 341
requests, 461
rq, 417, 456
silk, 326, 461
sphinx, 283, 284, 317–321, 323, 456
stylelint, 11
supervisor, 417, 457
tox, 433–434, 460
twine, 291–293, 459
uWSGI, 416, 419–422
virtualenv, 16, 20, 27–28, 49, 50, 264, 279,

281, 295, 456, 464, 465
virtualenvwrapper, 16, 17, 50, 456

513

Index

virtualenvwrapper-win, 456
Pandoc, 322
pastebin, 450
PEPs

PEP 257, 321
PEP 263, 471–472
PEP 328, 6–7
PEP 427, 292–293
PEP 8, 2–4, 6–7

pickle, 354–355
Platform as a Service, 403–411
PostgreSQL, 13, 14, 96, 186, 252–253, 328, 329,

416
PowerShell, 50
print(), 375–376
Project Templates, 21–32, 479–480

cookiecutter grid, 21
cookiecutter-django, 21, 28–31, 458
cookiecutter-djangopackage, 290, 294
cookiecutter-pypackage, 290

proxy models, 64, 65
pure functions, 340–341
PyPI, 279, 283, see Python Package Index
Python 3, 481–485
Python Package Index, 273, 278, 287–288, 291–

293, 295, 321–322
python_2_unicode_compatible, 485
PythonAnywhere, 403–411
PYTHONPATH, 18, 45

queries, 87

Rate-Limiting Your API, 236–238
README.rst, 23, 31
Redis, 253, 329, 330, 416–417
Remote Procedure Calls, 231–233

requirements, 56–58, 410
requirements.txt, 23, 28
requirements/, 56
REST APIs, 217–240
reStructuredText, 284, 317–319

SaltStack, 422
SECRET_KEY, 42–43, 48–56, 347
Secrets File Pattern, 54–56, 479
Security, 345–370

2FA, 364–365
allow_tags warning, 263
Checkups, 366
Clickjacking, 363
Code Injection Attacks, 353
Cookie-based sessions, 354–356
CSRF, 166–167, 351
CSRF and Jinja2, 211
defusedxml, 363–364
django-admin-honeypot, 266–267
HSTS, 349–351
HTTPS, 347–351
LoginRequiredMixin, 130
Mass Assignment Vulnerabilities, 361
pickle, 354
Planning for Disaster, 366, 489–492
PyYAML security warning, 354
Secure the Django Admin, 266–268
SECURE_PROXY_SSL_HEADER, 488
SecurityMiddleware, 365
SESSION_SERIALIZER, 488
Settings Reference, 487–488
SSL, 347–348
strip_tags, 392
TOTP, 364–365
Two-Factor Authentication, 364–365

514

Index

Vulnerability Page, 366
XML bombs, 363–364
XSS, 351–353
Zero-Day Attack, 366, 492

security
Content Security Policy, 352–353

select_related(), 187, 326
Sentry, 380, 457
Serverless, 336, 339, 340, 342
settings, 25, 41–61, 443, 444

settings/base.py, 59–61
settings/local.py, 44, 46, 48

settings.CSRF_COOKIE_HTTPONLY, 247–
248

settings/base.py, 52
signals, 381–386
site_assets/, 27
slugify(), 201, 393–394
smoke test, 297
Sphinx, 283
SQLite3, 13, 14
SQLite3„ 433
sqlmigrate, 68
squashmigrations, 68
STATICFILES_DIRS, 27
stylelint, 11
syntactic sugar, 121

template tags, 11, 201, 203–207, 305
templates, 23, 26, 31, 58, 61, 136, 138, 141, 177–

200
TEMPLATES OPTIONS

string_if_invalid, 198
test coverage, 311–314
Testing, 99, 297–315, 389
TimeStampedModel, 66

Tips for Creating Database Migrations, 67
Transactions, 97–102

ATOMIC_REQUESTS, 98–100
MySQL, 102

Twelve Factor App, 479–480

Unicode, 391, 471, 476, 485
unit tests, 299
Upstream Caches, 332
URL namespaces, 109–112
URLConfs, 24, 25, 105–112, 116, 198, 264, 289,

397
User model, 269–275
Utility Modules, 388–389
uvloop, 494
uWSGI, 419–420

validation, 14, 145–176
Vanilla Steak, 128
Varnish, 332, 416

Webpack, 11
Websockets with Django Channels, 493–495
wheel, 292–293, 296
Windows, 14, 16, 19, 28, 49, 50, 243, 323, 379,

420, 464
WSGI, 25, 331, 419–422
WSGI Application Servers, 419–422

XML, 54–56, 217, 346, 358, 397, 401, 422
XML bombs, 363

YAML, 54–56, 217, 346, 354, 397, 400–401
YAML and PyYAML security warning, 354

Zen of Python, 179–181, 206

515

	Dedication
	About the Dedication

	Authors' Notes
	A Few Words From Daniel Roy Greenfeld
	A Few Words From Audrey Roy Greenfeld

	Introduction
	A Word About Our Recommendations
	Why Two Scoops of Django?
	Before You Begin
	This book is intended for Django 1.11 and Python 3.6.x/2.7.12
	Each Chapter Stands On Its Own

	Conventions Used in This Book
	Core Concepts
	Keep It Simple, Stupid
	Fat Models, Utility Modules, Thin Views, Stupid Templates
	Start With Django By Default
	Be Familiar with Django's Design Philosophies
	The Twelve-Factor App

	Our Writing Concepts
	Provide the Best Material
	Stand on the Shoulders of Giants
	Listen to Our Readers and Reviewers
	Publish Errata

	1 Coding Style
	1.1 The Importance of Making Your Code Readable
	1.2 PEP 8
	1.2.1 The 79-Character Limit

	1.3 The Word on Imports
	1.4 Use Explicit Relative Imports
	1.5 Avoid Using Import *
	1.5.1 Other Python Naming Collisions

	1.6 Django Coding Style
	1.6.1 Consider the Django Coding Style Guidelines
	1.6.2 Use Underscores in URL Pattern Names Rather Than Dashes
	1.6.3 Use Underscores in Template Block Names Rather Than Dashes

	1.7 Choose JS, HTML, and CSS Style Guides
	1.7.1 JavaScript Style Guides
	1.7.2 HTML and CSS Style Guides

	1.8 Never Code to the IDE (Or Text Editor)
	1.9 Summary

	2 The Optimal Django Environment Setup
	2.1 Use the Same Database Engine Everywhere
	2.1.1 You Can't Examine an Exact Copy of Production Data Locally
	2.1.2 Different Databases Have Different Field Types/Constraints
	2.1.3 Fixtures Are Not a Magic Solution

	2.2 Use Pip and Virtualenv
	2.2.1 virtualenvwrapper

	2.3 Install Django and Other Dependencies via Pip
	2.4 Use a Version Control System
	2.5 Optional: Identical Environments
	2.5.1 Docker

	2.6 Summary

	3 How to Lay Out Django Projects
	3.1 Django 1.11's Default Project Layout
	3.2 Our Preferred Project Layout
	3.2.1 Top Level: Repository Root
	3.2.2 Second Level: Django Project Root
	3.2.3 Second Level: Configuration Root

	3.3 Sample Project Layout
	3.4 What About the Virtualenv?
	3.4.1 Listing Current Dependencies

	3.5 Going Beyond startproject
	3.5.1 Generating Project Boilerplate With Cookiecutter
	3.5.2 Generating a Starting Project With Cookiecutter Django
	3.5.3 Other Alternatives

	3.6 Summary

	4 Fundamentals of Django App Design
	4.1 The Golden Rule of Django App Design
	4.1.1 A Practical Example of Apps in a Project

	4.2 What to Name Your Django Apps
	4.3 When in Doubt, Keep Apps Small
	4.4 What Modules Belong in an App?
	4.4.1 Common App Modules
	4.4.2 Uncommon App Modules

	4.5 Summary

	5 Settings and Requirements Files
	5.1 Avoid Non-Versioned Local Settings
	5.2 Using Multiple Settings Files
	5.2.1 A Development Settings Example
	5.2.2 Multiple Development Settings

	5.3 Separate Configuration From Code
	5.3.1 A Caution Before Using Environment Variables for Secrets
	5.3.2 How to Set Environment Variables Locally
	5.3.3 How to Unset Environment Variables Locally
	5.3.4 How to Set Environment Variables in Production
	5.3.5 Handling Missing Secret Key Exceptions

	5.4 When You Can't Use Environment Variables
	5.4.1 Using JSON Files
	5.4.2 Using .env, Config, YAML, and XML File Formats

	5.5 Using Multiple Requirements Files
	5.5.1 Installing From Multiple Requirements Files

	5.6 Handling File Paths in Settings
	5.7 Summary

	6 Model Best Practices
	6.1 Basics
	6.1.1 Break Up Apps With Too Many Models
	6.1.2 Be Careful With Model Inheritance
	6.1.3 Model Inheritance in Practice: The TimeStampedModel

	6.2 Database Migrations
	6.2.1 Tips for Creating Migrations
	6.2.2 Adding Python Functions and Custom SQL to Migrations

	6.3 Overcoming Common Obstacles of RunPython
	6.3.1 Getting Access to a Custom Model Manager's Methods
	6.3.2 Getting Access to a Custom Model Method
	6.3.3 Use RunPython.noop to Do Nothing
	6.3.4 Deployment and Management of Migrations

	6.4 Django Model Design
	6.4.1 Start Normalized
	6.4.2 Cache Before Denormalizing
	6.4.3 Denormalize Only if Absolutely Needed
	6.4.4 When to Use Null and Blank
	6.4.5 When to Use BinaryField
	6.4.6 Try to Avoid Using Generic Relations
	6.4.7 Make Choices and Sub-Choices Model Constants
	6.4.8 Better Model Choice Constants Using Enum
	6.4.9 PostgreSQL-Specific Fields: When to Use Null and Blank

	6.5 The Model _meta API
	6.6 Model Managers
	6.7 Understanding Fat Models
	6.7.1 Model Behaviors a.k.a Mixins
	6.7.2 Stateless Helper Functions
	6.7.3 Model Behaviors vs Helper Functions

	6.8 Summary

	7 Queries and the Database Layer
	7.1 Use get_object_or_404() for Single Objects
	7.2 Be Careful With Queries That Might Throw Exceptions
	7.2.1 ObjectDoesNotExist vs. DoesNotExist
	7.2.2 When You Just Want One Object but Get Three Back

	7.3 Use Lazy Evaluation to Make Queries Legible
	7.3.1 Chaining Queries for Legibility

	7.4 Lean on Advanced Query Tools
	7.4.1 Query Expressions
	7.4.2 Database Functions

	7.5 Don't Drop Down to Raw SQL Until It's Necessary
	7.6 Add Indexes as Needed
	7.7 Transactions
	7.7.1 Wrapping Each HTTP Request in a Transaction
	7.7.2 Explicit Transaction Declaration
	7.7.3 django.http.StreamingHttpResponse and Transactions
	7.7.4 Transactions in MySQL
	7.7.5 Django ORM Transaction Resources

	7.8 Summary

	8 Function- And Class-Based Views
	8.1 When to Use FBVs or CBVs
	8.2 Keep View Logic Out of URLConfs
	8.3 Stick to Loose Coupling in URLConfs
	8.3.1 What if We Aren't Using CBVs?

	8.4 Use URL Namespaces
	8.4.1 Makes for Shorter, More Obvious and Don't Repeat Yourself URL Names
	8.4.2 Increases Interoperability With Third-Party Libraries
	8.4.3 Easier Searches, Upgrades, and Refactors
	8.4.4 Allows for More App and Template Reverse Tricks

	8.5 Try to Keep Business Logic Out of Views
	8.6 Django Views Are Functions
	8.6.1 The Simplest Views

	8.7 Don't Use locals() as Views Context
	8.8 Summary

	9 Best Practices for Function-Based Views
	9.1 Advantages of FBVs
	9.2 Passing the HttpRequest Object
	9.3 Decorators Are Sweet
	9.3.1 Be Conservative With Decorators
	9.3.2 Additional Resources on Decorators

	9.4 Passing the HttpResponse Object
	9.5 Summary

	10 Best Practices for Class-Based Views
	10.1 Guidelines When Working With CBVs
	10.2 Using Mixins With CBVs
	10.3 Which Django GCBV Should Be Used for What Task?
	10.4 General Tips for Django CBVs
	10.4.1 Constraining Django CBV/GCBV Access to Authenticated Users
	10.4.2 Performing Custom Actions on Views With Valid Forms
	10.4.3 Performing Custom Actions on Views With Invalid Forms
	10.4.4 Using the View Object

	10.5 How GCBVs and Forms Fit Together
	10.5.1 Views + ModelForm Example
	10.5.2 Views + Form Example

	10.6 Using Just django.views.generic.View
	10.7 Additional Resources
	10.8 Summary

	11 Common Patterns for Forms
	11.1 Pattern 1: Simple ModelForm With Default Validators
	11.2 Pattern 2: Custom Form Field Validators in ModelForms
	11.3 Pattern 3: Overriding the Clean Stage of Validation
	11.4 Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)
	11.5 Pattern 5: Reusable Search Mixin View
	11.6 Summary

	12 Form Fundamentals
	12.1 Validate All Incoming Data With Django Forms
	12.2 Use the POST Method in HTML Forms
	12.3 Always Use CSRF Protection With HTTP Forms That Modify Data
	12.3.1 Posting Data via AJAX

	12.4 Understand How to Add Django Form Instance Attributes
	12.5 Know How Form Validation Works
	12.5.1 ModelForm Data Is Saved to the Form, Then the Model Instance

	12.6 Add Errors to Forms With Form.add_error()
	12.6.1 Other Useful Form Methods

	12.7 Fields Without Pre-Made Widgets
	12.8 Customizing Widgets
	12.8.1 Overriding the HTML of Built-In Widgets
	12.8.2 Creating New Custom Widgets

	12.9 Additional Resources
	12.10 Summary

	13 Templates: Best Practices
	13.1 Keep Templates Mostly in templates/
	13.2 Template Architecture Patterns
	13.2.1 2-Tier Template Architecture Example
	13.2.2 3-Tier Template Architecture Example
	13.2.3 Flat Is Better Than Nested

	13.3 Limit Processing in Templates
	13.3.1 Gotcha 1: Aggregation in Templates
	13.3.2 Gotcha 2: Filtering With Conditionals in Templates
	13.3.3 Gotcha 3: Complex Implied Queries in Templates
	13.3.4 Gotcha 4: Hidden CPU Load in Templates
	13.3.5 Gotcha 5: Hidden REST API Calls in Templates

	13.4 Don't Bother Making Your Generated HTML Pretty
	13.5 Exploring Template Inheritance
	13.6 block.super Gives the Power of Control
	13.7 Useful Things to Consider
	13.7.1 Avoid Coupling Styles Too Tightly to Python Code
	13.7.2 Common Conventions
	13.7.3 Use Implicit and Named Explicit Context Objects Properly
	13.7.4 Use URL Names Instead of Hardcoded Paths
	13.7.5 Debugging Complex Templates

	13.8 Error Page Templates
	13.9 Follow a Minimalist Approach
	13.10 Summary

	14 Template Tags and Filters
	14.1 Filters Are Functions
	14.1.1 Filters Are Easy to Test
	14.1.2 Filters and Code Reuse
	14.1.3 When to Write Filters

	14.2 Custom Template Tags
	14.2.1 Template Tags Are Harder to Debug
	14.2.2 Template Tags Make Code Reuse Harder
	14.2.3 The Performance Cost of Template Tags
	14.2.4 When to Write Template Tags

	14.3 Naming Your Template Tag Libraries
	14.4 Loading Your Template Tag Modules
	14.4.1 Watch Out for This Anti-Pattern

	14.5 Summary

	15 Django Templates and Jinja2
	15.1 What's the Syntactical Difference?
	15.2 Should I Switch?
	15.2.1 Advantages of DTL
	15.2.2 Advantages of Jinja2
	15.2.3 Which One Wins?

	15.3 Considerations When Using Jinja2 With Django
	15.3.1 CSRF and Jinja2
	15.3.2 Using Template Tags in Jinja2 Templates
	15.3.3 Using Django-Style Template Filters in Jinja2 Templates
	15.3.4 The Jinja2 Environment Object Should Be Considered Static

	15.4 Resources
	15.5 Summary

	16 Building REST APIs With Django REST Framework
	16.1 Fundamentals of Basic REST API Design
	16.2 Illustrating Design Concepts With a Simple API
	16.3 REST API Architecture
	16.3.1 Use Consistent API Module Naming
	16.3.2 Code for a Project Should Be Neatly Organized
	16.3.3 Code for an App Should Remain in the App
	16.3.4 Try to Keep Business Logic Out of API Views
	16.3.5 Grouping API URLs
	16.3.6 Test Your API
	16.3.7 Version Your API
	16.3.8 Be Careful With Customized Authentication Schemes

	16.4 When DRF Gets in the Way
	16.4.1 Remote Procedure Calls vs REST APIs
	16.4.2 Problems With Complex Data
	16.4.3 Simplify! Go Atomic!

	16.5 Shutting Down an External API
	16.5.1 Step #1: Notify Users of Pending Shut Down
	16.5.2 Step #2: Replace API With 410 Error View

	16.6 Rate-Limiting Your API
	16.6.1 Unfettered API Access Is Dangerous
	16.6.2 REST Frameworks Must Come With Rate Limiting
	16.6.3 Rate Limit Can Be a Business Plan

	16.7 Advertising Your REST API
	16.7.1 Documentation
	16.7.2 Provide Client SDKs

	16.8 Additional Reading
	16.9 Summary

	17 Consuming REST APIs
	17.1 Learn How to Debug the Client
	17.2 Consider Using JavaScript-Powered Static Asset Preprocessors
	17.3 Real-Time Woes a.k.a. Latency
	17.3.1 Solution: Mask the Latency With Animations
	17.3.2 Solution: Fake Successful Transactions
	17.3.3 Solution: Geographically Based Servers
	17.3.4 Solution: Restrict Users Geographically

	17.4 Avoid the Anti-Patterns
	17.4.1 Building Single Page Apps When Multi-Page Apps Suffice
	17.4.2 Upgrading Legacy Sites
	17.4.3 Not Writing Tests
	17.4.4 Not Understanding JavaScript Memory Management
	17.4.5 Storing Data in the DOM When It's Not jQuery

	17.5 AJAX and the CSRF Token
	17.5.1 Set settings.CSRF_COOKIE_HTTPONLY Appropriately

	17.6 Improving JavaScript Skills
	17.6.1 Assessing Skill Levels
	17.6.2 Learn More JavaScript!

	17.7 Follow JavaScript Coding Standards
	17.8 Summary

	18 Tradeoffs of Replacing Core Components
	18.1 The Temptation to Build FrankenDjango
	18.2 Non-Relational Databases vs. Relational Databases
	18.2.1 Not All Non-Relational Databases Are ACID Compliant
	18.2.2 Don't Use Non-Relational Databases for Relational Tasks
	18.2.3 Ignore the Hype and Do Your Own Research
	18.2.4 How We Use Non-Relational Databases With Django

	18.3 What About Replacing the Django Template Language?
	18.4 Summary

	19 Working With the Django Admin
	19.1 It's Not for End Users
	19.2 Admin Customization vs. New Views
	19.3 Viewing String Representations of Objects
	19.3.1 Using __str__()
	19.3.2 Using list_display

	19.4 Adding Callables to ModelAdmin Classes
	19.5 Be Aware of the Complications of Multiuser Environments
	19.6 Django's Admin Documentation Generator
	19.7 Using Custom Skins With the Django Admin
	19.7.1 Evaluation Point: Documentation is Everything
	19.7.2 Write Tests for Any Admin Extensions You Create

	19.8 Secure the Django Admin
	19.8.1 Change the Default Admin URL
	19.8.2 Use django-admin-honeypot
	19.8.3 Only Allow Admin Access via HTTPS
	19.8.4 Limit Admin Access Based on IP

	19.9 Securing the Admin Docs
	19.10 Summary

	20 Dealing With the User Model
	20.1 Use Django's Tools for Finding the User Model
	20.1.1 Use settings.AUTH_USER_MODEL for Foreign Keys to User
	20.1.2 Don't Use get_user_model() for Foreign Keys to User

	20.2 Custom User Fields for Django 1.11 Projects
	20.2.1 Option 1: Subclass AbstractUser
	20.2.2 Option 2: Subclass AbstractBaseUser
	20.2.3 Option 3: Linking Back From a Related Model

	20.3 Summary

	21 Django's Secret Sauce: Third-Party Packages
	21.1 Examples of Third-Party Packages
	21.2 Know About the Python Package Index
	21.3 Know About DjangoPackages.org
	21.4 Know Your Resources
	21.5 Tools for Installing and Managing Packages
	21.6 Package Requirements
	21.7 Wiring Up Django Packages: The Basics
	21.7.1 Step 1: Read the Documentation for the Package
	21.7.2 Step 2: Add Package and Version Number to Your Requirements
	21.7.3 Step 3: Install the Requirements Into Your Virtualenv
	21.7.4 Step 4: Follow the Package's Installation Instructions Exactly

	21.8 Troubleshooting Third-Party Packages
	21.9 Releasing Your Own Django Packages
	21.10 What Makes a Good Django Package?
	21.10.1 Purpose
	21.10.2 Scope
	21.10.3 Documentation
	21.10.4 Tests
	21.10.5 Templates
	21.10.6 Activity
	21.10.7 Community
	21.10.8 Modularity
	21.10.9 Availability on PyPI
	21.10.10 Uses the Broadest Requirements Specifiers Possible
	21.10.11 Proper Version Numbers
	21.10.12 Name
	21.10.13 License
	21.10.14 Clarity of Code
	21.10.15 Use URL Namespaces

	21.11 Creating Your Own Packages the Easy Way
	21.12 Maintaining Your Open Source Package
	21.12.1 Give Credit for Pull Requests
	21.12.2 Handling Bad Pull Requests
	21.12.3 Do Formal PyPI Releases
	21.12.4 Create and Deploy Wheels to PyPI
	21.12.5 Upgrade the Package to New Versions of Django
	21.12.6 Follow Good Security Practices
	21.12.7 Provide Sample Base Templates
	21.12.8 Give the Package Away

	21.13 Additional Reading
	21.14 Summary

	22 Testing Stinks and Is a Waste of Money!
	22.1 Testing Saves Money, Jobs, and Lives
	22.2 How to Structure Tests
	22.3 How to Write Unit Tests
	22.3.1 Each Test Method Tests One Thing
	22.3.2 For Views, When Possible Use the Request Factory
	22.3.3 Don't Write Tests That Have to Be Tested
	22.3.4 Don't Repeat Yourself Doesn't Apply to Writing Tests
	22.3.5 Don't Rely on Fixtures
	22.3.6 Things That Should Be Tested
	22.3.7 Test for Failure
	22.3.8 Use Mock to Keep Unit Tests From Touching the World
	22.3.9 Use Fancier Assertion Methods
	22.3.10 Document the Purpose of Each Test

	22.4 What About Integration Tests?
	22.5 Continuous Integration
	22.6 Who Cares? We Don't Have Time for Tests!
	22.7 The Game of Test Coverage
	22.8 Setting Up the Test Coverage Game
	22.8.1 Step 1: Start Writing Tests
	22.8.2 Step 2: Run Tests and Generate Coverage Report
	22.8.3 Step 3: Generate the Report!

	22.9 Playing the Game of Test Coverage
	22.10 Alternatives to unittest
	22.11 Summary

	23 Documentation: Be Obsessed
	23.1 Use reStructuredText for Python Docs
	23.2 Use Sphinx to Generate Documentation From reStructuredText
	23.3 What Docs Should Django Projects Contain?
	23.4 Additional Documentation Resources
	23.5 The Markdown Alternative
	23.5.1 README.md to README.rst: Using Pandoc for Packages Uploaded to PyPI
	23.5.2 Markdown Resources

	23.6 Wikis and Other Documentation Methods
	23.7 Summary

	24 Finding and Reducing Bottlenecks
	24.1 Should You Even Care?
	24.2 Speed Up Query-Heavy Pages
	24.2.1 Find Excessive Queries With Django Debug Toolbar
	24.2.2 Reduce the Number of Queries
	24.2.3 Speed Up Common Queries
	24.2.4 Switch ATOMIC_REQUESTS to False

	24.3 Get the Most Out of Your Database
	24.3.1 Know What Doesn't Belong in the Database
	24.3.2 Getting the Most Out of PostgreSQL
	24.3.3 Getting the Most Out of MySQL

	24.4 Cache Queries With Memcached or Redis
	24.5 Identify Specific Places to Cache
	24.6 Consider Third-Party Caching Packages
	24.7 Compression and Minification of HTML, CSS, and JavaScript
	24.8 Use Upstream Caching or a Content Delivery Network
	24.9 Other Resources
	24.10 Summary

	25 Asynchronous Task Queues
	25.1 Do We Need a Task Queue?
	25.2 Choosing Task Queue Software
	25.3 Best Practices for Task Queues
	25.3.1 Treat Tasks Like Views
	25.3.2 Tasks Aren't Free
	25.3.3 Only Pass JSON-Serializable Values to Task Functions
	25.3.4 Write Tasks as Idempotent Whenever Possible
	25.3.5 Don't Keep Important Data in Your Queue
	25.3.6 Learn How to Monitor Tasks and Workers
	25.3.7 Logging!
	25.3.8 Monitor the Backlog
	25.3.9 Periodically Clear Out Dead Tasks
	25.3.10 Ignore Results We Don't Need
	25.3.11 Use the Queue's Error Handling
	25.3.12 Learn the Features of Your Task Queue Software

	25.4 Resources for Task Queues
	25.5 Summary

	26 Security Best Practices
	26.1 Reference Security Sections in Other Chapters
	26.2 Harden Your Servers
	26.3 Know Django's Security Features
	26.4 Turn Off DEBUG Mode in Production
	26.5 Keep Your Secret Keys Secret
	26.6 HTTPS Everywhere
	26.6.1 Use Secure Cookies
	26.6.2 Use HTTP Strict Transport Security (HSTS)
	26.6.3 HTTPS Configuration Tools

	26.7 Use Allowed Hosts Validation
	26.8 Always Use CSRF Protection With HTTP Forms That Modify Data
	26.9 Prevent Against Cross-Site Scripting (XSS) Attacks
	26.9.1 Use format_html Over mark_safe
	26.9.2 Don't Allow Users to Set Individual HTML Tag Attributes
	26.9.3 Use JSON Encoding for Data Consumed by JavaScript
	26.9.4 Beware Unusual JavaScript
	26.9.5 Add Content Security Policy Headers
	26.9.6 Additional Reading

	26.10 Defend Against Python Code Injection Attacks
	26.10.1 Python Built-Ins That Execute Code
	26.10.2 Python Standard Library Modules That Can Execute Code
	26.10.3 Third-Party Libraries That Can Execute Code
	26.10.4 Be Careful With Cookie-Based Sessions

	26.11 Validate All Incoming Data With Django Forms
	26.12 Disable the Autocomplete on Payment Fields
	26.13 Handle User-Uploaded Files Carefully
	26.13.1 When a CDN Is Not an Option
	26.13.2 Django and User-Uploaded Files

	26.14 Don't Use ModelForms.Meta.exclude
	26.14.1 Mass Assignment Vulnerabilities

	26.15 Don't Use ModelForms.Meta.fields = "all"
	26.16 Beware of SQL Injection Attacks
	26.17 Never Store Credit Card Data
	26.18 Monitor Your Sites
	26.19 Keep Your Dependencies Up-to-Date
	26.20 Prevent Clickjacking
	26.21 Guard Against XML Bombing With defusedxml
	26.22 Explore Two-Factor Authentication
	26.23 Embrace SecurityMiddleware
	26.24 Force the Use of Strong Passwords
	26.25 Give Your Site a Security Checkup
	26.26 Put Up a Vulnerability Reporting Page
	26.27 Never Display Sequential Primary Keys
	26.27.1 Lookup by Slug
	26.27.2 UUIDs

	26.28 Reference Our Security Settings Appendix
	26.29 Review the List of Security Packages
	26.30 Keep Up-to-Date on General Security Practices
	26.31 Summary

	27 Logging: What's It For, Anyway?
	27.1 Application Logs vs. Other Logs
	27.2 Why Bother With Logging?
	27.3 When to Use Each Log Level
	27.3.1 Log Catastrophes With CRITICAL
	27.3.2 Log Production Errors With ERROR
	27.3.3 Log Lower-Priority Problems With WARNING
	27.3.4 Log Useful State Information With INFO
	27.3.5 Log Debug-Related Messages to DEBUG

	27.4 Log Tracebacks When Catching Exceptions
	27.5 One Logger Per Module That Uses Logging
	27.6 Log Locally to Rotating Files
	27.7 Other Logging Tips
	27.8 Necessary Reading Material
	27.9 Useful Third-Party Tools
	27.10 Summary

	28 Signals: Use Cases and Avoidance Techniques
	28.1 When to Use and Avoid Signals
	28.2 Signal Avoidance Techniques
	28.2.1 Using Custom Model Manager Methods Instead of Signals
	28.2.2 Validate Your Model Elsewhere
	28.2.3 Override Your Model's Save or Delete Method Instead
	28.2.4 Use a Helper Function Instead of Signals

	28.3 Summary

	29 What About Those Random Utilities?
	29.1 Create a Core App for Your Utilities
	29.2 Optimize Apps With Utility Modules
	29.2.1 Storing Code Used in Many Places
	29.2.2 Trimming Models
	29.2.3 Easier Testing

	29.3 Django's Own Swiss Army Knife
	29.3.1 django.contrib.humanize
	29.3.2 django.utils.decorators.method_decorator(decorator)
	29.3.3 django.utils.decorators.decorator_from_middleware(middleware)
	29.3.4 django.utils.encoding.force_text(value)
	29.3.5 django.utils.functional.cached_property
	29.3.6 django.utils.html.format_html(format_str, *args, **kwargs)
	29.3.7 django.utils.html.strip_tags(value)
	29.3.8 django.utils.six
	29.3.9 django.utils.text.slugify(value)
	29.3.10 Slugification and Languages Besides English
	29.3.11 django.utils.timezone
	29.3.12 django.utils.translation

	29.4 Exceptions
	29.4.1 django.core.exceptions.ImproperlyConfigured
	29.4.2 django.core.exceptions.ObjectDoesNotExist
	29.4.3 django.core.exceptions.PermissionDenied

	29.5 Serializers and Deserializers
	29.5.1 django.core.serializers.json.DjangoJSONEncoder
	29.5.2 django.core.serializers.pyyaml
	29.5.3 django.core.serializers.xml_serializer
	29.5.4 rest_framework.serializers

	29.6 Summary

	30 Deployment: Platforms as a Service
	30.1 Evaluating a PaaS
	30.1.1 Compliance
	30.1.2 Pricing
	30.1.3 Uptime
	30.1.4 Staffing
	30.1.5 Scaling
	30.1.6 HTTP Server
	30.1.7 Documentation
	30.1.8 Performance Degradation
	30.1.9 Geography
	30.1.10 Company Stability

	30.2 Best Practices for Deploying to PaaS
	30.2.1 Aim for Identical Environments
	30.2.2 Maintain a Staging Instance
	30.2.3 Automate All the Things!
	30.2.4 Multiple Requirements Files in Multiple Environments
	30.2.5 Prepare for Disaster With Backups and Rollbacks
	30.2.6 Keep External Backups

	30.3 Summary

	31 Deploying Django Projects
	31.1 Single-Server for Small Projects
	31.1.1 Should You Bother?
	31.1.2 Example: Quick Ubuntu + Gunicorn Setup

	31.2 Multi-Server for Medium to Large Projects
	31.2.1 Advanced Multi-Server Setup

	31.3 WSGI Application Servers
	31.4 Performance and Tuning: uWSGI and Gunicorn
	31.5 Stability and Ease of Setup: Gunicorn and Apache
	31.6 Common Apache Gotchas
	31.6.1 Apache and Environment Variables
	31.6.2 Apache and Virtualenv

	31.7 Automated, Repeatable Deployments
	31.7.1 A Rapidly Changing World

	31.8 Which Automation Tool Should Be Used?
	31.8.1 Too Much Corporate Fluff
	31.8.2 Do Your Own Research

	31.9 Current Infrastructure Automation Tools
	31.10 Other Resources
	31.11 Summary

	32 Continuous Integration
	32.1 Principles of Continuous Integration
	32.1.1 Write Lots of Tests!
	32.1.2 Keeping the Build Fast

	32.2 Tools for Continuously Integrating Your Project
	32.2.1 Tox
	32.2.2 Jenkins

	32.3 Continuous Integration as a Service
	32.3.1 Code Coverage as a Service

	32.4 Additional Resources
	32.5 Summary

	33 The Art of Debugging
	33.1 Debugging in Development
	33.1.1 Use django-debug-toolbar
	33.1.2 That Annoying CBV Error
	33.1.3 Master the Python Debugger
	33.1.4 Remember the Essentials for Form File Uploads
	33.1.5 Lean on the Text Editor or IDE

	33.2 Debugging Production Systems
	33.2.1 Read the Logs the Easy Way
	33.2.2 Mirroring Production
	33.2.3 UserBasedExceptionMiddleware
	33.2.4 That Troublesome settings.ALLOWED_HOSTS Error

	33.3 Feature Flags
	33.3.1 Feature Flag Packages
	33.3.2 Unit Testing Code Affected by Feature Flags

	33.4 Summary

	34 Where and How to Ask Django Questions
	34.1 What to Do When You're Stuck
	34.2 How to Ask Great Django Questions in IRC
	34.3 Feed Your Brain
	34.4 Insider Tip: Be Active in the Community
	34.4.1 9 Easy Ways to Participate

	34.5 Summary

	35 Closing Thoughts
	Appendix A: Packages Mentioned In This Book
	Appendix B: Troubleshooting Installation
	Identifying the Issue
	Our Recommended Solutions
	Check Your Virtualenv Installation
	Check If Your Virtualenv Has Django 1.11 Installed
	Check For Other Problems

	Appendix C: Additional Resources
	Timeless Python and Django Material
	Timeless Beginner Django Material
	Timeless Beginner Python Material
	Timeless Useful Python Material
	JavaScript Resources

	Appendix D: Internationalization and Localization
	Appendix E: Settings Alternatives
	Appendix F: Advice for Python 2.7 Users
	Appendix G: Security Settings Reference
	Appendix H: Handling Security Failures
	Have a Plan Ready for When Things Go Wrong
	Shut Everything Down or Put It in Read-Only Mode
	Put Up a Static HTML Page
	Back Everything Up
	Email security@djangoproject.com, Even if It's Your Fault
	Start Looking Into the Problem

	Appendix I: WebSockets with Channels
	Each Browser Tab Has Its Own WebSocket Connection
	Expect WebSocket Connections to Drop All the Time
	Channels Works Better With Python 3.6+
	Validate Incoming Data!
	Watch Out For Spaghetti Code

	Acknowledgments
	List of Figures
	List of Tables
	Index

